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Abstract

Neural network models often struggle with high-dimensional but small sample-size tabular
datasets. One reason is that current weight initialisation methods assume independence
between weights, which can be problematic when there are insufficient samples to estimate the
model’s parameters accurately. In such small data scenarios, leveraging additional structures
can improve the model’s performance and training stability. To address this, we propose
GCondNet, a general approach to enhance neural networks by leveraging implicit structures
present in tabular data. We create a graph between samples for each data dimension,
and utilise Graph Neural Networks (GNNs) for extracting this implicit structure, and for
conditioning the parameters of the first layer of an underlying predictor network. By creating
many small graphs, GCondNet exploits the data’s high-dimensionality, and thus improves
the performance of an underlying predictor network. We demonstrate the effectiveness
of our method on 12 real-world datasets, where GCondNet outperforms 14 standard and
state-of-the-art methods. The results show that GCondNet is a versatile framework for
injecting graph-regularisation into various types of neural networks, including MLPs and
tabular Transformers.

1 Introduction

Tabular datasets are ubiquitous in scientific fields such as medicine (Meira et al., [2001; Balendra & Isaacs),
2018; [Kelly & Semsarian, 2009), physics (Baldi et al., 2014; |Kasieczka et al., |2021)), and chemistry (Zhai
et al.l [2021; |[Keith et al.l [2021)). These datasets often have a limited number of samples but a large number of
features for each sample. This is because collecting many samples is often costly or infeasible, but collecting
many features for each sample is relatively easy. For example, in medicine (Schaefer et al., [2020; [Yang et al.,
2012; |Gao et al.| 2015; [Torio et al., 2016} |Garnett et al., [2012; Bajwa et al., [2016} |Curtis et al., [2012; ' Tomczak
et al., [2015), it may be difficult to enrol a large number of patients in a clinical trial for a rare disease.
However, it is relatively common to collect many features, such as measuring thousands of gene expression
patterns, for each patient enrolled in the study. The resulting tabular datasets have a much larger number of
features (D) than the number of samples (N), and making effective inferences from such datasets is vital for
advancing research in scientific fields.

When faced with high-dimensional tabular data, neural network models struggle to achieve strong performance
(Liu et al, 2017 [Feng & Simon, [2017)), partly because they encounter increased degrees of freedom, which
results in overfitting, particularly in scenarios involving small datasets. Despite transfer learning’s success in
image and language tasks Tan et al.| (2018)), a general transfer learning protocol is lacking for tabular data
(Borisov et al.l 2022), and current methods assume shared features (Levin et al., [2023)) or large upstream
datasets (Wang & Sun, 2022; Nam et al., |2022), which is unsuitable for our scenarios. Consequently, we focus
on improving training neural networks from scratch.

Previous approaches for training models on small sample-size and high-dimensional data constrained the
model’s parameters to ensure that similar features have similar coefficients, as initially proposed in (Li & Li,
2008)) for linear regression and later extended to neural networks Ruiz et al.| (2022). For applications in biomed-
ical domains such constraints can lead to more interpretable identification of genes (features) that are biologi-
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cally relevant (Li & Li, 2008). However, these methods require access to external application-specific knowledge
graphs (e.g., gene regulatory networks) to obtain feature similarities, which provide “explicit relationships” be-
tween features. But numerous tasks do not have access to such application-specific graphs. We aim to integrate
a similar inductive bias, posing that performance is enhanced when similar features have similar coefficients.
We accomplish this without relying on “explicit relationships” defined in external application-specific graphs.

We propose a novel method GCondNet (Graph-Conditioned Networks) to enhance the performance of various
neural network predictors, such as Multi-layer Perceptrons (MLPs). The key innovation of GCondNet lies in
leveraging the “implicit relationships” between samples by performing “soft parameter-sharing” to constrain
the model’s parameters in a principled manner, thereby reducing overfitting. Prior work has shown that such
relationships between samples can be beneficial (Fatemi et al., [2021} Kazi et al., [2022; |Zhou et al.,[2022). These
methods, however, typically generate and operate with one graph between samples while relying on additional
dataset-specific assumptions such as the smoothness assumption (for extended discussion see Section. In con-
trast, we propose Implicit Sample-wise Multiplex Graphs, a novel and general approach to identify and use these
potential relationships between samples by constructing many graphs between samples, one for each feature.
We then use Graph Neural Networks (GNNs) to extract any implicit structure and condition the parameters
of the first layer of an underlying predictor MLP network. Note that GCondNet still considers the samples as
independent and identically distributed (IID) at both train-time and test-time because the information from
the graphs is encapsulated within the model parameters and is not used directly for prediction (see Section.

We introduce two similarity-based approaches for constructing the Implicit Sample-wise Multiplex Graphs
from any tabular dataset. Both approaches generate a graph for each feature in the dataset (resulting in
D graphs), with each node representing a sample (totalling N nodes per graph). For instance, in a gene
expression dataset, we create a unique graph of patients for each gene. Unlike other methods (Ruiz et al.,
2022; [Li & Li|, 2008; |Scherer et al., [2022)) that require external knowledge for constructing the graphs, our
graphs can be constructed from any tabular dataset. We also propose a decaying mechanism which improves
the model’s robustness when incorrect relationships between samples are specified.

The inductive bias of GCondNet lies in constraining the model’s parameters to ensure similar features have
similar coefficients at the beginning of training, and we show that our approach yields improved downstream
performance and enhanced model robustness. One reason is that creating many small graphs effectively
“transposes” the problem and makes neural network optimisation more effective because we leverage the
high-dimensionality of the data to our advantage by generating many small graphs. These graphs serve as
a large training set for the GNN, which in turn computes the parameters of the MLP predictor. In addition,
our approach also models a different aspect of the problem — the structure extracted from the implicit
relationships between samples — which we show serves as a regularisation mechanism for reducing overfitting.

Our contributions are summarised as follows. We included the code and will share it publicly after publication.

1. We propose a novel method, GCondNet, for leveraging implicit relationships between samples into neural
networks to improve predictive performance on small sample-size and high-dimensional tabular data. Our
method is general and can be applied to any such tabular dataset, unlike other methods that rely on
external application-specific knowledge graphs.

2. We demonstrate GCondNet’s effectiveness in a series of experiments on 12 real-world biomedical datasets.
We show that for such datasets, our method consistently outperforms an MLP with the same architecture
and, in fact, outperforms all 14 state-of-the-art methods we evaluate.

3. We analyse GCondNet’s inductive bias, showing that our proposed Implicit Sample-wise Multiplex Graphs
improve performance and serve as an additional regularisation mechanism. Lastly, we demonstrate that
GCondNet is robust to various graph construction methods, which might also include incorrect relationships.

2 Method

Problem formulation. We study tabular classification problems (although the method can be directly
applied to regression too), where the data matrix X := [:c(l), ...,a:(N)]T € RV*P comprises N samples
x( € RP of dimension D, and the labels are y := [y1,...,yn] .
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Figure 1: GCondNet is a general method for leveraging implicit relationships between samples to improve
the performance of any predictor network with a linear first layer, such as a standard MLP, on tabular
data. (A) Given a tabular dataset X € RV*P | we generate a graph G; for each feature in the dataset
(results in D graphs), with each node representing a sample (totalling N nodes per graph). (B) The resulting
graphs are passed through a shared Graph Neural Network (GNN), which extracts graph embeddings
w') € RX from each graph G;. We concatenate the graph embeddings into a matrix Wany = [w), ..., wP)].

(C) We use Wgnn to parameterise the first layer Wl\[ﬂp of the MLP predictor as a convex combination
Wl\[/}ip = aWenn + (1 — @) Wicrateh, where Wegpaten is initialised to zero.

Method overview. Our method applies to any network with a linear layer connected to the input features,
and for illustration, we assume an MLP predictor network. Figure [I] presents our proposed method, which has
two components: (i) a predictor network (e.g., MLP) that takes as input a sample (¥ € RP and outputs the
predicted label y;; and (ii) a Graph Neural Network (GNN) that takes as input fized graphs (D of them) and

generates the parameters W1\[/}£P for the first input layer of the predictor MLP network. Note that the GNN is
shared across graphs. Since these graphs are fixed for all inputs (), GCondNet maintains the dimensionality
of the input space (which remains D).

In particular, we parameterise the MLP’s first layer WI\[/[{P as a convex combination of a weight matrix
Wenn generated by the GNN (by extracting the implicit structure between samples), and a weight matrix
Wcraten initialised to zero:

Wl\[/}]LP = aWenn + (1 - a)Wscratch (1)

The mixing coefficient o determines how much the model should be conditioned on the relationships between
samples learnt by the GNN. We schedule « to linearly decay 1 — 0 over n, training steps, as further motivated
in Section 2.2 We found that GCondNet is robust to n,, as supported by the statistical tests in Appendix [D]

Computing Wgnn. We train the GNN model concurrently with the MLP predictor to compute the weight
matrix Wann. To do this, we use the training split of X to generate a graph G; = (V;,&;) for each feature
in the dataset (resulting in D graphs), with each node representing a sample (totalling N nodes per graph).
For example, in a gene expression dataset, one graph of patients is created for each gene. All graphs are
simultaneously passed to the GNN and are fized during the training process. This way, we take advantage of
high-dimensional data by creating many graphs to train the GNN. We describe the graph construction in
Section [2.I] and investigate the impact of this choice in Section [3.2}
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Algorithm 1 Computing WgnnN-

1: for each feature j =1,2,...,D do

2 node-embeddings = GNN(V;,&;) > V; represents the nodes, and &£; represents the edges of the j-th graph
3: w) = fage(node-embeddings) > Aggregate all node embeddings to obtain the graph embedding w e RE
4: end for

5 Wann = [w®, ..., wP)] > Concatenate the graph embeddings

At each training iteration, we use the GNN to extract graph embeddings from these graphs, as presented
in Algorithm [T} For each of the D graphs, we first apply the GNN to obtain node embeddings of size K
for all nodes. We then compute graph embeddings w) € RX by using a permutation invariant function fage
to aggregate the node embeddings. Thus, the graph embeddings are also of size K, which is independent of
the number of nodes in the graphs. These embeddings are then concatenated horizontally to form the weight
matrix Wann = [w(l), w®, .., w(D)}. Finally, we use the resulting matrix Wgnn to parameterise the first
layer of the underlying MLP predictor network that outputs the final prediction, as shown in Equation [I]
Appendix [A] presents the complete pseudocode for training GCondNet.

Test-time inference. We emphasise that the GNN and the associated graphs are employed exclusively
during the training phase, becoming obsolete once the mixing coefficient « reaches zero after n, training
steps. The predictor MLP retains its final weights upon training completion, rendering the GNN and graphs
unnecessary for test inference. Test input samples are exclusively processed by the predictor MLP — resulting
in a model size and inference speed identical to a standard MLP.

2.1 Implicit Sample-wise Multiplex Graphs

We propose a novel and general graph construction method from tabular data, creating a multiplex graph
G = {Gi1,....Gp}, where each graph layer G; = (V;,&;) represents the relations across feature j and is
constructed using only the values X ; of that feature. This enables the use of simple distance metrics between
nodes and eliminates the need to work in a high-dimensional space where distances can be inaccurate. The
graph construction time is negligible, taking five seconds to generate all graphs for each task.

Node features. The nodes V; of each graph represent the N training samples. The node features are
one-hot encoded vectors, with the feature value for a sample located in the corresponding position in the
one-hot encoding. For instance, if the feature values of three training samples are X, ; = [0.2,0.4, —0.5], then
the first node’s features would be [0.2,0, 0], the second node’s features would be [0,0.4,0], and the third
node’s features would be [0,0, —0.5].

Edges. We propose two similarity-based methods for constructing the edges between samples from tabular
data, which assume that similar samples should be connected: (i) KNN graphs connect each node with
the closest k neighbours (we set k = 5 in this paper), enabling GCondNet to scale linearly time-wise and
memory-wise w.r.t. the sample size N; (ii) Sparse Relative Distance (SRD) graphs connect a sample to
all samples with a feature value within a specified distance. This process creates a network topology where
nodes with common feature values have more connections, and we use an accept-reject step to sparsify the
graph (all details are included in Appendix .

2.2 Rationale for Model Architecture

The inductive bias of GCondNet ensures that similar features have similar weights in the first layer of
the NN at the beginning of training. Uniquely to GCondNet, the feature similarity is uncovered by training
GNNSs end-to-end on graphs defining the implicit relationships between samples across each feature. Thus, our
approach ultimately learns the feature similarity by looking at the relationships between samples. For example,
if features ¢ and j have similar values across samples, they define similar graphs, leading to similar graph em-
beddings w® and w?). These embeddings correspond to the first layer weights Wl\[ﬂp in the neural network.

GCondNet is appropriate when D >> N because it introduces a suitable inductive bias that enhances
model optimisation, as we demonstrate in Section [3] On small sample-size and high-dimensional data,



Under review as submission to TMLR

conventional neural approaches (such as an MLP) tend to exhibit unstable training behaviour and/or converge
poorly — one reason is a large degree of freedom for the small datasets. This happens because; (i) the number
of parameters in the first layer is proportional to the number of features; and (ii) modern weight initialisation
techniques (Glorot & Bengio, [2010; He et al., [2015]) assume independence between the parameters within a
layer. Although the independence assumption may work well with large datasets, as it allows for flexibility, it
can be problematic when there are too few samples to estimate the model’s parameters accurately (as we
show in Section . GCondNet is designed to mitigate these training instabilities: (i) by constraining the
model’s degrees of freedom via an additional GNN that outputs the model’s first layer, which includes most
of its learning parameters; and (ii) by providing a more principled weight initialisation on the model’s first

layer (because at the start we have WI\[/}]LP = WanN)-

‘We parameterise the first layer due to its large number of parameters and propensity to overfit. On
high-dimensional tabular data, an MLP’s first layer holds most parameters; for instance, on a dataset of
20,000 features, the first layer has 98% of the parameters of an MLP with a hidden size 100.

GCondNet still consider the samples as IID at both train-time and test-time. Recall that sam-
ples are IID if they are independent, conditioned on the model’s parameters 6 Murphy| (2022), so that
D (yl,yz | 2™, a:(g),&) =p (y1 | ™), 9) -p (yg | 23, 9). Note that unlike distance-based models (e.g., KNN),
our graphs are not used directly to make predictions. In GCondNet, to make a prediction, input samples are
exclusively processed by the predictor MLP, which uses the same model parameters 6 across all samples.
Because all information extracted from our sample-wise graphs is encapsulated within the model parameters
0, the above IID equation holds for GCondNet.

In terms of graph construction, the conventional approach would be to have one large graph where nodes
are features and w() are node embeddings. In contrast, we generate many small graphs and compute w)
as graph embeddings. Our approach offers several advantages: (i) Having multiple graphs “transposes” the
problem and uses the high-dimensionality of the data to our advantage by generating many small graphs
which serve as a large training set for the GNN. (ii) It allows using simple distance metrics because the
nodes contain only scalar values; in contrast, taking distances between features would require working in
a high-dimensional space and encountering the curse of dimensionality. (iii) The computation is efficient
because the graphs are small due to small-size datasets. (iv) Flexibility, as it can incorporate external
knowledge graphs, if available, by forming hyper-graphs between similar feature graphs.

Decaying the mixing coefficient o introduces flexibility in the learning process by enabling the model to
start training initialised with the GNN-extracted structure and later adjust the weights more autonomously
as training advances. Since the true relationships between samples are unknown, the GNN-extracted structure
may be noisy or suboptimal for parameterising the model. At the start, @« = 1 and the first layer is entirely
determined by the GNN (Wl\%P = Wgenn). After o becomes 0, the model trains as a standard MLP (the
GNN is disabled), but its parameters have been impacted by our proposed method and will reach a distinct
minimum (evidenced in Section by GCondNet consistently outperforming an equivalent MLP). In contrast
to our decaying of the mixing coefficient «, maintaining « fixed (similar to PLATO’s (Ruiz et al.| |2022])
inductive bias) leads to unstable training (see our experiments in Section . Moreover, if a was fixed, it
would need optimisation like other hyperparameters, while by decaying o we avoid this time-consuming tuning.

3 Experiments

Our central hypothesis is that exploiting the implicit sample-wise relationships by performing soft
parameter-sharing improves the performance of neural network predictors. First, we evaluate our model
against 14 benchmark models (Section . We then analyse the inductive bias of our method (Section ,
its effect on optimisation, and GCondNet’s robustness to different graph construction methods.

Datasets. We focus on classification tasks using small-sample and high-dimensional datasets and consider
12 real-world tabular biomedical datasets ranging from 72 — 200 samples, and 3312 — 22283 features. We
specifically keep the datasets small to mimic practical scenarios where data is limited. See Appendix [C|for
details on the datasets.
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Table 1: Overall, GCondNet outperforms other benchmark models. We show the classification
performance of GCondNet with KNN and SRD graphs and 14 benchmark models on 12 real-world datasets.
N/D represents the per-dataset ratio of samples to features. We report the mean =+ std of the test balanced
accuracy averaged over the 25 cross-validation runs. We highlight the First, Second and Third ranking
accuracy for each daset. To aggregate the results, we also compute each method’s average rank across
datasets, where a higher rank implies higher accuracy in general. Overall, GCondNet ranks best and generally
outperforms all other benchmark methods.

Dataset gli smk allaml cll glioma prostate toxicity tcga-survival — tcga-tumor  meta-dr meta-p50  lung Avg.
N/D 0.004 0.009 0.01 0.01 0.011 0.017 0.03 0.046 0.046 0.048 0.048 0.059 Rank
DietNetworks 76424132  62.71194  92.004s.4 68.84192  68.00+148  81.71li110 8213474 53.6245.5 46.69+7.1 56.98+57  95.02+4s  90.4346.2 8.92
FsNet T4.521117  56.2719.2 78.00+129  66.38+9.2 53.17+12.9 84.7449.8 60.2645.1 53.8347.9 4594498 56.924101  83.861s5.2 91.7543.0 11.17
DNP 83174121 66.61+5.4 96.1845.7 85.13+55 75.00+128 88.7146.8 93.4946.2 58.1445.2 47.53+8.7 55.79+7.1 93.5645.5 92.81+6.7 5.58
SPINN 83.3919.8 6591176 96.78462 85.35155 75.001148 90.0216.8 93.50449 57.7017.1 45.92185 56.1447.2 93.5615.5 94.76.44.4 5.00
WPFS 83.8649.1 66.89+6.2 96.4244.2 79.14445 73.83116.5 89.1546.7 88.2945.3 59.5416.9 55.91186 59.05186 95.96141 94.83140 3.42
TabNet 64.541120 61.1610.2 71.64+177 50.874138 50.00+160  65.75417.7  41.38196 49.08+9.3 39.57+11.6 53.1949.4 81.2749.7 75114102 | 13.58
TabTransformer 78.824141  64.0049.2 88.3818.6 76.8116.8 63.50+15.6 85.96411.5 87.6716.1 5691156 40.7016.9 5249190 93.8244.7 94.0344.7 8.83
CAE 74184117 59.96+110 89.80+92  71.94:134 67.831176  87.6017s  60.361113 59.541s3 40.69+7.4 57.35404  95.78436 85.00450 9.17
LassoNet 53914100 51.04186 50.80412.9  30.631s.7 29174118 54.78 4106 26.67187 46.08+9.2 33.49475 48.8845.7 48414108 2511108 15.00
MLP T7.721153 64.42184 91.3046.7 78.30+9.0 73.00+14.9 88.7615.5 93.2146.1 56.2846.7 48.19417.8 59.56155 94.31i54 94.2044.9 6.00
Random Forest 81.15455 69.84146 96.80156 76.441100 74171106 90.35+82  80.99+45 66.0445 2 4712470 52.9845.4 89.3947.2 88.1445.2 6.42
LightGBM 80.79+7.6 70.074558  95.3615.2 T74.2241146  75.501119 91.91445 81.26142 59.4645.8 44.9949.3 57.69+8.6 93.42472 89.7944.4 6.08
GCN 84.09494 65.6315.0 80.831108  72.00+8.4 66.23114.4 82.60+125 76.13+7.0 58.31458 51.01452 58.2947.4 91.1345.7 93.30+4.6 7.75
GATv2 73.5T+124 66.06452 71.36+11.6 57.T4+1a1  57.67+15.1 83.23+106 76.65411.2  53.60+6.9 45.4549.3 54. 71471 86.96+5.2 93.33+6.2 10.92
GCondNet (KNN) 85.02:90 65.92457 96.1844.9 80.70455 T76.67+129 90.38+56 94.33141 58.62170 51.70+58 59.34159 95.96142 95.2013% 1.92
GCondNet (SRD)  86.36130 68.08473 97.56441 79.92462 T7.671105 89.33176 95.25445 56.3619.4 50.82+9.5 58.2446.4 96.13140 96.64131 :

Evaluation. We evaluate all models using a 5-fold cross-validation repeated 5 times, resulting in 25 runs per
model. We report the mean =+ std of the test balanced accuracy averaged across all 25 runs. To summarise
the results in the manuscript, we rank the methods by their predictive performance. For each dataset,
methods are ranked from 1 (the best) to 12 (the worst) based on their mean accuracy. If two methods have
the same accuracy (rounded to two decimals), they obtain the same per-dataset rank. The final rank for
each method is the average of their per-dataset ranks, which may be a non-integer.

GCondNet architecture and settings. The predictor MLP is a three-layer neural network with 100, 100, 10
neurons. The GNN within GCondNet is a two-layer Graph Convolutional Network (GCN) (Kipf & Wellin
2017). The permutation invariant function f,ge for computing graph embeddings is global average poolin
We decay the mixing coefficient a over n, = 200 training steps, although we found that GCondNet is robust
to the number of steps n,, as supported by the statistical tests in Appendix We present the results of
GCondNet with both KNN and SRD graphs. We provide complete reproducibility details for all methods in
Appendix [E] and the training times for GCondNet and other methods are in Appendix [F]

Q

O,

Benchmark methods. We evaluate 14 benchmark models, encompassing a standard MLP and modern
methods typically employed for small sample-size and high-dimensional datasets, such as DietNetworks
(Romero et all [2017)), FsNet (Singh et all [2020), SPINN (Feng & Simonl [2017), DNP 2017)), and
WPFS (Margeloiu et al, [2023)), all of which use the same architecture as GCondNet for a fair comparison. We
also include contemporary neural architectures for tabular data, like TabNet (Arik & Pfister} 2021), TabTrans-
former Huang et al.| (2020), Concrete Autoencoders (CAE) (Baln et al., 2019), and LassoNe

2021), and standard methods such Random Forest (Breiman, |2001)) and LightGBM (Ke et al., 2017).

We also compare the performance of GCondNet with GNNs on tabular data where relationships between
samples are not explicitly provided. In particular, we evaluate Graph Convolutional Network (GCN) (Kipf &
and Graph Attention Network v2 (GATv2) (Brody et al), |2022)). To ensure fairness, we employ
a similar setup to GCondNet, constructing a KNN-based graph (k = 5) in which each node represents a sample
connected to its five nearest samples based on cosine similarity, which is well-suited for high-dimensional
data. Both GCN and GATv2 are trained in a transductive setting, incorporating test sample edges during
training while masking nodes to prevent data leakage.

1Using hierarchical pooling (Ying et al.L 2018|; Ranjan et al.l|2020) led to unstable training and significantly poorer performance.
2We discuss LassoNet training instabilities in Appendix [E
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3.1 Opverall Classification Performance

Our experiments in Table [1| show that GCondNet outperforms all 14 benchmark models on average, achieving
a better overall rank across 12 real-world datasets — suggesting its effectiveness across diverse datasets.
GCondNet is followed by WPFS, a specialised method for small sample-size and high-dimensional datasets,
although GCondNet consistently outperforms it on 9 out of 12 tasks, providing improvements of up to 7%.
Standard methods like Light GBM and Random Forest are competitive; however, their relative performance
is sometimes highly dataset-dependent.

GCondNet consistently outperforms an MLP with identical architecture, showing statistically significant
improvements. The most notable gains are seen on the most extreme datasets — those with the smallest N/D
ratios — achieving 3-8% improvements on the five most extreme datasets. This demonstrates GCondNet’s
effectiveness in reducing overfitting, particularly in learning from small sample-size and high-dimensional data.

We compare against GNNs on tabular data where relationships between samples are not explicitly provided.
Despite the advantage of GCN and GATv2 of being trained in a transductive setting, GCondNet outperforms
both methods across tasks. The performance gap ranges between 19-25% on three tasks and more than
5% on four other tasks. This indicates that models heavily reliant on latent structure present in tabular
data, such as GNNs, are particularly sensitive to misspecifications during model construction. In contrast,
GCondNet demonstrates resilience against such misspecifications, which we analyse in the following section.

The results also show that GCondNet outperforms other methods specialised for this data scenario by a large
margin, such as DietNetworks, FsNet, SPINN, DNP, and more complex neural architectures for tabular
data such as TabNet, TabTransformer, CAE and LassoNet. This finding aligns with recent research (Kadra
et al., 2021)), suggesting that well-regularised MLPs are more effective at handling tabular data than intricate
architectures. Because our MLP baseline was already well-regularised, we attribute GCondNet’s performance
improvement to its inductive bias, which serves as an additional regularisation effect, as we further investigate
in the next section.

Finally, we find that GCondNet consistently performs well with both KNN and SRD graphs, ranking high
across various datasets. However, no clear distinction emerges between the two graph construction methods,
and in the next section, we further analyse GCondNet’s robustness to this choice.

3.2 Analysing the Inductive Bias of GCondNet

Having found that GCondNet excels on small-size and high-dimensional tasks, we analyse its inductive bias
and robustness to different construction methods.

GCondNet outperforms other initialisation schemes that do not use GNNs. To understand the
effect of leveraging the latent relationships between samples to parameterise neural networks (as GCondNet
does), we investigate if other weight initialisation methods can imbue a similar inductive bias. To the best of
our knowledge, all such existing methods necessitate external knowledge, like in (Li & Li, 2008} Ruiz et al.,
2022). Consequently, we propose three novel weight initialisation schemes incorporating a similar inductive bias
as GCondNet, making similar features having similar weights. These schemes generate feature embeddings
e, which are then utilised to initialise the MLP’s first layer W1\[/HJP = [(3(1),6(2)7 ...,e(D)]. The feature
embeddings are computed using Non-negative matrix factorisation (NMF), Principal Component Analysis
(PCA), and Weisfeiler-Lehman (WL) algorithm (Weisfeiler & Lemanl, [1968). The latter is a parameter-free
method to compute graph embeddings, often used to check whether two graphs are isomorphic. We apply the
WL algorithm to the same SRD graphs as used for GCondNet and use the j-th graph embedding as the feature
embedding e%{,)L. See Appendix for more details on these initialisation methods. We follow (Grinsztajn
et al} [2022) and compute the normalised test balanced accuracy across all 12 datasets and 25 runs. We
include the absolute accuracy numbers in Appendix [G]

Figure [2 shows that the specialised initialisation schemes (NMF, PCA, WL) outperform a standard MLP, and
we observe that GCondNet with both SRD and KNN graphs further improves over these initialisations. These
results suggest that initialisation methods that incorporate appropriate inductive biases, as in GCondNet, can
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Figure 2: The inductive bias of GCondNet robustly improves performance and cannot be
replicated without GNNs. We compute the normalised test balanced accuracy across all 12 datasets
and 25 runs and report the relative improvement over a baseline MLP. First, we find that GCondNet is
robust across various graph construction methods and provides consistent improvement over an equivalent
MLP. Second, to assess the usefulness of the GNNs, we propose three weight initialisation methods designed
to emulate GCondNet’s inductive biases but without employing GNNs. The results show that GCondNet
outperforms such methods, highlighting the effectiveness of the GNN-extracted latent structure.

outperform popular initialisation methods, which assume the weights should be independent at initialisation
(Glorot & Bengiol, [2010; He et al. [2015)), which can lead to overfitting on small datasets.

The advantage of using GNNs becomes more evident when comparing the performance of GCondNet, which
incorporates a learnable GNN, to the Weisfeiler-Lehman method, which is a parameter-free method. Although
both methods are applied on the same SRD graphs, GCondNet’s higher performance by 7% underscores the
crucial role of training GNNs to distil structure from the sample-wise relationships, exceeding the capabilities
of other methods.

GCondNet is robust to different graph construction methods. As GCondNet is general and does not
rely on knowing the ground-truth relationship between samples, we analyse its robustness to the user-defined
method for defining such relationships. In addition to the KNN and SRD graphs from Section 2.1} we also
consider graphs with random edges between samples (called “RandEdge” graphs). Specifically, we generate
the RandEdge graphs with similar graph statistics to the SRD graphs but random graph edges (full details
for creating RandEdge graphs are in Appendix. We train GCondNet on 25 different data splits, and for
each split, we sample RandEdge graphs five times — resulting in 125 trained models on RandEdge graphs.

We analyse two distinct facets of robustness. First, the relative performance compared to other benchmark
models. We find that, generally, GCondNet, when using any of the KNN, SRD or RandEdge graphs,
outperforms all 14 benchmark baselines from Table [I] and achieves a higher average rank. This suggests that
GCondNet is robust to different graph-creation methods and maintains stable relative performance compared
to other benchmark methods, even when the graphs are possibly misspecified.

Next, we analyse the absolute performance denoted by the numerical value of test accuracy. As expected,
we find that RandEdge graphs are suboptimal (see Figure [2) and GCondNet performs better with more
principled KNN or SRD graphs, which define similarity-based edges between samples. Nonetheless, the
three graphs exhibit similar absolute performance with statistical significance (see Appendix , making
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Figure 4: GCondNet is versatile and can en-
hance various models beyond MLPs. When
applied to TabTransformer, GCondNet consis-
tently improves performance by up to 14%.

GCondNet resilient to misspecifications during graph construction. Moreover, the optimal graph construction
method is task-dependent: SRD excels in seven datasets, KNN in another four, and RandEdge graphs
in one. For instance, even with identical input data X (as in ‘tcga-survival’ or ‘tcga-tumor’) — and thus
identical graphs — the optimal graph construction method can differ based on the prediction task. We
believe a limitation of this work is the lack of an optimal graph construction method. However, having an
optimal graph construction method is non-trivial, as (i) different tasks rely on exploiting different modeling
assumptions and structures in the data; and (ii) the GNN’s oversmoothing issue (Chen et al., |2020) can
lead to computing just an “average” of the feature values. Lastly, we highlight that GCondNet is robust
to the number of steps n,, as supported by the statistical tests in Appendix

GCondNet’s inductive bias serves as a regularisation mechanism. To isolate GCondNet’s inductive
bias — which ensures that similar features have similar weights at the beginning of training — we train
two versions of GCondNet: (i) with decaying a, and (ii) a modified version with a fized mixing coefficient
a € {0,0.2,0.4,0.6,0.8,1} throughout the training process. As a — 0, the model becomes equivalent to an
MLP, and as a — 1, the first layer is conditioned on the GNN-extracted structure.

We find that incorporating structure into the model serves as a regularisation mechanism and can help
prevent overfitting. Figure [3|shows the training and validation loss curves for different o values. An MLP
(equivalent to o = 0) begins overfitting at around the 4,000'" iteration, as shown by the inflexion point in
the validation loss. In contrast, all models incorporating the structure between samples (i.e., « > 0) avoid
this issue and attain better validation loss.

The optimisation perspective further motivates decaying « rather than using a fixed value. Firstly, using
a fixed « during training leads to instability, as seen by the high variance in the training loss. Secondly, a
fixed « results in a test-time performance drop of at least 2% compared to the decaying version (on ‘toxicity’,
presented in Figure [3). We posit this occurs because the model is overly constrained on potentially incorrect
graphs without sufficient learning capacity for other weights. The model gains flexibility by decaying a from
1 — 0, achieving better generalisation and increased stability.

Extension to Transformers. We highlight that GCondNet is a general framework for injecting
graph-regularisation into various types of neural networks, and it can readily be applied to other architectures
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beyond an MLP. As a proof-of-principle, we apply GCondNet to TabTransformer [Huang et al.[ (2020), and
the results in Figure [4 show consistent performance improvements by up to 14% (averaged over 25 runs).
This highlights that GCondNet is general and can be applied to various downstream models.

4 Related Work

“Diet” networks: Our focus is learning problems on high-dimensional tabular datasets with a limited
number of samples. As such, our method takes inspiration from “diet” methods such as DietNetworks
(Romero et all 2017), FsNet (Singh et al.l |2020) and WPFS (Margeloiu et al. 2023), which rely on auxiliary
networks to predict (and in turn reduce) the number of learnable parameters in the first layer of an underlying
feed-forward network. However, GCondNet differs from “diet” methods in two important ways: (i) “diet”
methods require a well-defined strategy for computing feature embeddings, and their performance is highly
sensitive to this choice. In contrast, GCondNet defines graphs between samples and uses a GNN to learn the
feature embeddings; (ii) GCondNet provides a different inductive bias which leverages the implicit relationships
between samples (via the learned graph embeddings w(®).

Out of all “diet” methods, GCondNet is most closely related to PLATO (Ruiz et al., [2022), as both methods
employ GNNs as auxiliary networks to parameterise the predictor network. However, the similarities end
there, and we highlight two key differences: (i) PLATO relies on domain knowledge, making it inapplicable
when such information is unavailable, which is common. In contrast, GCondNet is more general, as it can be
applied to any tabular dataset without requiring domain knowledge but can still utilise it when available.
(ii) PLATO constructs a single graph between features, whereas GCondNet creates multiple graphs between
samples. This distinction is crucial, as PLATO leverages the relationships among features, while our method
focuses on leveraging the relationships between samples (in addition to the relationships between features
learnt by the MLP predictor itself).

Graph-based approaches for tabular data, including semi-supervised approaches, construct a graph
between samples to capture the underlying relationships. The graphs are created using either a user-defined
metric or by learning a latent graph between samples. Recent methods apply GNNs to these graphs, and our
work distinguishes itself from such tabular data approaches in three ways.

1. We use GNNs indirectly and only during training to improve an underlying MLP predictor. Once trained,
we store the MLP predictor’s final weights, eliminating the need for GNNs during inference. Test input
samples are subsequently processed exclusively through the predictor MLP. In contrast, GNN approaches
to tabular data (You et al., 2020; Wu et all |2021}; Du et al.l |2022} [Fatemi et al.| [2021; [Satorras & Brunaj,
2018) directly employ GNNs for inference on new inputs, including making predictions (You et al., |2020;
Du et al., |2022; Fatemi et al., [2021; [Satorras & Brunaj [2018) and performing feature imputation (You
et al.l [2020; |Wu et al., [2021)).

2. Our graph structure is different. GCondNet generates many graphs between samples (one for each
feature) and then extracts graph embeddings w() to parameterise a predictor network. This approach
is novel and clearly distinguishes it from other work such as (You et al., [2020; 'Wu et al., 2021 [Du et al.,
2022), which generate graphs connecting features and samples. Both (You et al.; |2020; Wu et al., |2021])
construct a bipartite graph between samples and features, while (Du et al., 2022) creates a hyper-graph
where each sample is a node linked to corresponding feature nodes (specifically for discrete data).

3. Graph-based approaches for tabular data often introduce additional assumptions that may be suboptimal
or inapplicable. For example, (Kazi et al., [2022; [Zhou et al., 2022} [Fatemi et al., |2021)) create a graph
between samples and rely on the smoothness assumption, which posits that neighbouring instances share
the same labels. As demonstrated in Section[3.1] such assumptions can be suboptimal for high-dimensional
data. Concerning dataset assumptions, (Satorras & Bruna) [2018) addresses few-shot learning, which
requires a substantial meta-training set comprising similar tasks. In contrast, our approach focuses on
learning from small datasets without assuming the presence of an external meta-training set. The work
of (Fatemi et al., |2021)) infers a latent graph, focusing on either images or tabular data with a maximum
of 30 features. In comparison, our research explores tabular datasets containing up to 20000 features.
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Feature selection. When faced with high-dimensional data, machine learning models are presented with
increased degrees of freedom, making prediction tasks more challenging, especially on small sample-size tasks.
To address this issue, various feature selection methods have been proposed to reduce the dimensionality
of the data (Tibshirani, (1996} Feng & Simonl| 2017; [Liu et al [2017; [Singh et al.| 2020; |Balin et al., [2019;
Margeloiu et all 2023; Lemhadri et al., [2021)). All these methods aim to model the relationships between
features (i.e., determining which features are similar or irrelevant to the task), but they do not consider
the relationships between samples. In contrast, GCondNet uses a GNN to extract the relationships between
samples, while the MLP predictor learns the relationships between features.

Neural networks for tabular data. More broadly, our work is related to neural network methods for tabu-
lar data. Recent methods include various inductive biases, such as taking inspiration from tree-based methods
(Katzir et all, 2020; [Hazimeh et al.l |2020; Popov et al., |2020; [Yang et al., |2018)), including attention-based
modules (Arik & Pfister] [2021; Huang et al.| [2020]), or modelling multiplicative feature interactions (Qin et al.,
2021). For a recent review on neural networks for tabular data, refer to (Borisov et all|2022). However, these
methods are generally designed for large sample size datasets, and their performance can vary on different
datasets (Gorishniy et al., [2021)), making them unsuitable for small-size and high-dimensional tasks. In
contrast, our method is specifically designed for small-size high-dimensional tasks. Lastly, TabPFN [Hollmann
et al.| (2022) is a recent pre-trained Transformer using in-context learning for prediction, which can scale
only up to 100 features, making it inapplicable for our high-dimensional datasets (of up to 22,000 features).

5 Conclusion

We introduce GCondNet, a general method to improve neural network predictors on small and high-dimensional
tabular datasets. The key innovation of GCondNet lies in exploiting the “implicit relationships” between
samples by performing “soft parameter-sharing” to constrain the model’s parameters. We also propose
Implicit Sample-wise Multiplex Graphs, a novel and general approach to identify and use these potential
relationships between samples by constructing many graphs between samples, one for each feature. We then
use Graph Neural Networks (GNNs) to extract any implicit structure and condition the parameters of the first
layer of an underlying predictor network. Unlike other methods, which require external application-specific
knowledge graphs, our method is general and can be applied to any tabular dataset.

We evaluate 12 classification tasks on biomedical datasets — in real applications, this could mean identifying
biomarkers for different diseases — and show that GCondNet outperforms 14 benchmark methods and is
robust to different graph construction methods. We also show that the GNN-extracted structure serves as a
regularisation mechanism for reducing overfitting. Future work can investigate using the learned structures
to obtain insights into the dataset, such as detecting mislabeled data points or outliers.

Broader Impact Statement

This paper presents a novel method that aims to advance the field of machine learning by offering a new
direction for leveraging the implicit sample relationships in machine learning, which is particularly beneficial
for data-scarce tasks. This work can also serve as a basis for more interpretable approaches using the
learned data structures. For critical domains such as medicine, GCondNet can provide patient/cohort-wise
insights through post-hoc mechanisms such as graph concept-based explanations (Magister et al., |2021}; 2022).
From a machine learning perspective, GCondNet may also provide valuable insights into the dataset, such as
identifying difficult training samples in the context of curriculum learning (Bengio et al., |2009).

Our work’s impact is to advance machine learning capabilities in critical fields such as medicine and scientific
research, particularly in contexts where data availability is limited. By improving model performance in
settings with scarce data, our approach supports essential research in early-phase clinical trials (Weissler
et all [2021; |Zame et al., |2020) — where typically only a small number of patients are enrolled — and it
can help in identifying subtle patterns and relationships from small datasets. By handling complex, high-
dimensional datasets, GCondNet can benefit genomics research, enabling better analysis of genetic variations
and interactions with limited experimental data, thus supporting the discovery of genetic markers and pathways
(Alharbi & Vakanski, 2023; [Way & Greenel |2019)). We do not foresee harmful applications for our method.

11



Under review as submission to TMLR

References

Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Peter J Campbell, and Michael R Stratton.
Deciphering signatures of mutational processes operative in human cancer. Cell reports, 3(1):246-259, 2013.

Fadiyah Ahmed Alharbi and Aleksandar Vakanski. Machine learning methods for cancer classification using
gene expression data: A review. Bioengineering, 10, 2023.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI Conference on
Artificial Intelligence, volume 35, pp. 6679-6687, 2021.

Gagan Bajwa, Ralph J DeBerardinis, Baomei Shao, Brian Hall, J David Farrar, and Michelle A Gill. Cutting
edge: Critical role of glycolysis in human plasmacytoid dendritic cell antiviral responses. The Journal of
Immunology, 196(5):2004—-2009, 2016.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature communications, 5(1):4308, 2014.

Rubika Balendra and Adrian M Isaacs. C9orf72-mediated als and ftd: multiple pathways to disease. Nature
Reviews Neurology, 14(9):544-558, 2018.

Muhammed Fatih Balin, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable feature
selection and reconstruction. In International conference on machine learning, pp. 444-453. PMLR, 2019.

Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we really use post-hoc tests based on
mean-ranks? The Journal of Machine Learning Research, 17(1):152-161, 2016.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In International
Conference on Machine Learning, 2009.

Arindam Bhattacharjee, William G Richards, Jane Staunton, Cheng Li, Stefano Monti, Priya Vasa, Christine
Ladd, Javad Beheshti, Raphael Bueno, Michael Gillette, et al. Classification of human lung carcinomas by

mrna expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy
of Sciences, 98(24):13790-13795, 2001.

Vadim Borisov, Tobias Leemann, Kathrin Sessler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci.
Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2022.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 3438-3445, 2020.

Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda, Mark J Dunning,
Doug Speed, Andy G Lynch, Shamith Samarajiwa, Yinyin Yuan, et al. The genomic and transcriptomic
architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403):346-352, 2012.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning
research, 7:1-30, 2006.

Kounianhua Du, Weinan Zhang, Ruiwen Zhou, Yangkun Wang, Xilong Zhao, Jiarui Jin, Quan Gan, Zheng
Zhang, and David Paul Wipf. Learning enhanced representations for tabular data via neighborhood
propagation. Advances in Neural Information Processing Systems, 35, 2022.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure learning
for graph neural networks. Advances in Neural Information Processing Systems, 34:22667-22681, 2021.

12



Under review as submission to TMLR

Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional nonparametric regression and
classification. arXiv preprint arXiw:1711.07592, 2017.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

William A Freije, F Edmundo Castro-Vargas, Zixing Fang, Steve Horvath, Timothy Cloughesy, Linda M
Liau, Paul S Mischel, and Stanley F Nelson. Gene expression profiling of gliomas strongly predicts survival.
Cancer research, 64(18):6503-6510, 2004.

Hui Gao, Joshua M Korn, Stéphane Ferretti, John E Monahan, Youzhen Wang, Mallika Singh, Chao Zhang,
Christian Schnell, Guizhi Yang, Yun Zhang, et al. High-throughput screening using patient-derived tumor
xenografts to predict clinical trial drug response. Nature medicine, 21(11):1318-1325, 2015.

Mathew J Garnett, Elena J Edelman, Sonja J Heidorn, Chris D Greenman, Anahita Dastur, King Wai Lau,
Patricia Greninger, I Richard Thompson, Xi Luo, Jorge Soares, et al. Systematic identification of genomic
markers of drug sensitivity in cancer cells. Nature, 483(7391):570-575, 2012.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256.
JMLR Workshop and Conference Proceedings, 2010.

Yu. V. Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models
for tabular data. In Advances in Neural Information Processing Systems, 2021.

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In Neural Information Processing Systems, Track on Datasets and
Benchmarks, 2022.

Christian Haslinger, Norbert Schweifer, Stephan Stilgenbauer, Hartmut Dohner, Peter Lichter, Norbert Kraut,
Christian Stratowa, and Roger Abseher. Microarray gene expression profiling of b-cell chronic lymphocytic
leukemia subgroups defined by genomic aberrations and vh mutation status. Journal of Clinical Oncology,
22(19):3937-3949, 2004.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree ensemble
layer: Differentiability meets conditional computation. In International Conference on Machine Learning,
pp- 4138-4148. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEFE international conference on
computer vision, pp. 1026-1034, 2015.

Noah Hollmann, Samuel G. Miiller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. In International Conference on Learning
Representations, 2022.

Xin Huang, Ashish Khetan, Milan W. Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv, abs/2012.06678, 2020.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448-456. PMLR, 2015.

Francesco Torio, Theo A Knijnenburg, Daniel J Vis, Graham R Bignell, Michael P Menden, Michael Schubert,
Nanne Aben, Emanuel Gongalves, Syd Barthorpe, Howard Lightfoot, et al. A landscape of pharmacogenomic
interactions in cancer. Cell, 166(3):740-754, 2016.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on tabular
datasets. Advances in Neural Information Processing Systems, 34, 2021.

13



Under review as submission to TMLR

Gregor Kasieczka, Benjamin Nachman, David Shih, Oz Amram, Anders Andreassen, Kees Benkendorfer,
Blaz Bortolato, Gustaaf Brooijmans, Florencia Canelli, Jack H Collins, et al. The lhc olympics 2020 a
community challenge for anomaly detection in high energy physics. Reports on progress in physics, 84(12):
124201, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In International
Conference on Learning Representations, 2020.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1606-1617, 2022.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing
Systems, 30, 2017.

John A Keith, Valentin Vassilev-Galindo, Bingqging Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert
Muller, and Alexandre Tkatchenko. Combining machine learning and computational chemistry for predictive
insights into chemical systems. Chemical reviews, 121(16):9816-9872, 2021.

Matthew Kelly and Christopher Semsarian. Multiple mutations in genetic cardiovascular disease: a marker of
disease severity? Circulation: Cardiovascular Genetics, 2(2):182-190, 2009.

Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations via alternating non-negativity-
constrained least squares for microarray data analysis. Bioinformatics, 23(12):1495-1502, 2007.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Internation Conference
on Learning Representations, 2015.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. Internation
Conference on Learning Representa, 2017.

Ismael Lemhadri, Feng Ruan, and Rob Tibshirani. Lassonet: Neural networks with feature sparsity. In
International Conference on Artificial Intelligence and Statistics, pp. 10-18. PMLR, 2021.

Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Goldstein,
Andrew Gordon Wilson, and Micah Goldblum. Transfer learning with deep tabular models. International
Conference on Learning Representations, 2023.

Caiyan Li and Hongzhe Li. Network-constrained regularization and variable selection for analysis of genomic
data. Bioinformatics, 24(9):1175-1182, 2008.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu.
Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94, 2018.

Arthur Liberzon, Chet Birger, Helga Thorvaldsdottir, Mahmoud Ghandi, Jill P Mesirov, and Pablo Tamayo.
The molecular signatures database hallmark gene set collection. Cell systems, 1(6):417-425, 2015.

Bo Liu, Ying Wei, Yu Zhang, and Qiang Yang. Deep neural networks for high dimension, low sample size
data. In International Joint Conference on Artificial Intelligence, pp. 2287-2293, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Lio’. Gcexplainer: Human-in-the-loop
concept-based explanations for graph neural networks. ICML Workshop on Human in the Loop Learning,
2021.

Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano, Gabriele Ciravegna, Fabrizio
Silvestri, Mateja Jamnik, and Pietro Lio. Encoding concepts in graph neural networks. arXiv preprint
arXiv:2207.18586, 2022.

14



Under review as submission to TMLR

Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, and Mateja Jamnik. Weight predictor network with feature
selection for small sample tabular biomedical data. AAAI Conference on Artificial Intelligence, 2023.

Lisiane B Meira, Antonio MC Reis, David L Cheo, Dorit Nahari, Dennis K Burns, and Errol C Friedberg.
Cancer predisposition in mutant mice defective in multiple genetic pathways: uncovering important genetic
interactions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 477(1-2):51-58,
2001.

Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Jaehyun Nam, Jihoon Tack, Kyungmin Lee, Hankook Lee, and Jinwoo Shin. Stunt: Few-shot tabular learning
with self-generated tasks from unlabeled tables. In International Conference on Learning Representations,

2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825-2830, 2011.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep learning
on tabular data. In International Conference on Learning Representations, 2020.

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky,
and Marc-Alexander Najork. Are neural rankers still outperformed by gradient boosted decision trees? In
International Conference on Learning Representations, 2021.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for learning
hierarchical graph representations. Proceedings of the AAAI Conference on Artificial Intelligence, 34:
5470-5477, 2020.

Adriana Romero, Pierre Luc Carrier, Akram Erraqgabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, Marc-
André Legault, Marie-Pierre Dubé, Julie G. Hussin, and Yoshua Bengio. Diet networks: Thin parameters
for fat genomics. In International Conference on Learning Representations, 2017.

Camilo Ruiz, Hongyu Ren, Kexin Huang, and Jure Leskovec. Tabular deep learning when d >> n by using
an auxiliary knowledge graph. In NeurIPS 2022 Al for Science: Progress and Promises, 2022.

Victor Garcia Satorras and Joan Bruna. Few-shot learning with graph neural networks. International
Conference on Learning Representations, 2018.

Julia Schaefer, Moritz Lehne, Josef Schepers, Fabian Prasser, and Sylvia Thun. The use of machine learning
in rare diseases: a scoping review. Orphanet journal of rare diseases, 15:1-10, 2020.

Paul Scherer, Maja Trebacz, Nikola Simidjievski, Ramon Vinas, Zohreh Shams, Helena Andres Terre, Mateja
Jamnik, and Pietro Lio. Unsupervised construction of computational graphs for gene expression data with
explicit structural inductive biases. Bioinformatics, 38(5):1320-1327, 2022.

Dinesh Singh, Phillip G Febbo, Kenneth Ross, Donald G Jackson, Judith Manola, Christine Ladd, Pablo
Tamayo, Andrew A Renshaw, Anthony V D’Amico, Jerome P Richie, et al. Gene expression correlates of
clinical prostate cancer behavior. Cancer cell, 1(2):203-209, 2002.

Dinesh Singh, Héctor Climente-Gonzalez, Mathis Petrovich, Eiryo Kawakami, and Makoto Yamada. Fsnet:
Feature selection network on high-dimensional biological data. arXiv preprint arXiv:2001.08322, 2020.

Avrum Spira, Jennifer E Beane, Vishal Shah, Katrina Steiling, Gang Liu, Frank Schembri, Sean Gilman,
Yves-Martine Dumas, Paul Calner, Paola Sebastiani, et al. Airway epithelial gene expression in the
diagnostic evaluation of smokers with suspect lung cancer. Nature medicine, 13(3):361-366, 2007.

15



Under review as submission to TMLR

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929-1958, 2014.

Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep
transfer learning. In Artificial Neural Networks and Machine Learning-ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27, pp.
270-279. Springer, 2018.

Leo Taslaman and Bjorn Nilsson. A framework for regularized non-negative matrix factorization, with
application to the analysis of gene expression data. PloS one, 7(11):€46331, 2012.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267-288, 1996.

Katarzyna Tomczak, Patrycja Czerwiniska, and Maciej Wiznerowicz. The cancer genome atlas (tcga): an
immeasurable source of knowledge. Contemporary oncology, 19(1A):A68, 2015.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables. Advances
in Neural Information Processing Systems, 35:2902-2915, 2022.

Gregory P Way and Casey S Greene. Discovering pathway and cell type signatures in transcriptomic
compendia with machine learning. Annual Review of Biomedical Data Science, 2:1-17, 2019.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which
appears therein. nti, Series, 2(9):12-16, 1968.

E Hope Weissler, Tristan Naumann, Tomas Andersson, Rajesh Ranganath, Olivier Elemento, Yuan Luo,
Daniel F Freitag, James Benoit, Michael C Hughes, Faisal Khan, et al. The role of machine learning in
clinical research: transforming the future of evidence generation. Trials, 22:1-15, 2021.

Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrapolation: An inductive graph
learning approach. Advances in Neural Information Processing Systems, 34:19435-19447, 2021.

Junchen Yang, Ofir Lindenbaum, and Yuval Kluger. Locally sparse neural networks for tabular biomedical
data. arXiv:2106.06468v2, 2021.

Wanjuan Yang, Jorge Soares, Patricia Greninger, Elena J Edelman, Howard Lightfoot, Simon Forbes, Nidhi
Bindal, Dave Beare, James A Smith, I Richard Thompson, et al. Genomics of drug sensitivity in cancer
(gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids research, 41(D1):
D955-D961, 2012.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neural decision trees. International
Conference in Machine Learning - Workshop on Human Interpretability in Machine Learning (WHI), 2018.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing data with
graph representation learning. Advances in Neural Information Processing Systems, 33:19075-19087, 2020.

William R Zame, Ioana Bica, Cong Shen, Alicia Curth, Hyun-Suk Lee, Stuart Bailey, James Weatherall,
David Wright, Frank Bretz, and Mihaela van der Schaar. Machine learning for clinical trials in the era of
covid-19. Statistics in biopharmaceutical research, 12(4):506-517, 2020.

Zenan Zhai, Christian Druckenbrodt, Camilo Thorne, Saber A Akhondi, Dat Quoc Nguyen, Trevor Cohn, and
Karin Verspoor. Chemtables: a dataset for semantic classification on tables in chemical patents. Journal
of Cheminformatics, 13(1):1-20, 2021.

Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Table2graph: Transforming tabular
data to unified weighted graph. In International Joint Conference on Artificial Intelligence, 2022.

16



Under review as submission to TMLR

A GCondNet Training Pseudocode

Algorithm 2 Training GCondNet

RNXD

Input: training data X € , training labels y € R, classification network fonep > graph neural network gy
node aggregation function fagg, graph creation method h(-), steps for linear decay na

1: for each feature j =1,2,...,D do

2: G; = h(X. ;) > Generate the Implicit Sample-wise Multiplex Graphs
3: end for
4: Weeraten = 0 > Initialise auxiliary weight matrix
5: for each mini-batch B = {(z”,y;)}%_, do
6: for each feature j =1,2,..., D do
7 node-embeddings = ggyn (G5)
8: w) = fage (node-embeddings) > Aggregate all node embeddings to obtain the graph embedding w? e RE
9: end for
10: Wann = [w®, w® .. w®)] > Horizontally concatenate the graph embeddings
11: a=max(0,1 — (i/na)) > Compute mixing coefficient
12: W&/HJP +— aWenn + (1 — @) Wicraten > Compute the weight matrix of the first layer

13: Make Wl\[/}ip the weight matrix of the first layer of fo,; p
14: for each sample i =1,2,...,b do

15: 9i = fouwp (w(i))
16: end for
17: Y < [J1, 92, -, Go] > Concatenate all predictions

18: Compute training loss L = CrossEntropyLoss(y, ¥)
19: Compute the gradient of the loss L w.r.t.

20: Omrp, 0NN, Wecraten using backpropagation
21: Update the parameters:

22: Omrp < Ovrp — VOMLPL

23: fann < OaNN — VQGNNL

24: Wscratch — Wscratch - VWSC,.atChL

25: end for

Return: Trained models fo,; 1, goony and WI\[/}LP

B Sparse Relative Distance (SRD) Graph Construction

We propose a novel similarity-based method, Sparse Relative Distance (SRD), for creating edges between
node (representing samples) in a graph. It assumes that similar samples should be connected and use this
principle to create edges &; in the j*® graph. The method also includes an accept-reject step to sparsify the
graph. Specifically, SRD work as follows:

1. For each node i create a set of candidate edges C; by identifying all samples [ with a feature value within
a certain distance, dist, of the corresponding feature value of sample i. Specifically, we include all samples
I such that |X; ; — X, ;| < dist, where dist is defined as 5% of the absolute difference between the 5
and 95" percentiles of all values of feature j (to eliminate the effect of outlier feature values).

2. Perform a Bernoulli trial with probability size(C;)/Nirain for each node i. If the trial outcome is positive,
create undirected edges between node 7 and all nodes within the candidate set C;. If the outcome is
negative, no new edges are created. This sampling procedure results in sparser graphs, which helps
alleviate the issue of oversmoothing (Chen et al., [2020) commonly encountered in GNNs. Oversmoothing
occurs when the model produces similar embeddings for all nodes in the graph, effectively ‘smoothing
out’ any differences in the graph structure. It is worth noting that a node can also acquire new edges as
part of the candidate set of other nodes.

This process results in a network topology in which nodes with larger candidate sets are more likely to
have more connections. Intuitively, this means that ‘representative’ samples become the centres of node
clusters in the network.
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3. To further prevent oversmoothing, if a node has more than 25 connections, we randomly prune some of
its edges until it has exactly 25 connections. This is because samples with highly frequent values can

have an excessive number of connections, which can result in oversmoothing.

Table B.1: Key statistics of the graphs created using the Sparse Relative Distance (SRD) with dist = 5%.

C Datasets

Dataset Node degree  Edges of full graph (%)
cll 3.88 £6.81 9.96
lung 5.16 = 9.46 7.37
meta-p50 3.97+£6.73 5.56
meta-dr 3.92 £6.69 5.48
prostate 11.28 +17.96 31.77
smk 3.94+£6.61 5.93
tcga-survival 7.7£12.03 10.77
tcga-tumor 7.45+11.84 10.42
toxicity 3.1£5.42 5.12

Table C.2: Details of the 12 real-world biomedical datasets used for experiments. The datasets contain
between 72-200 samples, and the number of features is 17 — 262 times larger than the number of samples.

# samples (N)

# features (D)

D/N  # classes

# samples per class

Dataset

allaml 72 7129 99 2 25, 47
cll 111 11340 102 3 11, 49, 51
gli 85 22283 262 2 26, 59
glioma 50 4434 89 4 7,14, 14, 15
lung 197 3312 17 4 17, 20, 21, 139
meta-dr 200 4160 21 2 61, 139
meta-pd0 200 4160 21 2 33, 167
prostate 102 5966 58 2 50, 52
smk 187 19993 107 2 90, 97
tcga-survival 200 4381 22 2 78, 122
tega-tumor 200 4381 22 3 25,51, 124
toxicity 171 5748 34 4 39, 42, 45, 45

All datasets are publicly available and summarised in Table Eight datasets are open-source |Li et al.
(2018) and available https://jundongl.github.io/scikit-feature/datasets.htmlonline: CLL-SUB-
111 (called ‘cll’) (Haslinger et al.,|2004), GLI__85 (called ‘gli’) (Freije et al., |2004), lung (Bhattacharjee
et al. [2001), Prostate_ GE (called ‘prostate’) (Singh et al., [2002), SMK-CAN-187 (called ‘smk’) (Spira
et al} 2007), TOX-171 (called ‘toxicity’) (Bajwa et al., 2016, as well as allaml and glioma, for which the
original reference was not available.

We created four additional datasets following the methodology presented in |Margeloiu et al.| (2023)):

o Two datasets from the METABRIC (Curtis et al., [2012) dataset. We combined the molecular data
with the clinical label ‘DR’ to create the ‘meta-dr’ dataset, and we combined the molecular data with
the clinical label ‘Pam50Subtype’ to create the ‘meta-p50° dataset. Because the label ‘Pam50Subtype’
was very imbalanced, we transformed the task into a binary task of basal vs non-basal by combining
the classes ‘LumA’, ‘LumB’, ‘Her2’, ‘Normal’ into one class and using the remaining class ‘Basal’ as the
second class. For both ‘meta-dr’ and ‘meta-p50” we selected the Hallmark gene set (Liberzon et al., 2015)
associated with breast cancer, and the new datasets contain 4160 expressions (features) for each patient.
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We created the final datasets by randomly sampling 200 patients stratified because we are interested in
studying datasets with a small sample-size.

e Two datasets from the TCGA (Tomczak et al., [2015)) dataset. We combined the molecular data and the
label ‘X2yr.RF.Surv’ to create the ‘tcga-survival’ dataset, and we combined the molecular data and
the label ‘tumor_ grade’ to create the ‘tcga-tumor’ dataset. For both ‘tcga-survival’ and ‘tcga-tumor’
we selected the Hallmark gene set (Liberzon et al., |2015)) associated with breast cancer, leaving 4381
expressions (features) for each patient. We created the final datasets by randomly sampling 200 patients
stratified because we are interested in studying small sample-size datasets.

Dataset processing. Before training the models, we apply Z-score normalisation to each dataset. Specifically,
on the training split, we learn a simple transformation to make each column of Xy,qin € RNtrain XD have zero
mean and unit variance. We apply this transformation to the validation and test splits during cross-validation.

D Ablation Number of Steps for Decaying the Mixing Coefficient

Table D.3: We evaluate the impact of decaying the mixing coefficient « for varying number of steps n,. We
present the mean+tstd balanced validation accuracy averaged over 25 runs. We find that GCondNet is robust
to the decay length n,, and we choose n, = 200 steps for all experiments of this paper unless otherwise
specified.

Steps n, of linear decay for «

Dataset

100 200 400
cll 88.88 £ 8.47 88.09 +£9.34 88.33 £ 8.28
lung 96.77 + 5.07 97.27 £4.97 97.36 £ 4.76
meta-p50 98.56 &+ 3.70 98.56 + 3.70 97.74 £ 5.02
meta-dr 71.20 £ 8.80 68.36 £ 10.63 71.92 £ 8.39
prostate 95.56 +7.35 93.97 £ 10.22 95.11 £ 7.99
smk 76.39 +£11.59 76.89 +13.10 75.78 £11.64
tcga-survival  69.20 & 11.38 70.6 £9.35 68.53 +10.01
tcga-tumor 62.06 +13.64 62.46 £ 18.05 66.13 £15.17
toxicity 98.75 £ 3.12 98.25 + 3.83 98.5 £3.73

Table D.4: Statistical analysis of the number of iterations from Table We report the p-values of a
Wilcoxon signed-rank test [Demsar| (2006)); Benavoli et al.| (2016)). The results support our observation, namely
that GCondNet is robust to the hyper-parameter n,,.

Ne = 100 vs. n, = 200
4.00E-01

Na = 100 vs. no = 400
9.44E-01

N = 200 vs. no = 400
4.96E-01

E Reproducibility: Benchmarks methods, Training Details and Hyper-parameter
Tuning

Software implementation. We implemented GCondNet using PyTorch 1.12 (Paszke et al., |2019), an open-
source deep learning library with a BSD licence. We implemented the GNN within GCondNet, and the GCN and
GATv2 benchmarks using PyTorch-Geometric (Fey & Lenssen [2019)), an open-source library for implementing
Graph Neural Networks with an MIT licence. We train using a library https://github.com/Lightning-AI/
lightning Pytorch-ligthning built on top of PyTorch and released under an Apache Licence 2.0. All numerical
plots and graphics have been generated using Matplotlib 3.6, a Python-based plotting library with a BSD
licence. The model architecture Figure [1] was generated using https://github.com/jgraph/drawio draw.io,
a free drawing software under Apache License 2.0.
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As for the other benchmarks, we implement MLP, CAE and DietNetworks using PyTorch 1.12 (Paszke
et al. 2019)), Random Forest using scikit-learn (Pedregosa et all [2011) (BSD license), Light GBM using
the lightgbm library (Ke et al., [2017) (MIT licence) and TabNet (Arik & Pfister] 2021)) using the https:
//github.com/dreamquark-ai/tabnetimplementation (MIT licence) from Dreamquark AI. We use the MIT-
licensed https://github.com/andreimargeloiu/WPFS implementation of WPFS made public by (Margeloiu
et all [2023). We re-implement FsNet (Singh et al., [2020]) in PyTorch 1.12 (Paszke et all [2019) because
the official code implementation contains differences from the paper, and they used a different evaluation
setup from ours (they evaluate using unbalanced accuracy, while we run multiple data splits and evaluate
using balanced accuracy). We use the https://github.com/lasso-net/lassonet official implementation
of LassoNet (MIT licence), and the https://github.com/jjfeng/spinn official implementation of SPINN
(no licence).

We attach our code to this submission, and we will release it under the MIT licence upon publication.

Computing Resources. All our experiments are run on a single machine from an internal cluster with a
GPU Nvidia Quadro RTX 8000 with 48GB memory and an Intel(R) Xeon(R) Gold 5218 CPU with 16 cores
(at 2.30GHz). The operating system was Ubuntu 20.4.4 LTS. We estimate that to carry out the full range
of experiments, comprising both prototyping and initial experimental phases, we needed to train around
11000 distinct models, which we estimate required 1000 to 1200 GPU hours.

GCondNet architecture and settings. The predictor MLP is a 3-layer feed-forward neural network
with 100, 100, 10 neurons. After each linear layer we add LeakyReL.U non-linearity with slope 0.01, batch
normalisation (Ioffe & Szegedyl [2015)) and dropout (Srivastava et al.| [2014): we tune the dropout probability
p € {0.2,0.4} on the validation accuracy. The last layer has softmax activation. The layers following the first
one are initialized using a standard Kaiming method [He et al.| (2015]), which considers the activation. The
GNN within GCondNet is a Graph Convolutional Network (GCN) (Kipf & Welling, [2017) with two layers of
size 200 and 100. After the first GCN layer, we use a ReLLU non-linearity and dropout with p = 0.5. The
permutation invariant function f,ees for computing graph embeddings is global average poolingﬂ

We train for 10000 steps with a batch size of 8 and optimise using AdamW (Loshchilov & Hutter} 2019) with
a fixed learning rate of le — 4. We decay the mixing coefficient a over n, = 200 training steps, although we
found that GCondNet is robust to the number of steps n,, as supported by the statistical tests in Appendix[D]
We use early stopping with patience 200 steps on the validation loss across all experiments.

Training details for all benchmark methods. Here, we present the training settings for all benchmark
models, and we discuss hyper-parameter tuning in the next paragraph. We train using 5-fold cross-validation
with 5 repeats (training 25 models each run). For each run, we select 10% of the training data for validation.
We perform a fair comparison whenever possible: for instance, we train all models using a weighted loss
(e.g., weighted cross-entropy loss for neural networks), evaluate using balanced accuracy, and use the same
classification network architecture for GCondNet, MLP, WPFS, FsNet, CAE and DietNetworks.

« WPFS, DietNetworks, CAE, FsNet have three hidden layers of size 100,100,10. The Weight
Predictor Network and the Sparsity Network have four hidden layers 100,100,100, 100. They are trained
for 10,000 steps using early stopping with patience 200 steps on the validation cross-entropy and gradient
clipping at 2.5. For CAE and FsNet we use the suggested annealing schedule for the concrete nodes:
exponential annealing from temperature 10 to 0.01. On all datasets, DietNetworks performed best
with not decoder. For WPF'S we use the NMF embeddings suggested in Margeloiu et al., 2023}

e For GCN, we used two graph convolutional layers with 200 and 100 neurons, followed by a linear
layer with softmax activation for class label computation. ReLLU and dropout with p = 0.5 follow each
convolutional layer. We train using AdamW (Loshchilov & Hutter| [2019)), tune the learning rate in
[le — 3,3e — 3, 1e — 4], and select the best model on the validation accuracy.

e For GATVv2, we used two graph attentional layers with dropout p = 0.5. The first attention layer used
4 attention heads of size 100, and the second used one head of size 400. ReLU and dropout with p = 0.5
follow each attention layer. A linear layer with softmax activation for class label computation follows

3Using hierarchical pooling methods (Ying et all, 2018} [Ranjan et all, [2020) resulted in unstable training and significantly
poor performance.
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the attention layers. We train using AdamW (Loshchilov & Hutter, 2019), tune the learning rate in
[le — 3,3e — 3, 1e — 4], and select the best model on the validation accuracy.

e LassoNet has three hidden layers of size 100,100,10. We use dropout 0.2, and train using AdamW
(with betas 0.9,0.98) and a batch size of 8. We train using a weighted loss. We perform early stopping
on the validation set.

e For Random Forest, we used 500 estimators, feature bagging with the square root of the number of
features, and used balanced weights associated with the classes.

e For Light GBM we used 200 estimators, feature bagging with 30% of the features, a minimum of two
instances in a leaf, and trained for 10,000 steps to minimise the balanced cross-entropy. We perform
early stopping on the validation set.

e For TabNet, we use width 8 for the decision prediction layer and the attention embedding for each mask
(larger values lead to severe overfitting) and 1.5 for the feature re-usage coefficient in the masks. We
use three steps in the architecture, with two independent and two shared Gated Linear Units layers at
each step. We train using Adam (Kingma & Bal |2015) with momentum 0.3 and gradient clipping at 2.

e For TabTransformer, we use only the head for continuous features, as our datasets do not contain
categorical features. For a fair comparison, we use the same architecture as the MLP following the initial
layer normalization, and train the model with the optimal settings of the MLP.

e For SPINN, we followed the results from the ablations in the original paper and tuned the sparse group
lasso hyper-parameter A € {0,0.001,0.0032,0.1}, the group lasso hyper-parameter o € {0.9,0.99,0.999}
in the sparse group lasso, the ridge-param Ag € {0,0.0001}, and train for at most 1,000 steps.

e For DNP we did not find any suitable implementation, and used SPINN with different settings as a
proxy for DNP (because DNP is a greedy approximation to optimizing the group lasso, and SPINN
optimises directly a group lasso). Specifically, our proxy for DNP results is SPINN trained for at most
1000 iterations, with a = 1 for the group lasso in the sparse group lasso, ridge-param g = 0.0001, and
we tuned the sparse group lasso hyper-parameter A € {0,0.001,0.0032,0.1}.

Hyper-parameter tuning. For each model, we use random search and previous experience to find a good
range of hyper-parameter values that we can investigate in detail. We then performed a grid search and
ran 25 runs for each hyper-parameter configuration. We selected the best hyper-parameter based on the
average validation accuracy across the 25 runs.

For the MLP and DietNetworks we individually grid-searched learning rate € {0.003,0.001,0.0003,0.0001},
batch size € {8,12,16,20, 24,32}, dropout rate € {0,0.1,0.2,0.3,0.4,0.5}. We found that learning rate
0.003, batch size 8 and dropout rate 0.2 work well across datasets for both models, and we used them in
the presented experiments. In addition, for DietNetworks we also tuned the reconstruction hyper-parameter
A € {0,0.01,0.03,0.1,0.3,1,3,10,30} and found that across dataset having A = 0 performed best. For
WPFS we used the best hyper-parameters for the MLP and tuned only the sparsity hyper-parameter
A€ {0,3¢ —6,3¢ — 5,3¢ — 4,3¢ — 3,1e — 2} and the size of the feature embedding € {20, 50,70}. For FsNet
we grid-search the reconstruction parameter in A € {0,0.2,1,5} and learning rate in {0.001,0.003}. For
Light GBM we performed grid-search for the learning rate in {0.1,0.01} and maximum depth in {1,2}. For
Random Forest, we performed a grid search for the maximum depth in {3,5,7} and the minimum number of
samples in a leaf in {2,3}. For TabNet we searched the learning rate in {0.01,0.02,0.03} and the X sparsity
hyper-parameter in {0.1,0.01,0.001,0.0001}, as motivated by (Yang et al., 2021). For GCN and GATv2
we searched the learning rate in {le — 3,3e — 3, 1e — 4}. We selected the best hyper-parameters (Table
on the weighted cross-entropy (except Random Forest, for which we used weighted balanced accuracy).

LassoNet unstable training. We used the official implementation of LassoNet (https://github.com/lasso-
net/lassonet), and we successfully replicated some of the results in the LassoNet paper (Lemhadri et al.l
2021). However, LassoNet was unstable on all datasets we trained on. We included a Jupyter notebook in the
attached codebase that demostrates that LassoNet cannot even fit the training data on our datasets. In our
experiments, we grid-searched the L; penalty coefficient A € {0.001,0.01,0.1, 1,10, ‘auto’} and the hierarchy
coefficient M € {0.1,1,3,10}. These values are suggested in the paper and used in the examples from the
official codebase. For all hyper-parameter combinations, LassoNet’s performance was equivalent to a random
classifier (e.g., 25% balanced accuracy for a 4-class problem).
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Table E.5: Best performing hyper-parameters for each benchmark model across datasets.

Random Forest Light GBM TabNet GCN GATv2 FsNet CAE WPFS

max  min samples learning max  learning A sparsity learning learning learning A annealing A sparsity embedding

depth leaf rate depth rate rate rate reconstruction  iterations size
allaml 3 3 0.1 2 0.03 0.0001 0.001 0.003 0.003 0 1000 0 50
cll 3 3 0.1 2 0.03 0.001 0.003 0.003 0.003 0 1000 3e—4 70
gli 3 3 0.1 1 0.03 0.1 0.001 0.003 0.003 0 300 3e—4 50
glioma 3 3 0.01 2 0.03 0.001 0.003 0.003 0.003 0 1000 3e—3 50
lung 3 2 0.1 1 0.02 0.1 0.003 0.001 0.001 0 1000 3e—5 20
meta-p50 7 2 0.01 2 0.02 0.001 0.003 0.003 0.003 0 1000 3e—6 50
meta-dr 7 2 0.1 1 0.03 0.1 0.003 0.003 0.003 0 300 0 50
prostate 5 2 0.1 2 0.02 0.01 0.0001 0.0001 0.003 0 1000 3e—3 50
smk 5 2 0.1 2 0.03 0.001 0.001 0.0001 0.003 0 1000 3e—5 50
tcga-survival 3 3 0.1 1 0.02 0.01 0.003 0.003 0.003 0 300 3e—5 50
tcga-tumor 3 3 0.1 1 0.02 0.01 0.003 0.001 0.003 0 300 3e—5 50
toxicity 5 3 0.1 2 0.03 0.1 0.003 0.0001 0.001 0.2 1000 3e—5 50

F Computational Complexity

F.1 Training Time

Table F.6: Average training time (in minutes) of a model with optimal hyper-parameters. In general,
GCondNet trains slower than the benchmarks: GCondNet takes 8.5 minutes to train across datasets, other
competitive “diet” networks, such as WPFS, take 7.7 minutes, and an MLP takes 5.4 minutes.

Dataset GCondNet MLP WPFS DietNetworks FsNet
cll 12 6.1 7.7 8.1 5.4
lung 11 6.1 9.9 10.6 6.1
meta-p50 9.8 6.6 8.9 8.7 4.3
meta-dr 3.6 3 4.6 4.9 4.8
prostate 9.6 7.2 9.9 7.9 3.5
smk 9 6.2 8.9 5.9 4.3
tcga-survival 3.8 3 4.2 4.7 5.3
tcga-tumor 4 3.5 5 4.4 4.5
toxicity 13.7 7.3 10 8.2 5.9
Average minutes 8.5 5.4 7.7 7 4.9

F.2 Number of Steps for Convergence

Table F.7: Number of steps for convergence.

MLP ‘ GCondNet with different graphs

| KNN graphs  SRD graphs RandEdge graphs
cll 1697 4020 4526 4298
lung 2836 6927 6777 6935
meta-p50 2952 5504 5365 5242
meta-dr 1331 1657 1577 1598
prostate 2347 4307 4540 4535
smk 1379 2175 2102 2218
tcga-survival 1320 1541 1606 1588
tcga-tumor 1316 1805 1790 1805
toxicity 2807 6522 6809 6772
Average 1998 3829 3899 3887
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G Influence of GCondNet’s Graph Construction Method and the MLP Weight
Initialisation

RandEdge Graphs from Section The proposed SRD method creates graphs that contain, on average,
8% of the edges of a fully connected graph (as shown in Appendix . To create RandEdge graphs with similar
statistics, we sample a proportion p from all possible edges in the graph, where p ~ A (u = 0.08, 0 = 0.03) is
sampled for each of the D graphs. We used the same initial node embeddings from Section We sample
each graph five times and train each of the 25 models on all graphs — resulting in 125 trained models on
RandEdge graphs.

Specialised initialisations from Section We first compute Wl\[ﬂp using any of the three initialisation
methods that we propose below. To mitigate the risk of exploding gradients, we adopt the method proposed
by He et al. (He et al.l|2015) to rescale the weights. After computing Wl\[ﬂp, we then perform zero-centring on
each row of Wl\[/}]LP and subsequently rescale it to match the standard deviation of the Kaiming initialisation
(He et al., 2015). The resulting matrix is used to initialise the first layer of the predictor MLP.

1. Principal Component Analysis (PCA) initialisation. We use PCA to compute feature embeddings
eg% A for all features j. These embeddings are then concatenated horizontally to form the weight matrix
of the first layer of the MLP predictor Wl\[/ﬂp = [eg();A, eg();A, ces eéDC)A].

2. Non-negative matrix factorisation (NMF) initialisation. NMF has been applied in bioinformatics
to cluster gene expression (Kim & Parkl 2007; [Taslaman & Nilsson, 2012)) and identify common cancer
mutations (Alexandrov et all |2013)). It approximates X ~ W H, with the intuition that the column

space of W represents “eigengenes”, and the column H. ; represents coordinates of gene j in the
(9)

space spanned by the eigengenes. The feature embedding is ey := H. ;. These embeddings are

then concatenated horizontally to form the weight matrix of the first layer of the MLP predictor
1 _ 1.1 (2) (D)

Wiip = [enur: exur - ENvpl-

3. Weisfeiler-Lehman (WL) initialisation. The WL algorithm (Weisfeiler & Leman), [1968)), often used
in graph theory, is a method to check whether two given graphs are isomorphic, i.e., identical up to a
renaming of the vertices. The algorithm creates a graph embedding of size N. For our use-case, the
embeddings must have size K, the size of the first hidden layer of the predictor MLP; thus, we obtain the
feature embeddings es}f,)L by computing the histogram with K bins of the WL-computed graph embedding,
which is then normalised to be a probability density. We apply the WL algorithm on the SRD graphs

described in Section and finally obtain W\g\l,}L = [e%,)L, eg,)L, . eg\?ﬁ].
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Table G.8: We evaluate the robustness of GCondNet on various graph construction methods and compare it
to an identically structured and trained MLP initialised with three weight initialisation methods emulating
the inductive biases of GCondNet, but without training a GNN. Here, all versions of MLPs and GCondNet use
a fixed dropout p = 0.2. We report the mean =+ std of the test balanced accuracy averaged over 25 runs and
include statistical tests in Table Results show that GCondNet is robust to the graphs and consistently
outperforms a standard MLP across all graph construction methods. Further, GCondNet often outperforms
other initialisation methods, highlighting the effectiveness of the GNN-extracted latent structure.

MLP ‘ MLP with specialised initialisations ‘ GCondNet with different graphs

| PCA NMF WL | RandEdge KNN SRD
allaml 91.30i6_74 95~49i5.97 95.84i5.42 95.33i5.81 96.39i4_89 96.18i4_85 96.36i4_7o
cll 78.3048.99 79.92.16.48 78.59+6.64 79.98+6.59 81.36+5.78 80.70+5.47 81.54+7.15
gli T7.72415.33 | 83.82+12.35  85.581958 83.79+1077 | 85.941s65  85.51is96 86.36+s.05
glioma 73.00414.88 | 75.00415.17  74.6741355 75.50413.41 | 75.67x12.09 76.67+12.90 77.50+8.51
lung 94.20+4.95 96.04+4.00 95.05+4.06 94.56+5.97 94.86+4.58 94.68+425 95.34144.49
meta-dr 59.56i5_50 55~75i8.27 59.36i6.84 58-69i7.36 57-89i8.76 59‘34i8.93 58-24i6.36
meta-p50 94~31i5.39 94.70i4_93 95'09i4.80 95.81i5_05 95.86i4_25 96‘37i4_00 96.26i3_79
prostate 88.7645.55 91.0445.08 89.3646.49 89.9745.94 89.5646.37 90.3845.59 89.9646.14
smk 64.4248.44 | 66.79+10.80 65.87+7.35 64.47+8.17 66.13+35.12 65.92+868 68.08+7.31
tega-survival 56.28.+6.73 55.2247.39 60.08+6.18 54.7948.23 58.314+7.81 58.61+7.01  56.36+9.41
tcga-tumor 48.1947.75 | 50.95410.50 51.4949.77 49.67+8.86 51.57+9.10 51.70+8.82  52.4347.57
toxicity 93.2146.14 92.5815.46 89.1145.99 92.4915.70 95.0644.17 95.2213.93 95.2544.54
Average rank 6.08 4.42 4.33 5.17 3.17 2.75 2.08

Table G.9: Statistical analysis of Table We compare both GCondNet w/ SRD and KNN variants to
each other, to GCondNet with RandomEdge graphs, and to the three weight initialisations methods we
proposed. We perform statistical testing using the Wilcoxon test \Demsar| (2006); Benavoli et al.| (2016). The
results support our discussion that GCondNet is robust to the graph construction method, as the performance
differences between different graph constructing methods are not significant at o = 0.05. Furthermore, we
find that both GCondNet variants (SRD and KNN) perform significantly better than the MLP baseline and
the PCA and WL initialisations.

Model A vS. Model B Wilcoxon p-value
GCondNet (KNN) MLP 9.7656e-04
GCondNet (KNN) MLP (NMF) 1.0934¢-01
GCondNet (KNN) MLP (PCA) 3.418¢-02
GCondNet (KNN) MLP (WL) 4.8828e-04
GCondNet (SRD) MLP 3.418e-03
GCondNet (SRD) MLP (NMF) 1.2939¢-01
GCondNet (SRD) MLP (PCA) 1.6113e-02
CondNet (SRD) MLP (WL) 3.418¢-03
GCondNet (SRD) GCondNet (KNN) 6.8894e-01
GCondNet (SRD) GCondNet (RandEdge) 1.2939¢-01
GCondNet (KNN) GCondNet (RandEdge) 5.9335e-01
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