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ABSTRACT

While unsupervised DNA pre-training has shown promise, we argue that super-
vised genomic profile prediction provides more effective DNA representations,
since DNA functions are regulated by genomic profiles like chromatin accessi-
bility. We propose Species-Profile Adaptive Collaborative Experts (SPACE), a
model that uses Mixture of Experts (MoE) to capture cross-species and multi-
profile relationships in genomic data. Through extensive evaluation, SPACE
achieves state-of-the-art performance, demonstrating that supervised training with
genomic profiles creates powerful DNA representations.

1 INTRODUCTION

DNA sequences, composed of four nucleotide bases (A, C, G, T), encode biological instructions with
broad applications in precision medicine (Kernohan & Boycott, 2024), drug development (Peterson
& Liu, 2023), and synthetic biology (Gosai et al., 2024). Due to the complexity of DNA sequences,
gaining a clear understanding of DNA is not easy. Inspired by the success of unsupervised pre-
training paradigms in NLP, such as masked language modeling (Devlin et al., 2019) (MLM) and
next-token prediction (Brown et al., 2020) (NTP), several DNA foundation models (DFMs) have re-
cently emerged following similar pre-training approaches to learn sequence representations, achiev-
ing success in regulatory element identification, splice site recognition, and epigenetic modification
prediction (Ji et al., 2021; Dalla-Torre et al., 2024; Nguyen et al., 2024b).

However, pure sequence-based pre-training faces inherent limitations. Unlike natural language
where sequences convey self-contained meaning, DNA function depends on genomic profiles in-
cluding epigenetic marks (Portela & Esteller, 2010), chromatin accessibility (Tan et al., 2023), and
transcription factor binding (Peterson & Liu, 2023). Without integrating these biological contexts,
DFMs struggle to generalize across cellular environments (Tang et al., 2023; Fu et al., 2025).

Given that DNA’s functional roles are regulated by various biological factors beyond sequence alone,
we revisit supervised genomic profile prediction models (GPPMs) as an alternative to unsupervised
DFMs for learning DNA sequence representations. These models (Zhou & Troyanskaya, 2015;
Kelley et al., 2018; Zhou et al., 2018; Chen et al., 2022; Avsec et al., 2021) are trained to predict ex-
perimentally measurable genomic profiles which directly encode regulatory and functional informa-
tion in a cell-type-specific manner. While some studies (Dalla-Torre et al., 2024) show GPPMs can
learn effective representations, current architectures employ oversimplified designs, using a shared
encoder for DNA sequences from different species and independent prediction heads for different
genomic profiles. This design has two major limitations. First, the species-shared encoder fails to
capture species-specific characteristics, as regulatory mechanisms and their influences often vary
across species (Karollus et al., 2024), which are crucial for understanding subtle genomic variations
and context-dependent expression patterns. Second, genomic profile prediction inherently involves
multiple interrelated tasks (Fu et al., 2025), as different profiles influence each other and are often
regulated by common mechanisms. The independent prediction heads, however, prevent the model
from capturing these cross-profile dependencies and their variations across species.

To effectively model both cross-species and cross-profile relationships, we introduce our Species-
Profile Adaptive Collaborative Experts (SPACE), which consists of two key components: (1) a
species-aware encoder module and (2) a profile-grouped enhancement decoder module, both built
upon Mixture of Experts (MoE). The species-aware encoder dynamically balances species-specific
and conserved features via sparse routing, while the profile-grouped decoder captures cross-profile
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dependencies through dual-gated expert aggregation. This design enables our model to effectively
learn both species-specific patterns and shared regulatory mechanisms across profiles.
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Figure 1: Overview of our SPACE architecture. It processes the input DNA sequence with three
stages: (1) local context aggregation via a CNN-based aggregation module; (2) latent representation
learning via a species-aware sparse MoE-based encoding module; (3) multi-profile prediction de-
coder via the dual-gated expert weighted prediction enhancement module. The detailed structures
of the encoding module and the decoder module are shown in the left and right, respectively.

2.1 OVERVIEW

Consider DNA sequences from M species {S1, . . . , SM}. For each sequence xm from species Sm,
we predict Cm genomic profile values. We train with interleaved batches across all M species to
facilitate cross-species knowledge transfer (Avsec et al., 2021). To better capture cross-species and
cross-profile representations, we present SPACE. As illustrated in Figure 1, our architecture consists
of three key stages: (1) CNN-based Local Context Aggregation following Enformer (Avsec et al.,
2021); (2) Species-aware Transformer Encoder and (3) Profile-Grouped Enhancement Decoder for
genomic profile prediction.

2.2 LOCAL CONTEXT AGGREGATION

Given an input DNA sequence xm, we first follow Enformer (Avsec et al., 2021) to compress and
aggregate the raw nucleotides through 1D-CNNs, generating hidden states hm ∈ RL×dh at 128bp
resolution, where L denotes the compressed sequence length and dh is the hidden dimension.

2.3 SPECIES-AWARE ENCODER

Previous approaches to cross-species modeling (Kelley, 2020; Avsec et al., 2021) typically employ
a shared encoder for all species, lacking fine-grained modeling of species relationships. To address
this limitation, we propose a novel cross-species modeling framework consisting of Species-specific
Embedding and Cross-species MoE layers.

Species-specific Embedding. We augment the aggregated hidden states hm with a trainable species-
specific embedding em ∈ Rdh by concatenation. The combined representation then passes through
D transformer layers with our Sparse Cross-species MoE for further transformation. This design is
analogous to the source tokens used in recent language models (Jiang et al., 2023), where document-
level embeddings are prepended to provide explicit context about the content source. In our case,
the species-specific embedding serves as an explicit signal to guide the model in distinguishing and
handling species-specific characteristics.
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Cross-species MoE. Furthermore, we introduce a sparse MoE encoding module that enables
adaptive species-aware representation learning through dynamic parameter routing. For the M
species, each MoE layer consists of two core components: (1) a set of N shared expert networks
{E1, ..., EN}, and (2) M species-specific gating networks {G1, ..., GM}, where each Gm is associ-
ated with species Sm to dynamically weight expert contributions based on species-specific patterns.
For an aggregated hidden state hm from species Sm, the output representation ym is computed as:

ĥm = MHAttention([hm, em])

ym =

N∑
k=1

Gm(ĥm)k︸ ︷︷ ︸
the k-th value of Gm(ĥm)

·Ek

(
ĥm

)
,

(1)

where em ∈ Rdh denotes the species embedding vector, and [·] represents concatenation, ĥm is the
hidden state after attention.

Moreover, to guide expert networks in learning both conserved and species-specific patterns, we
introduce an expert-species mutual information (MI) inspired by Mod-Squad (Chen et al., 2023):

LMI = −MI(S;E) = −H(S)−H(E) +H(S,E), (2)

where detailed derivations are provided in Appendix A.1.

After the encoding stage, we obtain the sequence representation y ∈ RL×dh that captures both
species-specific and shared biological features.

2.4 PROFILE-GROUPED ENHANCEMENT DECODER

Current GPPMs treat profile prediction as independent multi-tasks, ignoring relationships between
genomic profiles. This oversight disregards two biological principles: (1) evolutionary conserva-
tion implies shared regulatory mechanisms across homologous profiles in different species (Schmidt
et al., 2010) and (2) different genomic profiles often share regulatory mechanisms and exhibit mutual
influences (Fu et al., 2025). To leverage these biological insights, we propose a prediction enhance-
ment module that enables systematic knowledge sharing across profiles. For clarity, we present the
formulation for a single species Sm and omit the subscript m in subsequent notation.

Genomic profiles can be categorized based on their experimental assays: for instance, DNase and
ATAC-seq measures chromatin accessibility, while CAGE quantifies gene expression levels. Profiles
from the same experimental type typically share similar functional mechanisms, enabling knowledge
transfer within each category. Given Q distinct profile types {T1, ..., TQ} with specific biological
interpretations, for the DNA sequence representation y ∈ RL×dh and the species embedding e ∈
Rdh , the enhancement module operates through the following sequential steps.

Profile Categorization for Initial Predictions. We first perform a linear projection on y to ob-
tain the initial base prediction obase, which represents the final profile predictions from previous
GPPMs (Kelley, 2020; Avsec et al., 2021) that do not incorporate biological insights. Based on
biological priors, obase is categorized into Q independent parts {o1, . . . , oQ}, as follows.

obase = (Linear(y))T ∈ Rdout×L

{o1, . . . , oQ} = Φ(obase)
(3)

where dout denotes the dimension specifying the total number of genomic profiles (i.e., dout equals
Cm for species Sm). The category operator Φ(·) is constructed based on knowledge, which decom-
poses the base prediction into Q profile types {oq}Qq=1 where oq ∈ Rdq×L corresponds to biological
profile type Tq , with dq indicating the number of profiles categorized to Tq .

Dual-Gated Expert Weighted Aggregation. Each dimension of oq represents the base predicted
sequence for a specific profile track. To capture the basic mapping patterns across tracks, we employ
K cross-profile-type shared experts {Ek}Kk=1, where each expert Ek : Rdq×L → Rdq×L enhances
all dimensions of the categorized base prediction oq,∀q. For adaptive expert selection, we introduce
profile-type-specific expert-selected groups Gq : Rdq×L → Rdq×L, designed to model evolutionary
relationships through shared and differentiated features of homologous profiles across species, as
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well as functional interdependencies between distinct profile types within the same species. Specif-
ically, each profile type Tq is associated with R expert-selected groups that dynamically integrate
these biological constraints. The group weights Ĝq are computed through the coordinated integra-
tion of species-specific and sequence-specific gating networks as follows:

Ĝq = Softmax (Gspecies(e) +Gsequence(Pool(y))) , (4)

where Pool(·) denotes dimension-wise pooling applied along the sequence length L, while Gspecies(·)
and Gsequence(·) defined as mapping: Rdh → RR, weighting the expert-selected groups from the
specie and sequence levels, respectively. The resulting weight Ĝq

r corresponds to the r-th group
Gq

r for profile type Tq . Thus, for profile tracks belonging to the same type, the weights of expert-
selected groups are dynamically conditioned on both the input sequence x and its species embedding
e, while the expert weights are derived from the base prediction oq through their corresponding
expert-selected groups. The enhanced prediction for Tq is formulated as:

oqenhanced =

R∑
r=1

Ĝq
r︸︷︷︸

Group weight

·

 K∑
k=1

Gq
r(o

q)k︸ ︷︷ ︸
Expert weight

·Ek(o
q)

 . (5)

The final predictions are computed through connections between enhanced and base predictions:

ofinal = obase +Ψ
(
{o1enhanced, ..., o

Q
enhanced}

)T

, (6)

where Ψ(·) is the inverse operator of Φ(·), denoting the concatenation of the different profile types.

In this way, the profile-grouped decoder performs multi-profile-type prediction enhancement by
decomposing and compositionally modeling the complex profile type-specific dependencies across
species and profiles.

2.5 TRAINING OBJECTIVE

Following Enformer (Avsec et al., 2021), we adopt the Poisson negative log-likelihood as the pri-
mary loss function. To further refine species-aware expert selection in Section 2.3, we introduce an
auxiliary mutual information loss: Ltotal = LPoisson −α

∑D
d=1 MI(S;Ed), where α = 0.01 controls

the MI regularization strength, D denotes the number of transformer layers, and Ed indicates the
shared expert pool at layer d. More details are shown inAppendix A.2.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Dataset. The training datasets aligned with those used in Enformer (Kelley, 2020; Avsec et al.,
2021), containing distinct sequence quantities for human and mouse genomes. Both species shared
four conserved profile types: chromatin accessibility (DNase/ATAC-seq), transcription factor bind-
ing (TF ChIP-seq), histone modifications (Histone ChIP-seq), and transcriptional activity (CAGE).
The detailed dataset specifications are provided in Appendix B.

Implementation Details. Our model was pre-trained using supervised genomic profile prediction,
maintaining the same targets and genomic intervals as implemented in Enformer (Avsec et al., 2021).
For cross-species joint modeling, we implemented an alternating training strategy using 8 NVIDIA
A40 GPUs. Training proceeded for 50,000 steps with a global batch size of 64, achieved through 8
gradient accumulation steps (1 sample per GPU). Optimization employed AdamW (Loshchilov &
Hutter, 2019) with an initial learning rate of 0.0005, linearly ramped from 0 during the first 5,000
steps followed by cosine decay. Gradient norms were clipped at 0.2 to maintain stability.

3.2 NUCLEOTIDE TRANSFORMER DOWNSTREAM TASKS

We evaluated our model on NT’s (Dalla-Torre et al., 2024) 18 genomic datasets spanning hi-
stone modification, cis-regulatory element annotation, and splice site recognition tasks. Using
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Table 1: MCC performance of Nucleotide Transformer downstream tasks. This benchmark includes
three categories of downstream tasks, comprising a total of 18 datasets derived from human samples.
The term ‘NT downstream tasks’ will be used to refer to these tasks.

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing
All NoTATA TATA Donors Acceptors All

DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002
Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

Matthews Correlation Coefficient (MCC) as the metric, we compared against both unsupervised
(DNABERT2 (Zhou et al., 2024), NT (Dalla-Torre et al., 2024)) and supervised approaches (En-
former (Avsec et al., 2021)). Following NT’s protocol with 10-fold cross-validation and early stop-
ping, our model achieves SOTA on 11/18 tasks. This superior performance extends to comparisons
with NT-Multispecies (2.5B parameters), demonstrating that our supervised pre-training paradigm
enables more robust DNA sequence representations. Additionally, our architectural improvements
consistently outperform Enformer across all tasks, validating our module designs. Detailed results
and analysis are in Appendix C.

3.3 CROSS-SPECIES VALIDATION ON GUE BENCHMARK

Table 2: Comparison Results with Enformer on the GUE Benchmark

Model
Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

Enformer 70.65 37.87 42.41 34.00 29.65
SPACE 79.53 (↑ 8.88) 54.12 (↑ 16.25) 54.82 (↑ 12.41) 50.92(↑ 16.92) 43.80 (↑ 14.15)

Model Epigenetic Marks Prediction Virus
H3K4me3 H3K79me3 H3K9ac H4 H4ac Covid

Enformer 22.19 55.69 49.35 76.32 32.90 61.33
SPACE 49.47 (↑ 27.28) 66.93 (↑ 11.24) 59.29 (↑ 9.94) 81.25 (↑ 4.93) 53.09 (↑ 20.19) 70.26 (↑ 8.93)

To evaluate the cross-species generalization of our refinements to Enformer, we used the Genomic
Universal Embedding (GUE) benchmark (Zhou et al., 2024). While the benchmark covers 7 tasks
across 4 taxonomic groups, we focus on yeast and viral genomes—evolutionarily distant from mam-
malian species used in training. These evaluations include Epigenetic Mark Prediction (EMP) on
10 yeast datasets and COVID Variant Classification (CVC) in viral genomes. We followed the
protocol in DNABERT2 (Zhou et al., 2024), using MCC for EMP and F1-score for CVC. For the
downstream tasks involving these new species, we employ randomly initialized species embeddings
and gates. As shown in Table 2, our architecture significantly outperforms the original Enformer
in these tasks. This evaluation provides evidence that our refinements improve cross-species gen-
eralization, especially in identifying evolutionarily conserved regulatory features. Benchmarking
against DNABERT2 and other baselines (Appendix D) further confirms these improvements, with
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non-Enformer baselines rigorously reproduced from DNABERT2’s protocol to ensure consistency.
All evaluations adhered to benchmark specifications for reproducibility and fairness.

3.4 GENOMIC BENCHMARKS

To further validate the capabilities of our model, we performed extended benchmarking using
the Genomic Benchmarks (Grešová et al., 2023) dataset, which represents the only mainstream
benchmark encompassing species beyond those investigated in our previous experiments, including
Human-or-worm classification and Drosophila enhancer classification. Following a methodology
similar to Caduceus (Schiff et al., 2024), we evaluated Enformer and SPACE, adopting the base-
line model results reported in that paper. It is worth noting that Caduceus did not measure the
enhancer prediction task for Drosophila melanogaster, so we referenced the CNN results from Ge-
nomic Benchmarks. The results are presented in the Table 3.

Table 3: The results on the Genomic Benchmarks datasets

Model Mouse Demo drosophila
Enhancers Coding VS. Intergenomic Human VS. Worm Enhancers

CNN 0.715 ± 0.087 0.892 ± 0.008 0.942 ± 0.002 0.586
HyenaDNA 0.780 ± 0.025 0.904 ± 0.005 0.964 ± 0.002 −
Mamba 0.743 ± 0.054 0.904 ± 0.004 0.967 ± 0.002 −
Caduceus-PH 0.754 ± 0.074 0.915 ± 0.003 0.973 ± 0.001 −
Caduceus-PS 0.793 ± 0.058 0.910 ± 0.003 0.968 ± 0.002 −
Enformer 0.835 ± 0.012 0.913 ± 0.001 0.958 ± 0.001 0.613 ± 0.005
SPACE 0.905 ± 0.010 0.922 ± 0.001 0.967 ± 0.004 0.721 ± 0.016

Model Human
Enhancers Cohn Enhancer Ensembl Regulatory OCR Ensembl Nontata Promoters

CNN 0.702 ± 0.021 0.744 ± 0.122 0.872 ± 0.005 0.698 ± 0.013 0.861 ± 0.009
HyenaDNA 0.729 ± 0.014 0.849 ± 0.006 0.869 ± 0.012 0.783 ± 0.007 0.944 ± 0.002
Mamba 0.732 ± 0.029 0.862 ± 0.008 0.814 ± 0.211 0.815 ± 0.002 0.933 ± 0.007
Caduceus-PH 0.747 ± 0.004 0.893 ± 0.008 0.872 ± 0.011 0.828 ± 0.006 0.946 ± 0.007
Caduceus-PS 0.745 ± 0.007 0.900 ± 0.006 0.873 ± 0.007 0.818 ± 0.006 0.945 ± 0.010

Enformer 0.723 ± 0.001 0.844 ± 0.001 0.903 ± 0.001 0.876 ± 0.001 0.878 ± 0.002
SPACE 0.769 ± 0.006 0.919 ± 0.014 0.944 ± 0.002 0.854 ± 0.001 0.940 ± 0.002

3.5 ANALYSIS OF THE MOE ARCHITECTURE

Species-Aware Encoder. Analysis of expert selection frequencies (Figure 2a) shows clear biological
specialization: Experts 1/3 focus on species-specific features (human/mouse), while Experts 0/2
capture cross-species conserved features, demonstrating interpretable evolutionary modeling.

Profile-Grouped Decoder. Using 8 shared experts with 2 expert-selected groups per profile, our
analysis (Figure 2b) reveals distinct specialization patterns: TF binding and histone modification
show high expert specialization, reflecting their biological complexity. In contrast, chromatin acces-
sibility and transcription initiation profiles demonstrate expert overlap, aligning with their mecha-
nistic interdependence - accessible chromatin enables transcription at TSS regions.

3.6 COMPARATIVE ANALYSIS WITH ENFORMER IN GENE EXPRESSION PREDICTION

Using Enformer’s core task of predicting human and mouse genomic profiles at 128-bp resolution
from 200 KB DNA sequences, we computed average Pearson correlation coefficients across test set
positions. As shown in Figure 2c, our approach improves mouse profile prediction accuracy while
maintaining human profile performance.
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(a)

(b) (c)

Figure 2: Expert selection visualizations and prediction results. (a) Visualization of expert selection
in the final cross-species MoE using 4 experts with top-3 selection from the Enformer test set. (b)
Expert selection in the profile-grouped enhancement decoder module from the Enformer test set. (c)
Pearson correlation coefficients across all positions per profile on the test set. Each point represents
the average correlation of predicted genomic profiles across all genomic positions.

3.7 ABLATION STUDY

We conducted ablation experiments with a half-scale model (hidden dim=768) on five configu-
rations: (1) baseline without the prediction-enhanced decoder, (2) decoder replacement with a
parameter-matched MLP, (3) substitution of MoE layers with standard FFNs in the encoder, (4) ad-
ditional removal of species embeddings from configuration (3), and (5) our complete dual-module
architecture. The results are presented in the Table 4. SPACE demonstrates superior performance
across most tasks, with the notable exception of the TATA box dataset (see Table 13) – due to its ex-
clusive focus on simple sequence motifs rather than complex regulatory mechanisms. This indicates
that while our decoder doesn’t directly boost chromatin profile prediction accuracy, the MoE archi-
tecture implicitly models cross-profile regulatory dependencies, offering significant advantages for
tasks requiring integrated profile understanding. Cross-species evaluation on the GUE benchmark
(yeast and virus tasks, detailed in Table 14) further demonstrates that the MLP-based decoder vari-
ant exhibits substantially weaker generalization to new species compared to SPACE’s enhancement
decoder architecture.

Table 4: Ablation Studies on NT downstream tasks and GUE benchmarks. The results include the
average outcomes of the three major categories of downstream tasks in NT, as well as the average
results of the EMP task and the CVC task in the GUE benchmark experiments.

Model NT GUE
Chromatin Regulatory Splicing EMP CVC

SPACE w/o decoder 0.5674 0.7054 0.8977 0.5339 0.6866
SPACE w/o decoder w/ MLP 0.5651 0.6920 0.9020 0.5153 0.6783
SPACE w/o encoder 0.5653 0.7022 0.8887 0.5346 0.6846
SPACE w/o encoder and species emb 0.5692 0.6986 0.8957 0.5322 0.6856
SPACE 0.5705 0.7024 0.9077 0.5368 0.6889

4 CONCLUSION

In this work, we demonstrate that supervised pre-training through genomic profile prediction offers
a more targeted and effective approach than pure sequence pre-training for DNA foundation models.
Extensive evaluations establish SPACE as a state-of-the-art framework, advancing the development
of DFMs. This work highlights the importance of integrating domain-specific inductive biases with
scalable pre-training paradigms for genomics.
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A DERIVATION OF MATHEMATICAL FORMULATIONS FOR KEY FUNCTIONS

A.1 MUTUAL INFORMATION ANALYSIS

The Mutual Information defined in Equation (2) is:
LMI = −MI(S;E) = −H(S)−H(E) +H(S,E)

=

M∑
i=m

P (Sm) logP (Sm) +

N∑
n=1

P (En) logP (En)

−
M∑

m=1

N∑
n=1

P (Sm, En) logP (Sm, En),

where Sm denotes the species probability and En represents the selection weight of each expert.

We split the formulae to analyse them separately. The mutual information decomposition exhibits
three fundamental components:

Species Entropy:

−
M∑
i=1

P (Si) logP (Si) = H(S).

This term represents the inherent diversity of species distribution in training data. As P (Si) consti-
tutes a fixed prior, H(S) remains constant during optimization.

Expert Diversity Regularization:

−
N∑
j=1

P (Ej) logP (Ej) = H(E).

Maximizing this entropy term encourages balanced utilization of experts, preventing expert collapse
where few experts dominate computations. Formally, this ensures:

lim
H(E)→logN

P (Ej) =
1

N
∀j.

Conditional Specialization Objective:
M∑
i=1

N∑
j=1

P (Si, Ej) logP (Si, Ej) = −H(S,E).

Minimizing this joint entropy (equivalent to maximizing −H(S,E)) sharpens the conditional dis-
tribution P (Ej |Si), thereby promoting:

lim
H(S,E)→0

P (Ej |Si) =

{
1 if j = argmaxk G

Si

k (x)

0 otherwise
.

This objective ensures that, for a given species, the model preferentially activates a fixed subset of k
experts.

In this way, the sparse MoE-based encoding module encourages different expert combinations to
handle different species, while some shared experts in the pool can capture common knowledge
across species.

A.2 POISSON NEGATIVE LOG-LIKELIHOOD

The Poisson negative log-likelihood function is defined as

LPoisson =
1

N

N∑
i=1

(pi − ti ln pi) ,

whree p denotes the prediction vector and t represents the target vector.
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A.3 MATTHEWS CORRELATION COEFFICIENT (MCC)

The Matthews Correlation Coefficient (MCC) is a statistically rigorous metric for evaluating clas-
sification models. Its definition and generalization to multi-class problems are formally outlined
below.

Binary Classification Case For binary classification, let TP , TN , FP , and FN denote the counts
of true positives, true negatives, false positives, and false negatives, respectively. The MCC is
defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

Here, TP , TN , FP , and FN correspond to entries in the confusion matrix for two classes.

Multi-class Classification Case

For K-class classification (K ≥ 2), let C be the K ×K confusion matrix, where Cij represents the
number of samples from class i predicted as class j. The MCC generalizes to:

MCC =

∑K
k=1

∑K
l=1

∑K
m=1 CkkClm − CklCmk√(∑K

k=1

∑K
l=1 Ckl

∑K
m=1
m ̸=k

Cmk

)(∑K
k=1

∑K
l=1 Clk

∑K
m=1
m̸=k

Ckm

) .

This formulation quantifies the covariance between all class pairs, ensuring robustness to imbalanced
data distributions.

The MCC ranges in [−1, 1], where 1, 0, and −1 correspond to perfect prediction, random guessing,
and total disagreement, respectively.

B PRE-TRAINING DATASET

Table 5: Genomic Dataset Statistics

Species Train Val Test Sequence Length

Human 34,021 2,213 1,937 196,608 bp
Mouse 29,295 2,209 2,017 196,608 bp

Our model was pretrained on the same dataset as Enformer (Avsec et al., 2021), with detailed com-
position statistics provided in Table 5. To address the pronounced species imbalance between human
and mouse genomic data, we implemented balanced batch sampling through randomized minority-
class augmentation, ensuring equal representation of both species in every batch. This strategy
mitigates species bias while preserving sequence diversity through stochastic resampling.

The dataset comprises DNA sequences paired with genomic profiles as prediction targets. These
genomic profiles are categorized into four functional classes: chromatin accessibility (DNase/ATAC-
seq), transcription factor binding (TF ChIP-seq), histone modifications (Histone ChIP-seq), and
transcriptional activity (CAGE). The species-specific distribution of profile types is quantified in
Table 6, which details the number of available tracks per category for each organism.
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Table 6: Distribution of Genomics profiles

species DNase/ATA TF ChIP Histone ChIP CAGE Total

Human 684 2131 1860 638 5313
Mouse 228 308 750 357 1643

C NUCLEOTIDE TRANSFORMER DOWNSTREAM TASKS REVISED

C.1 DATASETS

The benchmark dataset comprises 18 downstream tasks originally proposed in NT (Dalla-
Torre et al., 2024), accessible via https://huggingface.co/datasets/InstaDeepAI/
nucleotide_transformer_downstream_tasks_revised. These tasks establish a uni-
fied genomics benchmarking framework encompassing both binary and multi-class classification
challenges. All data is exclusively derived from human samples, organized into three biologically
meaningful categories: Chromatin Profiles, Regulatory Elements and Splicing. The complete dataset
composition, including sequence numbers, class distributions and sequence length statistics, is de-
tailed in Table 7.

Table 7: Details of the NT downstream tasks

Task Number of train sequences Number of test sequences Number of labels Sequence length
promoter all 30,000 1,584 2 300
promoter tata 5,062 212 2 300
promoter no tata 30,000 1,372 2 300
enhancers 30,000 3,000 2 400
enhancers types 30,000 3,000 3 400
splice sites all 30,000 3,000 3 600
splice sites acceptor 30,000 3,000 2 600
splice sites donor 30,000 3,000 2 600
H2AFZ 30,000 3,000 2 1,000
H3K27ac 30,000 1,616 2 1,000
H3K27me3 30,000 3,000 2 1,000
H3K36me3 30,000 3,000 2 1,000
H3K4me1 30,000 3,000 2 1,000
H3K4me2 30,000 2,138 2 1,000
H3K4me3 30,000 776 2 1,000
H3K9ac 23,274 1,004 2 1,000
H3K9me3 27,438 850 2 1,000
H4K20me1 30,000 2,270 2 1,000

C.2 IMPLEMENTATION

We maintained identical hyperparameter configurations across all tasks. Our systematic hyperpa-
rameter search included learning rates of 5× 10−5, 3× 10−5, and 5× 10−4, combined with batch
sizes of 8, 16, and 32. Through empirical validation, we identified the optimal configuration em-
ploying a learning rate of 5 × 10−5 with batch size 8. The training protocol utilized the AdamW
optimizer (Loshchilov & Hutter, 2019) over 3 epochs, while retaining default parameter settings
from the HuggingFace Transformer Trainer implementation (Wolf et al., 2020).

C.3 RESULTS

The complete benchmark results of the downstream tasks for NT are presented in Table 8. All
baseline results are sourced from NT (Dalla-Torre et al., 2024). Performance per task was calculated
as the median of the 10 cross-validation folds (± standard deviation). The best results for each task
are highlighted in bold.
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Table 8: Complete Benchmark Results of Nucleotide Transformer Downstream Tasks

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

BPNet (original) 0.473 ± 0.009 0.296 ± 0.046 0.543 ± 0.009 0.548 ± 0.009 0.436 ± 0.008 0.427 ± 0.036
BPNet (large) 0.487 ± 0.014 0.214 ± 0.037 0.551 ± 0.009 0.570 ± 0.009 0.459 ± 0.012 0.427 ± 0.025
DNABERT-2 0.490 ± 0.013 0.491 ± 0.010 0.599 ± 0.010 0.637 ± 0.007 0.490 ± 0.008 0.558 ± 0.013
HyenaDNA-1KB 0.455 ± 0.015 0.423 ± 0.017 0.541 ± 0.018 0.543 ± 0.010 0.430 ± 0.014 0.521 ± 0.024
HyenaDNA-32KB 0.467 ± 0.012 0.421 ± 0.010 0.550 ± 0.009 0.553 ± 0.011 0.423 ± 0.016 0.515 ± 0.018
NT-HumanRef (500M) 0.465 ± 0.011 0.457 ± 0.010 0.589 ± 0.009 0.594 ± 0.004 0.468 ± 0.007 0.527 ± 0.011
NT-1000G (500M) 0.464 ± 0.012 0.458 ± 0.012 0.591 ± 0.007 0.581 ± 0.009 0.466 ± 0.006 0.528 ± 0.011
NT-1000G (2.5B) 0.478 ± 0.012 0.486 ± 0.023 0.603 ± 0.009 0.632 ± 0.008 0.491 ± 0.015 0.569 ± 0.014
NT-Multispecies (2.5B) 0.503 ± 0.010 0.481 ± 0.020 0.593 ± 0.016 0.635 ± 0.016 0.481 ± 0.012 0.552 ± 0.022
GROVER 0.513 ± 0.004 0.500 ± 0.001 0.591 ± 0.001 0.596 ± 0.004 0.475 ± 0.011 0.572 ± 0.010

Enformer 0.522 ± 0.019 0.520 ± 0.015 0.552 ± 0.007 0.567 ± 0.017 0.504 ± 0.021 0.626 ± 0.015
SPACE 0.548 ± 0.005 0.547 ± 0.007 0.586 ± 0.010 0.602 ± 0.005 0.543 ± 0.009 0.640 ± 0.007

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

BPNet (original) 0.445 ± 0.047 0.336 ± 0.034 0.298 ± 0.030 0.531 ± 0.025 0.488 ± 0.009 0.449 ± 0.006
BPNet (large) 0.445 ± 0.049 0.298 ± 0.033 0.234 ± 0.037 0.525 ± 0.038 0.492 ± 0.008 0.454 ± 0.008
DNABERT-2 0.646 ± 0.008 0.564 ± 0.013 0.443 ± 0.025 0.655 ± 0.011 0.517 ± 0.011 0.476 ± 0.009
HyenaDNA-1KB 0.596 ± 0.015 0.484 ± 0.022 0.375 ± 0.026 0.580 ± 0.009 0.475 ± 0.006 0.441 ± 0.010
HyenaDNA-32KB 0.603 ± 0.020 0.487 ± 0.025 0.419 ± 0.030 0.590 ± 0.007 0.476 ± 0.021 0.445 ± 0.009
NT-HumanRef (500M) 0.622 ± 0.013 0.524 ± 0.013 0.433 ± 0.009 0.634 ± 0.013 0.515 ± 0.019 0.477 ± 0.014
NT-1000G (500M) 0.609 ± 0.011 0.515 ± 0.018 0.415 ± 0.019 0.634 ± 0.010 0.505 ± 0.009 0.459 ± 0.011
NT-1000G (2.5B) 0.615 ± 0.017 0.529 ± 0.012 0.483 ± 0.013 0.659 ± 0.008 0.504 ± 0.009 0.469 ± 0.005
NT-Multispecies (2.5B) 0.618 ± 0.015 0.527 ± 0.017 0.447 ± 0.018 0.650 ± 0.014 0.527 ± 0.012 0.484 ± 0.012
GROVER 0.621 ± 0.002 0.520 ± 0.023 0.421 ± 0.018 0.630 ± 0.007 0.526 ± 0.016 0.474 ± 0.003

Enformer 0.635 ± 0.019 0.593 ± 0.020 0.453 ± 0.016 0.606 ± 0.016 0.614 ± 0.010 0.573 ± 0.013
SPACE 0.661 ± 0.025 0.635 ± 0.016 0.490 ± 0.011 0.650 ± 0.011 0.631 ± 0.007 0.583 ± 0.008

Model Regulatory elements Splicing
All NoTATA TATA Donors Acceptors All

BPNet (original) 0.696 ± 0.026 0.717 ± 0.023 0.848 ± 0.042 0.859 ± 0.038 0.793 ± 0.072 0.920 ± 0.014
BPNet (large) 0.672 ± 0.023 0.672 ± 0.043 0.826 ± 0.017 0.925 ± 0.031 0.865 ± 0.026 0.930 ± 0.021
DNABERT-2 0.754 ± 0.009 0.769 ± 0.009 0.784 ± 0.036 0.837 ± 0.006 0.855 ± 0.005 0.861 ± 0.004
HyenaDNA-1KB 0.693 ± 0.016 0.723 ± 0.013 0.648 ± 0.044 0.815 ± 0.049 0.854 ± 0.053 0.943 ± 0.024
HyenaDNA-32KB 0.698 ± 0.011 0.729 ± 0.009 0.666 ± 0.041 0.808 ± 0.009 0.907 ± 0.018 0.915 ± 0.047
NT-HumanRef (500M) 0.734 ± 0.013 0.738 ± 0.008 0.831 ± 0.022 0.941 ± 0.004 0.939 ± 0.003 0.952 ± 0.003
NT-1000G (500M) 0.727 ± 0.004 0.743 ± 0.012 0.855 ± 0.041 0.933 ± 0.007 0.939 ± 0.004 0.952 ± 0.004
NT-1000G (2.5B) 0.708 ± 0.008 0.758 ± 0.007 0.802 ± 0.030 0.952 ± 0.004 0.956 ± 0.004 0.963 ± 0.001
NT-Multispecies (2.5B) 0.761 ± 0.009 0.773 ± 0.010 0.944 ± 0.016 0.958 ± 0.003 0.964 ± 0.003 0.970 ± 0.002
GROVER 0.738 ± 0.012 0.754 ± 0.015 0.845 ± 0.007 0.785 ± 0.056 0.739 ± 0.002 0.784 ± 0.004

Enformer 0.745 ± 0.012 0.763 ± 0.012 0.793 ± 0.026 0.749 ± 0.007 0.739 ± 0.011 0.780 ± 0.007
SPACE 0.764 ± 0.012 0.776 ± 0.011 0.838 ± 0.028 0.942 ± 0.006 0.902 ± 0.004 0.906 ± 0.003

D GUE

D.1 DATASET

GUE is a comprehensive benchmark for genome understanding consising of 28 distinct datasets
across 7 tasks and 4 species, downloaded from https://github.com/MAGICS-LAB/
DNABERT_2. The complete dataset composition, including sequence numbers, class distributions
and sequence length statistics, is detailed in Table 9

D.2 IMPLEMENTATION

Building upon DNABERT2’s downstream task hyperparameter framework, we systematically eval-
uated learning rates from 5 × 10−6, 5 × 10−5, 6 × 10−5, 7 × 10−5, 8 × 10−5, 3 × 10−4 while
maintaining a consistent batch size of 32 across all tasks. Task-specific learning rates were em-
pirically determined through validation set performance. The optimization process employed the
AdamW algorithm (Loshchilov & Hutter, 2019) with 10,000 training steps, while retaining default
parameter configurations from the HuggingFace Transformer Trainer implementation (Wolf et al.,
2020).
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Table 9: The Composition of GUE Datasets

Species Task Num. Datasets Num. Classes Sequence Length

Human

Core Promoter Detection 3 2 70
Transcription Factor Prediction 5 2 100
Promoter Detection 3 2 300
Splice Site Detection 1 3 400

Mouse Transcription Factor Prediction 5 2 100

Yeast Epigenetic Marks Prediction 10 2 500

Virus Covid Variant Classification 1 9 1000

D.3 RESULTS

Table 10: The results on the GUE datasets

Model Epigenetic Marks Prediction
H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT (3-mer) 74.15 42.07 48.49 42.95 31.34 28.92
DNABERT (4-mer) 73.03 41.88 48.03 41.06 30.66 25.31
DNABERT (5-mer) 73.40 40.68 48.29 40.65 30.67 27.10
DNABERT (6-mer) 73.10 40.06 47.25 41.44 32.27 27.81
NT-500M-human 69.67 33.55 44.14 37.15 30.87 24.06
NT-500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16
NT-2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87
NT-2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34
DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27
DNABERT-2 ■ 80.17 57.42 61.90 53.00 39.89 41.20

Enformer 70.65 37.87 42.41 34.00 29.65 22.19
SPACE 79.53 54.12 54.82 50.92 43.80 49.47

Model Epigenetic Marks Prediction Promoter Detection
H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT (3-mer) 60.12 50.48 78.27 38.60 90.44 93.61 69.83
DNABERT (4-mer) 59.77 51.44 78.28 36.40 89.54 92.65 66.78
DNABERT (5-mer) 59.61 51.11 77.27 37.48 90.16 92.45 69.51
DNABERT (6-mer) 61.17 51.22 79.26 37.43 90.48 93.05 61.56
NT-500M-human 58.35 45.81 76.17 33.74 87.71 90.75 78.07
NT-500M-1000g 59.33 49.29 76.29 36.79 89.76 91.75 78.23
NT-2500M-1000g 61.20 52.36 79.76 41.46 90.95 93.07 75.80
NT-2500M-multi 64.70 56.01 81.67 49.13 91.01 94.00 79.43
DNABERT-2 67.39 55.63 80.71 50.43 86.77 94.27 71.59
DNABERT-2 ■ 65.46 57.07 81.86 50.35 88.31 94.34 68.79

Enformer 55.69 49.35 76.32 32.90 85.68 92.92 69.63
SPACE 66.93 59.29 81.25 53.09 91.90 94.23 79.13

The results on the GUE datasets are presented in Table 10 and Table 11. In accordance with the im-
plementation protocol of DNABERT2 (Zhou et al., 2024), all benchmark tasks utilized the Matthews
Correlation Coefficient (MCC) for performance evaluation, with the singular exception of viral se-
quence analysis where F1-score metrics were employed. The notation DNABERT2 ■ specifically
denotes the model variant that underwent additional masked language modeling (MLM) pre-training
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on the training sets of the Genomic Understanding and Evaluation (GUE) benchmark, as detailed in
the DNABERT2 methodology.

Table 11: The results on the GUE datasets.

Model Transcription Factor Prediction (Human) Core Promoter Detection
0 1 2 3 4 all notata tata

DNABERT(3-mer) 67.95 70.90 60.51 53.03 69.76 70.92 69.82 78.15
DNABERT(4-mer) 67.90 73.05 59.52 50.37 71.23 69.00 70.04 74.25
DNABERT(5-mer) 66.97 69.98 59.03 52.95 69.26 69.48 69.81 76.79
DNABERT(6-mer) 66.84 70.14 61.03 51.89 70.97 68.90 70.47 76.06
NT-500M-human 61.59 66.75 53.58 42.95 60.81 63.45 64.82 71.34
NT-500M-1000g 63.64 70.17 52.73 45.24 62.82 66.70 67.17 73.52
NT-2500M-1000g 66.31 68.30 58.70 49.08 67.59 67.39 67.46 69.66
NT-2500M-multi 66.64 70.28 58.72 51.65 69.34 70.33 71.58 72.97
DNABERT-2 71.99 76.06 66.52 58.54 77.43 69.37 68.04 74.17
DNABERT-2 ■ 69.12 71.87 62.96 55.35 74.94 67.50 69.53 76.18

Enformer 69.42 72.76 77.88 66.41 81.89 60.94 66.46 46.21
SPACE 69.02 76.49 76.45 66.08 82.91 68.18 68.04 79.23

Model Transcription Factor Prediction (Mouse) Virus Splice
0 1 2 3 4 Covid Splice

DNABERT(3-mer) 42.31 79.10 69.90 55.40 41.97 62.23 84.14
DNABERT(4-mer) 49.42 79.95 72.62 51.79 44.13 59.87 84.05
DNABERT(5-mer) 42.45 79.32 62.22 49.92 40.34 50.46 84.02
DNABERT(6-mer) 44.42 78.94 71.44 44.89 42.48 55.50 84.07
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82 79.71
NT-500M-1000g 39.26 75.49 64.70 33.07 34.01 52.06 80.97
NT-2500M-1000g 48.31 80.02 70.14 42.25 43.40 66.73 85.78
NT-2500M-multi 63.31 83.76 71.52 69.44 47.07 73.04 89.35
DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02 84.99
DNABERT-2 ■ 64.23 86.28 81.28 73.49 50.80 68.49 85.93

Enformer 67.15 81.56 85.99 67.88 44.03 61.33 81.55
SPACE 65.94 84.91 90.30 86.72 50.66 70.26 87.48

E GENOMIC BENCHMARKS

E.1 DATASET

Genomic Benchmarks currently comprises nine datasets focusing on regulatory elements (promot-
ers, enhancers, and open chromatin regions) from three model organisms: Homo sapiens (hu-
man), Mus musculus (mouse), and Caenorhabditis elegans (nematode). All data were downloaded
from https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks. The de-
tailed composition of these datasets is presented in Table 12.

E.2 IMPLEMENTATION

We systematically evaluated learning rates 5 × 10−6, 5 × 10−5, 6 × 10−5, 7 × 10−5, 8 × 10−5,
3× 10−4 and batch sizes 8, 16, 32, 64. The optimal learning rate and batch size for each task were
determined through validation set performance experiments. The optimization process employed
the AdamW algorithm (Loshchilov & Hutter, 2019) with 3 training epochs, while maintaining the
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Table 12: Composition of Genomic Benchmarks.

Name sequences classes Class ratio
dummy mouse enhancers ensembl 1210 2 1.0
demo coding vs intergenomic seqs 100000 2 1.0
demo human or worm 100000 2 1.0
drosophila enhancers stark 6914 2 1.0
human enhancers cohn 27791 2 1.0
human enhancers ensembl 154842 2 1.0
human ensembl regulatory 289061 3 1.2
human nontata promoters 36131 2 1.2
human ocr ensembl 174756 2 1.0

default parameter configuration from the HuggingFace Transformer Trainer implementation (Wolf
et al., 2020).

F ABLATION STUDY

SPACE demonstrates comparable or superior performance to the decoder-removed variant in 14/18
tasks, with 11/18 tasks still outperforming even when replaced by a parameter-matched MLP. No-
tably, for regulatory element classification tasks, SPACE achieves better results in 4/5 datasets, with
the only exception being the TATA box dataset—which primarily examines sequence motifs of
TATA boxes and does not require complex regulatory mechanism understanding. This suggests
that while our decoder does not explicitly improve direct chromatin profile prediction accuracy, the
MoE architecture implicitly captures cross-profile regulatory interactions by modeling their depen-
dencies. This capability provides critical advantages for tasks requiring integrated understanding of
multiple profiles, such as regulatory element prediction.

Table 13: Ablation study on NT downstream tasks.

Model Chromatin profiles
H2AFZ H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2

SPACE w/o decoder 0.535 0.514 0.567 0.593 0.520 0.604
SPACE w/o decoder w/ MLP 0.551 0.528 0.577 0.580 0.534 0.637
SPACE w/o encoder 0.540 0.524 0.569 0.579 0.506 0.625
SPACE w/o encoder and species emb 0.551 0.518 0.566 0.585 0.519 0.622
SPACE 0.556 0.529 0.579 0.593 0.516 0.612

Model Chromatin profiles Regulatory elements
H3K4me3 H3K9ac H3K9me3 H4K20me1 Enhancers Enhancers(types)

SPACE w/o decoder 0.661 0.601 0.452 0.627 0.598 0.563
SPACE w/o decoder w/ MLP 0.668 0.589 0.451 0.636 0.601 0.558
SPACE w/o encoder 0.627 0.585 0.461 0.637 0.612 0.564
SPACE w/o encoder and species emb 0.654 0.588 0.454 0.635 0.596 0.563
SPACE 0.637 0.582 0.457 0.644 0.607 0.564

Model Regulatory elements Splicing
All NoTATA TATA Acceptors All Donors

SPACE w/o decoder 0.752 0.773 0.841 0.873 0.884 0.936
SPACE w/o decoder w/ MLP 0.743 0.750 0.808 0.883 0.886 0.937
SPACE w/o encoder 0.738 0.769 0.828 0.864 0.869 0.933
SPACE w/o encoder and species emb 0.739 0.767 0.828 0.869 0.876 0.942
SPACE 0.763 0.776 0.802 0.898 0.884 0.941
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Table 14: Ablation study on GUE benchmarks.

Model
Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2

SPACE w/o dec 76.76 46.75 50.09 39.56 34.80
SPACE w/o dec w/ MLP 75.59 45.17 48.21 39.70 34.81
SPACE w/o enc 76.16 48.78 49.14 37.57 34.08
SPACE w/o enc and species emb 76.94 48.77 42.46 43.01 34.33
SPACE 76.40 50.76 49.18 41.30 32.83

Model Epigenetic Marks Prediction Virus
H3K4me3 H3K79me3 H3K9ac H4 H4ac Covid

SPACE w/o dec 34.85 57.85 55.38 79.78 49.05 68.66
SPACE w/o dec w/ MLP 34.26 58.94 56.36 78.81 43.49 67.83
SPACE w/o enc 36.84 63.44 56.63 77.17 50.78 68.46
SPACE w/o enc and species emb 37.13 63.84 56.27 78.29 51.14 68.56
SPACE 37.74 61.10 57.06 79.33 51.05 68.89

G MODEL PARAMETER COUNTS

We present the parameter counts of SPACE and its ablation variants in Table 15. The SPACE (large)
configuration represents our primary model with complete architectural components for compara-
tive analysis, while the other variants correspond to reduced-scale models specifically designed for
ablation studies. These smaller models employ 131 KB input sequences with a compressed hidden
dimension of 768 and operate under a batch size of 32.

Table 15: Model Parameter Counts of SPACE and its ablation variants

SPACE (large) SPACE w/o enhancement SPACE w/o species MoE SPACE (small)

param counts 588.75M 150.96M 105.19M 183.19M
hidden dim 1536 768 768 768

It should be particularly noted that, based on the sparse architecture design of the MoE, our model
activates only a partial subset of parameters during a single forward computation. This selective
parameter activation mechanism makes the number of effective parameters actually involved in the
computation significantly lower than the total number of parameters in the model, thus significantly
reducing the computational resource consumption while maintaining the model capacity.

H RELATED WORK

Supervised Genomic Profile Models are trained to predict functional genomic profiles from DNA
sequences (Kathail et al., 2024). Starting with DeepSEA’s CNN-based framework (Zhou & Troy-
anskaya, 2015), subsequent advances introduced architectural improvements and larger training
scales (Kelley et al., 2018; Zhou et al., 2018; Chen et al., 2022). The SOTA Enformer (Avsec et al.,
2021) employs a hybrid Transformer-CNN architecture for enhanced prediction. While these meth-
ods primarily focus on ab initio prediction of genomic profiles from DNA sequences and directly
utilize these profiles for downstream tasks such as variant effect prediction, few studies (Dalla-Torre
et al., 2024) have explored whether their intermediate representations capture meaningful biological
patterns. Moreover, these models, which typically adopt a shared encoder coupled with indepen-
dent profile prediction heads, have not thoroughly explored more effective architectural designs that
could potentially enhance both prediction performance and representation learning.
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Unsupervised DNA foundation models draw from the success of unsupervised pre-training in NLP.
DNABERT (Ji et al., 2021) pioneered this approach, maintaining nearly identical training methods
to BERT (Devlin et al., 2019) while adapting the tokenization scheme to 6-mers (Celikkanat et al.,
2024) for DNA sequences. Subsequent works have continued along this direction, employing ei-
ther MLM (Zhou et al., 2024; Dalla-Torre et al., 2024; Li et al., 2024; Sanabria et al., 2024) or
NTP (Nguyen et al., 2024a;b) as unsupervised training objectives. Although these methods have
made effective optimizations in terms of training data, model architectures, and tokenization strate-
gies, they still adhere to the assumption that unsupervised pre-training on pure DNA sequences alone
is sufficient for learning effective representations. Moreover, there has been little systematic com-
parison between these models and genomic profile prediction models in terms of their representation
learning capabilities.

The MoE Framework is a conditional computation technique that selectively activates different ex-
pert networks for different inputs through sparse routing (Jacobs et al., 1991; Shazeer et al., 2017).
In Transformer-based large language models (LLMs), MoE is typically applied to feed-forward
networks (FFNs) to achieve better parameter efficiency while maintaining model capacity (Fedus
et al., 2022; Jiang et al., 2023; Liu et al., 2024). This adaptive routing mechanism is particularly
well-suited for our genomic modeling task, as it enables the model to dynamically balance between
learning species-specific patterns and shared biological features, while also capturing the complex
dependencies between different genomic profiles. Following common practice in Transformer ar-
chitectures, we also implement MoE by replacing the FFNs in our model.

I LIMITATIONS

This work has limitations in both data coverage and model scale compared to NT (Dalla-Torre et al.,
2024). First, SPACE has only been trained on two species (human and mouse). While this initial
study demonstrates the advantages of our cross-species encoder design, extending training to more
species could yield greater benefits as additional sequencing data becomes available (Vandereyken
et al., 2023). Second, constrained by computational resources, our model (588M parameters, sparse-
activated) is significantly smaller than the largest variant of NT (2.5B parameters, dense). The
detailed parameter configuration is provided in Appendix G. Given scaling laws in DFMs (Dalla-
Torre et al., 2024; Nguyen et al., 2024a), we anticipate performance improvements with increased
model scale.
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