
Under review as a conference paper at ICLR 2023

DROP: CONSERVATIVE MODEL-BASED OPTIMIZA-
TION FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we decouple the iterative (bi-level) offline RL from the offline train-
ing phase, forming a non-iterative bi-level paradigm that avoids the iterative error
propagation over two levels. Specifically, this non-iterative paradigm allows us
to conduct inner-level optimization in training (i.e., employing policy/value reg-
ularization), while performing outer-level optimization in testing (i.e., conduct-
ing policy inference). Naturally, such paradigm raises three core questions (that
are not fully answered by prior non-iterative offline RL counterparts like reward-
conditioned policy): (Q1) What information should we transfer from the inner-
level to the outer-level? (Q2) What should we pay attention to when exploiting the
transferred information for the outer-level optimization? (Q3) What are the bene-
fits of concurrently conducting outer-level optimization during testing? Motivated
by model-based optimization (MBO), we proposed DROP, which fully answers
the above three questions. Particularly, in the inner-level, DROP decomposes of-
fline data into multiple subsets, and learns a MBO score model (A1). To keep safe
exploitation to the score model in the outer-level, we explicitly learn a behavior
embedding and introduce a conservative regularization (A2). During testing, we
show that DROP permits deployment adaptation, enabling an adaptive inference
across states (A3). Empirically, we evaluate DROP on various tasks, showing that
DROP gains comparable or better performance compared to prior methods.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020) describes a task of
learning a policy from previously collected static data. Due to the overestimation of values at out-of-
distribution (OOD) state-actions, recent iterative offline RL methods introduce various policy/value
regularization to avoid deviating from the offline data distribution (or support) in the training phase.
Then, these methods directly deploy the learned policy in an online environment to test the perfor-
mance. To unfold our following analysis, we term this kind of learning procedure as iterative bi-level
offline RL (Figure 1 left), wherein the inner-level optimization refers to trying to eliminate the OOD
issue by constraining the policy/value function, the outer-level optimization refers to trying to learn
a better policy that will be employed at testing. Here, we use the “iterative” term to emphasize
that the inner-level and outer-level are iteratively optimized in the training phase. However, without
enough inner-level optimization (OOD regularization), there is still a distribution shift between the
behavior policy and the policy to be evaluated. Further, due to the iterative error exploitation and
propagation (Brandfonbrener et al., 2021) over the two levels, performing such an iterative bi-level
optimization completely in training often struggles to learn a stable policy/value function.

In this work, we thus advocate for non-iterative bi-level optimization (Figure 1 right) that decou-
ples the bi-level optimization from the training phase, namely, performing inner-level optimization
(eliminating OOD) in training and performing outer-level optimization (updating policy) in testing.
Intuitively, incorporating the outer-level optimization into the testing phase can eliminate the itera-
tive error propagation over the two levels. Then, three core questions1 are: (Q1) What information
(“ ”) should we transfer from the inner-level to the outer-level? (Q2) What should we pay spe-
cial attention to when we exploit “ ” for outer-level optimization? (Q3) Notice that the outer-level
optimization and the online rollout test form a new loop (“ ”), what new benefit does this give us?

1Next we will use A1, A2, and A3 to denote our answers to the raised questions (Q1, Q2, and Q3) respectively.

1



Under review as a conference paper at ICLR 2023

Training phase

Iterative bi-level offline RL optimization Non-iterative bi-level offline RL optimization

𝜋∗

(Online rollout       )

Inner-level

Outer-level

Inner-level

Outer-level

Testing phase Training phase Testing phase

(Online rollout)

𝜋∗(𝑎𝑡|𝑠𝑡)

𝑠𝑡

Figure 1: A framework for bi-level offline RL optimization, where the inner-level optimization refers
to regularizing the policy/value function (for OOD issues) and the outer-level refers to updating the
policy (for reward maximizing). Non-iterative offline RL decouples the joint optimization (of two
levels) from the training phase, where “ ” transferred from the inner-level to the outer-level depends
on the specific choice of algorithm used. In Table 1, we will summarize different choices for “ ”.

Intriguingly, prior works under such a non-iterative framework have proposed to transfer (as “ ”
in Q1) filtered trajectories (Chen et al., 2021), a reward-conditioned policy (Emmons et al., 2021;
Kumar et al., 2019b), and the Q-value estimation of the behavior policy (Brandfonbrener et al.,
2021; Gulcehre et al., 2021), all of which, however, partially address the aforementioned questions
(we will elaborate these works in Table 1). In this work, we propose a new alternative method
that transfers an embedding-conditioned (Q-value) score model and we will show that this method
sufficiently answers the above questions and benefits most from the non-iterative framework.

Before introducing our method, we introduce a conceptually similar task (to the non-iterative bi-
level optimization) — offline model-based optimization (MBO, Trabucco et al. (2021))2, which
aims to discover, from static input-score pairs, a new design input that will lead to the highest score.
Typically, offline MBO first learns a score model that maps the input to its score via supervised
regression (corresponding to inner-level optimization), and then performs inference with the learned
score model (as “ ”), for instance, by optimizing the input against the learned score model via gra-
dient ascent (corresponding to the outer-level). To enable this MBO implementation in offline RL,
we are required to decompose an offline RL task into multiple sub-tasks, each of which thus corre-
sponds to a behavior policy-return (parameters-return) pair. However, there are practical optimiza-
tion difficulties when learning the score model (inner-level) and performing inference (outer-level)
on high-dimensional policy’s parameter space (as input for the score model). At inference, directly
extrapolating the learned score model (“ ”) also tends to drive the high-dimensional candidate pol-
icy (parameters) towards out-of-distribution, invalid, and low-scoring parameters (Kumar & Levine,
2020), as these are falsely and over-optimistically scored by the learned score model.

To tackle these problems, we suggest (A1) learning low-dimensional embeddings for these sub-tasks
decomposed in the MBO implementation, over which we estimate an embedding-conditioned Q-
value as the MBO score model (“ ” in Q1), and (A2) introduce a conservative regularization, which
pushes down the predicted scores on OOD embeddings, so as to avoid over-optimistic exploitation
and protect against producing unconfident embeddings when conducting outer-level optimization
(policy/embedding inference). Meanwhile, (A3) learning embedding permits deployment adapta-
tion, which means we can dynamically adjust inferred embeddings across different states in testing
(aka test-time adaptation). We name our method DROP (Design fROm Policies). Compared with
standard offline MBO for parameter design (Trabucco et al., 2021), deployment adaptation in DROP
leverages the MDP structure of RL tasks, rather than simply conducting inference at the beginning of
test rollout. Empirically, we demonstrate that DROP can effectively extrapolate a better policy that
benefits from the non-iterative framework by answering the above three questions, and can achieve
comparable or better performance compared to many prior offline RL algorithms.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING AND OFFLINE REINFORCEMENT LEARNING

We model the interaction between agent and environment as a Markov Decision Pro-
cess (MDP) (Sutton & Barto, 2018), denoted by the tuple (S,A, R, P, µ), where S is the state space,

2Please note that this MBO is different from the regular model-based RL (MBRL for short), where the model
in MBO denotes a score model while that in MBRL deontes the transition dynamics (or reward) model.

2



Under review as a conference paper at ICLR 2023

A is the action space, P : S ×A×S → [0, 1] is the transition kernel, R : S ×A → R is the reward
function, and p0 : S → [0, 1] is the initial state distribution. Let π ∈ Π := {π : S × A → [0, 1]}
denotes a policy. In RL, we aim to find a stationary policy that maximizes the expected discounted
return J(π) := Eτ∼π [

∑∞
t=0 γ

tR(st,at)] in the environment, where τ = (s0,a0, r0, s1,a1, . . . ),
rt = R(st,at), is a sample trajectory and γ ∈ (0, 1) is the discount factor. We also define the
state-action value function Qπ(s,a) := Eτ∼π [

∑∞
t=0 γ

tR(st,at)|s0 = s,a0 = a], which describes
the expected discounted return starting from state s and action a and following π afterwards, and the
state value function V π(s) = Ea∼π(a|s) [Qπ(s,a)]. To maximize J(π), actor-critic algorithm alter-
nates between policy evaluation and improvement. Specifically, given initial Q0 and π0, it iterates

Qk+1(s,a)← arg min
Q

E(s,a,s′)∼D+

[(
R(s,a) + γEa′∼πk(a′|s′)

[
Qk(s′,a′)

]
−Q(s,a)

)2]
, (1)

πk+1(a|s)← arg max
π

Es∼D+,a∼π(a|s)
[
Qk+1(s,a)

]
, (2)

where the value function (critic) Q(s,a) is updated by minimizing the mean squared Bellman error
with an experience replay dataset D+ and, following the deterministic policy gradient theorem (Sil-
ver et al., 2014), the policy (actor) π(a|s) is updated to maximize the estimated Qk+1(s, π(a|s)).

In offline RL (Levine et al., 2020), the agent is provided with a static data D = {τ} which consists
of trajectories collected by running some data-generating policies. Note that here we denote static
offline dataD, distinguishing from the experience replayD+ in online setting. Unlike the online RL
problem, where the experience D+ in Equation 1 can be dynamically updated, the agent, in offline
RL, is not allowed to interact with the environment to collect new experience data. As a result,
naively performing policy improvement as in Equation 2 may evaluate the estimated Qk(s′,a′) on
actions that lie far outside of the static offline dataD, resulting in pathological valuesQk+1(s,a) that
incur large error. Further, iterating policy evaluation and improvement will cause the learned policy
πk+1(a|s) to be biased towards out-of-distribution actions with erroneously overestimated values.

2.2 OFFLINE MODEL-BASED OPTIMIZATION

Model-based optimization (MBO) (Trabucco et al., 2022) aims to find an optimal design input
x∗ with a given score function f∗ : X → Y ⊂ R, i.e., x∗ = arg maxx f

∗(x). Typically,
we can repeatedly query the oracle score model f∗ for new candidate design, until it produces
the best design. However, we often do not have the oracle score function f∗, but are provided
with a static offline dataset {(x, y)} of labeled input-score pairs. To track such offline MBO
question, we can fit a parametric model f to the oracle score function f∗ via the empirical risk
minimization (ERM), f ← arg minf Ex,y

[
(f(x)− y)

2
]
. Then, starting from the best point

in the dataset, we can perform gradient ascent on the design input and set the learned optimal
design x∗ = x◦K := GradAscentf (x◦0,K) (for simplicity, next we will omit subscript f in
GradAscentf ), where

x◦k+1 ← x◦k + η∇xf(x)|x=x◦k
, for k = 0, 1 . . . ,K − 1. (3)

Since the aim is to find a better design input beyond all the designs in the dataset and while directly
optimizing score model f with ERM can not ensure new candidates (out-of-distribution design in-
puts) receive correct scores, thus one crucial requirement is to conduct confident extrapolation.

3 DROP: DESIGN FROM POLICIES

We present our framework in Figure 2. In Sections 3.1 and 3.2, we will answer questions Q1 and
Q2, setting a learned MBO score model as “ ” (A1) and introducing a conservative regularization
over the score model (A2). In Section 3.3, we will answer Q3, where we show that we can conduct
outer-level optimization during testing, enabling an adaptive embedding inference across states (A3).

3.1 TASK DECOMPOSITION

Our core idea is to explore MBO in the non-iterative bi-level offline RL framework (Figure 1 right),
while capturing the structural characteristics of RL tasks and answering the raised questions (Q1,
Q2, and Q3) in the introduction section. To begin with, we first decompose the offline data D into
N offline subsets D[N ] := {D1, . . . ,DN}. In other words, we decompose an offline task, learning

3



Under review as a conference paper at ICLR 2023

𝛽(a|𝑠, 𝑧)

𝑓(𝑠, a, 𝑧)

𝛽(a|𝑠, 𝑧∗)

𝑧1 𝑧2

𝑧3 𝑧4 𝜇(𝑧)

offline data (task)              sub-tasks                        task embedding &           deployment      

conservative MBO            adaptation

𝒟

𝑠

a

𝒟1 𝒟2

𝒟3 𝒟4

𝜙(𝑧|𝑛)

⇌ ↦

training phase (inner-level     ) testing phase

𝛽

𝑓
outer-level

𝑧∗

Figure 2: Overview of DROP. Given static offline dataset D, we decompose the data into N (= 4
in diagram) subsets {Dn|n = 1, . . . , N}, over which we learn a task embedding φ(z|n) and con-
duct MBO by learning multiple behavior policies (modeled by a contextual policy) β(a|s, z) and
a score model f(s,a, z). During testing, at state s, we can adapt the optimal policy (contextual
variable/embedding) with π∗(a|s) = β (a|s, z∗(s)), where z∗(s) = arg maxz f(s, β(a|s, z), z).

with D, into multiple offline sub-tasks, learning with Dn ∈ D[N ] respectively. Then, for sub-task
n ∈ [1, N ], we can perform behavior cloning (BC) to fit a parametric behavior policy βn : S ×A →
[0, 1] to model the corresponding subset Dn:

βn(a|s)← arg max
βn

E(s,a)∼Dn

[
log βn(a|s)

]
, n = 1, · · · , N. (4)

Such a decomposition also comes with an additional benefit that it provides an avenue to exploit
the hybrid modes in offline data D, because that D is often collected using hybrid data-generating
behavior policies (Fu et al., 2020), which suggests that fitting a single behavior policy may not
be optimal to model the multiple modes of the offline data distribution (see Appendix C.1 for the
empirical evidence). Thus, to encourage the emergence of diverse sub-tasks which capture distinct
behavior modes in D (this is not our focus in this work3), we simply perform task decomposition
according to the returns of trajectories in D, heuristically ensuring that trajectories in the same sub-
task share similar returns and trajectories from different sub-tasks have distinct returns.

3.2 TASK EMBEDDING AND CONSERVATIVE MODEL-BASED OPTIMIZATION

Naive model-based optimization (MBO) over behavior policies. Benefiting from the above of-
fline task decomposition, we can conduct MBO over a set of input-score (x, y) pairs, where we
model the (parameters of) behavior policies βn as the design inputs x and the corresponding ex-
pected returns at initial state J(βn) as scores y. Note that, ideally, evaluating behavior policy βn,
i.e., calculating J(βn) ≡ Es0

[
V βn(s0)

]
, with subset Dn will never trigger the overestimation of

values in the inner-level optimization. By introducing a score model f : Π → R (as the transferred
information “ ” in Q1), we can then perform outer-level policy inference with

π∗(a|s)← arg max
π

f (π) , where f = arg min
f

En
[(
f(βn)− J(βn)

)2]
. (5)

However, directly performing optimization-based inference (outer-level optimization), maxπ f (π),
will quickly find an invalid input for which the learned score model f outputs erroneously large
values (Q2). Furthermore, it is particularly severe if we perform the inference directly over the
parameters of policies, accounting for the fact that the parameters of input behavior policies lie on a
narrow manifold in a high-dimensional parametric space (Kumar & Levine, 2020).

Task embedding. To enable feasible policy inference, we propose to decouple the MBO techniques
from the high-dimensional space of policy parameters. We achieve this by learning a latent embed-
ding space Z with an information bottleneck (dim(Z) � min(N, dim(Π))), conditioned on the
sub-task id n, from which the high-dimensional parameters of behavior policies can be inferred.

3We compare three different decomposition rules in Appendix C.2. Further, in Appendix C.4, we adopt
CVAE to conduct automatic task decomposition (treating each trajectory as an individual task).

4



Under review as a conference paper at ICLR 2023

We can thus use the embedding z ∈ Z to represent sub-tasks (or the corresponding behavior poli-
cies). Formally, we learn a task embedding4 φ : RN × Z → [0, 1] and a contextual behavior policy
β : S × Z ×A → [0, 1], which replaces N separate behavior policies in Equation 4:

β(a|s, z), φ(z|n)← arg max
β,φ

EDn∼D[N]
E(s,a)∼Dn

[
log β(a|s, φ(z|n))

]
. (6)

Conservative model-based optimization. In principle, by substituting the learned task embed-
ding φ(z|n) and the contextual behavior policy β(a|s, z) into the original objective in Equa-
tion 5, we can then conduct MBO over the embedding space: learning f : Z → R with
minf En,φ(z|n)

[
(f(z)− J(βn))

2
]
, and setting the optimal embedding z∗ = arg maxz f(z) and

the corresponding policy π∗(a|s) = β(a|s, z∗), where z∗ can be inferred with gradient ascent as in
Equation 3. However, we must deliberate a new distribution shift in the Z-space, stemming from
the original distribution shift in the parametric space when directly optimizing Equation 5.

Motivated by the energy model (LeCun et al., 2006) and the conservative regularization (CQL, Ku-
mar et al. (2020)), we introduce the conservative score model learning, additionally regularizing the
scores of out-of-distribution embeddings µ(z):

f ← arg min
f

En,φ(z|n)
[(
f(z)− J(βn)

)2]
, s.t. Eµ(z) [f(z)]− En,φ(z|n) [f(z)] ≤ η. (7)

Intuitively, as long as the scores of out-of-distribution embeddings Eµ(z) [f(z)] is lower than that
of in-distribution embeddings En,φ(z|n) [f(z)] (up to a threshold η), conducting embedding infer-
ence with z∗ = arg maxz f(z) would produce the best and confident solution, avoiding towards
embeddings that are far away from the training set {φ(z|n), n = 1, . . . , N}.
Now that we have reframed the non-iterative bi-level offline RL problem as one of offline MBO:
in the inner-level optimization (Q1), we set the practical choice for “ ” as the learned score model
f (A1); in the outer-level optimization (Q2), we introduce task embedding and conservative regular-
ization to avoid over-optimistic exploitation when exploiting f for policy/embedding inference (A2).
In next section, we will show how to slightly change the form of the score model f , so as to leverage
the (MDP) structural characteristic (loop “ ”) of RL tasks and answer the left Q3.

3.3 DEPLOYMENT ADAPTATION

Recalling that we update f(z) to regress the value at initial state Es0

[
V βn(s0)

]
in Equation 7, we

then conduct outer-level inference with z∗ = arg maxz f(z) and rollout the z∗-conditioned policy
π∗(a|s) := β(a|s, z∗) until the end of rollout episode at deployment (testing). In essence, this
inference produces an extrapolation over the distribution of the behavior policies (corresponding to
embeddings). Going beyond the (outer-level) inference only at the initial state, we propose that a
implementation can benefit by performing inference at any rollout state in testing (A3).

To enable deployment adaptation, we model the score model with f : S×A×Z → R, taking a state-
action as extra input. Then, we encourage the score model to regress the values of behavior policies
over all state-action pairs in each sub-task, minf En,φ(z|n)E(s,a)∼Dn

[(
f(s,a, z)−Qβn(s,a)

)2]
.

For simplicity, instead of learning an additional value function Qβn for each behavior policy, we
learn the score model directly with the TD-error used for learning the value function Qβn(s,a) as
in Equation 1, together with the conservative regularization in Equation 7:

f ← arg min
f

EDn∼D[N]
E(s,a,s′,a′)∼Dn

[(
R(s,a) + γf̄(s′,a′, φ(z|n))− f(s,a, φ(z|n))

)2]
, (8)

s.t. En,µ(z)Es∼Dn,a∼β(a|s,z) [f(s,a, z)]− En,φ(z|n)Es∼Dn,a∼β(a|s,z) [f(s,a, z)] ≤ η,
where f̄ denotes a target network and we update the target f̄ with soft updates: f̄ = (1− υ)f̄ + υf .

In testing, we thus can dynamically adapt the outer-level optimization, setting policy inference with
π∗(a|s) = β(a|s, z∗(s)), where z∗(s) = arg maxz f

(
s, β(a|s, z), z

)
. Specifically, at any state s in

the deployment phase, we perform gradient ascent to find the optimal behavior embedding z∗(s) =
z◦K(s) := GradAscent(s, z◦0,K), where z◦0 is the starting point and

z◦k+1(s)← z◦k(s) + η∇zf(s, β(a|s, z), z))|z=z◦k
, for k = 0, 1 . . . ,K − 1. (9)

4We feed the one-hot encoding of the sub-task specification (n = 1, . . . , N ) into the embedding network φ.

5



Under review as a conference paper at ICLR 2023

Table 1: Comparison of five non-iterative bi-level offline algorithms, where R(·) denotes the return
of sampling τ or starting from (s,a), the checkmark in A2 indicates whether the exploitation (outer-
level) to “ ” is regularized and that in A3 indicates whether deployment adaptation is supported.

Inner-level Outer-level “ ” in A1 A2 A3

F-BC filter τ with high R(τ) behavior cloning filtered {τ} % %

RvS-R minπ −E [log π(a|s,R(τ))] handcraft Rtarget π(a|s, ·) % %

Onestep minQ L(Q(s,a),R(s,a)) arg maxaQβ(s, β(a|s)) Qβ(s,a) % "

COMs minf L(f(βτ ),R(τ)) arg maxβ f(β) f(β) " %

DROP minf L(f(s,a, z),R(s,a, z)) arg maxz f(s, β(a|z), z) f(s,a, z) " "

3.4 CONNECTION TO PRIOR NON-ITERATIVE OFFLINE COUNTERPARTS

In Table 1, we summarize the comparison with prior representative non-iterative offline RL methods.
Intuitively, our DROP (leveraging returns to decompose D) is similar in spirit to F-BC and RvS-R
(Chen et al., 2021; Emmons et al., 2021), both of which use return R(τ) to guide the inner-level
optimization. However, both F-BC and RvS-R leave Q2 unanswered. In outer-level, F-BC can not
enable policy extrapolation, which heavily relies on the data quality in offline tasks, and RvS-R
needs to handcraft a target return (as the contextual variable for π(a|s, ·)), which also probably
triggers the potential distribution shift between the hand-crafted contextual variable and that used
for learning the contextual policy (see examples in Figure 6 of Emmons et al. (2021)).

Diving deeper into the bi-level optimization, we can also find DROP combines the advantages
of Onestep (Brandfonbrener et al., 2021) and COMs (Trabucco et al., 2021), where Onestep per-
forms outer-level optimization in action space (arg maxa), COMs performs that in parameter space
(arg maxβ), while our DROP performs that in embedding space (arg maxz). As a result, the choice
of f(s,a, z) in DROP allows us to conduct safe exploitation over “ ” in outer-level (Q2) and lever-
age the structural characteristic of RL task (the loop “ ” in Q3), rather than simply conducting
outer-level optimization at initial states as in COMs (corresponding to the objective in Equation 5).

3.5 PRACTICAL IMPLEMENTATION

Algorithm 1 DROP (Training)
Require: Dataset of trajectories, D = {τ}.

1: Initialize φ(z|n), β(a|s, z), and f(s,a, z).
2: Decompose D into N sub-sets D[N ].
3: while not converged do
4: Sample a sub-task: Dn ∼ D[N ].
5: Learn φ, β, and f with Equations 6 and 8.
6: end while

Return: β(a|s, z) and f(s,a, z).

Algorithm 2 DROP (Testing / Deployment)
Require: Env, β(a|s, z), and f(s,a, z).

1: s0 = Env.Reset().
2: while not done do
3: Inference (deployment adaptation):

z∗(st) = arg maxz f(st, β(at|st, z), z).
4: Sample action: at ∼ β(at|st, z∗(st)).
5: Step Env: st+1 ∼ P (st+1|st,at).
6: end while

We now summarize the DROP algorithm (see Algorithm 1 for the training phase and Algorithm 2
for the testing phase). During training (inner-level optimization), we alternate between updating
φ(z|n), β(a|s, z), and f(s,a, z), wherein we update φ with both maximum likelihood loss and
TD-error loss in Equations 6 and 8. During testing (outer-level optimization), for each state s,
we use the gradient ascent in Equation 9 to choose the optimal embedding z∗(s). Instead of simply
sampling a single starting point z◦0, we chooseN starting points corresponding to all the embeddings
{zn|n = 1, . . . , N} of sub-tasks, and then choose the optimal z∗(s) from those updated embeddings
for which the learned f outputs the highest score: z∗(s) = arg maxz f(s, β(a|s, z), z) s.t. z ∈
{GradAscent(s, zn,K)|n = 1, . . . , N}. Then, we sample action from π∗(a|s) := β(a|s, z∗(s)).
For more optimization (training/testing) details, we refer the reader to Appendix D.

4 RELATED WORK

Offline RL. In offline RL, learning with static offline data is prone to exploiting out-of-distribution
(OOD) state-action pairs and producing over-estimation of values, which makes vanilla iterative

6



Under review as a conference paper at ICLR 2023

policy learning and value optimization challenging (Rashidinejad et al., 2021). To eliminate the
problem, a number of methods have been explored, in essence, by either introducing a policy/value
regularization in the iterative loop or trying to eliminate the iterative procedure itself.

Iterative methods: Sticking with the normal iterative updates in RL, offline policy regularization
methods aim to keep the learning policy to be close to the behavior policy under a probabilistic
distance (Cang et al., 2021; Fujimoto & Gu, 2021; Kostrikov et al., 2021a; Kumar et al., 2019a;
Liu et al., 2022; Nair et al., 2020a; Peng et al., 2019; Siegel et al., 2020; Wu et al., 2019; Zhang
et al., 2021). Some works also conduct implicit policy regularization with variants of importance
sampling Lee et al. (2021); Liu et al. (2019); Nachum et al. (2019). Besides regularizing policy, it
is also feasible to constrain the substitute value function in the iterative loop. Methods constraining
the value function aim at mitigating the over-estimation, which typically introduces pessimism to
the prediction of the Q-values (Chebotar et al., 2021; Jin et al., 2021; Kumar et al., 2020; Li et al.,
2022; Ma et al., 2021a;b) or penalizes the value with an uncertainty quantification (An et al., 2021;
Bai et al., 2022; Rezaeifar et al., 2021; Wu et al., 2021), making the value for out-of-distribution
state-actions more conservative. Similarly, another branch of model-based methods (Kidambi et al.,
2020; Yu et al., 2020; 2021b; Rigter et al., 2022) also perform iterative bi-level updates, alternating
between regularized evaluation and improvement. Different from these works, DROP only evaluates
values of behavior policies in the inner-level, avoiding error propagation between two levels.

Non-iterative methods: Another complementary line of work studies how to eliminate the itera-
tive updates, which simply casts RL as a weighted or conditional imitation learning problem (Q1).
Derived from the behavior-regularization RL (Geist et al., 2019; Vieillard et al., 2020), the former
conducts weighted behavior cloning: first learn a value function for the behavior policy, then weigh
the state-action pairs with the learned values or advantages (Abdolmaleki et al., 2018; Chen et al.,
2019; Wang et al., 2020; Peng et al., 2019). Besides, some works also propose implicitly behav-
ior policy regularization that also avoids estimating the value of new candidate policies, initializing
the learning policy with a behavior policy Matsushima et al. (2020) or performing only a “one-
step” update (policy improvement) over the behavior policy (Fujimoto et al., 2019; Gulcehre et al.,
2021). For the latter, this branch method typically builds upon the hindsight information match-
ing (Andrychowicz et al., 2017; Eysenbach et al., 2020; Pong et al., 2018; Wan et al., 2021), assum-
ing that the future trajectory information can be useful to infer the middle decision that leads to the
future and thus relabeling the trajectory with the reached states or returns. Due to the simplicity and
stability, RvS-based methods thus advocate for learning a goal-conditioned or reward-conditioned
policy (Chen et al., 2021; Ding et al., 2019; Emmons et al., 2021; Furuta et al., 2021; Janner et al.,
2021; Lin et al., 2022; Srivastava et al., 2019; Yang et al., 2022) with supervised learning. However,
these works do not fully exploit the non-iterative bi-level framework and fail to answer the proposed
questions, which either does not regularize the inner-level optimization before exploiting “ ” in the
outer-level (Q2), or does not support the deployment adaptation in testing (Q3).

Offline model-based optimization (MBO). Similar to offline RL, the main challenge of MBO is
to reason about uncertainty and OOD values (Brookes et al., 2019; Fannjiang & Listgarten, 2020),
since a direct gradient-ascent against the learned score model can easily produce invalid inputs that
are falsely and highly scored. To counteract the effect of model exploitation, prior works introduce
various techniques, including normalized maximum likelihood estimation (Fu & Levine, 2021),
model inversion networks (Kumar & Levine, 2020), local smoothness prior (Yu et al., 2021a), and
conservative objective models (COMs) (Trabucco et al., 2021). Compared to COMs, DROP shares
similarity with the conservative model, but instantiates on the embedding space instead of the pa-
rameter space. Such difference is nontrivial, not only because DROP allows OOD sampling (aimed
at pessimism) directly in embedding space, avoiding an adversarial training as in COMs, but also
because DROP allows deployment adaptation, enabling dynamical inference across states in testing.

5 EXPERIMENTS

In this section, we present our empirical results. We first give examples to illustrate the deployment
adaptation. Then we evaluate DROP against prior offline RL algorithms on D4RL benchmark.
Finally, we compare DROP with prior (offline) latent-based baselines. For more ablation studies wrt
to the decomposition rules and the conservative regularization, we refer readers to the appendix.

Illustration of deployment adaptation. To better understand the deployment adaptation of DROP,
we include four comparisons that exhibit different embedding inference rules at testing:

7



Under review as a conference paper at ICLR 2023

Grad. Ascent z[N] z *
0 (s0) z * (s0) z *

0 (st) z * (st)

0.0 0.8
0.00

0.25

0.50

0.75

(a) 0.0 0.8
0.00

0.25

0.50

0.75

(b)

t=0

t=50

t=100

0.0 0.8
0.00

0.25

0.50

0.75

(c1)
t=17

0.0 0.8
0.00

0.25

0.50

0.75

(c2)

t=50

    
0

50

100

N
or

m
al

iz
ed

 re
tu

rn

(d)

Figure 3: Visualization of the embedding inference (a, b, c1, c2) and performance comparison (d).
z[N ] denotes embeddings of all behavior policies; z∗0(s0), z∗(s0), z∗0(st) and z∗(st) denote the sele-
cted embeddings in DROP-Best, DROP-Grad, DROP-Best-Ada and DROP-Grad-Ada respectively.

(1) DROP-Best: At initial state s0, we choose the best embedding from those embeddings of behav-
ior policies, z∗0(s0) = arg maxz f(s0, β(a0|s0, z), z) s.t. s ∈ z[N ] := {z1, . . . , zN}, and keep this
embedding fixed for the entire episode, i.e., setting π∗(at|st) = β(at|st, z∗0(s0)).

(2) DROP-Grad: At initial state s0, we conduct inference (gradient ascent on starting point z∗0(s0))
with z∗(s0) = arg maxz f(s0, β(a0|s0, z), z), and keep this embedding fixed throughout the rollout.

(3) DROP-Best-Ada: We adapt the contextual policy by setting π∗(at|st) = β(at|st, z∗0(st)), where
we choose the best embedding z∗0(st) directly from those embeddings of behavior policies for which
the score model outputs the highest score, i.e., z∗0(st) = arg maxz f(st, β(at|st, z), z) s.t. z ∈ z[N ].

(4) DROP-Grad-Ada (gradient-based adaptation as described in Section 3.5): We set π∗(at|st)=
β(at|st, z∗(st)) and choose the best embedding from those updated embeddings of behavior poli-
cies, i.e., z∗(st) = arg maxz f(st, β(at|st, z), z) s.t. z ∈ {GradAscent(st, zn,K)|n = 1, . . . , N}.
In Figure 3, we visualize the four different inference rules and report the corresponding performance
in the halfcheetah-medium-expert task (Fu et al., 2020). In Figure 3 (a), we set the starting point
as the best embedding z∗0(s0) in z[N ], and perform gradient ascent to find the optimal z∗0(s0) for
DROP-Grad. In Figure 3 (b), we can find that at different time steps, DROP-Best-Ada chooses
different embeddings (as contextual variables for β(at|st, ·)). At a high level, performing such
dynamical inference enables us to combine different embeddings, switching behavior policies at dif-
ferent states. Further, in Figure 3 (c1, c2), we find that the additional inference (with gradient ascent)
in DROP-Grad-Ada allows to extrapolate beyond the embeddings of behavior policies, and thus re-
sults in sequential composition of new embeddings (policies) across different states. For practical
impacts of these different inference rules, we provide the performance comparison in Figure 3 (d),
where we can find that performing gradient-based optimization (*-Grad-*) outperforms the natural
selection among these embeddings of behavior policies in sub-tasks (*-Best-*), and rollout with
adaptive embedding inference (DROP-*-Ada) outperforms that with fixed embeddings (DROP-*).

Empirical performance on benchmark tasks. We evaluate DROP on a number of tasks from the
D4RL dataset and make comparison with both prior iterative and non-iterative offline algorithms5.

Considering that DROP follows the non-iterative offline RL paradigm, we compare DROP with prior
non-iterative offline baselines (BC, F-BC, DT (Chen et al., 2021), RvS-R, Onestep, and COMs) in
the main paper. Compared with our DROP, these baselines do not fully answer the raised questions
(see Table 1), which either does not regularize the inner-level optimization before exploiting “ ” in
outer-level (Q2), or does not support the deployment adaptation in testing (Q3). Moreover, we also
provide the comparison with CQL, which inspires us to design the conservation in Equation 7. In
Table 2, we show the evaluation results for AntMaze-* and Gym-*-medium-* tasks in D4RL *-v2,
where we can find DROP (-Grad-Ada) achieves better performance than these non-iterative offline
RL baselines overall. Compared with CQL, DROP shows superior performance in AntMaze-large-*
and Gym-*-medium-expert (m.-exp.) tasks, while leads inferior performance in AntMaze-medium-
* and Gym-*-medium-replay (m.-rep.) tasks. As an extension, we also design DROP+CVAE imple-
mentation (see motivation in next paragraph and details in Appendix C.4), which further improves
DROP’s performance and retains superior/comparable performance in all tasks.

Comparison with latent policy methods. Note that one additional merit of DROP is that it nat-
urally accounts for hybrid modes in D by conducting task decomposition in inner-level, we thus

5Due to page limit, we mainly provide the comparison with prior iterative baselines in Appendix E

8



Under review as a conference paper at ICLR 2023

Table 2: Comparison with non-iterative methods on D4RL (*-v2). For all results of our method, we
average the normalized returns across 5 seeds; for each seed, we run 10 evaluation episodes. For
comparison, we use N and N to denote DROP-Grad-Ada achieves better performance compared with
Onestep and COMs (most related baselines in Table 1) respectively. (BA: Best-Ada, GA: Grad-Ada)

Tasks BC F-BC DT RvS-R Onestep COMs CQL
DROP DROP+CVAE

N N BA GA GA

an
tm

az
e

umaze 54.6 60 65.6 64.4 64.3 63.3 74 78 80NN 90.5 ± 2.4
umaze-diverse 45.6 46.5 51.2 70.1 60.7 46.7 84 62 66NN 85.1 ± 7.8
medium-play 0 42.1 1 4.5 0.3 40 61.2 34 30NN 68.2 ± 16.5
medium-diverse 0 37.2 0.6 7.7 0 26.7 53.7 24 30NN 75.4 ± 9.4
large-play 0 28 0 3.5 0 33.3 15.8 36 42NN 50.1 ± 13.6
large-diverse 0 34.3 0.2 3.7 0 10 14.9 20 26NN 52.2 ± 12.0

m
.-r

ep
. walker2d 26 62.5 66.6 60.6 66.4 33.9 86.1 60.9 61.9NN 83.5 ± 1.2

hopper 18.1 75.9 82.7 73.5 77.3 49.7 97.8 83.4 87.4NN 96.3 ± 2.5
halfcheetah 36.6 40.6 36.6 38 38.4 41.4 47.3 40.4 40.3NN 50.9 ± 1.6

m
.-e

xp
. walker2d 107.5 109 108.1 106 111.8 93.5 109.5 106.8 106.9NN 109.3 ± 0.4

hopper 52.5 110.9 107.6 101.7 81.4 109.4 102 102.5 105.9NN 107.2 ± 1.7
halfcheetah 55.2 92.9 86.8 92.2 77 76 85.8 88.5 88.9NN 102.2 ± 1.5

total 396.1 739.9 607.0 625.9 577.6 623.9 832.1 736.5 765.3 970.9

Table 3: Comparison on D4RL *-v2.

PLAS DROP DROP

an
tm

az
e

umaze 70.7 78 80
umaze-diverse 45.3 62 66
medium-play 16 34 30
meidum-diverse 0.7 24 30
large-play 0.7 36 42
large-diverse 0.3 20 26

LAPO DROP DROP+

m
ed

iu
m walker2d 80.8 79.1 82.1

hopper 51.6 59.5 61.5
halfcheetah 46 43.1 52.4

ra
nd

om

walker2d 1.3 3 5.2
hopper 23.5 5.5 20.8
halfcheetah 30.6 2.3 32.0

compare DROP to latent policy methods (PLAS (Zhou
et al., 2020) and LAPO (Chen et al., 2022)) that use con-
ditional variational autoencoder (CVAE) to model offline
data and also account for multi-modes in offline data. Es-
sentially, both our DROP and baselines (PLAS and LAPO)
learn a latent policy in the inner-level optimization, ex-
cept that we adopt the non-iterative bi-level learning while
baselines are instantiated under the iterative paradigm.
By answering Q3, DROP permits deployment adaptation,
enabling us to dynamically switch/stitch “skills” (latent-
policy/behaviors as shown in Figure 3) and encouraging
high-level abstract exploration in testing. However, the
aim of introducing the latent policy in PLAS and LAPO
is to regularize the inner-level optimization, which fairly
answers Q2 in the iterative offline counterpart but can not
provide the potential benefit (deployment adaptation) by answering Q3 in the non-iterative paradigm.

We provide the comparison results in Table 3. We can observe that DROP (-Best-Ada) and DROP
(-Grad-Ada) consistently achieves better performance than PLAS on AntMaze-*-v2 tasks. On the
Gym *-medium domain, DROP (-Grad-Ada) also performs better than LAPO. However, there is a
big performance gap between DROP and LAPO on the *-random domain. We speculate that it is
mainly caused by the decomposition rule. In our DROP implementation, we heuristically use return
to conduct task decomposition (motivated by RvS-R (Emmons et al., 2021)), while LAPO and PLAS
conduct decomposition (learning latent policy) automatically. Similarly, to bridge the gap, we also
adopt CVAE to model the offline data and afterwards take the learned latent embedding in CVAE as
the embedding of behaviors, instead of conducting return-guided task decomposition. We provide
implementation details (DROP+CVAE) in Appendix C.4 and new results in Tables 2 and 3 (DROP+),
where we can see such CVAE-based DROP implementation can bring a substantial performance
improvement. Further, in Table 6 (Appendix C.4), we compare DROP+CVAE to IQL (Kostrikov
et al., 2021b), consistently demonstrating the competitive empirical performance of DROP approach
against state-of-art offline iterative/non-iterative baselines.

6 CONCLUSION

In this work, we introduce non-iterative bi-level offline RL and based on this paradigm, we raise
three questions (Q1, Q2, and Q3). To answer that, we reframe the offline RL problem as one of MBO
and learn a score model (A1), introduce embedding learning and conservative regularization (A2),
and propose deployment adaptation in testing (A3). We evaluate DROP on various tasks, showing
that DROP gains comparable or better performance compared to prior methods.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, and Michael Laskin. Behavioral priors and
dynamics models: Improving performance and domain transfer in offline rl. arXiv preprint
arXiv:2106.09119, 2021.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Yuan Gao, Jianhao Wang, Wenzhe Li, Bin Liang, Chelsea
Finn, and Chongjie Zhang. Latent-variable advantage-weighted policy optimization for offline rl.
arXiv preprint arXiv:2203.08949, 2022.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-action
imitation learning for batch deep reinforcement learning. arXiv preprint arXiv:1910.12179, 2019.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. Rewriting history with
inverse rl: Hindsight inference for policy improvement. Advances in neural information process-
ing systems, 33:14783–14795, 2020.

Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. Advances in
Neural Information Processing Systems, 33:12945–12956, 2020.

Justin Fu and Sergey Levine. Offline model-based optimization via normalized maximum likelihood
estimation. arXiv preprint arXiv:2102.07970, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.
org/abs/2004.07219.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

10

https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219


Under review as a conference paper at ICLR 2023

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2160–2169. PMLR,
2019.

Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized
behavior value estimation. arXiv preprint arXiv:2103.09575, 2021.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Ad-
vances in Neural Information Processing Systems, 33:5126–5137, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019a.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019b.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Dealing with the unknown: Pessimistic
offline reinforcement learning. In Conference on Robot Learning, pp. 1455–1464. PMLR, 2022.

Qinjie Lin, Han Liu, and Biswa Sengupta. Switch trajectory transformer with distributional value
approximation for multi-task reinforcement learning. arXiv preprint arXiv:2203.07413, 2022.

11



Under review as a conference paper at ICLR 2023

Jinxin Liu, Hongyin Zhang, and Donglin Wang. Dara: Dynamics-aware reward augmentation in
offline reinforcement learning. arXiv preprint arXiv:2203.06662, 2022.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021a.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforce-
ment learning. Advances in Neural Information Processing Systems, 34, 2021b.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020a.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020b.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, et al. Learning trans-
ferable motor skills with hierarchical latent mixture policies. arXiv preprint arXiv:2112.05062,
2021.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34, 2021.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. arXiv preprint
arXiv:2106.06431, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. PMLR, 2014.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhu-
ber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

12



Under review as a conference paper at ICLR 2023

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 10358–10368. PMLR, 2021.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. arXiv preprint arXiv:2202.08450, 2022.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu
Geist. Leverage the average: an analysis of KL regularization in reinforcement learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Michael Wan, Jian Peng, and Tanmay Gangwani. Hindsight foresight relabeling for meta-
reinforcement learning. arXiv preprint arXiv:2109.09031, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140, 2021.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. arXiv
preprint arXiv:2202.04478, 2022.

Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. Roma: Robust model adaptation for offline
model-based optimization. Advances in Neural Information Processing Systems, 34, 2021a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021b.

Chi Zhang, Sanmukh Kuppannagari, and Prasanna Viktor. Brac+: Improved behavior regularized
actor critic for offline reinforcement learning. In Asian Conference on Machine Learning, pp.
204–219. PMLR, 2021.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. arXiv preprint arXiv:2011.07213, 2020.

13



Under review as a conference paper at ICLR 2023

A APPENDIX

Here we provide the content of the appendix:

B Discussion and future work
C More experiments

C.1 Single behavior policy vs. multiple behavior policies
C.2 Decomposition rules
C.3 Online fine-tuning
C.4 DROP + CVAE
C.5 Ablation study

D Implementation details
E Additional results

B DISCUSSION AND FUTURE WORK

Limitations. DROP also has several limitations. First, the offline data decomposition dominates the
following bi-level optimization, and thus choosing a suitable decomposition rule is a crucial require-
ment for policy inference (see experimental analysis in Appendix C.2). An exciting direction for fu-
ture work is to study generalized task decomposition rules (Rao et al., 2021). In Appendix C.4, we
also exhibit a potential of such generalized task decomposition by introducing CVAE into DROP’s
implementation, and find such a combination (DROP + CVAE) can bring practical performance im-
provement. Second, we find that when the number of sub-tasks is too large, the inference is unstable,
where adjacent checkpoint models exhibit larger variance in performance (such instability also ex-
ists in prior offline RL methods, discovered by Fujimoto & Gu (2021)). One natural approach to this
instability is conducting online fine-tuning (see Appendix C.3 for our empirical studies).

Going forward, we believe our work suggests a feasible alternative for generalizable offline robotic
learning: by decomposing a single robotic dataset into multiple subsets, offline policy inference
can benefit from performing model-based optimization (MBO) and the joint deployment adaptation
procedure.

Social impact: Beyond a general offline RL improvement, the authors do not foresee negative social
impacts.

C MORE EXPERIMENTS

C.1 SINGLE BEHAVIOR POLICY VS. MULTIPLE BEHAVIOR POLICIES

0 50 100
Training steps (k)

0.1

0.2

0.3

Tr
ai

ni
ng

 lo
ss

antmaze-medium-play

0 50 100
Training steps (k)

0.1

0.2

0.3

Tr
ai

ni
ng

 lo
ss

antmaze-medium-diverse

0 50 100
Training steps (k)

0.1

0.2

0.3

Tr
ai

ni
ng

 lo
ss

antmaze-large-play

0 50 100
Training steps (k)

0.1

0.2

0.3

Tr
ai

ni
ng

 lo
ss

antmaze-large-diverse

1 5 10 50 100 200 500 1000

Figure 4: Learning curves of behavior cloning on AntMaze suites (*-v2) in D4RL, where the x-axis
denotes the training steps, and the y-axis denotes the training loss. The number N in the legend
denotes the number of sub-tasks. If N = 1, we learn a single behavior policy for the whole of-
fline dataset.

In Figure 4, we provide empirical evidence that learning a single behavior policy (using BC) is not
sufficient to characterize the whole offline dataset, and multiple behavior policies (conducting task
decomposition) deliver better resilience to characterize the offline data than a single behavior policy.

14



Under review as a conference paper at ICLR 2023

Rand Quan Rank
2.2

2.3

2.4

N
or

m
al

iz
ed

 re
tu

rn halfcheetah-random

Rand Quan Rank
35

36

37

halfcheetah-medium

Rand Quan Rank

50

100
halfcheetah-medium-expert

Rand Quan Rank

35

40
halfcheetah-medium-replay

Rand Quan Rank

9

10

11

N
or

m
al

iz
ed

 re
tu

rn hopper-random

Rand Quan Rank
0

50

hopper-medium

Rand Quan Rank

50

100

hopper-medium-expert

Rand Quan Rank

20

40
hopper-medium-replay

Rand Quan Rank
0.0

2.5

5.0

N
or

m
al

iz
ed

 re
tu

rn walker2d-random

Rand Quan Rank
0

25

50

walker2d-medium

Rand Quan Rank
0

50

100
walker2d-medium-expert

Rand Quan Rank

10

20

walker2d-medium-replay

Rand Quan Rank

25

50

75

N
or

m
al

iz
ed

 re
tu

rn antmaze-umaze

Rand Quan Rank

25

50

75

antmaze-umaze-diverse

Rand Quan Rank
0

25

50

antmaze-medium-play

Rand Quan Rank
0

20

40

antmaze-medium-diverse

Rand Quan Rank
0

25

50

N
or

m
al

iz
ed

 re
tu

rn antmaze-large-play

Rand Quan Rank
0

20

antmaze-large-diverse
Rand DROP-Grad
Rand DROP-Best-Ada
Rand DROP-Grad-Ada
Quan DROP-Grad
Quan DROP-Best-Ada
Quan DROP-Grad-Ada

Rank DROP-Grad
Rank DROP-Best-Ada
Rank DROP-Grad-Ada
 
 
 

Figure 5: Comparison of three different decomposition rules on D4RL MuJoCo-Gym suite (*-v0)
and AntMaze suite (*-v2), where “Rand”, “Quan” and “Rank” denote the Random, Quantization,
and Rank decomposition rules respectively. We can find across 18 tasks (AntMaze and MuJoCo-
Gym suites) and 3 embedding inference methods (DROP-Grad, DROP-Best-Ada, and DROP-Grad-
Ada), Rank is more stable and yields better performance compared with the other two decomposition
rules.

C.2 DECOMPOSITION RULES

In DROP algorithm, we explicitly decompose an offline task into multiple sub-tasks, over which we
then reframe the offline policy learning problem as one of offline model-based optimization. In this
section, we discuss three different designs for the task decomposition rule.

Random(N,M): We decomposition offline dataset D := {τ} into N subsets, each of which con-
tains at most M trajectories that are randomly sampled from the offline dataset.

Quantization(N,M): Leveraging the returns of trajectories in offline data, we first quantize offline
trajectories into N bins, and then randomly sample at most M trajectories (as a sub-task) from each
bin. Specifically, in the i-th bin, the quantized trajectories {τi} satisfy Rmin +∆∗ i < Return(τi) ≤
Rmin + ∆ ∗ (i+ 1), where ∆ = (Rmax−Rmin)

N , Return(τi) denotes the return of trajectory τi, and Rmax
and Rmin denote the maximum and minimum trajectory returns in the offline dataset respectively.

Rank(N,M): We first rank the offline trajectories descendingly based on their returns, and then se-
quentially sample M trajectories for each subset. (We adopt this decomposition rule in main paper.)

In Figure 5, we provide the comparison of the above three decomposition rules (see the selected
number of sub-tasks and the number of trajectories in each sub-task in Table 9). We can find that
across a verity of tasks, decomposition rule has a fundamental impact on the subsequent model-
based optimization. Across different tasks and different embedding inference rules, Random and
Quantization decomposition rules tend to exhibit large performance fluctuations, which reveals the
importance of choosing a suitable task decomposition rule. In our paper, we adopt the Rank decom-
position rule, as it demonstrates a more robust performance shown in Figure 5. In Appendix C.4,
we adopt the conditional variational auto-encoder (CVAE) to conduct automatic task decomposi-

15



Under review as a conference paper at ICLR 2023

Table 4: Comparison between our DROP (using the Rank decomposition rule) and filtered behavior
cloning (F-BC) on D4RL AntMaze and MuJoCo suites (*-v2). We take the baseline results of BC
and F-BC from Emmons et al. (2021), where F-BC is trained over the top 10% trajectories, ordered
by the returns. Our DROP results are computed over 5 seeds and 10 episodes for each seed.

Tasks BC F-BC DROP-Grad DROP-Best-Ada DROP-Grad-Ada

antmaze-umaze 54.6 60 72 ± 17.2 78 ± 11.7 80 ± 12.6
antmaze-umaze-diverse 45.6 46.5 48 ± 22.3 62 ± 16 66 ± 12
antmaze-medium-play 0 42.1 24 ± 10.2 34 ± 12 30 ± 21
antmaze-medium-diverse 0 37.2 20 ± 19 24 ± 12 30 ± 16.7
antmaze-large-play- 0 28 24 ± 8 36 ± 17.4 42 ± 17.2
antmaze-large-diverse 0 34.3 14 ± 8 20 ± 14.1 26 ± 13.6

antmaze total 100.2 248.1 202 254 274

halfcheetah random 2.3 2 2.3 ± 0 2.3 ± 0 2.3 ± 0
hopper random 4.8 4.1 5.1 ± 0.8 5.4 ± 0.7 5.5 ± 0.6
walker2d random 1.7 1.7 2.8 ± 1.7 3 ± 1.6 3 ± 1.8
halfcheetah medium 42.6 42.5 42.4 ± 0.7 42.9 ± 0.4 43.1 ± 0.4
hopper medium 52.9 56.9 57.5 ± 6.4 60.3 ± 6.1 59.5 ± 5.1
walker2d medium 75.3 75 76.5 ± 2.4 75.8 ± 3 79.1 ± 1.4
halfcheetah medium-replay 36.6 40.6 39.5 ± 1 40.4 ± 0.8 40.3 ± 1.2
hopper medium-replay 18.1 75.9 48 ± 17.7 83.4 ± 6.5 87.4 ± 2.1
walker2d medium-replay 26 62.5 37.4 ± 13.5 60.9 ± 7.4 61.9 ± 2.3
halfcheetah medium-expert 55.2 92.9 86.6 ± 3.9 88.5 ± 1.2 88.9 ± 2
hopper medium-expert 52.5 110.9 103.5 ± 6.3 102.5 ± 6.2 105.9 ± 4.9
walker2d medium-expert 107.5 109 107.5 ± 2 106.8 ± 3.9 106.9 ± 3.6

mujoco-gym total 475.5 674 609.1 672.2 683.8

tion (treating each trajectory in offline dataset as an individual task) and we find such implementa-
tion (DROP+CVAE) can further improve DROP’s performance. In future work, we also encourage
better decomposition rules to decompose offline tasks so as to enable more effective model-based
optimization for offline RL tasks.

Comparison with filtered behavior cloning. We also note that the Rank decomposition rule
leverages more high-quality trajectories than the other two decomposition rules (Random and Quan-
tization). Thus, a natural question to ask is, is the performance of Rank better than that of Random
and Quantization due to the presence of more high-quality trajectories in the decomposed sub-tasks?
That is, whether DROP (using the Rank decomposition rule) only conducts behavioral cloning over
those high-quality trajectories, thus leading to better performance.

To answer the above question, we compare DROP (using the Rank decomposition rule) with the
filtered behavior cloning (F-BC), where the latter (F-BC) performs behavior cloning after filtering
for trajectories with highest returns. We provide the comparison results in Table 4. We can find that
in AntMaze tasks, the overall performance of DROP is higher than that of F-BC. For the MuJoCo-
Gym suite, DROP-based methods outperforms F-BC on these offline tasks that contain a plenty of
sub-optimal trajectories, including the random, medium, and medium-replay domains. This result
indicates that DROP can leverage the sort of embedding inference (extrapolation) to find a better
policy beyond all the behavior policies in sub-tasks, which is more effective than simply performing
imitation learning on a subset of the dataset.

C.3 ONLINE FINE-TUNING

Online fine-tuning (checkpoint-level). In Figure 6, we show the learning curves of DROP-Best
on four DR4L tasks. We can find that DROP exhibits a high-variance (in performance) across

16



Under review as a conference paper at ICLR 2023

0 50 100
Training steps

2000

3000

4000

5000

Ep
is

od
e 

re
tu

rn

halfcheetah-medium-replay

seed-1
seed-2

0 50 100
Training steps

1000

2000

3000

Ep
is

od
e 

re
tu

rn

hopper-medium-replay

0 50 100
Training steps

0

1000

2000

3000

Ep
is

od
e 

re
tu

rn

walker2d-medium-replay

0 50 100
Training steps

0.00

0.25

0.50

0.75

Ep
is

od
e 

re
tu

rn

antmaze-large-play

Figure 6: Learning curves of DROP, where the x-axis denotes the training steps (k), y-axis denotes
the evaluation return (using DROP-Best embedding inference rule). We only show two seeds for leg-
ibility.

training steps6, which means the performance of the agent may be dependent on the specific stopping
point chosen for evaluation (such instability also exists in prior offline RL methods (Fujimoto & Gu,
2021)).

To choose a suitable stopping checkpoint over which we perform the DROP inference (DROP-Grad,
DROP-Best-Ada and DROP-Grad-Ada), we propose to conduct checkpoint-level online fine-tuning
(see Algorithm 3 in Section D for more details): we evaluate each of the latest T checkpoint models
and choose the best one that leads to the highest episode return.

In Figure 7, we show the total normalized returns across all the tasks in each suite (including
Maze2d, AntMaze, and MuJoCo-Gym). We can find that in most tasks, fine-tuning (FT) can guar-
antee a performance improvement. However, we also find such fine-tuning causes negative im-
pacts in performance in AntMaze(*-v0) suite. The main reason is that, in this checkpoint-level
fine-tuning, we choose the “suitable” checkpoint model using the DROP-Best embedding inference
rule, while we adopt the other three embedding inference rules (DROP-Grad, DROP-Best-Ada and
DROP-Grad-Ada) at the test time. Such finding also implies that the success of DROP’s deployment
adaptation is not entirely dependent on the best embedding across sub-tasks 7 (i.e., the best embed-
ding z∗0(s0) in DROP-Best), but requires switching between some “suboptimal” embeddings (using
DROP-Best-Ada) or extrapolating new embeddings (using DROP-Grad-Ada).

D
R

O
P-

G
ra

d
D

R
O

P-
G

ra
d 

FT

D
R

O
P-

B
es

t-A
da

D
R

O
P-

B
es

t-A
da

 F
T

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d-

A
da

 F
T0

50

To
ta

l n
or

m
al

iz
ed

 re
tu

rn Maze2d

D
R

O
P-

G
ra

d
D

R
O

P-
G

ra
d 

FT

D
R

O
P-

B
es

t-A
da

D
R

O
P-

B
es

t-A
da

 F
T

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d-

A
da

 F
T0

100

200

AntMaze(-v0)

D
R

O
P-

G
ra

d
D

R
O

P-
G

ra
d 

FT

D
R

O
P-

B
es

t-A
da

D
R

O
P-

B
es

t-A
da

 F
T

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d-

A
da

 F
T0

250

500

MuJoCo-Gym(-v0)

D
R

O
P-

G
ra

d
D

R
O

P-
G

ra
d 

FT

D
R

O
P-

B
es

t-A
da

D
R

O
P-

B
es

t-A
da

 F
T

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d-

A
da

 F
T0

100

200

AntMaze(-v2)
D

R
O

P-
G

ra
d

D
R

O
P-

G
ra

d 
FT

D
R

O
P-

B
es

t-A
da

D
R

O
P-

B
es

t-A
da

 F
T

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d-

A
da

 F
T0

250

500

MuJoCo-Gym(-v2)

Figure 7: Total normalized returns across all the tasks in Maze2d, AntMaze, and MuJoCo-
Gym suites.

Online fine-tuning (embedding-level). Beyond the above checkpoint-level fine-tuning procedure,
we can also conduct embedding-level online fine-tuning: we aim to choose a suitable gradient up-
date step for the gradient-based embedding inference rules (including DROP-Grad and DROP-Grad-
Ada). Similar to the checkpoint-level fine-tuning, we first conduct the deployment adaptation pro-

6In view of such instability, we evaluate our methods over multiple checkpoints for each seed, instead of
choosing the final checkpoint models during the training loop (see the detailed evaluation protocol in Ap-
pendix D).

7Conversely, if the performance of DROP depends on the best embedding across sub-tasks (i.e., z∗0(s0) in
DROP-Best), then the checkpoint model we choose by fine-tuning with DROP-Best should enable a consis-
tent performance improvement for rules that perform embedding inference with DROP-Best-Ada and DROP-
Grad-Ada. However, we find a performance drop in AntMaze(*-v0) suite, which means these is no ex-
plicit dependency between the best embedding z∗0(s0) and the inferred embedding using the adaptive inference
rules (DROP-*-Ada).

17



Under review as a conference paper at ICLR 2023

cedure (DROP-Grad and DROP-Grad-Ada) over a set of gradient update steps, and then choose the
best step that leads to the highest episode return (see Algorithm 4 in Section D for more details).

In Table 5, we compare our DROP (DROP-Grad and DROP-Grad-Ada) to three offline RL meth-
ods (AWAC (Nair et al., 2020b), CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021b)),
reporting the initial performance and the performance after online fine-tuning. We can find that the
embedding-level fine-tuning (0.3M) enables a significant improvement in performance. The fine-
tuned DROP-Grad-Ada (0.3M) outperforms the AWAC and CQL counterparts in most tasks, even
though we take less rollout steps to conduct the online fine-tuning (baselines take 1M online rollout
steps, while DROP-based fine-tuning takes 0.3M steps). However, there is still a big gap between the
fine-tuned IQL and the embedding-level fine-tuned DROP (0.3M). Considering that there remains
0.7M online steps in the comparison, we further conduct “parametric-level” fine-tuning (updating
the parameters of the policy network) for our DROP-Grad-Ada on medium-* and large-* tasks, we
can find which achieves competitive fine-tuning performance even compared with IQL.

Table 5: Online fine-tuning results (initial performance → performance after online fine-tuning).
The baseline results of AWAC, CQL, and IQL are taken from Kostrikov et al. (2021b), where
they run 1M online steps to fine-tune the learned policy. For our DROP method (DROP-Grad and
DROP-Grad-Ada), we run 0.3M (= 6checkpoint×50Kmax×1000steps per episode) online steps to fine-tune
(embedding-level) the policy, i.e., aiming to find the optimal gradient ascent step that is used to infer
the contextual embedding z∗(s0) or z∗(st) for π∗(at|st) := β(at|st, ·) (see Algorithm 4 for the
details). Moreover, for medium-* and large-* tasks, we conduct additional parametric-level fine-
tuning, with 0.7M online steps to update the policy’s parameters. Our DROP results are computed
over 5 seeds and 10 episodes for each seed.

Task (*-v0) AWAC CQL IQL DROP-Grad DROP-Grad-Ada

umaze 56.7 → 59 70.1 → 99.4 86.7 → 96 70→ 96 ± 1.2 76→ 98 ± 0
umaze-diverse 49.3 → 49 31.1 → 99.4 75 → 84 54→ 88 ± 8 66→ 94 ± 4.9
medium-play 0 → 0 23 → 0 72 → 95 20→ 56 ± 8.9 30→ 50 ± 6.3 → 94 ± 2.9
medium-diverse 0.7 → 0.3 23 → 32.3 68.3 → 92 12→ 44 ± 4.9 22→ 38 ± 4.9 → 96 ± 0.8
large-play 0 → 0 1 → 0 25.5 → 46 16→ 38 ± 8.9 16→ 40 ± 6.3 → 53 ± 1.3
large-diverse 1 → 0 1 → 0 42.6 → 60.7 20→ 40 ± 13.6 22→ 46 ± 10.2→ 58 ± 4.5

→︸︷︷︸
1M

→︸︷︷︸
1M

→︸︷︷︸
1M

→︸︷︷︸
0.3M

→︸︷︷︸
0.3M

→︸︷︷︸
0.7M

C.4 DROP + CVAE

CVAE-based embedding learning. Similar to LAPO (Chen et al., 2022) and PLAS (Zhou et al.,
2020), we adopt the conditional variational auto-encoder (CVAE) to model offline data. Specifically,
we learn the contextual policy and behavior embedding:

β(a|s, z), φ(z|s)← arg max
β,φ

E(s,a)∼DE(z)∼φ(z|s)
[

log β(a|s, z)
]
− KL(φ(z|s)‖p(z)). (10)

Then, we learn the score model f with the TD-error and the conservative regularization:

f ← arg min
f

E(s,a,s′,a′)∼D

[(
R(s,a) + γf̄(s′,a′, φ(z|s))− f(s,a, φ(z|s))

)2]
, (11)

s.t. Es∼D,z∼µ(z),a∼β(a|s,z) [f(s,a, z)]− Es∼D,z∼φ(z|s),a∼β(a|s,z) [f(s,a, z)] ≤ η,

where f̄ denotes a target network and µ(z) denotes the uniform distribution over the Z-space.

In testing, we also dynamically adapt the outer-level optimization, setting policy inference with
π∗(a|s) = β(a|s, z∗(s)), where z∗(s) = arg maxz f

(
s, β(a|s, z), z

)
.

In Table 6, we compare DROP+CVAE (-Grad-Ada) with LAPO (Chen et al., 2022), PLAS (Zhou
et al., 2020), CQL Kumar et al. (2020), IQL Kostrikov et al. (2021b) and the naive implementation of
DROP(-Grad-Ada) (conducting return-guided task decomposition and afterward learning behavior
embedding as in Equation 6). We highlight that even there is a big performance gap between DROP
and baselines (LAPO and PLAS) in Gym-MuJoCo *-random tasks, our CVAE-based implementa-
tion (DROP+CVAE) can bridge such performance gap. Further, in *-medium tasks, DROP+CVAE

18



Under review as a conference paper at ICLR 2023

Table 6: Comparison (on D4RL benchmark) between DROP (including the implementation of
return-guided task decomposition and the implementation CVAE-based embedding learning), latent
policy baselines (LAPO and PLAS) and other two representative baselines (CQL and IQL).

LAPO PLAS CQL IQL DROP DROP+CVAE
an

tm
az

e

umaze — 70.7 74.0 87.5 80 90.5 ± 2.4
umaze-diverse 91.3 45.3 84.0 62.2 66 85.1 ± 7.8
medium-play — 16 61.2 71.2 30 68.2 ± 16.5
medium-diverse 85.7 0.7 53.7 70.0 30 75.4 ± 9.4
large-play — 0.7 15.8 39.6 42 50.1 ± 13.6
large-diverse 61.7 0.3 14.9 47.5 26 52.2 ± 12.0

ra
nd

om

walker2d-random 1.3 3.1 -0.23 5.4 3 5.2 ± 1.6
hopper-random 23.5 10.5 8.3 7.9 5.5 20.8 ± 0.3
halfcheetah-random 30.6 25.8 22.2 13.1 2.3 32.0 ± 2.5

m
ed

iu
m walker2d-medium 80.8 44.6 82.1 77.9 79.1 82.1 ± 5.2

hopper-medium 51.6 32.9 71.6 65.8 59.5 61.5 ± 3.7
halfcheetah-medium 46 39.3 49.8 47.8 43.1 52.4 ± 2.2

can further improve the performance (of DROP), surpassing both LAPO and PLAS that similarly
adopt the CVAE to model the offline data. Besides, we compare DROP+CVAE to baselines CQL
and IQL, where we see DROP+CVAE can also achieve a competitive performance.

C.5 ABLATION STUDY

0 30 60 90 120 150

25

50

75

100

Grad
Grad w/o Reg

0 30 60 90 120 150

25

50

75

100

Grad-Ada
Grad-Ada w/o Reg

Figure 8: Ablation on the conservative regular-
ization. The y-axis represents the normalize re-
turn, and the x-axis represents the number of
gradient-ascent steps used for embedding inference
at deployment. We plot each random seed as a
transparent line; the solid line corresponds to the
average across 5 seeds.

Note that our embedding inference depends on
the learned score model f . Without proper
regularization, such inference will lead to
out-of-distribution embeddings that are erro-
neously high scored (Q2). Here we conduct
an ablation study to examine the impact of the
conservative regularization used for learning
the score model.

In Figure 8, we compare DROP-Grad and
DROP-Grad-Ada to their naive implementa-
tion (w.o. Reg) that ablates the regularization
on halfcheetah-medium-expert. We can find
that removing the conservative regularization
leads to unstable performance when changing
the update steps of gradient-based optimiza-
tion. However, we empirically find that in
some tasks such naive implementation (w/o Reg) does not necessarily bring unstable inference (Ap-
pendix E). Although improper gradient update step leads to faraway embeddings, to some extent,
embedding-conditioned behavior policy can correct such deviation.

D IMPLEMENTATION DETAILS

For the practical implementation of DROP, we parameterize the task embedding function φ(z|n),
the contextual behavior policy β(a|s, z) and the score model f(s,a, z) with neural networks (see
Appendix D for specific architectures). For Equation 8, we construct a Lagrangian and solve the
optimization through primal-dual gradient descent. For the choice of µ(z), we simply set µ(z) to
be the uniform distribution over the Z-space and empirically find that such uniform sampling can
effectively avoid the out-of-distribution extrapolation at inference.

19



Under review as a conference paper at ICLR 2023

Lagrangian Relaxation. To optimize the constrained objective in Equation 8 in the main paper,
we construct a Lagrangian and solve the optimization through primal-dual gradient descent,

min
f

max
λ>0

EDn∼D[N]
E(s,a,s′,a′)∼Dn

[(
R(s,a) + γf̄(s′,a′, φ(z|n))− f(s,a, φ(z|n))

)2]
+

λ
(
En,µ(z)Es∼Dn,a∼β(a|s,z) [f(s,a, z)]− En,φ(z|n)Es∼Dn,a∼β(a|s,z) [f(s,a, z)]− η

)
.

This unconstrained objective implies that if the expected difference in scores of out-of-distribution
embeddings and in-distribution embeddings is less than a threshold η, λ is going to be adjusted to
0, on the contrary, λ is likely to take a larger value, used to punish the over-estimated value func-
tion. This objective encourages that out-of-distribution embeddings score lower than in-distribution
embeddings, thus performing embedding inference will not lead to these out-of-distribution embed-
dings that are falsely and over-optimistically scored by the learned score model.

In our experiments, we tried five different values for the Lagrange threshold η (1.0, 2.0, 3.0, 4.0 and
5.0). We did not observe a significant difference in performance across these values. Therefore, we
simply set η = 2.0.

Figure 9: Architectures of the task embedding network φ(z|s), the contextual behavior policy
β(a|s, z), and the score function f(s,a, z) (from left to right).

Hyper-parameters. In Figure 9, we provide the network architecture of the task embedding
φ(z|s), the contextual behavior policy β(a|s, z), and the score function f(s,a, z), where the corre-
sponding hyper-parameters are provided in Table 7. For the gradient ascent update steps (used for
embedding inference), we set K = 100 for all the embedding inference rules in experiments.

Table 7: Hyper-parameters.
Enc 0 Enc 1 Enc 2 Enc 3 Enc 4

Optimizer Adam Adam Adam Adam Adam
Hidden layer 2 2 3 2 3
Hidden dim 512 512 512 512 512
Activation function ReLU ReLU ReLU ReLU ReLU
Learning rate 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Mini-batch size 1024 1024 1024 1024 1024

In Table 9, we provide the number of sub-tasks, the number of trajectories in each sub-task, and the
dimension of the embedding for each sub-task (behavior policy). The selection of hyperparameter
N is based on two evaluation metrics: (1) the fitting loss of the decomposed behavioral policies to
the offline data, and (2) the testing performance of DROP. Specifically,

• (Step1) Over a hyperparameter (the number of sub-tasks) set, we conduct the hyperparam-
eter search using the fitting loss of behavior policies, then we choose/filter the four best
hyperparameters;

• (Step2) We follow the normal practice of hyperparameter selection and tune the four hy-
permeters selected in Step1 by interacting with the simulator to estimate the performance
of DROP under each hyperparameter setting.

20



Under review as a conference paper at ICLR 2023

Algorithm 3 DROP: Online fine-tuning (checkpoint-level)
Require: Env, last T checkpoint models: βt(a|s, z) and ft(s,a, z) (t = 1, · · · , T ).

1: RMAX = −∞.
2: βbest ← None.
3: fbest ← None.
4: while t = 1, · · · , T do
5: s0 = Env.Reset().
6: z∗0(s0)← Conduct embedding inference with DROP-Best.
7: Return← Evaluate βt and ft on Env, setting π∗(a|s) = β(a|s, z∗0(s0)).
8: if RMAX < Return then
9: Update the best checkpoint models: βbest ← βt, fbest ← ft.

10: Update the optimal return: RMAX ← Return.
11: end if
12: end while
Return: βbest and fbest.

Table 8: Hyperparameter (the number of sub-tasks) set.

tasks the number of sub-tasks

Antmaze 500 (v0), 150 (v2)
Gym-mujoco 10, 20, 50, 100, 200, 500, 800, 1000
Adroit 10, 20, 50, 100, 200, 500, 800, 1000

We provide the hyperparameter sets
in Table 8. In Step2, we tune the (fil-
tered) hyperparameters using 1 seed,
then evaluate the best hyperparameter
by training on an additional 4 seeds
and finally report the results on the 5
total seeds (see next “evaluation pro-
tocol”). In Antmaze domain, a single
fixed N works well for many tasks; while in Gym-mujoco and Adroit domains, we did not find a
fixed N that provides good results for all tasks in the corresponding domain in D4RL, thus we use
the above hyperparameter selection rules (Step1 and Step2) to choose the number N.

Environment details. For the comparison of our method to prior iterative offline RL methods, we
consider the v0 versions of the datasets in D4RL8. We take the baseline results of BEAR, BCQ,
CQL, and BRAC-p from the D4RL paper (Fu et al., 2020), and take the results of TD3+BC from
their origin paper (Fujimoto & Gu, 2021). For the comparison of our method to prior non-iterative
offline RL method, we use the v2 versions of the dataset in D4RL. All the baseline results of be-
havior cloning (BC), Decision Transform (DT), RvS-R, and Onestep are taken from Emmons et al.
(2021). In our implementation of COMs, we take the parameters (neural network weights) of be-
havior policies as the design input for the score model; and during testing, we conduct parameters
inference (outer-level optimization) with 200 steps gradient ascent over the learned score function,
then the rollout policy is initialized with the inferred parameters. For the specific architecture, we
instance the policy network with dim(S) input units, two layers with 64 hidden units, and a final
output layer with dim(A).

Evaluation protocol. We evaluate our results over 5 seeds. For each seed, instead of taking the
final checkpoint model produced by a training loop, we take the last T (T = 6 in our experiments)
checkpoint models, and evaluate them over 10 episodes for each checkpoint. That is to say, we
report the average of the evaluation scores over 5seed × 6checkpoint × 10episode rollouts.

Online fine-tuning (checkpoint-level): Instead of re-training the learned (final) policy with online
rollouts, we fine-tune our policy with enumerated trail-and-error over the last T checkpoint models
(Algorithm 3). Specifically, for each seed, we run the last T checkpoint models in environment
over one episode for each checkpoint. The checkpoint model which achieves the maximum episode
return is returned. In essence, this fine-tuning procedure imitates the online RL evaluation protocol:
if the current policy is unsatisfactory, we can use checkpoints of previous iterations of the policy.

Online fine-tuning (embedding-level): The embedding-level fine-tuning aims to find a suitable gradi-
ent ascent step that is used to conduct the embedding inference in DROP-Grad or DROP-Grad-Ada.

8We noticed that Maze2D-v0 in the D4RL dataset (https://rail.eecs.berkeley.edu/datasets/) is not available,
so we used v1 version instead in our experiment. For simplicity, we still use v0 in the paper exposition.

21



Under review as a conference paper at ICLR 2023

Algorithm 4 DROP: Online fine-tuning (embedding-level)
Require: Env, last T checkpoint models: βt(a|s, z) and ft(s,a, z) (t = 1, · · · , T ).

1: RMAX = −∞.
2: βbest ← None.
3: fbest ← None.
4: kbest ← 0.
5: while t = 1, · · · , T do
6: while k = 1, · · · ,Kmax do
7: s0 = Env.Reset().

# Conduct embedding inference with DROP-Grad or DROP-Grad-Ada
8: Return← Evaluate βt and ft on Env, setting π∗(a|s) = β(a|s, z∗(s0)) or β(a|s, z∗(s)),

where we conduct k gradient ascent steps to obtain z∗(s0) or z∗(s).
9: if RMAX < Return then

10: Update the best checkpoint models: βbest ← βt, fbest ← ft.
11: Update the best gradient update step: kbest ← k.
12: Update the optimal return: RMAX ← Return.
13: end if
14: end while
15: end while
Return: βbest, fbest and kbest.

Thus, we enumerate a list of gradient update steps and pick the best update step (according to the
episode returns).

Codebase. Our code is based on d3rlpy: https://github.com/takuseno/d3rlpy. We
provide our source code in the supplementary material.

Computational resources. The experiments were run on a computational cluster with 22x
GeForce RTX 2080 Ti, and 4x NVIDIA Tesla V100 32GB for 20 days.

22

https://github.com/takuseno/d3rlpy


Under review as a conference paper at ICLR 2023

Table 9: The number (N ) of sub-tasks, the number (M ) of trajectories in each sub-task, and the
dimension (dim(z)) of the embedding for each sub-task.

Domain Task Name
Parameters (*-v0) Parameters (*-v2)

N M dim(z) N M dim(z)

Maze 2D
umaze 500 5 5
medium 150 50 5
large 100 15 5

Antmaze

umaze 500 50 5 150 50 5
umaze-diverse 500 50 5 150 50 5
Medium-play 500 50 5 150 50 5
Medium-diverse 500 50 5 150 50 5
Large-play 500 50 5 150 50 5
Large-diverse 500 50 5 150 50 5

halfcheetah

random 1000 1 5 1000 1 5
medium 100 2 5 100 2 5
medium-expert 1000 1 5 1000 1 5
medium-replay 50 10 5 50 10 5

hopper

random 100 2 5 100 2 5
medium 100 5 5 100 5 5
medium-expert 100 2 5 100 2 5
medium-replay 50 5 5 10 30 5

walker2d

random 500 2 5 500 2 5
medium 50 5 5 50 5 5
medium-expert 50 5 5 50 5 5
medium-replay 1000 5 5 10 50 5

door
cloned 1000 2 5
expert 500 5 5
human 50 3 5

hammer
cloned 1000 1 5
expert 500 5 5
human 20 3 5

pen
cloned 500 5 5
expert 500 5 5
human 50 5 5

relocate
cloned 500 5 5
expert 500 5 5
human 50 4 5

E ADDITIONAL RESULTS

Comparison with iterative offline RL baselines. Here, we compare the performance of DROP
(Grad, Best-Ada, and Grad-Ada ) to iterative offline RL baselines (BEAR (Kumar et al., 2019a),
BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020), BRAC-p (Wu et al., 2019), and
TD3+BC (Fujimoto & Gu, 2021)) that perform iterative bi-level offline RL paradigm with (explicit
or implicit) value/policy regularization in inner-level. In Table 10, we present the results for the
Maze2D, AntMaze, Gym-MuJoCo, and Adroit suites in standard D4RL benchmark (*-v0), where
we can find that DROP-Grad-Ada performs comparably or surpasses prior iterative bi-level works on
most tasks: outperforming (or comparing) these policy regularized methods (BRAC-p and TD3+BC)
on 25 out of 33 tasks and outperforming (or comparing) these value regularized algorithms (BEAR,
BCQ, and CQL) on 19 out of 33 tasks.

23



Under review as a conference paper at ICLR 2023

Comparison with RvS baselines. As a complement to the results shown in Table 2 in the main
paper, we provide the performance comparison for more tasks (Gym-MuJoCo and AntMaze *-v2
suites in D4RL) in Figure 11. We can find similar results as presented in our main paper: DROP
consistently outperforms baselines in AntMaze tasks (the last three rows of sub-figures in Figure 11)
and reaches comparable results on most tasks in Gym-MuJoCo suite.

Across different environments, we also find DROP exhibits more robust performance. Although
baseline Onestep shows impressive performance in Gym-MuJoCo tasks, we can see that Onestep
fails to make progress in AntMaze-medium-* and AntMaze-large-* tasks. However, we find that
DROP-based methods exhibit a significant performance improvement in this AntMaze suite. We
attribute the success of DROP outperforming Onestep (conducting only behavior policy improve-
ment) to three advantages: (1) DROP learns multiple behavior policies; (2) DROP conducts policy
improvement (corresponding to the embedding inference procedure) over multiple behavior policies;
(3) DROP permits deployment adaptation, enabling the agent to “switch” behavior policies.

0 30 60 90 120 150
20

30

40

N
or

m
al

iz
ed

 re
tu

rn
s

halfcheetah-medium

0 30 60 90 120 150

30

40

50
hopper-medium

0 30 60 90 120 150
20

22

24

26
walker2d-medium

0 30 60 90 120 150
60

80

walker2d-medium-expert

DROP-Grad-Ada DROP-Grad-Ada w/o Reg

Figure 10: The performance comparison of DROP-Grad-Ada and DROP-Grad-Ada w/o Reg, where
we ablate the conservative regularization for the w/o Reg implementation. The y-axis denotes the
normalized return, the x-axis denotes the number of gradient-ascent steps used for embedding infer-
ence at deployment.

Ablation studies. In Figure 10, we provide more results for the ablation of the conservative reg-
ularization term in Equation 8 in the main paper. We can find that for the halfcheetah-medium and
hopper-medium tasks, the performance of DROP-Grad-Ada w/o Reg depends on the choice of the
gradient update steps, showing that too small or too large number of gradient update step deterio-
rates the performance. Such result is also consistent with COMs (Trabucco et al., 2021), which also
observes the sensitivity of naive gradient update (i.e., w/o Reg) to number of update steps used for
design input inference. By comparison, conservative score model learned with DROP-Grad-Ada
exhibits more stable and robust to the gradient update steps.

Further, we also find that in walker2d-medium and walker2d-medium-expert tasks, the naive gra-
dient update (w/o Reg) does not affect performance significantly across a wide range of gradient
update steps. The main reason is that although the excessive gradient updates lead to faraway em-
beddings, conditioned on the inferred embeddings, the learned contextual behavior policy can safe-
guard against the embeddings distribution shift. Compared to prior model-based optimization that
conducts direct gradient optimization (inference) over the design input itself, such “self-safeguard”
is a special merit in the offline RL domain as long as we reframe the offline RL problem as one
of model-based optimization and conduct inference over the embedding space. Thus, we encourage
the research community to pursue further study to this model-based optimization view for the offline
RL problem.

DROP results. In Table 11, we provide our complete results (including the variance) on all tasks
in the paper.

24



Under review as a conference paper at ICLR 2023

Table 10: Comparison of our method to prior offline methods that perform iterative (regularized)
RL paradigm on D4RL. We take the baseline results of BEAR, BCQ, CQL and BRAC-p from Fu
et al. (2020), and the results of TD3-BC from Fujimoto & Gu (2021). For all results of our method
(DROP), we average the normalized returns across 5 seeds; for each seed, we run 10 evaluation
episodes. For proper comparison, we use N and N to denote DROP (*-Ada) achieves comparable
or better performance compared with value and policy regularized offline RL methods respectively.

Task Name
Value Reg. Policy Reg. DROP-

BEAR BCQ CQL BRAC-p TD3+BC Grad Best-Ada Grad-Ada

m
az

e2
d umaze 3.4 12.8 5.7 4.7 – 18.6N 18.7NN 21.3NN

medium 29.0 8.3 5.0 32.4 – 17.0N 18.1NN 24.3NN
large 4.6 6.2 12.5 10.4 – 26.7N 14.7NN 28.8NN

an
tm

az
e

umaze 73.0 78.9 74.0 50.0 – 72.0N 78.0NN 80.0NN
umaze-diverse 61.0 55.0 84.0 40.0 – 48.0N 62.0NN 66.0NN
medium-play 0.0 0.0 61.2 0.0 – 24.0N 34.0NN 30.0NN
medium-diverse 8.0 0.0 53.7 0.0 – 20.0N 24.0NN 30.0NN
large-play 0.0 6.7 15.8 0.0 – 24.0N 36.0NN 42.0NN
large-diverse 0.0 2.2 14.9 0.0 – 14.0N 20.0NN 26.0NN

ha
lf

ch
ee

ta
h random 25.1 2.2 35.4 24.1 10.2 2.3N 2.3NN 2.3NN

medium 41.7 40.7 44.4 43.8 42.8 42.4N 42.9NN 43.1NN
medium-expert 53.4 64.7 62.4 44.2 97.9 86.6N 88.5NN 88.9NN
medium-replay 38.6 38.2 46.2 45.4 43.3 39.5N 40.4NN 40.3NN

ho
pp

er

random 11.4 10.6 10.8 11.0 11.0 5.1N 5.4NN 5.5NN
medium 52.1 54.5 58.0 32.7 99.5 57.5N 60.3NN 59.5NN
medium-expert 96.3 110.9 98.7 1.9 112.2 103.5N 102.5NN 105.9NN
medium-replay 33.7 33.1 48.6 0.6 31.4 48.0N 83.4NN 87.4NN

w
al

ke
r2

d random 7.3 4.9 7.0 -0.2 1.4 2.8N 3.0NN 3.0NN
medium 59.1 53.1 79.2 77.5 79.7 76.5N 75.8NN 79.1NN
medium-expert 40.1 57.5 111.0 76.9 101.1 107.5N 106.8NN 106.9NN
medium-replay 19.2 15.0 26.7 -0.3 25.2 37.4N 60.9NN 61.9NN

do
or

cloned -0.1 0.0 0.4 -0.1 – 0.5N 2.5NN 2.7NN
expert 103.4 99.0 101.5 -0.3 – 98.6N 102.2NN 102.6NN
human -0.3 0.0 9.9 -0.3 – 3.3N 1.9NN 3.0NN

ha
m

m
er cloned 0.3 0.4 2.1 0.3 – 0.3N 0.3NN 0.3NN

expert 127.3 107.2 86.7 0.3 – 65.7N 73.3NN 77.7NN
human 0.3 0.5 4.4 0.3 – 1.1N 0.3NN 2.1NN

pe
n

cloned 26.5 44.0 39.2 1.6 – 76.7N 77.1NN 82.4NN
expert 105.9 114.9 107.0 -3.5 – 113.1N 118.6NN 116.7NN
human -1.0 68.9 37.5 8.1 – 71.1N 85.2NN 81.5NN

re
lo

ca
te cloned -0.3 -0.3 -0.1 -0.3 – 0.1N 0.5NN 0.2NN

expert 98.6 41.6 95.0 -0.3 – 2.5N 6.2NN 5.4NN
human -0.3 -0.1 0.2 -0.3 – 0.0N 0.0NN 0.0NN

25



Under review as a conference paper at ICLR 2023

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0.0 2.5 5.0

ha-random

0 20 40

ha-medium

0 50

ha-medium-expert

0 20 40

ha-medium-replay

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0 5

ho-random

0 50

ho-medium

0 50 100

ho-medium-expert

0 50

ho-medium-replay

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0.0 2.5 5.0

wa-random

0 50

wa-medium

0 50 100

wa-medium-expert

0 50

wa-medium-replay

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0 50

antmaze-umaze

0 50

antmaze-umaze-diverse

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0 20 40

antmaze-medium-play

0 20 40

antmaze-medium-diverse

 

BC
DT

RvS-R
Onestep

DROP-Grad
DROP-Best-Ada
DROP-Grad-Ada

0 25 50

antmaze-large-play

0 20 40

antmaze-large-diverse

Figure 11: Comparison with non-iterative methods on D4RL (*-v2), where ha = halfcheetah, ho =
hopper, and wa = walker2d. Each bar denotes the average of normalized returns. The baseline results
of behavior cloning (BC), Decision Transform (DT), RvS-R, and Onestep are taken from Emmons
et al. (2021). Our DROP results are computed over 5 seeds and 10 episodes for each seed.

26



Under review as a conference paper at ICLR 2023

Ta
bl

e
11

:N
or

m
al

iz
ed

re
tu

rn
of

D
R

O
P-

G
ra

d,
D

R
O

P-
B

es
t-

A
da

,a
nd

D
R

O
P-

G
ra

d-
A

da
ac

cr
os

s
M

az
e2

d,
A

nt
M

az
e,

M
uJ

oC
o-

G
ym

,a
nd

A
dr

oi
ts

ui
te

s.

D
R

O
P-

G
ra

d
D

R
O

P-
B

es
t-

A
da

D
R

O
P-

G
ra

d-
A

da
D

R
O

P-
G

ra
d

D
R

O
P-

B
es

t-
A

da
D

R
O

P-
G

ra
d-

A
da

*-
v0

(-
v1

fo
rM

az
e2

d)
*-

v2

M
az

e2
d

m
az

e2
d-

um
az

e
18

.6
±

5.
5

18
.7
±

3.
6

21
.3
±

1.
8

m
az

e2
d-

m
ed

iu
m

17
.0
±

10
.6

18
.1
±

8.
9

24
.3
±

5.
4

m
az

e2
d-

la
rg

e
26

.6
±

15
.1

14
.7
±

20
.6

28
.8
±

18
.8

A
nt

M
az

e

an
tm

az
e-

um
az

e
70

.0
±

12
.7

72
.0
±

18
.3

76
.0
±

19
.6

72
.0
±

17
.2

78
.0
±

11
.7

80
.0
±

12
.6

an
tm

az
e-

um
az

e-
di

ve
rs

e
54

.0
±

20
.6

68
.0
±

7.
5

66
.0
±

10
.2

48
.0
±

22
.3

62
.0
±

16
.0

66
.0
±

12
.0

an
tm

az
e-

m
ed

iu
m

-p
la

y
20

.0
±

6.
3

26
.0
±

18
.5

30
.0
±

6.
3

24
.0
±

10
.2

34
.0
±

12
.0

30
.0
±

21
.0

an
tm

az
e-

m
ed

iu
m

-d
iv

er
se

12
.0
±

16
.0

20
.0
±

11
.0

22
.0
±

14
.7

20
.0
±

19
.0

24
.0
±

12
.0

30
.0
±

16
.7

an
tm

az
e-

la
rg

e-
pl

ay
16

.0
±

18
.5

20
.0
±

21
.0

16
.0
±

13
.6

24
.0
±

8.
0

36
.0
±

17
.4

42
.0
±

17
.2

an
tm

az
e-

la
rg

e-
di

ve
rs

e
20

.0
±

8.
9

22
.0
±

24
.8

22
.0
±

14
.7

14
.0
±

8.
0

20
.0
±

14
.1

26
.0
±

13
.6

M
uJ

oC
o-

G
ym

ha
lf

ch
ee

ta
h-

ra
nd

om
2.

3
±

0.
0

2.
3
±

0.
0

2.
3
±

0.
0

2.
3
±

0.
0

2.
3
±

0.
0

2.
3
±

0.
0

ha
lf

ch
ee

ta
h-

m
ed

iu
m

36
.8
±

0.
6

36
.8
±

0.
1

37
.1
±

0.
4

42
.4
±

0.
7

42
.9
±

0.
4

43
.1
±

0.
4

ha
lf

ch
ee

ta
h-

m
ed

iu
m

-e
xp

er
t

85
.6
±

15
.1

89
.6
±

11
.5

96
.5
±

7.
4

86
.6
±

3.
9

88
.5
±

1.
2

88
.9
±

2.
0

ha
lf

ch
ee

ta
h-

m
ed

iu
m

-r
ep

la
y

32
.6
±

8.
4

36
.7
±

3.
3

33
.6
±

6.
8

39
.5
±

1.
0

40
.4
±

0.
8

40
.3
±

1.
2

ho
pp

er
-r

an
do

m
11

.1
±

0.
4

11
.1
±

0.
4

11
.1
±

0.
4

5.
1
±

0.
8

5.
4
±

0.
7

5.
5
±

0.
6

ho
pp

er
-m

ed
iu

m
45

.8
±

14
.3

52
.2
±

23
.1

46
.5
±

12
.8

57
.5
±

6.
4

60
.3
±

6.
1

59
.5
±

5.
1

ho
pp

er
-m

ed
iu

m
-e

xp
er

t
11

1.
2
±

1.
8

11
2.

0
±

0.
2

11
2.

5
±

0.
8

10
3.

5
±

6.
3

10
2.

5
±

6.
2

10
5.

9
±

4.
9

ho
pp

er
-m

ed
iu

m
-r

ep
la

y
31

.2
±

6.
0

32
.6
±

3.
8

32
.0
±

4.
0

48
.0
±

17
.7

83
.4
±

6.
5

87
.4
±

2.
1

w
al

ke
r2

d-
ra

nd
om

3.
9
±

0.
9

4.
1
±

0.
7

4.
1
±

0.
8

2.
8
±

1.
7

3.
0
±

1.
6

3.
0
±

1.
8

w
al

ke
r2

d-
m

ed
iu

m
19

.2
±

13
.4

26
.3
±

8.
2

24
.7
±

9.
7

76
.5
±

2.
4

75
.8
±

3.
0

79
.1
±

1.
4

w
al

ke
r2

d-
m

ed
iu

m
-e

xp
er

t
84

.4
±

23
.2

91
.7
±

10
.2

91
.3
±

5.
7

10
7.

5
±

2.
0

10
6.

8
±

3.
9

10
6.

9
±

3.
6

w
al

ke
r2

d-
m

ed
iu

m
-r

ep
la

y
13

.1
±

4.
8

13
.9
±

4.
3

16
.9
±

7.
0

37
.4
±

13
.5

60
.9
±

7.
4

61
.9
±

2.
3

A
dr

oi
t

do
or

-c
lo

ne
d

0.
5
±

0.
7

2.
5
±

2.
5

2.
7
±

3.
2

do
or

-e
xp

er
t

98
.6
±

5.
5

10
2.

2
±

2.
4

10
2.

6
±

1.
6

do
or

-h
um

an
3.

3
±

4.
5

1.
9
±

2.
2

3.
0
±

2.
6

ha
m

m
er

-c
lo

ne
d

0.
3
±

0.
0

0.
3
±

0.
0

0.
3
±

0.
0

ha
m

m
er

-e
xp

er
t

65
.7
±

26
.6

73
.3
±

15
.3

77
.7
±

25
.0

ha
m

m
er

-h
um

an
1.

1
±

1.
6

0.
3
±

0.
1

2.
1
±

3.
5

pe
n-

cl
on

ed
76

.7
±

15
.0

77
.1
±

6.
0

82
.4
±

36
.6

pe
n-

ex
pe

rt
11

3.
1
±

10
.2

11
8.

6
±

13
.3

11
6.

7
±

23
.5

pe
n-

hu
m

an
71

.1
±

34
.1

85
.1
±

13
.5

81
.5
±

16
.2

re
lo

ca
te

-c
lo

ne
d

0.
1
±

0.
0

0.
5
±

0.
5

0.
2
±

0.
2

re
lo

ca
te

-e
xp

er
t

2.
5
±

3.
3

6.
2
±

4.
9

5.
4
±

3.
6

re
lo

ca
te

-h
um

an
0.

0
±

0.
0

0.
0
±

0.
0

0.
0
±

0.
0

27


	Introduction
	Preliminaries
	Reinforcement learning and offline reinforcement learning
	Offline model-based optimization

	DROP: design from policies
	Task decomposition
	Task embedding and conservative model-based optimization
	Deployment adaptation
	Connection to prior non-iterative offline counterparts
	Practical Implementation

	Related Work
	Experiments
	Conclusion
	Appendix
	Discussion and future work
	More experiments
	Single behavior policy vs. multiple behavior policies 
	Decomposition rules 
	Online fine-tuning
	DROP + CVAE
	Ablation study

	Implementation details
	Additional Results

