
Learning to Infer Generative Template Programs for Visual Concepts

R. Kenny Jones 1 Siddhartha Chaudhuri 2 Daniel Ritchie 1

Abstract
People grasp flexible visual concepts from a few
examples. We explore a neurosymbolic system
that learns how to infer programs that capture vi-
sual concepts in a domain-general fashion. We
introduce Template Programs: programmatic ex-
pressions from a domain-specific language that
specify structural and parametric patterns com-
mon to an input concept. Our framework supports
multiple concept-related tasks, including few-shot
generation and co-segmentation through parsing.
We develop a learning paradigm that allows us
to train networks that infer Template Programs
directly from visual datasets that contain concept
groupings. We run experiments across multiple
visual domains: 2D layouts, Omniglot characters,
and 3D shapes. We find that our method out-
performs task-specific alternatives, and performs
competitively against domain-specific approaches
for the limited domains where they exist.

1. Introduction
Humans understand the visual world through concepts (Mur-
phy, 2004). Concept-level reasoning allows us to perform
a multitude of tasks over a range of situations, even after
seeing a new concept only a few times (Tenenbaum, 2018).
In this paper, we endeavor to endow machines with similar
abilities to learn flexible, general purpose visual concepts.
For instance, to support creative applications, we would like
to be able to feed it a small set of visual exemplars and have
it synthesize novel generations that match the input concept.
Or to support analysis tasks, our system should be able to
parse the input exemplars into corresponding parts in a con-
sistent fashion. We desire a system capable of achieving
these goals across different visual domains.

Past work has explored systems capable of meeting some of
these desiderata (Lake et al., 2019a). Within methods that

1Brown University 2Adobe Research. Correspondence to: R.
Kenny Jones <russell jones@brown.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

approach this problem ‘symbolically’, a common strategy
is to induce a structured grammar that explains the input
concept set under some criteria (often Bayesian in flavor, e.g.
Stuhlmuller et al. (2010)). These methods are challenged
by the fact that grammar induction is a difficult inverse
problem: these methods often rely on domain specializa-
tion or structured inputs, limiting their generality. Other
attempts have investigated ‘neural’ approaches that learn
to perform concept-related tasks (Finn et al., 2017). While
these approaches impress in their areas of specialization,
such methods can usually only perform a subset of the tasks
we are interested in. They also typically do not general-
ize well beyond training concepts, unless they have been
pretrained on internet scale data.

Working towards domain and task general concept learn-
ing, we introduce the Template Program framework. Our
neurosymbolic system learns how to infer programs that
capture visual concepts. Beyond simply parsing concepts,
our Template Programs can also be sampled to synthesize
new generations conditioned on a group of visual inputs.

Template Programs are structured symbolic objects from a
domain-specific language that capture structural and para-
metric attributes common to a particular concept. They
admit instantiated programs that accord with these con-
straints, and convert these programs into visual outputs with
a domain-specific executor. We train networks that learn
how to infer Template Programs with a training regime
that works across visual domains. This paradigm requires
only a domain-specific language (DSL) and a visual dataset
(e.g. images) with concept groupings (e.g. class anno-
tations). Our two-step learning approach first pretrains a
series of inference networks on synthetic data sampled from
the DSL, and then specializes these networks towards the
target dataset with a bootstrapped fine-tuning procedure.

We experimentally validate that our method is capable of in-
ferring Template Programs across multiple visual domains:
2D layouts, Omniglot characters, and 3D shapes. We demon-
strate that Template Programs natively support a number of
downstream applications, including few-shot generation and
co-segmentation. We are unaware of any other method that
is able to perform these tasks in a domain-general fashion, so
we compare against either task-specific or domain-specific
alternatives. With respect to task-specific approaches, we

1

Learning to Infer Generative Template Programs for Visual Concepts

find that our neurosymbolic method achieves superior per-
formance. For the one domain, Omniglot (Lake et al., 2015),
where task-general methods have been proposed, we com-
pare our domain-general method against domain-specific
approaches and find that we are able to achieve competi-
tive performance. We release code for our experiments at:
https://github.com/rkjones4/TemplatePrograms

In summary, our contributions are:

1. Template Programs: a neurosymbolic framework for
capturing visual concepts with partially specified pro-
grams. Our framework supports a range of tasks in-
cluding few-shot generation and co-segmentation.

2. An unsupervised learning methodology that allows us
to train networks that infer Template Programs in a
domain-general fashion from visual datasets that con-
tain no annotations beyond concept groupings.

2. Related Work
Concept Learning Many works have studied concept learn-
ing and related tasks (Lake et al., 2019b). A number of
methods take a task-specific focus, such as training neural
networks to perform few-shot classification (Vinyals et al.,
2016; Snell et al., 2017). Other approaches have focused
instead on generation, under different conditioning frame-
works (Rezende et al., 2016; Giannone et al., 2022). While
these methods perform well in the areas they specialize for,
none of them achieve the task-flexibility we desire.

A smaller number of ‘neural’ approaches have investigated
how to learn concept representations that support multiple
tasks (Edwards & Storkey, 2017; Hewitt et al., 2018). While
these methods often achieve domain-flexibility by learning
from visual data directly, they are data-hungry and don’t
always generalize well to out-of-distribution concepts: we
explore this phenomena in our experiments. More recently,
‘foundation’ models that train on internet-scale data have
shown promise for mitigating these failure modes, but come
with other limitations, including massive compute and data
requirements (Ruiz et al., 2022).

Most relevant to our approach are methods that learn struc-
tured task-general representations. To the best of our knowl-
edge, such methods have only been successfully developed
for stroke-based drawing domains. Lake et al. (2015) (BPL)
fit a structured hierarchical model of handwritten character
production to human stroke data under a Bayesian framing,
achieving human-level performance across generative and
discriminative tasks. Feinman & Lake (2021) (GNS) extend
this framework with a neurosymbolic method, where the dis-
tribution and correlation of strokes are modeled with learned
networks. While these approaches demonstrate impressive
performance, their design is specialized for datasets such

as Omniglot; we are unaware of any successful attempts
to generalize these approaches to other domains. Of note,
DooD is a related neurosymbolic approach that is similarly
specialized for drawing domains, but has shown the capa-
bility to generalize across drawing-related datasets (Liang
et al., 2022). As our proposed framework is designed to
maintain domain-generality, outperforming these specialists
is not our goal. That said, we experimentally compare our
approach against BPL and GNS on Omniglot and find that
we are able to largely match their performance for few-shot
generation and co-segmentation tasks.

Inverse Procedural Modeling While not often presented
as concept learners, methods within computer graphics
have made progress on related problems under the fram-
ing of inverse procedural modeling. These methods aim
to infer structured symbolic objects that explain visual in-
puts, e.g. procedural models that produce visual outputs
when executed. A typical framing these approaches take
is to induce a grammar with a bottom-up procedure, e.g.
Bayesian merging (Hwang et al., 2011). These techniques
have demonstrated success across many visual domains,
including plants (Stava et al., 2010; Guo et al., 2020) and
buildings (Nishida et al., 2016; Martinovic & Van Gool,
2013; Nishida et al., 2018; Demir et al., 2016), and some can
even induce more general probabilistic programs (Ritchie
et al., 2018). Unfortunately, these methods lack the general-
ity we desire: they are not able to induce grammars outside
of their specialized domains and often require structured
input data. In contrast, our approach uses learned networks
that guide a top-down inference procedure.

Relatedly, another line of work has explored how to infer
procedural models that explain a single visual input; we
refer to this task as visual program induction (VPI) (Ritchie
et al., 2023). Though some VPI methods are non-learning
based, relying on search and heuristics (Du et al., 2018;
Xu et al., 2021), recent methods have investigated learning-
based solutions for this task. While many of these VPI
approaches are specialized for domains of interest such
as 3D CAD modeling (Xu et al., 2022; Tian et al., 2019),
others have proposed learning techniques that work over
multiple domains (Jones et al., 2022; Ellis et al., 2019; Ganin
et al., 2018; Hewitt et al.; Ganeshan et al., 2023). Similar
to these approaches, we aim to learn networks that can
infer programmatic objects across domains, but instead of
inferring a single program that explains one input, we aim
to infer a Template Program that captures a group of visual
inputs.

A few works have considered how partial program con-
structs can aid in program synthesis. Sketch uses partial
programs to constrain a SAT-based inductive synthesis pro-
cedure (Solar-Lezama, 2008). While this framing is com-
pelling for discrete domains, adapting this technique for

2

Learning to Infer Generative Template Programs for Visual Concepts

more complex visual domains often requires first solving a
primitive decomposition problem (Ellis et al., 2018). Dream-
Coder is a system that takes as input a corpus of tasks and
a base DSL, and from this uses an iterative bootstrapping
procedure to find a library of abstraction functions (Ellis
et al., 2021). While these discovered abstractions may con-
tain holes, they cannot be used to perform concept-related
tasks. In contrast to both of these works, which use partial
program intermediates to find a deterministic program that
matches a single input, our method aims to find a partial
programs that explains a collection of visual inputs.

3. Method
Our framework learns how to infer Template Programs (Sec-
tion 3.1) that capture visual concepts. We describe our in-
ference networks in Section 3.2 and our learning paradigm
in Section 3.3.

3.1. Template Programs

Given a collection of related visual inputs, our goal is to find
a symbolic structure capable of representing this group as a
concept. This structure must be able to account for both (i)
the shared attributes across the group and (ii) the allowable
divergences that differentiate various group members.

Towards this goal, we introduce Template Programs to rep-
resent visual concepts. A Template Program (TP) is a
partial program specification from a domain-specific lan-
guage (DSL). We assume this DSL is a functional language,
where each function takes other functions or parameter argu-
ments as input. Template Programs admit fully instantiated
programs (z). These programs can be run through a domain-
specific executor (E) to produce visual outputs.

Template Programs are composed of a hierarchy of func-
tion calls (i.e an expression tree) and are optionally allowed
to define relationships between parameter arguments (e.g.
variable reuse). All instantiations from a Template Program
must invoke the specified functions and use the described
relations. To allow instantiations to vary structurally (i.e.
use different functions), we introduce a special HOLE con-
struct. Each HOLE in the Template Program can be filled
in with an arbitrary expression tree. This process creates a
Structural Expansion (SE), which completely specifies the
function call sequence of an instantiation. Any function pa-
rameters that lack a specified relation in the SE are allowed
to differ freely in the output programs.

3.2. Inference Networks

We use a learning-based approach to infer Template Pro-
grams and their instantiations. Given a group of visual
inputs XG from some concept X̃ , our goal is to infer a
Template Program TP , such that for each x in XG there is

a program instantiation z from TP so that E(z) = x.

We solve this difficult inverse structured prediction problem
with a series of inference networks pinf that we depict in
Figure 1. To start, each x is converted into a latent code
with a domain-specific visual encoder (e.g. a 2D CNN for
image inputs). These latent codes are then passed through a
series of auto-regressive networks, explained below.

The TemplateNet, p(TP |XG), is responsible for inferring
Template Programs. Attending over all of the latent codes
from XG as conditioning information, it autoregressively
predicts a series of tokens that form the Template Program.
We linearize this composition of functions with prefix no-
tation. Using Figure 1 as reference, these tokens are either
(i) functions from the DSL (SCALE), (ii) HOLE tokens,
or (iii) parametric relations, such as static variable assign-
ment (Triangle) or variable reuse (V0).

Given the inferred TP , we use the ExpansionNet and Param-
Net to instantiate a complete program z. The Expansion-
Net, p(SE|TP ,x) , conditions on TP along with a single
visual input x, and autoregressively produces a SE by fill-
ing in HOLE tokens with a series of functions. This SE is
then reformatted to expose any free parameters and their
relations. The ParamNet, p(z|SE,x), conditions on this
representation and the same visual input x in order to au-
toregressively predict the value of each parameter which
instantiates a complete program z.

3.3. Learning Paradigm

How can we train our inference networks? With ground-
truth program annotations, we could employ supervised
learning, but datasets with this level of annotation do not
exist. As our goal is to design a domain-general frame-
work, our problem formulation assumes the following as
input: a target dataset of interest X∗ and a relevant DSL.
We assume that we can sample groups of visual concepts
from this dataset (e.g. by using class annotations), but oth-
erwise assume the visual data is unstructured. Under these
assumptions, we employ a two-step process: we first initial-
ize our networks by pretraining on synthetic data sampled
from the DSL, and then we specialize pinf towards X∗ with
bootstrapped finetuning.

Synthetic Pretraining We implement each autoregressive
network within pinf as a Transformer decoder with causal
masking (where the conditioning information varies across
networks). With paired (input, output) data, each of these
networks can be trained with maximum likelihood updates
(i.e. cross-entropy loss). We can produce (input, output)
pairs for all of our networks if we have an associated (XG,
TPG, ZG) group, where targets for the ExpansionNet and
ParamNet can be derived by comparing the TPG to each
z ∈ ZG (further details in Appendix E.1).

3

Learning to Infer Generative Template Programs for Visual Concepts

START Union Color V0 Scale Prim Scale Color Prim TriangleV4 V5 V6 V7 V8 V0

START Union Color HOLE Scale Color Prim TriangleV0V0Encoder

Encoder

Encoder

TemplateNet

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

Reflect Move Scale

Move Scale Prim

Scale Prim

ParamNet V0 V1 V2 V3 V4 V5 V6 V7 V8Reflect MoveV1 V2 V3

Red AX .5 -.2 .1 .1 Circle .2 .2

START Union Color V0 Scale Prim Scale Color Prim TriangleV3 V4 V5 V6 V7 V0 ParamNet V0 V1 V2 V3 V4 V5 V6 V7Move V1 V2

Blue 0. -.5 .3 .3 Triangle .3 .3

START Union Color V0 Scale Prim Scale Color Prim TriangleV1 V2 V3 V4 V5 V0 ParamNet V0 V1 V2 V3 V4 V5

Green .5 .5 Square .7 .7

Prim

START Union Color Red Reflect AX Move .5 -.2 Scale .1 .1 Prim Circle Scale .2 .2 Color Red Prim Triangle

START Union Color Blue Move 0 -.5 Scale .3 .3 Prim Triangle Scale .3 .3 Color Blue Prim Triangle

START Union Color Green Scale .5 .5 Prim Square Scale .7 .7 Color Green Prim Triangle

execute

execute

execute

Step 1: Encode Visual Inputs

Step 2: Infer Template Program (TP)

Step 3: Infer Structural Expansion (SE)

Step 4: Infer Complete Programs (z)

Figure 1. Our inference process. First, a group of visual inputs are encoded (Step 1). Next, our TemplateNet uses these encodings to infer
a Template Program (TP , Step 2). The TP and each encoding are then sent to the ExpansionNet to produce a Structural Expansion (SE)
for each input (Step 3), which are finally passed to the ParamNet to produce a set of complete programs that explain the inputs (Step 4).

One way to produce paired data is to generate it syntheti-
cally. Following previous VPI approaches (Tian et al., 2019;
Sharma et al., 2018), we sample synthetic data from our
DSL and use it to pretrain our inference networks in a su-
pervised setting. At a high level, this sampling procedure
invokes the following steps: (1) sample a full program from
the DSL (e.g. by stochastically expanding the grammar),
(2) convert the full program into a TPG (e.g. by collapsing
random expression trees into HOLE tokens and randomly
assigning parameter relations), (3) sampling a group of pro-
grams ZG from the TPG (e.g. through random expansion)
and recording their executions, XG = (E(z) ∀ z ∈ ZG).

Bootstrapped Finetuning While synthetic pretraining at-
tunes pinf to the DSL, it produces overly general networks
that make inaccurate predictions when run over concepts
from X∗. To specialize pinf towards X∗, we develop an
unsupervised bootstrapped finetuning approach that gen-
eralizes the PLAD framework designed for single-input,
deterministic programs (Jones et al., 2022).

Our algorithm oscillates between inference and training
steps. In each inference step, we run pinf over groups
of visual inputs XG drawn from concepts in the target
dataset X̃ ∈ X∗. We run a beam-search to find the Tem-
plate Program whose instantiations best match XG under

an objective O (Eq. 1). For each XG, we record the best
inferred (TPG, ZG) pair for use in the training step.

The training step uses this paired data to finetune pinf. Specif-
ically, we convert (XG, TPG, ZG) inferred groups into
paired training data for pinf under different self-supervised
learning formulations. In the self-training (ST) formulation,
we leave the group as is. In the latent execution self-training
formulation (LEST), we replace XG by executing each pro-
gram in ZG. Our wake-sleep formulation (WS) first trains a
generative model pgen (Appendix D.3). This model is a mod-
ified variant of pinf, where the visual latent codes are masked
out, so that visual information does not affect the condition-
ing. We train pgen to model the inferred (TPG, ZG) data,
and then we sample a collection of synthesized (TPG, ZG)
pairings from the network. Finally, we produce an associ-
ated XG for each generation by employing our program
executor, following the same procedure as in LEST.

From these three self-supervised approaches (ST, LEST,
WS), we get three distinct datasets of (XG, TPG, ZG)
groups. We use these datasets to finetune pinf, using the same
maximum likelihood updates as in our synthetic pretraining
phase. We randomly sample batches from each of these
datasets in a training loop until we reach convergence with
respect to concepts from the validation set of X∗.

4

Learning to Infer Generative Template Programs for Visual Concepts

2D Primitive Layouts

Inp

Seg

Gen

Omniglot Characters

Inp

Seg

Gen

3D Shape Structures

Inp

Seg

Gen

Figure 2. We learn to infer Template Programs that capture input concepts (Inp). Template Programs produce consistent concept parses
(Seg) and synthesize new generations (Gen). Our framework flexibly extends across different visual domains and input representations.

Objective Our inference procedure takes in a visual
group XG and tries to find a Template Program TPG whose
instantiations ZG best explain the group. We formalize this
notion of best with an objective composed of two terms
(i) reconstruction error (under a domain-specific metric M)
and (ii) the description length difference between each z and
the TP it originated from. Specifically, we try to minimize:

O = λ1 ∗
∑

(x,z)∈(XG,ZG)

M(x,E(z)) + λ2 ∗
∑
z∈ZG

|z| − |TPG| (1)

In short, we search for Template Programs that encode as
much commonality as possible while still producing instan-
tiations that capture the visual input.

4. Results
We validate the benefits of our method through comparisons
with alternative approaches across three visual domains. We
describe the domains in Section 4.1 and our experimen-
tal design in Section 4.2. Next, we evaluate performance
on downstream tasks: few-shot generative modeling (Sec-
tion 4.3, Figure 2 Gen rows) and parsing-based cosegmenta-
tion (Section 4.4, Figure 2 Seg rows). Finally, we discuss
out-of-distribution generalization, method ablations, and
additional capabilities of Template Programs in Section 4.5.

4.1. Visual Domains

We experiment over three visual domains that differ in input
modality and concept groupings. We provide an overview of
each domain here, and further information in Appendix C.

2D Primitive Layouts We design a procedurally gener-
ated domain where concepts are represented with a layout of
simple 2D colored primitives. In addition to functions that
move, scale, and color primitives, our DSL also contains
simple symmetry functions (e.g. REFLECT, Fig. 1). We
hand-design 20 high-level meta-procedures that correspond
with manufactured or organic concepts (e.g. cats or clocks).
Each meta-procedure creates a distribution of concepts by
expressing different combinations of four attributes, allow-
ing us to produce 384 distinct concepts. We divide these into
216 training-validation concepts and 168 testing concepts,
where this split is designed to investigate out-of-distribution
generalization performance (Section 4.5).

Omniglot Characters Lake et al. (2015) introduced the
Omniglot dataset which contains handwritten characters
from 50 languages. These characters are split between a
background set (964 characters) and a generalization set
(659 characters), where each concept comes with 20 exam-
ples. We use the background characters for training and

5

Learning to Infer Generative Template Programs for Visual Concepts

validation, and test on the generalization characters. Our
DSL for drawing characters produces strokes by moving
a virtual pen. The pen moves at an angle, for varying dis-
tances, optionally bowing inwards or outwards. It can be
lifted up or put down and has the option to back-track to
previous positions. As we are more interested in modeling
stroke structure than physical handwriting dynamics, we
adopt a simplified ink model compared with previous work:
any pixel the pen passes through is filled completely.

3D Shape Structures Beyond 2D domains, we also run
experiments on a dataset of 3D shapes. Following past
work, we use a structured part-based representation, where
3D shapes are modeled as a combination of primitives (i.e.
cuboids) (Chaudhuri et al., 2020; Hu et al., 2023). For our
DSL, we use the ShapeAssembly modeling language (Jones
et al., 2020), which creates complex 3D shapes by instan-
tiating cuboids and assembling them together through at-
tachment and symmetry operators. We source 10,000 3D
shape structures from the chair, table, and storage categories
of PartNet (Mo et al., 2019), holding out 1000 of these for
our test set. We use the associated structural annotations
in PartNet to identify groupings of these shapes that cor-
respond to concepts that are more fine-grained than object
category. While we use annotations to partition the dataset
into groups, our networks receive only a visual represen-
tation of each shape during training: either an unordered
collection of primitives or a 3D voxel grid.

4.2. Experimental Design

Networks We implement each autoregressive component
of pinf with Transformer decoder models that have 8 lay-
ers, 16 heads, and a hidden dimension of 256. We use
causal attention masks with a prefix that contains condi-
tioning information (see Section 3.2, Appendix D). For the
2D layout and Omniglot domains we model our visual en-
coders with 2D CNNs that respectively take in RGB images
of size 64x64 and binary images of size 28x28. We train
two different versions of pinf for 3D shapes. When shapes
are represented as an unordered collection of primitives
(primitive soup), we use a Transformer encoder with order-
invariant positional encodings (Fig. 2, left & middle). We
additionally explore using a 3D CNN that takes in a 643 oc-
cupancy grid of voxels (Fig. 2, right). For each domain, we
train pinf with the procedure described in Sec. 3.3 until we
reach convergence on the validation set (additional training
details in Appendix E).

Inference logic We infer Template Programs and their in-
stantiations with a beam search. This algorithm has two pa-
rameters: BMTP controls the size of the beam used to find
Template Programs under p(TP |XG), while BMz controls
the size of the beam used to find instantiated programs un-
der p(SE|TP ,x) and p(z|SE,x). This search concludes by

evaluating each candidate under O, which requires a domain-
specific reconstruction metric. We use a color-based IoU for
2D layouts, an edge-based Chamfer distance for Omniglot,
and either a primitive-matching score or IoU for 3D shapes
depending on the input format (details in Appendix C). Dur-
ing fine-tuning, we set BMTP and BMz to 5 (∼1 second
for inference per input group). For evaluation tasks, we set
BMTP to 40 and BMz to 10 (∼20 seconds for inference
per input group).

Comparison Conditions We compare how our method
performs on concept-related tasks against alternative ap-
proaches. For the Omniglot domain, we compare against
the task-general but domain-specific BPL (Lake et al., 2015)
and GNS (Feinman & Lake, 2021) methods. Though they
are designed to operate under one-shot paradigms, we adapt
them for our task settings. We also compare against alterna-
tives that are domain-general but task-specific. For few-shot
generation, we compare against FSDM (Giannone et al.,
2022) and VHE (Hewitt et al., 2018). These approaches
both train deep generative networks that condition on a
group of input images but use different generative mod-
els: VHE uses a VAE (Kingma & Welling, 2014), while
FSDM uses diffusion (Ho et al., 2020)). During our exper-
iments, we found VAE training to be highly unstable, so
we also introduced an autoregressive VHE variant: arVHE.
Our arVHE model first tokenizes visual data (e.g. through
vector-quantization (van den Oord et al., 2017)) then learns
an autoregressive model over this tokenization that is con-
ditioned on groups of visual inputs. For co-segmentation
tasks, we compare against BAE-NET (Chen et al., 2019).
BAE-NET forms consistent parses by training a parameter-
constrained implicit network to solve an occupancy recon-
struction task. Though this method is designed primarily
for 2D and 3D shapes, we adapt it to create segmentations
across all of our domains. We provide additional details for
all of our comparisons conditions in Appendix G.

4.3. Concept Few-shot generation

For few-shot generation, a method is given a set of exam-
ples from a concept as input and is tasked with producing
new instances that demonstrate variety while maintaining
concept membership. Our method accomplishes this with
a two step process: first we infer a Template Program that
explains the input group, then we sample new instantiations
from the Template Program. To sample these instantiations,
we use variants of our p(SE|TP ,x) and p(z|SE,x) that
condition on a mean-pooled visual encoding of the input
group (Appendix D.3). Across our three domains, we show
examples of our method’s few-shot generative capabilities
in Figure 2, Gen rows. Our method is able to capture in-
put concepts and synthesize new outputs that demonstrate
interesting variations while preserving concept identity.

6

Learning to Infer Generative Template Programs for Visual Concepts

Table 1. Across multiple visual domains we quantitatively evaluate few-shot generation and co-segmentation performance. Our method
outperforms domain-general but task-specific alternatives, and is competitive against approaches that specialize for Omniglot.

Domain Omniglot 2D Layouts 3D Shapes
Task Few-shot gen Co-seg Few-shot gen Co-seg Few-shot gen Co-seg

Method FD⇓ Conf⇑ MMD⇓ Cov⇑ mIoU⇑ FD⇓ Conf⇑ MMD⇓ Cov⇑ mIoU⇑ FD⇓ MMD⇓ Cov⇑ mIoU⇑
Domain BPL 130 57.9 9.58 61.1 79.9 - - - - - - - - -
Specific GNS 123 55.0 9.47 58.1 73.8 - - - - - - - - -

FSDM 196 5.17 12.6 48.6 - - - - - - - - - -
Task VHE 139 2.46 10.4 52.0 - 81.9 59.0 8.06 22.4 - - - - -
Specific arVHE 137 12.3 10.2 55.8 - 45.3 77.0 6.34 45.1 - 128 8.57 53.6 -

BAE - - - - 34.3 - - - - 34.5 - - - 53.2

Ours 115 59.9 9.40 50.7 78.7 30.7 90.9 5.49 50.6 82.5 84.5 6.49 53.9 68.6

We present quantitative few-shot generation results in Ta-
ble 1 (details in App. F). For each domain and test-set con-
cept, we provide every method with a group of 5 visual in-
puts and ask it to synthesize 5 generations. Comparing these
generations to a reference set of held-out examples from
the same concept, we compute the following metrics using
the latent space of a domain-specific auto-encoder: Frechet
Distance (FD), Minimum Matching Distance (MMD), and
Coverage (Cov). For the Omniglot and 2D layout domains,
we also report class confidence (Conf), the average pre-
dicted probability of each generation being a member of the
target class under a classifier trained on all domain concepts.

As demonstrated, our method vastly outperforms task-
specific alternatives (FSDM, VHE, arVHE) for few-shot
generation. Over all domains, we find that our method
scores much better along metrics that measure output con-
cept consistency (Conf) and fidelity to the reference set
(FD, MMD), while maintaining reasonable output variabil-
ity (Cov). Moreover, our domain-general method is able
to largely match, and even somewhat outperform, domain-
specialized approaches (BPL, GNS) along measurements of
concept consistency and fidelity to the reference set.

We visualize few-shot generation results for Omniglot char-
acters in Figure 3. While we again offer much improved
performance over the task-specific alternatives, we note that
the methods that specialize for Omniglot typically demon-
strate a wider range of output variability, which confirms
the trend we observe with the Cov metric. We hypothesize
this difference is due to BPL and GNS learning priors over
human stroke patterns (learning how people typically pro-
duce characters). In contrast, our method finds a Template
Program attuned to the visual data present in the input group
without regard for structured priors beyond the input DSL.

Perceptual Study To further investigate few-shot gener-
ative performance, we designed a two-alternative forced-
choice perceptual study (Appendix F.1.1). We recruited
20 participants, and presented a series of questions that
compared generations from competing methods to the in-

In
pu

t
O

ur
s

B
PL

G
N

S
FS

D
M

ar
V

H
E

Figure 3. Comparing few-shot generations of Omniglot characters.

put group. We report results for this study in Table 2. For
the Omniglot domain, we compared our method against
our best performing task-general method (arVHE) and the
domain-specific GNS method. We additionally compared
our method against arVHE for the shape domain. We ob-
served that there was an overwhelming preference for our
method compared with task-specific alternatives (our gener-
ations were preferred at rates of 94% and 84% against those
produced by arVHE). Even when our method was compared
with GNS, we found participants had a slight preference for
the few-shot generations our system produced, with 64%
preference rate. We point to this result as another strong
indication of the impressive performance that our domain-
general method is capable of achieving.

4.4. Concept Co-segmentation

Our method also natively supports co-analysis tasks. When
we infer a Template Program and instantiations that explain
an input visual group, we can use the shared structure of the
Template Program to parse the group members in a consis-
tent fashion. We visualize this capability in the Seg rows
of Figure 2. This consistent parsing allows us to perform a
co-segmentation task: given an input visual group, where
exactly one member of the group has a labeled segmenta-
tion, our goal is to propagate this labeling to the other group
members. We provide further details in Appendix F.2.

7

Learning to Infer Generative Template Programs for Visual Concepts

Input

BAE

Ours

GT

Figure 4. We compare co-segmentations produced from voxelized
shapes (Input) to ground-truth annotations (GT)

We compare how our method does on co-segmentation tasks
across domains. Our main comparison is against BAE-
NET (Chen et al., 2019), which is designed specifically for
this task. For Omniglot, BPL and GNS can also perform this
task by parsing visual inputs to ordered strokes. We report
results of our experiments in Table 1. We evaluate perfor-
mance with a mean intersection over union metric (mIoU)
that measures how closely the output segmentation predic-
tions match the ground-truth labelings. Despite the fact that
our method never trains on human stroke data, we achieve
a better mIoU on this co-segmentation task compared with
GNS, and nearly match the metric value achieved by BPL.
Though our output co-segmentations are less structured com-
pared with the ordered stroke parses BPL and GNS can
produce, we are encouraged by our method’s performance
in this task. For our 3D shapes domain, as BAE-NET was
originally designed to operate over voxels, our comparisons
against it use a variant of our method that also takes in voxel
inputs. We visualize an example co-segmentation of each
method in Figure 4. Across domains and input modalities,
we find that we outperform BAE-NET for this task.

4.5. Discussion

Out-of-distribution generalization Different domains re-
quire different levels of generalization. For instance, in the
Omniglot dataset there is no alphabet overlap between train
and test characters, so strong generalization capabilities are
required for each test concept. As we procedurally generated
the 2D layout domain, we are able to control and evaluate
the level of out-of-distribution generalization required for
each test-set concept. We consider three settings. Easy
concepts have a new combination of attributes, but each
attribute has been seen before (e.g. chair back, top-left of
Fig. 2). Medium concepts have a new attribute not seen dur-
ing training (e.g. double-sided leaves, top-middle of Fig. 2).
Hard concepts are from a meta-procedure that was not used
at all during training (e.g. turtles, top-right of Fig. 2). We

Table 2. Perceptual study results evaluating few-shot generation
performance. Our method is greatly preferred over task-specific al-
ternatives and slightly preferred over domain-specific alternatives.

Domain Omniglot 3D Shapes
arVHE GNS arVHE

Ours vs. 94% 64% 84%

find that while our method does become worse when eval-
uated on more difficult concepts, its performance remains
more consistent compared with alternative approaches. We
explore this phenomenon further in Appendix B.1.

Ablations We consider the effect of different design de-
cisions on our method with an ablation study. We pro-
vide the details of this study and quantitative results in
Appendix B.2. We find that our bootstrapped finetuning pro-
cess is critical to adapting networks pretrained on synthetic
data towards a target dataset of interest. We validate that
our scheme of allowing the Template Program to capture
parametric relationships improves performance on down-
stream tasks. Finally we compare our three step inference
approach (TP → SE → z) against a two step alternative
where each z is predicted directly from the TP . In this
comparison, we find that our formulation, which allows
the ParamNet to attend over the complete expression tree,
outperforms this alternative formulation.

Unconditional Concept Generation Though we mainly
evaluate our method on few-shot generation and co-
segmentation, these are not the only concept-related tasks
our framework can support. For Omniglot, we explore how
our approach can be used for unconditional concept gen-
eration. In fact, this is a task we naturally solve as part of
our fine-tuning procedure: the wake-sleep component of
each training loop uses an unconditional generative model
to sample Template Programs that represent new concepts.
We visualize some of these generations in Figure 5.

5. Conclusion
We presented the Template Programs framework: a neu-
rosymbolic method that learns to capture visual concepts
with structured symbolic objects. We demonstrated that our
method flexibly learns to infer Template Programs across
multiple visual domains: 2D primitive layouts, Omniglot
characters, and 3D shape structures. Our approach supports
multiple downstream tasks of interest, such as few-shot gen-
eration and co-segmentation. On these tasks, we achieve su-
perior performance over other domain-general, task-specific
alternatives, and find that we match, and in some cases
slightly outperform, domain-specific, task-general alterna-
tives for the limited areas where they exist.

8

Learning to Infer Generative Template Programs for Visual Concepts

There are a number of directions we would like to investi-
gate in future work. So far, we have only considered visual
input groups of size 5, but this constraint can be relaxed by
changing the conditioning information presented to the Tem-
plateNet. More generally, one could train this network over
input groups of varying sizes (i.e through random masking
of visual encodings), to achieve the most inference time
flexibility. Further, while we allow our Template Programs
to capture parametric relations, the kinds of relations we
have so far investigated are fairly simple: static variable
assignment and variable re-use. For continuous variables
especially, it would be interesting to consider learning more
complex relations. These could be declarative (e.g. closed-
formula equations that operate over other parameters) or
could even describe distributions (e.g. by parameterizing
a Gaussian). Our Template Programs framework offers a
promising step forward towards general concept learning,
and looking ahead, we are excited to see how it can be
adapted to an even broader array of tasks and domains.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful suggestions. Renderings of 3D shapes were pro-
duced using the Blender Cycles renderer. This work was
funded in parts by NSF award #1941808 and a Brown Uni-
versity Presidential Fellowship. Daniel Ritchie is an advisor
to Geopipe and owns equity in the company. Geopipe is a
start-up that is developing 3D technology to build immersive
virtual copies of the real world with applications in various
fields, including games and architecture. Part of this work
was done while R. Kenny Jones was an intern at Adobe
Research.

Impact Statement
We propose a domain and task general system that learns to
capture visual concepts programmatically. Our system can
be used for concept related tasks, such as few-shot gener-
ative modeling and co-analysis. While we don’t envision
direct negative impacts of our system, generative models
can have both positive and negative effects dependent on
use-case. Our system learns generative models for specific
domains, so data privacy and legality considerations are
unlikely to affect our method. While any progress on few-
shot generative modeling could potentially lead to harmful
actions through nefarious actors, we believe this outcome
highly unlikely for our model as we are principally con-
cerned with modeling structured visual data that can be
represented programmatically. These domains have much
less potential for abuse compared with generative models
that learn over distributions of people, for example.

References
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.

Learning representations and generative models for 3d
point clouds, 2018.

Chaudhuri, S., Ritchie, D., Wu, J., Xu, K., and Zhang, H.
Learning Generative Models of 3D Structures. Computer
Graphics Forum, 2020. ISSN 1467-8659. doi: 10.1111/
cgf.14020.

Chen, Z., Yin, K., Fisher, M., Chaudhuri, S., and Zhang,
H. Bae-net: Branched autoencoder for shape co-
segmentation. Proceedings of International Conference
on Computer Vision (ICCV), 2019.

Demir, I., Aliaga, D. G., and Benes, B. Proceduralization
for editing 3d architectural models. In 2016 Fourth Inter-
national Conference on 3D Vision (3DV), 2016.

Du, T., Inala, J. P., Pu, Y., Spielberg, A., Schulz, A., Rus, D.,
Solar-Lezama, A., and Matusik, W. Inversecsg: automatic
conversion of 3D models to csg trees. In Annual Confer-
ence on Computer Graphics and Interactive Techniques
Asia (SIGGRAPH Asia). ACM, 2018.

Edwards, H. and Storkey, A. Towards a neural statistician.
In 5th International Conference on Learning Representa-
tions (ICLR 2017), pp. 1–13, April 2017. 5th International
Conference on Learning Representations, ICLR 2017 ;
Conference date: 24-04-2017 Through 26-04-2017.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. B. Learning to infer graphics programs from hand-
drawn images. NIPS’18, pp. 6062–6071, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and
Solar-Lezama, A. Write, execute, assess: Program syn-
thesis with a repl. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales,
L., Hewitt, L., Cary, L., Solar-Lezama, A., and Tenen-
baum, J. B. DreamCoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning. In ACM
SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Soft-
ware (SIGPLAN), pp. 835–850, 2021.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD’96, pp. 226–231. AAAI Press, 1996.

Feinman, R. and Lake, B. M. Learning task-general repre-
sentations with generative neuro-symbolic modeling. In

9

Learning to Infer Generative Template Programs for Visual Concepts

International Conference on Learning Representations,
2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Precup,
D. and Teh, Y. W. (eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1126–
1135. PMLR, 06–11 Aug 2017.

Ganeshan, A., Jones, R. K., and Ritchie, D. Improving un-
supervised visual program inference with code rewriting
families. In Proceedings of the International Conference
on Computer Vision (ICCV), 2023.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. M. A.,
and Vinyals, O. Synthesizing programs for images using
reinforced adversarial learning. CoRR, abs/1804.01118,
2018.

Giannone, G., Nielsen, D., and Winther, O. Few-shot diffu-
sion models, 2022.

Guo, J., Jiang, H., Benes, B., Deussen, O., Zhang, X.,
Lischinski, D., and Huang, H. Inverse procedural model-
ing of branching structures by inferring l-systems. ACM
Transactions on Graphics (TOG), 39(5):1–13, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Hewitt, L. B., Le, T. A., and Tenenbaum, J. B. Learning to
learn generative programs with memoised wake-sleep. In
Uncertainty in Artificial Intelligence.

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T., and Tenen-
baum, J. B. The variational homoencoder: Learning to
learn high capacity generative models from few examples,
2018.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv preprint arxiv:2006.11239, 2020.

Hu, W., Zheng, J., Zhang, Z., Yuan, X., Yin, J., and Zhou,
Z. Plankassembly: Robust 3d reconstruction from three
orthographic views with learnt shape programs. In ICCV,
2023.

Hwang, I., Stuhlmüller, A., and Goodman, N. D. Inducing
Probabilistic Programs by Bayesian Program Merging.
CoRR, arXiv:1110.5667, 2011.

Jones, R. K., Barton, T., Xu, X., Wang, K., Jiang, E., Guer-
rero, P., Mitra, N. J., and Ritchie, D. Shapeassembly:
Learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics (TOG), 39(6),
2020.

Jones, R. K., Walke, H., and Ritchie, D. Plad: Learning to
infer shape programs with pseudo-labels and approximate
distributions. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In International Conference on Learning Repre-
sentations (ICLR), 2014.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.
doi: 10.1126/science.aab3050.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. The
omniglot challenge: a 3-year progress report. Current
Opinion in Behavioral Sciences, 29:97–104, 2019a. ISSN
2352-1546. doi: https://doi.org/10.1016/j.cobeha.2019.
04.007. Artificial Intelligence.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. The
omniglot challenge: a 3-year progress report. Current
Opinion in Behavioral Sciences, 29:97–104, 2019b. ISSN
2352-1546. doi: https://doi.org/10.1016/j.cobeha.2019.
04.007. Artificial Intelligence.

Liang, Y., Tenenbaum, J., Le, T. A., and N, S. Drawing out
of distribution with neuro-symbolic generative models.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 15244–15254.
Curran Associates, Inc., 2022.

Martinovic, A. and Van Gool, L. Bayesian grammar learning
for inverse procedural modeling. In Proceedings of the
2013 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’13, pp. 201–208, USA, 2013. IEEE
Computer Society. ISBN 9780769549897. doi: 10.1109/
CVPR.2013.33.

Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas,
L. J., and Su, H. PartNet: A large-scale benchmark for
fine-grained and hierarchical part-level 3D object under-
standing. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

Murphy, G. The big book of concepts. MIT press, 2004.

Nishida, G., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and
Bousseau, A. Interactive sketching of urban procedural

10

Learning to Infer Generative Template Programs for Visual Concepts

models. ACM Trans. Graph., 35(4), jul 2016. ISSN
0730-0301. doi: 10.1145/2897824.2925951.

Nishida, G., Bousseau, A., and G. Aliaga, D. Procedural
modeling of a building from a single image. Computer
Graphics Forum (Proceedings of the Eurographics con-
ference), 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019.

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., and
Wierstra, D. One-shot generalization in deep generative
models, 2016.

Ritchie, D., Jobalia, S., and Thomas, A. Example-based au-
thoring of procedural modeling programs with structural
and continuous variability. In EUROGRAPHICS, 2018.

Ritchie, D., Guerrero, P., Jones, R. K., Mitra, N. J., Schulz,
A., Willis, K. l. D. D., and Wu, J. Neurosymbolic Mod-
els for Computer Graphics. Computer Graphics Forum,
2023.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M.,
and Aberman, K. Dreambooth: Fine tuning text-to-image
diffusion models for subject-driven generation. 2022.

Rybkin, O., Daniilidis, K., and Levine, S. Simple and
effective vae training with calibrated decoders, 2020.

Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., and Maji,
S. CSGNet: Neural Shape Parser for Constructive Solid
Geometry. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Solar-Lezama, A. Program Synthesis by Sketching. PhD
thesis, UNIVERSITY OF CALIFORNIA, BERKELEY,
2008.

Stava, O., Benes, B., Mech, R., Aliaga, D. G., and Kristof, P.
Inverse procedural modeling by automatic generation of l-
systems. Computer Graphics Forum (CGF), 29:665–674,
2010.

Stuhlmuller, A., Tenenbaum, J. B., and Goodman, N. D.
Learning structured generative concepts. Cognitive Sci-
ence Society, 2010.

Tenenbaum, J. Building machines that learn and think like
people. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, pp. 5, Richland, SC, 2018. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Learning to Infer and Execute
3D Shape Programs. In International Conference on
Learning Representations (ICLR), 2019.

van den Oord, A., Vinyals, O., and kavukcuoglu, k. Neural
discrete representation learning. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k.,
and Wierstra, D. Matching networks for one shot learn-
ing. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016.

Xu, X., Peng, W., Cheng, C.-Y., Willis, K. D. D., and
Ritchie, D. Inferring CAD modeling sequences using
zone graphs. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

Xu, X., Willis, K. D., Lambourne, J. G., Cheng, C.-Y.,
Jayaraman, P. K., and Furukawa, Y. SkexGen: Autore-
gressive generation of CAD construction sequences with
disentangled codebooks. In International Conference on
Machine Learning (ICML), 2022.

11

Learning to Infer Generative Template Programs for Visual Concepts

Figure 5. Qualitative examples of unconditional concept generations on the Omniglot domain. We show 30 concepts synthesized by our
method where each concept is associated with two rows of five images. The bottom five images depict five samples from each concept,
and the top five images show the nearest neighbor in the training set by Chamfer distance to each sample.

12

Learning to Infer Generative Template Programs for Visual Concepts

NN Train

Input

arVHE

Ours

Combination Generalization (easy) Attribute Generalization (medium) Category Generalization (hard)

Figure 6. Qualitative few-shot generation results that demonstrate our method’s ability to generalize to out-of-distribution concepts, see
Section B.1.

A. Appendix Overview
We overview the contents of our appendices. In Section B we provide additional experimental results. In Section C we
provide more information concerning our various visual domains. In Section D we provide details of our learned models.
In Section E we provide details on how we design our training procedure. In Section F we provide further details of our
experimental design. Finally, in Section G we describe implementation considerations of each alternative we compare our
system with.

B. Additional Results
B.1. Out-of-distribution Few-shot Generation

As discussed in Section 4.5, we designed the Layout domain so that we could evaluate the out-of-distribution generalization
capabilities of different approaches. We visualize few-shot generations that different methods make for the layout domain for
concepts that gradually get more and more out-of-distribution in Figure 6. From left-to-right, we present example few-shot
generations for an easy, medium and hard concept. The easy concept (a side facing chair) has a set of attributes that have all
individually been seen in the training set, but presents them in a new combination. The medium concept (a crab) introduces
a new attribute not seen in the training set: extended and vertical arms. The hard concept (a bookshelf) introduces a new
meta-concept that was never seen in the training set. The second row of the figure show the input prompt set, where in the
top row we show the nearest neighbor in the training set to each image in the prompt, according to our reconstruction metric.
On the third row we show generations produced by the arVHE comparison condition, while on the bottom row we show
generations produced by our method. While arVHE does reasonably well on the easy case, as the input prompts get more
and more out-of-distribution it begins to generate nonsensical outputs. On the other hand, our approach scales much better
to out-of-distribution inputs, even though they don’t match any images from the training set.

B.2. Method Ablation Study

We run an ablation study to validate different design decisions of our method. We compare our described system against the
following variants. Ours - rel is a variant of our method where we remove parameter relationships from Template Programs.
As by default we only support parameter relationships for argument types that take on discrete values (i.e. categorical
variables) we also investigate a variant of our system that adds parameter relations (static assignment and reuse) for
float-typed arguments: Ours + float rels. We also compare against a version of our method where we remove HOLE tokens,
so that instantiations from Template Programs always use the same function call sequence: Ours - HOLE. Here, we task our
network to specify a single program structure that is applicable across the group without using HOLE tokens, and it is still
responsible for declaring parameter relationships. As there are no HOLE tokens, the ExpansionNet will not be used, but the
ParamNet will still be used to figure out how the instantiations of the Template Program should be parameterized. Next we
compare against a variant where we remove the Structural Expansion step, so the ParamNet must produce a program from
the Template Program directly. As it doesn’t see the SE intermediary result, it must fill in HOLE tokens while figuring out
how to predict parameter values. We call this variant Ours - SE. Finally, we compare against a variant of our base method
without any finetuning, where networks only get to train on synthetic data: Ours - finetune

13

Learning to Infer Generative Template Programs for Visual Concepts

Table 3. Comparing ablated versions of our method to our default settings. Each metric is reported as a percentage, with respect to the
performance our default approach achieves. See Section B.2 for details.

Method FD MMD Cov mIoU O

Ours 100% 100% 100% 100% 100%
Ours - rels 78.5% 92.6% 96.8% 89.3% 95.8%
Ours + float rels 93.9% 96.7% 98.2% 96.7% 95.3%
Ours - HOLE 96.3% 98.3% 97.6% 97.4% 98.0%
Ours - SE 80.3% 89.9% 94.3% 86.5% 94.7%
Ours - finetune 57.6% 80.5% 35.0% 70.7% 81.6%

We evaluate these ablation conditions on the 2D layout domain, and report results of our experiments in Table 3. We compare
our method against these variants with respect to few-shot generation performance (FD, MMD, Cov), co-segmentation
performance (mIoU), and how well the inferred results optimize our objective O. For ease of interpretation, we report all
results as a percentage of the performance reached with respect to our default version (100%).

As shown, our default method achieves the best performance along all of these tracked metrics. The variant without
finetuning clearly does the worst, as these networks are not specialized for the target dataset. The results of this experiment
validate our parameter relations design: keeping relations for discrete-valued parameters outperforms either no parameter
relations or adding relations for float-valued parameters. Using the HOLE construct improves performance quantitatively.
Moreover this construct is needed to capture complex input concepts that have more than a single expression mode. For
instance HOLE tokens are required to model the chair concept with armrests and either a regular or pedestal base shown in
the bottom left of Figure 2. Finally, this ablation experiment demonstrates that our decision to use Structural Expansions
simplifies the task of the ParamNet; we hypothesize this result is due to the fact that when attending over a SE, in contrast
to attending over the TP , all of the functions and parameter-types that will be used in the end instantiation are known.

B.3. Unconditional Concept Generation

As we mention in Section 4.5 our Template Program framework is able to sample novel concepts unconditionally. We
visualize some concepts that our method is capable of producing in Figure 5.

To produce these visualizations, we use the networks trained during the wake-sleep phase of our finetuning process, pgen.
Using the version of our TemplateNet from pgen that does not condition on visual information, we first sample a Template
Program. Then using the ExpansionNet and ParamNet from pgen that condition only on program inputs, we sample five
program instantiations from this Template Program. Each bottom row in the figure shows the executed versions of these five
samples, and above each sample we show the nearest neighbor character in the training set according to our reconstruction
metric.

B.4. Visual Concept Groupings

Typically, past concept learning approaches have assumed access to a dataset that is structured according to visual concepts.
For instance, systems like VHE or FSDM require the ability to sample groups of input from the same visual concept during
training. This is the same amount of dataset structure that our method requires: during fine-tuning we randomly sample
“tasks” according to these visual concept groupings. Note that this requirement is less stringent than many inverse procedural
modeling systems, and the BPL and GNS systems, that additionally require per-object structural annotations.

The Omniglot dataset was designed with this kind of visual concept decomposition in mind: each example data-point
corresponds with exactly one character type. We design our layout domain in the spirit of Omniglot: each image in the
layout domain is associated with a single concept. Following past work, on these domains we always assume “valid” input
groups, such that each member is from the same visual concept.

However, this type of clean partition is not as easy to find for 3D shape structures. As there are no known datasets that group
shape structures into visual concepts, we propose a heuristic method for forming approximate visual concepts out of shape
structures (Appendix C.3). The concept groups we find under this formulation have different levels of consistency among
their members (where we say a less consistent group forms a “harder” input problem).

14

Learning to Infer Generative Template Programs for Visual Concepts

Table 4. Comparing reconstruction performance across domains, concept sets, and model versions.

Domain Mode Train Recon Test Recon Test Recon (long)

2D Layout ↑ Pretrain .822 .808
Finetune .972 .909 .937

Omniglot ↓ Pretrain .658 .648
Finetune .468 .503 .405

3D Shapes (prim) ↓ Pretrain .26 .305
Finetune .05 .06 .05

3D Shapes (voxel) ↑ Pretrain .601 .589
Finetune .865 .83 .851

For instance consider the examples shown in Figure 2. A chair with a regular base and vertical slats (row 7, col 6) could be
in one group with only chairs that also have regular bases and vertical slats (row 7, col 7) or (like in the example we show)
could also be grouped with chairs that have backs with horizontal slats (row 7, col 8). In our paradigm, the group of visual
inputs (along with our objective function) implicitly defines the granularity of the target visual concept. In this case, the
latter grouping is considerably harder to handle for concept learning tasks, as it requires a method that is able to reason over
input groups that partially mismatch on structures.

Our Template Programs framework is capable of handling even difficult input groups; our partial program formulation
allows our system to explicitly maintain the shared structural aspects of the group while leaving HOLE tokens as responsible
for representing the aspects of the input group that structurally differ. This design allows us to successfully capture the
visual concepts of the two chair groups in Figure 2. The left chair group has filled in chair backs, arm-rests, but alternates
between regular and pedestal chair bases. The right chair group has regular leg bases, no arm-rests, but differs between chair
backs with horizontal slats or vertical slats. As can be seen in the “gen” row, our system is capable of synthesizing novel
shape structures that accord with the structural specifications implied by the input visual groups.

B.5. Reconstruction Performance

Our system learns how to amortize the difficult inverse search problem of finding a Template Program and instantiations that
correspond with a group of visual inputs. This search (our inference procedure) is guided by our networks which are trained
on a “training corpus” of visual concepts, separate from those we evaluate on.

The “seg” rows in Figure 2 visualize the reconstructions (of the inputs on the top rows) that our method produces. While
these reconstructions do not exactly recreate the input, they usually create very good approximations. If reconstruction was
our primary goal, it might even be possible to improve the fit through a differentiable execution and refinement procedure.

To explore this phenomenon further, we provide the following reconstruction performance results across our domains in
Table 4. We report the reconstruction fit for both the training set and test set visual concepts. To show the benefits of our
learning methodology we compare the reconstruction fit from the pretrained version of our networks (that learn only on
synthetic data) to the finetuned versions of our networks (that finetune on visual concepts from training set). The metrics we
use are (full descriptions in Appendix C):

• 2D Layout: color-based IoU (higher is better)

• Omniglot: edge-based chamfer distance (lower is better)

• 3D Shapes (primitive input): structural corner distance (lower is better)

• 3D Shapes (voxel input): IoU (higher is better)

As demonstrated, our solution is effective at solving this inverse visual program induction problem. For both the training
concepts and the held-out test concepts, our finetuning procedure meaningfully improves the reconstruction performance in
all cases. For our downstream concept-related tasks we use a more expensive inference procedure (“long” - e.g. increase

15

Learning to Infer Generative Template Programs for Visual Concepts

In
pu

t
R

ec
on

G
en

Figure 7. When our method fails to find good reconstructions of an input concept, downstream task performance worsens.

the beam size, Section 3.2) and this gives even better reconstruction results for test-set concepts (see the numbers in the
rightmost column of the table).

While our system offers strong reconstruction performance, it is likely that alternative methods could be used to infer single
visual programs that better reconstruct an individual visual input. In contrast, our system learns to solve this visual program
induction problem over a group of inputs by going through a shared structural intermediary (a Template Program), which
allows us to perform concept-related tasks like few-shot generation and co-segmentation (which prior single instance VPI
approaches are not suited for).

B.6. Failure Modes

Bad reconstruction A possible failure mode is that our inference networks can’t find a Template Program whose
instantiations well-capture an input visual group with respect to our objective function. In such cases, the few-shot
generation and co-segmentation results of our method are typically worse. For instance, consider Figure 7. For two Omniglot
examples, in the top row we show the input concept groups, in the middle rows we show the reconstructions from our
method, and in the bottom rows we show the few-shot generations from our method. Because the same Template Program is
used in both the reconstruction and few-shot generation step, failure in one place often means failure in the other. While
from one perspective this is a limitation, a positive view of this phenomena is that our method can provide insight into
cases where it is “unsure” about its parse. For instance, it could use the objective function score of its reconstruction as a
measure of its confidence on how well it will perform on downstream tasks. Moreover, as we show in Table 4, reconstruction
performance can improved by spending more time on inference, which can help to avoid this limitation.

Bad Input Groups How would our system handle ‘bad’ input groups that contain outliers, or have no commonality among
their members? The job of the template network is to consume a group of visual inputs and infer a Template Program that
captures the common structure among all members. In such an adversarial setting, it is possible (depending on random
sampling) that there are no elements of structure common to all members of the input grouping.

In this case, the “best” result of our system would be to return a “dummy” Template Program that consists of a sin-
gle HOLE token; this HOLE token would be able to be expanded into any arbitrary z to explain each individual group
member.

For typical visual concept groupings, this degenerate solution is discouraged by our objective function, which penalizes
description length differences between ”full” programs and their corresponding Template Programs. While finetuning our
system with reasonable concept groups we have never observed the system falling-back to this degenerate solution.

Exploring how to extend our framework to handle “noisy” input groupings would be a very interesting direction for future
work. This could potentially be approached by (i) extending our objective function to account for outliers (if we want to
ignore the distractors) or (ii) adding control flow operators into the DSLs we learn over, which would give the Template
Programs an opportunity to account for structural differences without relying solely on HOLE tokens.

16

Learning to Infer Generative Template Programs for Visual Concepts

C. Domain Details
In this section we provide additional details on the visual domains we experiment on. We describe the domain-specific
languages our method uses and reconstruction metrics that guide our finetuning objective O.

For the 3D shape domain, we additionally provide details on how we produce our target dataset. While we have previously
explained how we divide concepts between training and test sets for each of our domains, we have not yet mentioned how
we divide training examples into a validation set. We find that a simple approach of taking a subset of training concepts with
fixed exemplars as a ‘validation’ set works well in practice. This validation set controls different early stopping components
of our finetuning procedure, but otherwise these concepts are not given special treatment (i.e. they are not removed from the
finetuning training set).

C.1. Omniglot

DSL We use the following domain-specific language for drawing Omniglot characters, where we present the notation with
slight simplifications for ease of understanding.

START −→ GBlock;

GBLock −→ ONBlock | OFFBlock | MBlock | END

ONBlock −→ ON;SBlock;GBlock

OFFBlock −→ OFF;SBlock;GBlock

MBlock −→ MOVE(si,mt,mf);GBlock

SBlock −→ Stroke | BOW(bt, bf); Stroke | EMPTY
Stroke −→ DRAW(at, af, dt, df)

si ∈ [0, 12]

dt ∈ [0, 8]/8

at ∈ 360 ∗ [0, 8]/8
bt ∈ 90 ∗ [−2, 2]

mt ∈ [0, 4]/4

df ∈ [−2, 2]/40

af ∈ 9 ∗ [−2, 2]

bf ∈ 30 ∗ [−1, 1]

mf ∈ [−1, 1]/12

The ON and OFF commands lift a pen on and off a virtual canvas; each series of strokes begins with one of these commands.
The MOVE command brings the pen back to a previous stroke, specified by a stroke index (si) and a length along this stroke
to travel specified by (mt, mf). The DRAW command moves the pen at an angle specified by (at, af) for a distance of (dt,
df). The trajectory of each DRAW command can be controlled by a BOW command which optionally pushes the trajectory
inwards or outwards according to (bt, bf) parameter. Even if making a curved stroke through the BOW operator, the end
location of the pen is entirely controlled by the parameters of the DRAW command.

We draw attention to the fact that each real-valued parameter in this language is represented with a pair of arguments. One
member of each pair (those with t) controls the coarse behavior, while the other member of the pair (those with f) add a
fine-grained delta to the initial coarse value (i.e. their values are combined through summation during execution). This
representation promotes consistency as close values will match on coarse binning token indices. We further find it useful to
treat these ‘coarse’ real-valued parameters as categorical variables for the purposes of defining parameter relationships in
the declaration of Template Programs, but we don’t observe similar benefits when fine-grained values are included in this
categorization (see ablation in Section B.2). HOLE tokens are allowed to take place of any function.

Reconstruction Metric For our reconstruction metric M , we use an edge-based Chamfer distance (Sharma et al., 2018).
This allows us train our networks without access to stroke data, as we can compute this metric directly from binary images.

17

Learning to Infer Generative Template Programs for Visual Concepts

Representational Capacity The maximum complexity of characters that our method is capable of representing is bounded
by (i) the maximum number of tokens that our inference networks can handle and (ii) the maximum number of strokes we
sample in the synthetic programs used in the pretraining step. This latter value is set to 12 in our sampling scheme, although
through the introduction of HOLE tokens in Template Programs, some of the synthetic programs may end up using more
than 12 stroke primitives. While the synthetic pretraining distribution will inform the behavior of the inference networks,
this distribution will change over the course of bootstrapped fine-tuning and specialize towards “real” Omniglot examples.

While we observe that these settings allow our model to reliably capture the majority of Omniglot characters, there are some
very complex characters that might be hard to fit under these constraints with our top-down inference procedure. It should
be possible to relax the constraints of both (i) and (ii), although the cost would be a larger GPU memory footprint and more
complex pretraining data, which might require more training time and/or inference networks that use more parameters.

C.2. 2D Primitive Layout

DSL We use the following grammar for creating layouts of 2D colored primitives. We present a slightly simplified
representation of this language for clarity.

START −→ UBlock;

UBlock −→ UNION(ShBlock, UBlock) | ShBlock;

ShBlock −→ (SymBlock | CBlock | MBlock | ScBlock); (PBlock | UBlock)

SymBlock −→ SymReflect(axis) | SymRotate(n) | SymTranslate(n, xt, xf, xt, yf)
CBlock −→ Color(ctype)

MBlock −→ Move(xt, xf, yt, tf)

ScBlock −→ Scale(wt,wf, ht, hf)

PBlock −→ Prim(ptype)

axis −→ X | Y

ctype −→ red | green | blue
ptype −→ square | circle | triangle
n ∈ (1, 6)

xt ∈ [−3, 3]/4

yt ∈ [−3, 3]/4

wt ∈ .35 ∗ [1, 6]− .15

ht ∈ .35 ∗ [1, 6]− .15

xf ∈ [−2, 3]/20− 0.025

yf ∈ [−2, 3]/20− 0.025

wf ∈ [−3, 3]/20

hf ∈ [−3, 3]/20

Our language uses a UNION combinator to assemble a collection of primitives on a 2D canvas. Primitives can take three
types: squares, circles and triangles. They are consumed by MOVE and SCALE operators, where similar to our Omniglot
domain, we make a distinction between the coarse and fine parts of each real-valued argument. Once again, we distinguish
the coarse values with t endings and the fine values with f endings. Our motivations for adopting this tiered representation
for real-values are identical to the Omniglot setting. Instantiated primitives are colored grey, but can change color when
passed through a COLOR operator. Our DSL also supports symmetry operations: SymReflect creates a reflectional
symmetry group over a specific axis. SymRotate creates n copies of its input argument about the origin. SymTranslate
creates n copies of its input argument in a direction that is parameterized by a distance in the same way as MOVE.

Reconstruction Metric For the layout domain we use a color-based intersection over union metric. Given two images, we
first identify all of the occupied pixels, and which of our four colors each occupied pixel is filled in with. We then calculate

18

Learning to Infer Generative Template Programs for Visual Concepts

the ‘intersection’ numerator between these two images by counting the number of pixels that are both occupied with the
same color. We calculate the ‘union’ denominator between these two images by counting any pixel in either image that is
occupied. Our final value M is calculated by dividing the numerator by the denominator. HOLE tokens are allowed to take
the place of any function.

C.3. 3D Shape Structures

DSL We use the following domain-specific language for 3D shape structures, which is adapted from Jones et al. (2020).
We present a slightly simplified representation of this language for clarity.

START −→ BBoxBlock;ShapeBlock;

BBoxBlock −→ bbox = Cuboid(x, x, x)

ShapeBlock −→ (PBlock;ShapeBlock) | FILL | END
PBlock −→ CBlock;Attach;SBlock

CBlock −→ cn = Cuboid(x, x, x) | cn = START

Attach −→ attach(cuben, f, uv, uv)

SBlock −→ Reflect | Translate | None

Reflect −→ Reflect(axis)
Translate −→ Translate(axis,m, x)

f −→ right | left | top | bot | front | back

axis −→ X | Y | Z

x ∈ [0, 40]/40.

uv ∈ [0, 20]2/20.

n ∈ [0, 4]

m ∈ [1, 5]

This DSL creates shape structures by defining cuboids, and arranging them through attachment. Cuboids are instantiated
with the Cuboid command. Each Attach command moves one command to connect to previous part, indicated by cuben
at a location specified by the other parameters of the command. This language supports the creation of reflectional symmetry
groups (Reflect) and translational symmetry groups Translate. Of note, we allow the DSL to expand hierarchically,
so that Cuboids can become the bounding volume of their own sub-program (represented above with the return to the START
block). These nested sub-programs are allowed to be set to a completely filled mode (FILL) or instead expand into empty
space if immediately followed by the END operator. Differing from other languages, we only allow HOLE tokens to replace
these START tokens that define sub-program structures, to better match the hierarchical processes by which manufactured
shapes are commonly modeled.

Recon Metric We employ different metrics for this domain dependant on the visual representation. When we operate
over 3D voxel fields, we simply use the voxel occupancy intersection over union as our metric M . When we operate over
primitive soups, i.e. unordered collections of primitives, we use the following matching procedure: we first calculate the
pairwise distance between each primitive by calculating the bidirectional Chamfer distance on the sets of corner points that
form each cuboid. Assuming the two shapes we are comparing contain N and M cuboids, we converted these distances into
a NxM array, and find an optimal matching through the Hungarian matching algorithm (Kuhn, 1955). Our metric M is then
calculated as the mean value of the entries of the matrix that form this assignment. When N ! = M, we convert the distance
array into a square matrix using the larger dimension, filling in the ‘non-matched’ entries with a high default value that
penalizes structural mismatch.

Target Data We source input shape structures by leveraging the structural annotations provided in the PartNet dataset (Mo
et al., 2019). As our DSL supports only axis-aligned parts, we filter out any shape structures that require other kinds
of oriented cuboids. We then make use of the parsing procedure introduced by Jones et al. (2020) to heuristically find

19

Learning to Infer Generative Template Programs for Visual Concepts

ShapeAssembly programs, under the original DSL formulation, that correspond with these input shapes. We try converting
these programs into our DSL formulation, and check the geometric similarity between this execution and the original PartNet
shape, as a sanity check to see if this shape structure could be modeled under our procedural language.

At the end of this preprocessing stage, we are left with over 10,000 shapes from the chair, table and storage classes of PartNet.
We use the corresponding parsed ShapeAssembly programs to group these shapes into concept groups. We differentiate the
internal group consistency along 2 axes: whether or not the group would likely require a HOLE token and whether or not the
group would have a consistent application of attachment commands. We parse concept groups under all four combinations
of these difficulty settings, choosing 25 concept groups from each setting to populate our test set, where each concept is
‘formed’ according to a grouping of 10 exemplars. We treat all other shapes not assigned to the test set as training shapes,
and during finetuning we randomly sample concept groupings from this set according to the same concept identification
procedure.

D. Model Details

D.1. Architecture Details

All of our auto-regressive networks are implemented as standard Transformer decoder-only models (Vaswani et al., 2017).
We use learned positional encodings, these cap the maximum sequence lengths for the various networks. There are three
positional encodings for various sequences: the Template Program sequence, the Structural Expansion sequences, and
parameter instantiation sequences. For the layout domain we cap these at sizes: (64, 16, 72), for the omniglot domain we
cap these at sizes (64, 16, 64), for the shape domain we cap these at sizes of (64, 24, 80).

Visual Encoders We employ encoder networks that convert visual inputs into latent codes, see Figure 1.

For the layout domain we use a standard CNN that consumes images of size 64x64x3. It has four layers of convolution,
ReLU, max-pooling, and dropout. Each convolution layer uses kernel size of 3, stride of 1, padding of 1, with channels (32,
64, 128, 256). The output of the CNN is a (4x4x256) dimensional vector, which we transform into a (16 x 256) vector. This
vector is then sent through a 3-layer MLP with ReLU and dropout to produce a final (16 x 256) vector that acts as an 16
token encoding of the visual input. The omniglot CNN is identical, except it uses one fewer convolution layer, a padding
size of 2 in the final convolution layer, and its 3-layer MLP consumes features of size (16x128) and transforms them into
size (16x256). In this way for Omniglot we also convert each input image into 16 visual tokens.

For the shape domain we have two different encoders depending on the input modality. For our 3D voxel model we follow a
similar convolutional paradigm, extending all 2D convolutions to be 3D, changing the kernel size to 4, using padding of
size 2, and adding an extra fifth convolution layer. When consuming voxel grids of size 64x64x64 this produces outputs
of size (2x2x2x256), we send this through a 3-layer MLP to produce a (8x128) feature, that we reformat to be (4x256) in
dimension. In this way, 3D shapes are represented with four visual tokens.

When we consume a primitive soup of input, we use a different architecture based on a Transformer encoder (Vaswani
et al., 2017). We assume that each primitive is a cuboid with 6 dimensions that describe its 3D position and size. We
linearize these primitive attributes, and lift each of them to dimension 16 with a 2-layer MLP. Following this we add a
learned positional encoding to each attribute based on its attribute type. We then have another ‘positional encoding’ that is
produced by concatenating all of the attributes of each primitive (in the lifted dimension) and sending this feature through a
2-layer MLP that outputs an embedding of the same size as the lifted dimension, which then gets summed back into each
attribute. This scheme allows us to avoid worrying about how the primitives are ordered, while still allowing the attention
scheme of the network to differentiate which attributes belong to which primitives. We send this tokenized representation
through a standard Transformer encoder network, where we prepend the sequence with four ‘dummy’ tokens. Each token
attends to every other token, and we treat the representations output in the indices of the four ‘dummy’ tokens as the visual
tokenization. These dummy tokens build up a representation that attends of the entire input in much the same way as [CLS]
tokens have been employed. Note that this encoder assumes a maximum number of primitives as input, which we set to 20.
If the input scene does not have 20 primitives, we leave these entries as zeros, and then don’t attend over those corresponding
positions in the sequence while encoding.

20

Learning to Infer Generative Template Programs for Visual Concepts

D.2. Location Encoding scheme

We adopt the location encoding scheme from Raffel et al. (2019) for predicting how to file in HOLE tokens, while predicting
each SE , and parameter values, while predicting the complete z. Specifically, we use their notion of ‘sentinel’ tokens
to identify any locations in the linearized function sequence that need to be filled in autoregressively. Then during each
autoregressive step, we ‘prompt’ the network to predict for a specific location by repeating the sentinel token. We depict
examples of this process in Figure 1. We treat each sentinel token as an independent token in our language, this limits
the number of HOLE and parameter tokens we can predict. We set the max number of HOLE location encoding tokens
to be 5, and the max number of parameter location encoding tokens to be 64. Assigning a reuse parameter relationship in
the TP also uses similiar location encoding tokens: we allow for up to 4 of these shared tokens: when multiple instances of
any of these shared tokens appear in the TP , we constrain instantiations of the TP to assign these slots with matching
parameter values.

D.3. Generative Networks

Unconditional Generative Networks We use unconditional generative networks to produce paired data during our
wake-sleep step of fine-tuning. Specifically these networks are unconditional with respect to visual inputs, but they still
condition on programmatic elements. These networks can also be used for unconditional concept generation, see Section B.3.
The networks we use for this process have an identical architecture to our inference networks. In fact, at the beginning of
our fine-tuning process we initialize the weights of these networks with the weights of the inference networks that have
undergone supervised pretraining. They differ from the inference networks by simply masking out (i.e. setting to 0) all
of the visual latent codes that are used to condition the generation of the Template Program, the Structural Expansion and
the final program. In this way, these networks only condition on token sequences, or in the case of the TemplateNet, don’t
attend over any prefix conditioning information. Our training scheme for these networks uses the same losses as our training
scheme for the inference networks, assuming we have paired data

Few-Shot Generative Networks For few-shot generative tasks, we want a network that has conditioning information
in between our inference networks (that condition on latent codes specific to visual inputs in an input group) and our
unconditional generative networks (that don’t condition on visual inputs). To address this point, we train variants of our
inference networks that condition on a mean-pooled latent encoding (i.e. we average the 5 visual latent codes that come from
an input group). Note that this only affects the ExpansionNet and the ParamNet, as the TemplateNet already is designed to
attend over an input visual group. Once we create this mean-pooled latent encoding, the training procedure is undergone in
the same fashion, except the shared latent code is used as conditioning information for all of the instances of the (TPG,ZG)
pair. In this way, we task the network with learning to solve a one-to-many modeling problem: from the same conditioning
information, the network has multiple valid targets.

This network is trained on the same paired data as our inference networks (the batches of data created by our ST, LEST and
WS procedures). While its possible to train this network during finetuning alongside the inference network, we instead cache
all of the training data our inference network consumes during finetuning, and then train this few-shot generative network
in a separate process after our inference model has converged. All of the few-shot generative results we demonstrate are
sampled from these networks (after a Template Program describing an input group has been inferred).

E. Training Details
We implement our networks in PyTorch (Paszke et al., 2017). We run all experiments on a NVIDIA GeForce RTX 3090
with 24GB of GPU memory, and 64 GB of RAM. During pretraining we set the batch size to max out GPU memory, this
amounts to sizes of 32 for the 2D layout domain, 40 for Omniglot domain, 32 for the shape domain with a primitive soup
input and 16 for the shape domain with voxel inputs (of size 643). Note that this batch size is effectively multiplied by 5 for
the ExpansionNet and ParamNet as we train on visual input groups of size 5. During fine-tuning we set the batch size to 20
for all methods, except for the shape-voxels variant, which we set to 10 to avoid maxing out VRAM.

We use the Adam optimizer to train our networks (Kingma & Ba, 2015) with a learning rate of 1e-4. We pretrain our
networks on synthetic data sampled from each domain until we converge with respect to a validation set of similarly sampled
synthetic paired data. This takes approximately ∼ 700k batches for the layout domain, ∼ 600k batches for the shape domain,
and ∼ 300k batches for the Omniglot domain.

21

Learning to Infer Generative Template Programs for Visual Concepts

We finetune our inference networks with the procedure described in Section 3.3. For each concept in the training set, we
sample a group of visual inputs (at random) from the concept, and record our inference results to produce the LEST and ST
dataset. In this way if there are K concepts in X∗, the size of the ST and LEST data on each training step will also be K.
Differing from this, in the wake-sleep step of our finetuning procedure we can generate an arbitrarily large number of paired
data by sampling our generative model. We find that sampling a large number of ‘dreams’ is helpful for our finetuning
procedure, so we set the number of example TP to sample in each training step to 30,000. This typically takes between
1 and 2 hours, differing slightly for each domain. To encourage the ‘dreams’ we sample to cover a wide-distribution, we
design a negative rejection step where we resample any ‘dream’ that either creates an already generated TP or XG. We find
this rejection criteria is triggered at relatively infrequent rates (∼5% of the time).

Once we’ve created the ST, LEST and WS datasets, we use them to finetune our inference networks with cross entropy
loss. We train over this datasets for multiple ‘epochs’, where every 5th epoch we run our updated inference networks over
concepts from the validation set. We use the Objective O from this validation inference to decide when to break out of the
training step, and return to the inference step. This early stopping inference procedure always backtracks to the version of
the inference network that achieved the best O measure on the validation set. We use a patience of 10 epochs, and finetune
for at most 50 epochs.

Overall, we run our finetuning procedure to convergence for 25, 17, 32 inference-training loops for the layout, omniglot and
shape domains respectively. This corresponded with 565, 450, 620 finetuning ‘epochs’ for these domains. For the weights
of our objective function O, we normalize each reconstruction metric to values typically between 0 and 1, and then we set
λ1 to 1.0 and λ2 to 0.001. Moreover, when calculating the divergent description length between each Template Program
and its respective program instantiations, we discard counting any parameter-types for which we don’t support parameter
relations. For instance, as we don’t allow float variables to use parametric relations (see Section B.2), we do not penalize
these variables under O, because the TP has no opportunity to constrain them.

E.1. Token Sequence Formatting

Given a paired (XG, TPG, ZG) triplet we can produce training data for our inference networks. We train under a teacher-
forced autoregressive paradigm, where we make a single pass through the autoregressive network for each training batch.
The input for the TemplateNet is a linearized sequence of visual latent codes; these are randomized as we randomly order
the visual inputs. The target for the TemplateNet is the linearized sequence of tokens that describe the Template Program,
where we use prefix notation to convert expression trees into flat sequences. From TP and z pairs, we can derive targets for
the ExpansionNet and the ParamNet. To find targets for the ExpansionNet, we simply identify mismatches in the functions
that are used in the TP versus the functions that are used in z: any expression tree in z that is not found in the TP must
be the result of filling in a HOLE token. Similarly, we scan the TP to identify any parameter relationships that have been
defined, either in the form of specifying parameter arguments (static assignment) or using shared tokens. As we know the
final expression tree of the z from its linearized form, we then use these declarative relationships to reformat the z to replace
all free parameters with sentinel tokens (Section D.2).

F. Experiment Details
F.1. Few-shot Generation

Task design In the few-shot generation task we employ the following set-up. For each concept in the test set of a particular
domain, we take 5 examples from the concept, pass them as input into a method, and then ask the method to synthesize 5
new generations. We then compare these 5 generations to a separate set of 5 examples from same test-set concept (i.e. a
reference set). As the layout domain is procedurally generated, we can sample more examples per concept, therefore in this
domain we do the above procedure 5 times for each test set concept. In this way for layout, our metrics compare sets of size
25 generations to 25 reference images (where these 25 generations came from 5 prompts).

Metrics We quantitatively evaluate few-shot generative capabilities (Table 1) with a series of metrics common to recent
generative modeling approaches (Achlioptas et al., 2018). Though these metrics are typically designed to operate over much
larger sets, we think the trends they exhibit are indicative of few-shot generative performance (and their ordering is largely
consistent internally).

Some of these networks directly compare the generated samples to a reference set for each concept. Frechet Distance

22

Learning to Infer Generative Template Programs for Visual Concepts

Figure 8. A visualization of the interface we use in our two-alternative forced-choice perceptual study.

(FD) (Heusel et al., 2017) measures the distributional similarity between two distributions of encodings. Minimum Matching
Distance (MMD) measures the average minimum distance of each member of the reference set to any member of the
generated set. Coverage (Cov) measures the percentage of reference set members who are the nearest neighbors to at least
one member of the generated set.

We calculate all of the above metrics with respect to a latent space that is domain-specific. To this end, for each domain, we
train a visual auto-encoder to learn how to reconstruct ‘random’ scenes from that domain. For the layout domain these are
randomly placed primitives. For Omniglot, these are randomly placed strokes. For shapes, these are randomly place cuboids
primitives. We train each of these networks to convergence on 500,000 random scenes with a small bottleneck layer size
(e.g. 100).

For the layout and omniglot domain we train simple classifier networks to learn a K-way classification over all of the
concepts present in the domain. For Omniglot, we train on 19 examples from each of the 1623 characters in the dataset,
and hold out one example from each concept as a validation set. Our classifier achieves a 82.4% validation accuracy after
convergence. For layout, we train over 95 examples from each concept in a 20-way classification task over meta-concepts;
we reach 99.9% validation accuracy on a held out set of 5 examples per concept. The class confidence metric (Conf) is
then computed by taking each generated output, running it through the classifier, and then recording the probability that the
classifier predicts for the index of the input concept. Note that this metric is not dependant on the reference set of examples.

F.1.1. PERCEPTUAL STUDY

We design a perceptual study to evaluate our method’s few-shot generative capabilities. Our study was designed as a
two-alternative forced-choice questionnaire. We recruited 20 participants, who made decisions about which set of few-shot
generations better matched a reference concept.

We show an example of our perceptual study interface in Figure 8. The middle row of each question shows the input prompt
examples. The bottom/top row are populated by the few-shot generations of competing methods based on the prompts
shown in the middle row. We randomize which method is shown on top vs bottom, and randomize the order of all examples
within the row.

Participants were either shown 50 Omniglot character comparisons or 25 shape comparisons. We visualized shape
comparisons with a simple rendering style of the primitive outputs produced by each method (for time considerations).

From our 20 participants we record 900 judgements of our method against three other conditions: ours vs arVHE for
Omniglot (381 judgements), ours vs GNS for Omniglot (369 judgments) and ours vs arVHE for 3D shapes (150 judgements).
We report the quantitative results from this study in Table 2.

F.2. Co-segmentation

We formulate the co-segmentation task as follows. We are given 5 examples as input, exactly one of these examples comes
with a reference segmentation. The goal of each method is to propagate the labeling from this reference segmentation to the

23

Learning to Infer Generative Template Programs for Visual Concepts

other members of the input group that lack a reference segmentation. We show an example of this task in Figure 4.

We compare the produced segmentations against ground-truth annotations for each member of the input set. To quantitatively
evaluate performance on this task we use a mean intersection over union metric (mIoU) (Mo et al., 2019). This metric
calculates the intersection over union for each label that appears in the ground-truth annotation, and then averages these
values.

F.2.1. GROUND-TRUTH SEGMENTATIONS

Here we describe how we source ground-truth segmentations for each domain.

For 2D layouts, we produce these as a part of the way we design our meta-procedures. Each primitive group in these
specifications is given a semantic label. We evaluate over all concepts in the test set.

For 3D shapes, we record the PartNet hierarchy annotation for each primitive of each shape structure we use (Mo et al.,
2019). Then within each test-set concept, we search for a group of 5 inputs that use the same semantic parts in their shape
structures. If we find such a group, then this is the group from the concept we use during co-segmentation tasks. From our
100 test set groups, we find such co-segmentation inputs for 94 of them.

We make use of Omniglot stroke data to produce the ground-truth segmentations for characters. We treat each stroke pattern
broken by ‘BREAK’ annotations as a separate segment (Lake et al., 2019a). Then, as humans vary in the ways that they
order strokes to draw characters, for each test set character we run a clustering procedure to try to find valid and consistent
segmentation groupings. We first filter for finding groups of characters that use the same number of strokes, and more than
a single stroke (otherwise the co-segmentation task is trivial). Then we encode each stroke with a 4 dimensional feature:
its length, its angle, its starting x position, and its starting y position. We run an unsupervised clustering algorithm over
this feature representation (Ester et al., 1996), identify if there is any cluster with more than 5 character members, and then
take 5 characters from this cluster as a co-segmentation task (where our feature-wise distance creates a correspondence
across the strokes of this group). This automatic process generates 306 co-segmentation tasks from the 659 concepts in the
Omniglot test set. We manually inspect the generated tasks, and filter out 22 cases where our clustering identified a group
that did not have consistent stroke expression. This leaves us with 284 cosegmentation tasks that we use in our experiments.

F.2.2. GROUP PARSING

Template Programs Template Programs support parsing by inferring instantiations from a shared TP that explain a
group of visual inputs. As each instantiated program z uses the function call structure specified by a Template Program, we
can find correspondences in the visual outputs. We create a corresponding group for each primitive type that the Template
Program defines: these are created by the PRIM command for the layout domain, the DRAW command for Omniglot and the
Cuboid command for 3D Shapes. Note that HOLE tokens are always treated as a construct that creates primitive types.
Any command that operates over this primitive type will inherent their corresponding part index (e.g. symmetry operations),
excluding combinators like Union.

BAE-NET BAE-NET creates corresponding group parses by performing an argmax over the last layer of an implicit
network that is trained to solve occupancy tasks. This implicit network can be run over any spatial position, and assign this
input point to one of its part ‘slots’.

BPL and GNS The BPL and GNS methods perform one-shot parsing of input characters into an ordered collection of
strokes. This parsing is guided by their learned prior, which models how people produce characters. Conscripting these
methods to perform our co-segmentation task is a slight abuse of design, but as their output parses partition space in a
consistent fashion, we think it a worthwhile comparison to make. Our method does not learn from any human demonstrations,
so we are unable to solve the character parsing task as it is originally formulated (Lake et al., 2015; 2019a).

F.2.3. LABEL PROPAGATION

The parses we get from the above logic are consistent, but might not exactly recreate the input examples (if they do not
achieve perfect reconstructions). We thus employ a procedure, on a domain-by-domain basis, that propagates the parse from
the reconstruction to its input example. For the layout domain we first take the part index of each occupied pixel to match
the primitive that last ‘covered it’. Then for any non-occupied pixels, we assign them to the closest instantiated primitive

24

Learning to Infer Generative Template Programs for Visual Concepts

according to the distance from that pixel’s center to the primitive. For the shape domain, we take a similar approach,
calculating the distance from voxel centers to each cuboid. For any voxel center that is occupied by more than one cuboid,
we assign it to the occupying cuboid smallest in volume. For Omniglot, we sample 200 points on each primitive stroke
group. Then for five query points evenly spread out within each pixel location, we find the three closest points sampled from
any stroke group. We tally up these votes for each pixel, and then each pixel is assigned to the primitive stroke group which
recorded the most votes. Note that we employ this same procedure for our method, BPL, and GNS. BAE-NET doesn’t need
to employ this logic, as its parsing strategy operates over arbitrary input points by construction.

After we have this consistent parse for each region of the input group the procedure is almost done. We use the partitions
from the labeled example to assign each parsed region a label. Finally, we propogate this region-to-label mapping to all of
the other examples in the input group.

G. Comparison Method Details
We provide details on the methods we compare against.

G.1. BPL (Lake et al., 2015)

We use the author’s released Matlab implementation: https://github.com/brendenlake/BPL. For five characters from each
test-set concept we infer a parse, and use that parse to synthesize 1 new generation (in this way we create 5 few-shot
generations from each group of 5). We wrapped this Matlab procedure with a python script, and ran it sequentially on a
single machine, which took around 2 weeks.

G.2. GNS (Feinman & Lake, 2021)

We use the author’s released implementation at https://github.com/rfeinman/pyBPL. We follow the same procedure as
in BPL, inferring a parse for five characters from each test-set concept, and then using each parse to synthesize 1 new
generation.

G.3. FSDM (Giannone et al., 2022)

We follow the author’s implementation, released at: https://github.com/georgosgeorgos/few-shot-diffusion-models. Unfortu-
nately, the provided code was incomplete, and did not work out of the box. We made a best-effort attempt to fix these issues
and run the model with the same procedure as described in the technical report. We observed that this model was able to
effectively produce few-shot generations for training characters, but struggled greatly on test-set concept generalization.

G.4. VHE (Hewitt et al., 2018)

We attempted to use the author’s implementation, released at: https://github.com/insperatum/vhe. Unfortunately the
PixelCNN variant for Omniglot did not converge under training, we reached out to the authors, but they were unable to offer
suggestions on how to fix these training issues.

Using the provided code as reference, we re-implemented the system with a simple CNN architecture, following the VAE
framing as described in (Rybkin et al., 2020). Though we spent a fair amount of time tuning hyper-parameters, as evidenced
by the quantitative results in Table 1, we were unable to achieve competitive performance.

arVHE In an attempt to improve the performance of our VHE comparison condition, we implemented a related method
that combines autoregressive models with the spirit of the VHE approach. Specifically, we break down this few-shot
generation modeling task into two separate stages. First we learn a domain-specific discretized representation. For pixel and
voxel input representations we use 2D and 3D CNNs in a vector-quantization scheme (van den Oord et al., 2017), so that we
can convert each visual input into a sequence of discrete tokens.

We list the details of our VQ-VAE training: for Omniglot we convert 28x28x1 images to a 7x7 grid of codes, under a
dictionary of 64 codes with hidden dimension of 32. For layout we convert 64x64x3 images to a 7x7 grid of codes, under a
dictionary of 200 codes with hidden dimension of 100. For shapes we convert 64x64x64 voxels to a 4x4x4 grid of codes,
under a dictionary of 128 codes with hidden dimension of 64. We try to use the smallest code-book size that can achieve
near-perfect reconstructions for each domain.

25

Learning to Infer Generative Template Programs for Visual Concepts

Once we have trained this VQ-VAE for each domain, we can learn our arVHE model. Like the VHE model, and our system,
it learns by sampling random visual groups from the same concept. Following the procedure described in the VHE paper
and code, we encode these visual concepts with a visual encoder, take a mean embedding, then use this embedding to
condition an autoregressive generation process, where the goal is to predict a sequence of VQ-VAE tokens that correspond
to another input example from the same concept. We train this network with cross-entropy loss, on the discretized VQ-VAE
tokens. For an apples-to-apples comparison against our method, the arVHE baseline uses the same visual encoders that our
method uses (Section D). For predicting 3D shapes as a sequence of primitives, we instead just task the VQ-VAE model
with predicting discretrized versions of each primitive attribute, where the primitives are randomly ordered (this allows us to
skip the VQ-VAE step in this setting).

We note that this arVHE variant is a strong baseline method, outperforming VHE and FSDM in terms of quantitative metrics
(Table 1).

G.5. BAE-NET (Chen et al., 2019)

We follow the author’s implementation released at: https://github.com/czq142857/BAE-NET. We take their architecture
and training procedure and adapt it for each of our domains. BAE-NET has model implementations for 2D binary images
and 3D voxel grids, so for these settings we directly use the method as described. For the layout domain we have colored
images that can adopt 4 color values (red, green, blue, or grey). In the default version of BAE-NET, it uses an MLP where
the second to last layer is size NUM SEGS and the last layer is size 1; this 1 dimensional output learns a binary occupancy
prediction for locations in space. We modify the 2D BAE-NET version so that instead, the second to last layer is still size
NUM SEGS, but the last layer is size 4; in this way we task BAE-NET to solve four binary occupancy problems at once,
one for each of our colors. In the layout domain, we still take the part segmentation from BAE-NET by choosing the slot in
the second to last layer that activates with the highest potential.

26

