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ABSTRACT

As Deep Neural Networks (DNNs) revolutionize various application domains,
their model size and computational demand also increase exponentially. In re-
sponse to these challenges, various quantization techniques have emerged as
highly effective solutions. However, quantization methods using conventional
data types, including integer or floating-point, face certain limitations in balanc-
ing between accuracy drop and computational benefit. In light of the advent of
hardware accelerator design for AI processing, quantization research has entered
a new phase: custom data types and specialized hardware have emerged as inno-
vative alternatives. Particularly, piecewise quantization and block floating-point
quantization exhibit notable performance and efficiency improvements, but they
still suffer from handling outliers with huge dynamic ranges. To solve this issue,
we introduce Super Floating-Point (SuFP), a breakthrough data type and quanti-
zation method that improves both memory footprint and logic efficiency without
compromising model accuracy. The key idea of SuFP is multi-region piecewise
quantization using a tensor-wise scalable bias. It can configure an optimized preci-
sion for each region to capture both dense near-zero data and outliers. In addition,
the scalable bias offers flexible adaptability to diverse data distributions, requir-
ing only a single addition operation at the tensor level. Furthermore, the tailored
hardware for SuFP employs only integer arithmetic units and shifters, facilitating
a highly compact hardware realization. Our experimental results show that SuFP
quantization achieves accuracy performance on par with, and in some cases even
exceeds, that of full precision floating-point (FP32) across vision, language, and
generative model benchmarks. Its computational capability and energy efficiency
have shown improvements, with a 9.00× and 17.04× enhancement over FP32
implementations. These improvements are notable when compared to state-of-
the-art MSFP and BSFP, which show up to 7.20× and up to 8.27×, respectively.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated exceptional performance across a wide range
of applications, including image classification (Deng et al., 2009) and natural language processing
(Chowdhary & Chowdhary, 2020). Moreover, DNNs are now excelling in state-of-the-art generative
models, such as text-to-image models (Rombach et al., 2022) and Large Language Models (LLMs)
(Touvron et al., 2023). This extended applicability further elevates the standing and importance of
DNNs within the broader AI landscape.

However, the exponential increase in model size and computational complexity results in a bigger
memory footprint and computational capacity requirements (Gholami et al., 2021b). This growth
creates significant bottlenecks in DNN inference tasks, leading to longer delays and slower response
time on every computational hardware from server to edge devices. In response to these challenges,
quantization has been recognized as an effective approach that delivers significant performance im-
provements.

Ongoing research is actively exploring various approaches for the quantization methods. A key chal-
lenge is balancing accuracy loss from low-bit operations with improved memory footprint and com-
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Figure 1: Comparison of the quantization processes between (a) the proposed Super Floating-Point,
(b) Block and Subword-scaling Floating-Point, and (c) Microsoft Floating-Point.

putational efficiency. One possible approach to address this challenge is quantization-aware training
(QAT). However, QAT can only be applied to models with publicly disclosed training datasets and
parameters, significantly limiting its scope of use. Due to such constraints, many users tend to prefer
post-training quantization (PTQ), which directly applies to pre-trained weights and activations. Al-
though PTQ is a straightforward method, it is likely to result in a more significant accuracy loss than
QAT. In light of this, extensive quantization research has been conducted for conventional data types
including integer and floating-point. However, integer quantization, for instance, (Krishnamoorthi,
2018; Nagel et al., 2021; Gholami et al., 2021a), inherently possesses limitations in terms of accu-
racy due to its limited dynamic range and challenges in implementing non-uniform quantization. On
the other hand, although floating-point quantization, including (Wang et al., 2018; Sun et al., 2019),
can mitigate some of these issues, insufficient bit-width of mantissa in floating-point quantization
limits its application.

In addition, custom data types are emerging along with the development of novel processing units
for AI workloads, such as (Jain et al., 2019; Guo et al., 2022; 2023), to overcome the limitations
of conventional data types. Custom data type can be fitted to model parameters and activation data
distribution, minimizing performance degradation. Also, custom hardware guarantees hardware
efficiency by executing operations tailored to these custom data types (Park et al., 2018; Zadeh
et al., 2020).

Among various approaches, piecewise quantization and block floating-point quantization stand out
for their performance and hardware efficiency. Piecewise quantization (Fang et al., 2020; Jain et al.,
2019; Yuan et al., 2022) subdivides a dynamic range into several regions to capture the entire data
distribution. On the other hand, block floating-point quantization (Darvish Rouhani et al., 2020;
Lo et al., 2022) utilizes small-sized blocks and a shared scaling factor, making it applicable to
various data distributions. Nonetheless, both piecewise and block floating-point methods struggle
to ensure optimal precision in a whole range of data, including near-zero values and outliers, which
is crucial for attaining the overall model accuracy. Specifically, piecewise quantization methods
should consider the trade-off between the number of regions and the bit-width allocated to each
region within a constrained bit budget. The block floating-point exhibits a uniform distribution
within a block that shares a common scaling factor. This characteristic makes it challenging to
cover various dynamic ranges. Furthermore, reducing the block size to address this issue increases
memory footprint overhead.

In this paper, we introduce Super Floating-Point (SuFP), a breakthrough data type that is “efficient
to all” in terms of accuracy, adaptability, and hardware. SuFP utilizes a variable encoding field that
facilitates multi-region piecewise quantization, allowing for the effective representation of the entire
data distribution. Specifically, different precisions are set to capture the dense region in the near-
zero range and the sparse region containing outliers, which maximize the numerical representation
efficiency within a limited number of bit-width. Figure 1 (a) highlights the key concept behind
SuFP: the combination of a variable encoding field and a variable data field with a tensor-wise
scalable bias. In contrast to the block floating-point approach, which applies a scaling factor on a
block-by-block basis (Figure 1 (b) and (c)), SuFP employs a scalable bias across the tensor level.
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Figure 2: Data distribution comparison between (a) real data distribution with (b) 8-bit MSFP, (c)
7-bit BSFP and our (d) 8-bit SuFP.

Figure 2 illustrates the benefits of using scalable bias and multi-region method, with SuFP optimally
providing granularity in each region. In this way, SuFP results in low quantization errors over diverse
data distributions, implying its broad applicability. Moreover, SuFP is highly hardware-efficient; the
tensor-wise scalable bias requires only a single integer addition in a tensor-level operation, enabling
coverage of a diverse dynamic range with a negligible hardware overhead. Additionally, the tailored
hardware for SuFP consists solely of an integer arithmetic unit and a shifter, allowing for a highly
compact hardware configuration.

In summary, the contributions of SuFP are:

• Efficient To Accuracy: SuFP utilizes multi-region piecewise floating-point quantization
based on the variable encoding field to ensure adequate data granularity in both dense and
sparse data distribution regions. This approach minimizes quantization error by optimizing
the granularity of data distribution for each stage.

• Efficient To Adaptability: SuFP adopts a tensor-wise scalable bias, enabling precise adjust-
ment to its range in alignment with the dynamic range of any data distribution. By setting
the bias appropriately, SuFP can accurately represent various data distributions across di-
verse DNN models. This approach highlights the enhanced adaptability of SuFP.

• Efficient To Hardware: SuFP excels in hardware efficiency, demonstrating superior com-
putational performance. The custom Processing Element (PE) designed for SuFP computa-
tions achieves optimal computational efficiency, affirming that SuFP not only assures high
accuracy but also provides a hardware-friendly data type.

2 RELATED WORKS

With the exponential growth in model size, various efforts have been made within the deep neural
network community to optimize performance. Notably, quantization research attempts to balance
reducing memory footprint and preserving model accuracy. In this section, we explore three primary
quantization methodologies: low-bit quantization, piecewise quantization, and block floating point
quantization.

Low-bit quantization techniques for neural networks can broadly be categorized into two primary
methodologies: integer (INT) quantization and floating-point quantization. Numerous works have
delved into these methodologies, with references such as (Xiao et al., 2023; Wu et al., 2020; Yao
et al., 2022; Dettmers et al., 2022; Frantar et al., 2022) focusing on INT quantization, and (Kuzmin
et al., 2022; Zhang et al., 2023; Wu et al., 2023; Micikevicius et al., 2022; Sun et al., 2019) on
floating-point quantization strategies.

INT quantization has simple operations and implementation. However, when adopting uniform
quantization techniques, it faces challenges in accurately capturing both the dense region and rare
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Table 1: Property comparison of SuFP against MSFP and BSFP.

Property SuFP MSFP BSFP

Reflecting Diverse Density ⃝
(Piecewise)

×
(Uniform)

△
(Semi-Uniform)

Implementation Complexity Easy
(Tensor-Wise)

Difficult
(Block-Wise)

Difficult
(Block-Wise)

Adaptation to Both
Activations and Weights

⃝ ⃝ ×
(Only Weight Possible)

Hardware Efficiency ⃝ ⃝ ×
(Bit-Serial)

outliers. These challenges become more pronounced as the bit-width decreases. On the other hand,
an approach of floating-point quantization becomes increasingly compelling, given that many neural
network models exhibit Gaussian-like distributions in their weights and activations. This method
offers superior flexibility in addressing diverse data distributions compared to INT quantization.
However, floating-point quantization has its own challenges. One of the significant hurdles is the
difficulty in preserving the precision of individual values due to its limited mantissa bit-width.

Another approach that has become increasingly adopted is piecewise quantization (Fang et al., 2020;
Jain et al., 2019; Yuan et al., 2022). This method divides the quantization range into several distinct
regions, tailoring the precision for each segment. The motivation behind this method stems from
the need for an effective representation of both dense and sparse regions. However, piecewise quan-
tization’s drawback lies in the difficulty of achieving low errors across all regions. It’s crucial to
distribute the limited bit budget across regions carefully. Increasing the number of regions for more
accurate representation leads to a trade-off: insufficient bits for each region, significantly impacting
accuracy.

In the domain of block floating-point, multiple data points are grouped within a single block, sharing
a unified exponent. Prominent examples of this approach are MSFP (Darvish Rouhani et al., 2020)
and BSFP (Lo et al., 2022). In MSFP, the largest exponent of the block is used as “a shared expo-
nent.” Each mantissa is then right-shifted to align with this shared exponent. However, the mantissa
is uniformly quantized, making it vulnerable to non-uniform data distributions in the block. In con-
trast, BSFP identifies the limitations of having a single shared exponent for each mantissa within
a block and suggests an alternative approach. It introduces a method in which a single mantissa is
split into two subwords, each sharing a scaling factor, adding finer granularity to the block’s struc-
ture. However, BSFP is unsuitable for activation tensors due to the challenge of finding the optimal
combination of two scalings in real-time, and its PE works in a bit-serial manner with 2-bit inputs or
even 1-bit, leading to considerable hardware inefficiencies. In addition, block floating-point quanti-
zation inherently faces a trade-off between block size and model accuracy. Smaller blocks improve
accuracy but increase the model size, while larger blocks decrease the model size but at a cost to
accuracy.

In this paper, we introduce a groundbreaking data type, SuFP, effectively addressing the challenges
discussed above. Table 1 summarizes the property comparison between SuFP and other major data
types for quantization. In the following section, we will describe the details of SuFP.

3 SUPER FLOATING-POINT (SUFP)

The key idea of SuFP is multi-region piecewise quantization using a tensor-wise scalable bias. With
this scheme, SuFP can accurately represent both dense and sparse regions in data distribution, en-
suring a various dynamic range with high bit utilization.

Multi-Region Piecewise Quantization. SuFP data type comprises the sign bit (MSB), an encod-
ing field, and a data field. SuFP can present three different data representations of exponent-and-
mantissa combinations based on the encoding field, as shown in Figure 3, and the data field is
interpreted according to each representation.
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Figure 3: Visual representation of multi-region
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Algorithm 1: SuFP Decoding Algorithm
Input : A Binary 8-bit Data [b7, b6, . . . b0]
Output: SuFP Quantized Data

1 ssufp ← b7
2 if b6 == 0 then
3 esufp ← −(1002) · · · 1
4 msufp ← b5b4b3b2b1b0 · · · 1
5 else
6 if b5b4 ̸= 112 then
7 esufp ← −(102) + b5b4 · · · 2
8 msufp ← 1b3b2b1b0 · · · 2
9 else

10 esufp ← 112 + b3b2 · · · 3
11 msufp ← 1b1b0 · · · 3

12 return (−1)ssufp ·msufp · 2esufp

The overall decoding process is described in Algorithm 1. Once the representation is determined,
exponent (esufp) and mantissa (msufp) are determined based on the data field. Meanwhile, to
achieve different precisions, each representation has a distinct exponent baseline. The exponent
baselines for representations 1 , 2 , and 3 are −4, −2, and 3, respectively.

There are other features that influence the precision of each representation. The representation 1
is designed to express numbers close to zero with high granularity by using the entire data field
for the mantissa. Notably, by setting b5 and b4 to 002, it achieves the representation of subnormal
numbers in the IEEE floating-point standard. On the other hand, both the representation 2 and 3
divide the data field into exponent and mantissa sections. Specifically, the representation 3 aims to
capture a broader range of numbers, including outliers, even with its fewer mantissa bits compared
to representation 2 . In contrast, the representation 2 focuses on numbers within an intermediate
range between representation 1 and 3 . It offers finer precision due to its wider bit-width mantissa,
allowing for an optimal expression of numbers between the main body and outliers.

Building on these specifics, each representation offers different levels of precision within its respec-
tive range, effectively covering a wide spectrum of numbers. For example, numbers in the range of
0 to 4, which belong to the main body, are captured with a granularity of 2−4. On the other hand,
outliers in the range of 256 to 448 are captured with a granularity of 26. Due to the implementation
of the variable encoding field and variable data field, SuFP is capable of effectively representing both
sparse and dense regions. For detailed experimental results and analysis, please refer to Appendix
B and Appendix H.

Tensor-wise Scalable Bias. We introduce “tensor-wise” scalable bias. The scalable bias is the
value added to the exponent baseline to determine the actual exponent value. By employing this
approach, we can configure a more diverse range of exponent values than what can be originally
represented with the limited exponent bit-width. More specifically, SuFP’s scalable bias employs
a 5-bit 2’s complement, enabling an extension of the exponent range from -16 to +15 for each
representation.

As shown in Appendix C, we capture that the tensor-wise distribution closely follows the channel-
wise distribution, which lead us to employ scalable bias at the tensor level. As a result, SuFP
enables precision tuning for various data distributions within the model, even while using larger
tensor units instead of smaller block units. Furthermore, by adopting this tensor-wise approach, we
have also gained the advantages of increased flexibility in computational direction within the PEs
and reduction in memory footprint.

Computation with SuFP. Before beginning the computation, we need a bias-selecting process
as detailed in Appendix A. Once the bias for each tensor is predetermined, a tensor is quantized as
SuFP without the need to search for the optimal bias at runtime. This enables in-situ quantization
for weight and activation tensors. Real-time quantization of the activation tensor is possible due to
the highly consistent distribution of activation data during inference, regardless of input variations.
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In the inference operations of SuFP, the SuFP Arithmetic Logic Unit (ALU) is utilized to exe-
cute multiplications on mantissa and additions on exponents, as described in Equation (1) and (2).
The largest value from the exponent addition results is identified. To align all the results with the
maximum exponent value, the results of the mantissa multiplications are right-shifted, as shown in
Equation (3). This methodology is similar to the MSFP method used to determine a shared exponent
in a block. The aligned mantissa are then processed through an adder tree to compute the partial
sum. The summation of the largest exponent value and the scalable bias yields the partial result for
the exponent, as detailed in Equation (4).

(wi · 2biasW ) · (ai · 2biasA) =

n−1∑
j=0

(−1)sw,jmw,j2
ew,j+biasW · (−1)sa,jma,j2

ea,j+biasA (1)

=

n−1∑
j=0

(−1)sw,j⊕sa,jmw,jma,j · 2ew,j+ea,j · 2biasW+biasA (2)

(mw,jma,j)
′ = (mw,jma,j) >> emax, emax = max

0≤i≤n−1
(ew,i + ea,i) (3)

(wi · 2biasW ) · (ai · 2biasA) ≈ 2biasW+biasA+emax ·
n−1∑
j=0

(−1)sw,j⊕sa,j (mw,jma,j)
′ (4)

Hardware Implementation for SuFP. Figure 4 shows the architecture of the proposed SuFP
PE, designed to process 16 parallel input data streams. Since SuFP can effectively handle a wide
dynamic range using scalable bias, SuFP PE is composed mainly of integer operation ALUs and
shifters, requiring fewer hardware resources. Furthermore, scalable bias overhead in the PE is neg-
ligible as it is accommodated through a single integer addition with the maximum exponent value in
the accumulator. The SuFP PE can be readily integrated into any architecture, with the systolic array
being a prime example. For a detailed explanation of the systolic array, please refer to Appendix G.
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Figure 4: Proposed processing element architecture for SuFP.

4 EXPERIMENTS

This section evaluates the proposed SuFP described in Section 3. We comprehensively assess SuFP’s
performance by quantizing both weight and activation tensors across various models, including vi-
sion, language, and text-to-image. We then analyze the reduction in memory footprint overhead
achieved by SuFP. By implementing SuFP PE, we demonstrate its performance and energy effi-
ciency improvements.
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4.1 BASELINES AND EXPERIMENTAL SETUP

We implement SuFP using PyTorch with HuggingFace transformer and TorchVision libraries. For
image classification tasks, we benchmark our method on the ResNet18, ResNet50 (He et al., 2016),
Vision Transformer (ViT) (Dosovitskiy et al., 2020), and EfficientNet-v2 (Tan & Le, 2021) models
with the ImageNet dataset (Deng et al., 2009). For natural language tasks, we benchmark our method
using the BERT-base model (Devlin et al., 2018) on datasets such as MRPC, CoLA (Warstadt et al.,
2018), and SQuAD 2.0 (Rajpurkar et al., 2018). For text-to-image generative tasks, we benchmark
our approach using the Stable Diffusion v2 (Rombach et al., 2021) on the COCO dataset (Lin et al.,
2014). For LLMs, we benchmark our method using Llama 2 model Touvron et al. (2023) on MMLU.
We compare the performance of the proposed SuFP with the baseline data types, including Floating-
Point 32 (FP32), Floating-Point 16 (FP16), Brain Floating-Point 16 (BF16), Floating-Point 8 (FP8),
MSFP, and BSFP.

Additionally, we use SystemVerilog to implement the SuFP PE and various baseline PEs, including
FP32, BF16, FP8, MSFP, and BSFP. All designs are synthesized using the Synopsys Design Com-
piler, optimized for the 28nm CMOS technology, and set to operate at 500MHz clock frequency.
In addition, we evaluate the power estimation of each PE with internal power, switching power
and leakage power. The implementation details of the previously mentioned PEs are elaborated in
Appendix F.

4.2 ACCURACY EVALUATION

We evaluate the impact on the accuracy of our SuFP on vision models. We compare its accuracy
against standard formats like FP32, BF16 and FP8, as well as other PTQ techniques, including
MSFP and BSFP. We use the configuration of MSFP and BSFP based on their reported superior
accuracy in previous studies. Furthermore, we set the number of elements in a block to 16, as this
value gives optimal performance for both MSFP and BSFP.

To highlight the adaptability of SuFP across various domains, we extend our experiments to models
in the language and text-to-image areas. In this evaluation, we compare the performance of SuFP
with that of FP16, FP8, MSFP and BSFP.

Table 2: Comparison of normalized accuracy among vision models with SuFP and other data types.

Method
Data Type Vision

Weight / Activation ResNet-18 ResNet-50 EfficientNet-v2 (s) ViT-B/16

FP32 FP32 / FP32 1.0000 (69.76/69.76) 1.0000 (76.13/76.13) 1.0000 (81.31/81.31) 1.0000 (81.07/81.07)
BF16 BF16 / BF16 1.0006 (69.80/69.76) 0.9997 (76.11/76.13) 1.0000 (81.31/81.31) 0.9996 (81.04/81.07)
MSFP1 MSFP / MSFP 0.9990 (69.69/69.76) 0.9991 (76.06/76.13) 0.9983 (84.09/84.23) 0.9993 (81.01/81.07)
BSFP2 BSFP / MSFP 0.9987 (69.67/69.76) 0.9993 (76.08/76.13) 0.9980 (84.06/84.23) 0.9981 (80.92/81.07)

SuFP SuFP / SuFP 1.0007 (69.81/69.76) 1.0005 (76.17/76.13) 0.9994 (81.26/81.31) 0.9999 (81.06/81.07)
1 The precision of MSFP is characterized as MSFP16 (1bit sign, 7bit mantissa, 8bit exponent).
2 BSFP is structured with 5-bit and 2-bit mantissa, accompanied by 8-bit and 7-bit scale factors corresponding to each mantissa.

Evaluation on Vision Models. Table 2 compares the performance of various quantization tech-
niques in the vision domain. The top-1 accuracy metric is used for performance evaluation. For a
consistent comparison, we source the accuracy results for MSFP and BSFP from the BSFP paper.
To ensure consistency, we set up our environment on FP32 accuracy from the BSFP paper. How-
ever, FP32 accuracy for EfficientNet-v2 differs from the reported value. Thus, we normalize the
accuracies of MSFP, BSFP, and SuFP relative to FP32 and focus on comparing their changes.

As demonstrated in Table 2, when SuFP is applied, the overall accuracy drop is negligible. For
instance, in EfficientNet-v2, MSFP and BSFP have an accuracy drop of 0.17% and 0.2% compared
to full-precision, respectively. In contrast, SuFP shows only a 0.06% decrease in accuracy.

Evaluation on Language and Text-to-Image Models. Table 3 shows the performance of SuFP
on the Language and Text-to-image categories. For comparison, we use FP16, FP8, MSFP, and
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Table 3: Comparison of performance among language and text-to-image generative models with
SuFP and other data types.

Method
Data Type BERT-base Stable Diffusion v2

Weight / Activation MRPC ↑
(Accuracy)

CoLA ↑
(MCC)

SQuAD 2.0 ↑
(F1-score)

COCO ↓
(FID-score)

FP16 FP16 / FP16 0.8307 0.5678 78.8684 27.0643
FP81 FP8 / FP8 0.6516 0.5241 56.6289 459.9799
MSFP MSFP / MSFP 0.8319 0.5636 78.8113 27.2551
BSFP BSFP / MSFP 0.8336 0.5636 78.7647 -

SuFP SuFP / SuFP 0.8371 0.5756 78.9547 25.6262
1 E4M3 format is used for FP8 (1bit sign, 4bit mantissa, 3bit exponent).

BSFP as baseline. In the Language category, BERT-base serves as our representative model. We
evaluate the BERT-base model on the MRPC, CoLA, and SQuAD 2.0 datasets using accuracy, MCC,
and F1-Score as the performance metrics, respectively. Based on the experimental results, SuFP
demonstrates better results across various benchmarks for the BERT-base model.

For the Text-to-image category, we experiment with the Stable Diffusion v2 model. We use the
COCO dataset in this experiment, adopting the FID score as our performance metric. For the exper-
iment, we adopted our SuFP only to diffusion. In our experimental results, SuFP achieves an FID
score of 25.6262, showing improved performance over FP16. Also, we obtain images of equal or
better quality, please refer to Appendix I for the examples of generated images.

Table 4: Comparison of performance among LLMs with SuFP and other data types.

Method Data Type Llama 2-7b

Weight / Activation STEM Humanities Social Sciences Other Average

FP16 FP16 / FP16 0.369 0.433 0.518 0.525 0.459
FP8 FP8 / FP8 0.214 0.242 0.217 0.238 0.229
MSFP MSFP / MSFP 0.372 0.431 0.523 0.524 0.460

SuFP SuFP / SuFP 0.349 0.403 0.486 0.493 0.430

Evaluation on LLMs. Table 4 shows the performance of SuFP on the LLMs. For comparison,
we use FP16, FP8 and MSFP as baseline. We evaluate the Llama 2 model on MMLU benchmark.
Based on the experimental results, SuFP shows marginal reductions in performance for the Llama 2
model. Despite using the same bit precision, SuFP achieves better performance compared to FP8.

4.3 MEMORY FOOTPRINT
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Figure 5: Memory footprint of MSFP, BSFP and SuFP normalized to MSFP.
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Figure 5 shows the required memory footprint for the weight and activation tensors of models ap-
plied with the quantization techniques of SuFP, MSFP, and BSFP. They are normalized with respect
to MSFP to illustrate the effective reduction in footprint clearly. It is worth noting that BSFP uses
128-bit memory due to the standard byte alignment despite its 127-bit configuration, causing 0.8%
overhead. The detailed methodology for calculating the memory footprint for each data type is pro-
vided in Appendix E. Based on the calculations, SuFP occupies 0.941× of the memory of MSFP
and 0.960× that of BSFP on average. These results confirm that SuFP outperforms other methods
in compression capability.

4.4 HARDWARE EFFICIENCY
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Figure 6: (a) Normalized throughput per area and (b) normalized operations per watt comparison of
SuFP with other baselines. The values are normalized with respect to FP32.

Finally, we compare the hardware efficiency of SuFP with that of other methods. Figure 6 (a) shows
the throughput per area of PEs for various data formats, normalized with the result of FP32. The
SuFP PE demonstrates the highest efficiency, 9.00× compared to FP32 PE. On the other hand, BSFP
shows a lower value due to its use of bit-serial PE. The bit-serial operation in BSFP PE necessitates
16 computations to process the multiplication of a 7-bit BSFP mantissa with a 7-bit MSFP mantissa
using a 2-bit multiplier. In the case of MSFP, while MSFP utilizes a 7-bit multiplier to multiply
mantissa, SuFP employs a 6-bit multiplier, enabling SuFP PE to achieve enhanced throughput-per-
area efficiency. In more detail, SuFP PE is up to 7.20× more efficient than that of state-of-the-art
MSFP and BSFP PE. This clearly demonstrates that SuFP has the most compact hardware structure
compared to other data types.

We also evaluate the performance of SuFP PE in terms of energy efficiency. Figure 6 (b) shows
the comparison results, presenting the number of operations per watt, which is normalized to FP32.
SuFP outperforms FP32 PE by being 17.04× more energy-efficient. Even when compared to the
state-of-the-art MSFP and BSFP, our PE is up to 8.27× more energy-efficient. Furthermore, the
SuFP PE achieves significantly higher accuracy and far superior hardware efficiency despite using
the same number of bits as FP8 PE. Through these results, we can once again demonstrate that SuFP
is not only an accurate quantization method but also hardware-efficient. Additionally, the area and
the power values of various PEs for the two experiments in this section are provided in Appendix F.

5 CONCLUSIONS

This paper introduces Super Floating-Point, designed to tackle the challenges of large and complex
DNNs. SuFP combines multi-region piecewise quantization and tensor-wise scalable bias, optimiz-
ing precision for different data regions. This method captures dense near-zero data and outliers,
adapting to diverse data distributions. The tailored SuFP PE uses only integer units and shifters
for compactness. Experimentally, SuFP not only matches or surpasses FP32 in accuracy but also
enhances computational capability and energy efficiency by 9.00× and 17.04× over FP32. Fur-
thermore, its computational capability and energy efficiency outperform state-of-the-art MSFP and
BSFP by up to 7.20× and up to 8.27×, respectively.
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APPENDIX A QUANTIZATION FLOW FOR SUFP

Algorithm 2: Scalable bias-optimal quantization flow
Input : Model M , Bias searching range [bi, bj ],

Full-precision weight Wfp, Full-precision Activation Afp

Output: Optimal scaling weight bias set bw opt[0 . . . n− 1],
Optimal scaling activation bias set ba opt[0 . . . n− 1]

1 // Optimize weight bias set
2 for layer ← 0 to n− 1 do
3 accuracymax ← 0
4 Wquant[0 . . . layer − 1]← Quant(Wfp[0 . . . layer − 1], bw opt[0 . . . layer − 1])
5 for bias = bi to bj do
6 Wquant[layer]← Quant(Wfp[layer], bias)
7 W ′ ← {Wquant[0 . . . layer],Wfp[layer + 1 . . . n− 1]}
8 accuracy ← Test(M,W ′, Afp)
9 if accuracy > accuracymax then

10 accuracymax ← accuracy
11 bw opt[layer]← bias

12 // Optimize activation bias set
13 for layer ← 0 to n− 1 do
14 accuracymax ← 0
15 Aquant[0 . . . layer − 1]← Quant(Afp[0 . . . layer − 1], ba opt[0 . . . layer − 1])
16 for bias← bi to bj do
17 Aquant[layer]← Quant(Afp[layer], bias)
18 A′ ← {Aquant[0 . . . layer], Afp[layer + 1 . . . n− 1]}
19 accuracy ← Test(M,Wquant, A

′)
20 if accuracy > accuracymax then
21 accuracymax ← accuracy
22 ba opt[layer]← bias

23 return bw opt, ba opt

The scalable bias of SuFP is set as a single value within each layer. In addition, once the bias
is determined, it remains invariant throughout the entire inference process of the model. The bias
determines the quantization range and precision, significantly impacting the overall accuracy. Thus,
employing a proper bias for optimization is extremely important.

In seeking the tensor-wise optimal bias, there are potential risks of slipping into local optimiza-
tion instead of achieving global optimization. Concurrently, individual optimal bias for weight and
activation might not yield the best outcome when computed together.

Based on these insights, we structure our optimization process as described in Algorithm 2. This
process considers (i) interactions among adjacent layers, (ii) cumulative influences across the layers,
and (iii) the synergistic relationship between weight and activation. Additionally, the total time
required for this procedure depends on the target accuracy level, which can dynamically change the
bias searching range.

APPENDIX B EFFECTIVENESS OF MULTI-REGION PIECEWISE
QUANTIZATION

In this section, we discuss the effect of multi-region piecewise quantization applied to SuFP. As
shown in Figure 7, Gaussian distribution can be divided into a dense region in the near-zero range
and a sparse region with rare large values. The dense region contains most of the data and the sparse
region consists of values that significantly impact model accuracy. Therefore, accurately represent-
ing both regions is essential to minimize model performance degradation due to quantization.

In this experiment, we analyze the performance of piecewise quantization in both dense and sparse
regions. The effect depends on the location and number of boundaries that divide regions, which
means when setting the boundaries, it is crucial to accurately ensure the granularity required by
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Figure 7: Real data distribution and piecewise quantization boundaries.
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Figure 8: MSE value comparison of SuFP and other piecewise quantization techniques.

each region to minimize accuracy degradation in the model. Therefore, in this experiment, we set
four boundaries at 10%, 20%, 40%, and 60% for 2-region quantization and measure the mean square
error (MSE) in both dense and sparse regions for each setting. In the 4-region piecewise quantization
experiment, we segmented the data into four distinct regions. This segmentations are determined
by the three boundaries that demonstrated the lowest MSE in the previous 2-region quantization
experiment. The models used in this experiment are Vision Transformer, Stable Diffusion v2 and
Llama 2, and the dense and sparse regions are divided into 99% and 1% of the total data region,
respectively.

To perform in-situ quantization and evaluate the accuracy of quantization process, we set a specific
batch size for each model and obtain the maximum value within a batch to determine a scale factor.
By using the scale factor, quantization is performed independently on each tensor within every
batch. Subsequently, we calculate the MSE between the original and quantized tensors within the
dense regions and the sparse regions.

As shown in Figure 8, achieving low MSE values in both the sparse region and the dense region is
challenging in the case of 2-region piecewise quantization. On the other hand, 4-region quantization
exhibits relatively consistent MSE values but higher in both of the regions. In the case of n-bit
piecewise quantization with N -regions, the data bit-width allocated to each region is fixed to n −
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log2(N)− 1. This means that even if the number of regions is increased to represent the entire data
distribution more finely, the granularity for each region is suboptimal. This issue becomes a hurdle
in accurately representing the entire region including both sparse and dense regions. Consequently,
this inflexible way of allocating bits leads to lower the overall accuracy of the model.

In contrast, SuFP consistently shows the lowest MSE values across all models and data regions.
This is because SuFP ensures optimized granularity for each data region. Specifically, as explained
in Section 3, SuFP uses a variable encoding field and variable data field to represent the data dis-
tribution, allowing for sufficient granularity for the high-granularity-required dense region while
maintaining extensive dynamic range for the sparse region demanding wide coverage. This ap-
proach effectively represents the Gaussian distribution across each region, minimizing degradation
in model performance.

APPENDIX C COMPARATIVE ANALYSIS OF TENSOR-WISE AND
CHANNEL-WISE QUANTIZATION
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Figure 9: Distribution of each channel represented in different colors (bottom) and distribution of
the overall tensor (top)

In this section, we analyze the channel-wise and tensor-wise quantization approaches. Quantization
is commonly applied using a channel-wise approach, as data distribution clustering often occurs
at the channel level. Such technique enables quantization that reflects the data distribution of each
channel, effectively capturing data characteristics. On the other hand, it is anticipated that employing
a tensor-wise approach may not correspond as closely with data characteristics as the channel-wise
method. Nevertheless, this approach offers the advantages of flexible computational direction within
the processing element and reduced memory footprint.

Figure 9 illustrates the data distribution in various models when employing tensor-wise and channel-
wise approaches, showing the distribution for each channel with different colors in the latter case.
Through this figure, we can observe similarities in the data distribution of the entire tensor and
that of each constituent channel. These similarities include comparable patterns of outliers, overall
dynamic ranges, and distribution shapes.

Based on these analyses, we choose the tensor-wise approach. This decision enable us to capture
data characteristics at a similar level to the channel-wise approach, while also achieving advantages
in flexible computational direction and memory usage.
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APPENDIX D ROBUSTNESS OF SUFP TO OUTLIER

In this section, we analyze the impact of outlier increases on quantization within the activation
layers of neural networks. Outliers, often occurring in activation layers, can significantly affect the
quantization process, making them critical for the accuracy of the model. Therefore, it is necessary
to evaluate the robustness of quantization methods to outliers.
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Figure 10: Comparison of Kullback-Leibler divergence for SuFP and MSFP quantization methods
under varying outlier ratio.

In this study, we progressively increased the proportion of outliers in the tensor from 0% to 10%
following a Gaussian distribution and measured the Kullback-Leibler (KL) divergence between orig-
inal tensors and quantized tensors. Figure 10 shows the experimental results for two quantization
methods, SuFP and MSFP. This experiment was repeated 1,000 times to obtain average values.
BSFP was also considered; however, since it utilizes MSFP for activation quantization, it was only
compared with MSFP.

Figure 10 demonstrates that as the proportion of outliers increases, the tensor quantized with SuFP
shows a relatively lower KL divergence than the tensor quantized with MSFP. MSFP, which repre-
sents values using only the mantissa within a block, may incur some information loss when outliers
are present. In contrast, SuFP, employing tensor-wise scalable bias and multi-region piecewise
quantization, effectively represents both outliers and other values. These results indicate that SuFP
is more robust against outliers compared to MSFP.

APPENDIX E CALCULATION METHODS FOR MEMORY FOOTPRINT

The calculation methods for the memory footprint per tensor of SuFP, MSFP, and BSFP are as
follows.

Memory Footprint of SuFP. Both activation and weight tensors are quantized with SuFP. SuFP
quantizes each element into an 8-bit value. Additionally, a single 5-bit bias value per tensor is used.
The overall memory footprint for SuFP is computed as:

E × 8 + 5 (5)

In this equation, E represents the number of elements per tensor.

Memory Footprint of MSFP. We use MSFP16 configuration, which has shown the best accuracy.
This format quantizes each element into an 8-bit value. Additionally, it contains a single 8-bit
shared exponent value per block. The block size of 16 elements is determined based on the best
performance. Quantization is performed for both activations and weights using MSFP. The overall
memory footprint for MSFP is computed as follows:

B × (16× 8 + 8) = B × 136 (6)

B denotes the number of blocks per tensor. Hence, MSFP occupies 136-bit per block.
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Memory Footprint of BSFP. Since activation values are not fetched offline, BSFP cannot quan-
tize them on the fly. Thus, BSFP quantizes only weights, while MSFP handles activations. As
previously described, we select MSFP16 configuration for MSFP. For BSFP, we adapt an optimal
7-bit subword structure (5-bit + 2-bit). Each element comprises two subwords: 5-bit and 2-bit, to-
taling 7-bit. Moreover, BSFP includes 8-bit and 7-bit two scaling factors per block. Like MSFP, a
block consists of 16 elements. The number of bits of BSFP used per tensor is:

B × (16× (5 + 2) + (8 + 7)) = B × 127 (7)

Therefore, BSFP requires 127 bits of memory per block. However, in standard memory architec-
tures, data storage sizes are typically in powers of two. Consequently, when a block quantized by
BSFP is stored in real memory, 1-bit zero padding is added, allowing it to be stored as 128-bit. The
overall memory footprint for BSFP is computed as follows:

B × (16× (5 + 2) + (8 + 7) + 1) = B × 128 (8)

Thus, BSFP essentially occupies 128 bits per block. The overhead incurred from zero padding is
just 0.8%, which is reasonable given the constraints of standard memory architectures. Figure 5
presents the overall results calculated from each data type’s memory footprint. From these results,
it is evident that SuFP has superior memory efficiency.

APPENDIX F IMPLEMENTATION DETAILS OF VARIOUS PES

Table 5: Iso-throughput area and power of SuFP and other baselines.

16x FP32 16x BF16 16x FP8 16x BSFP MSFP SuFP

Area (µm2) 29731.9679 7430.9759 5205.3120 23829.1200 3485.7900 3303.7200
Power (mW ) 19.8528 3.1024 1.5173 9.6144 1.2051 1.1649

In Section 4.4, we conducted experiments to compare the compactness and energy efficiency of
SuFP PE with other PEs. For these experiments, we implement SuFP PE and various baseline
PEs (FP32, BF16, FP8, MSFP, and BSFP) using SystemVerilog and synthesize them using the
Synopsys Design Compiler in 28nm CMOS technology. By using this setup, we measure the area
and power values of the PEs. For a clearer comparison, the results are presented in Table 5 with the
same throughput value for each PEs. To provide further understanding of these results, the detailed
configurations for each PE are described as follows:

• FP32 PE supports full precision FP32 operations, involving multiplication and accumula-
tion operations in FP32 format for precise outcomes.

• BF16 PE and FP8 PE perform multiplication operations in BF16 and FP8 formats, re-
spectively. Additionally, BF16 format accumulator is used in both BF16 PE and FP8 PE to
ensure consistent accuracy.

• MSFP PE, configured with a block size of 16, performs 16 pairs of MSFP multiplication
operations in parallel. MSFP PE also utilizes BF16 accumulator for partial sum calcula-
tions. Additionally, we use the MSFP configuration that achieves the optimal accuracy.

• BSFP PE performs 16 sets of 2-bit multiplications, operating in a bit-serial manner. BSFP
PE also utilizes BF16 accumulator for partial sum calculations. Additionally, we use the
BSFP configuration that achieves the optimal accuracy.

• SuFP PE conducts 16 SuFP multiplication operations in parallel, as shown in Figure 4.
SuFP PE also utilizes BF16 accumulator, similar to the other PEs.

APPENDIX G EXTENSION OF SUFP PE TO SYSTOLIC ARRAY

A systolic array architecture consists of multiple PEs arranged in a 2D array format, allowing par-
allel data processing. This architecture is not only adopted by Google’s TPU (Jouppi et al., 2021)
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Figure 11: Systolic array architecture containing proposed SuFP PEs.

but is also widely utilized across various NPUs such as (Venkataramani et al., 2021; Geva et al.,
2022; Gomes et al., 2022). Our proposed SuFP PE can also seamlessly integrate into the systolic ar-
ray architecture, potentially leading to significant performance enhancements. Figure 11 illustrates
the SuFP PE (on the right) and the systolic array architecture composed of these SuFP PEs (on the
left). The PEs adjacent to the SRAM directly receive the decoded data from the SRAM. Subse-
quently, these PEs use this data for computations and transmit the computed results and input data
to neighboring PEs. Through this process, once-decoded data efficiently propagates among PEs,
thus minimizing the decoding-related overhead in the systolic array.

APPENDIX H ANALYSIS OF SUFP REPRESENTATIONS’ IMPACT ON SUFP PE
BIT UTILIZATION
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Figure 12: Comparison of SuFP representation proportion in weight and activation tensors across
various models.

In this session, we analyze the impact of three different representations of SuFP on bit utilization in
SuFP PE. Each representation has varied mantissa and exponent bit-widths, enabling optimized bit
allocation in both dense and sparse regions. Representation 1 has the largest mantissa bit-width,
while representation 3 has the smallest. These differences also affect the design of SuFP PE ALU.
The bit-width of SuFP PE ALU is set based on representation 1 , which has the largest mantissa
bit-width. Although representation 3 is primarily utilized to effectively represent outliers, it results
in relatively lower bit utilization within SuFP PE.

18



Under review as a conference paper at ICLR 2024

Figure 12 shows the ratio of the three representations when applying SuFP quantization across var-
ious models. As shown in Figure 12, the ratio of representation 3 is noticeably low in all models.
For instance, in EfficientNet-v2, representation 3 accounts for only about 0.004%. In conclusion,
while representation 3 is essential for model accuracy, its low representation ratio indicates a minor
impact on SuFP PE hardware’s bit utilization. Consequently, SuFP demonstrates its effectiveness in
terms of both accuracy and hardware’s bit utilization.

APPENDIX I QUANTIZATION RESULTS ON TEXT-TO-IMAGE GENERATION

(a) Full Precision (b) SuFP

Figure 13: Sample images generated from Stable Diffusion model on COCO dataset with full pre-
cision and our SuFP.

In this section, we provide the results of text-to-image generation using SuFP quantization applied
to full-precision diffusion models. As shown in the figures below, there is almost no difference
between images generated with full-precision and those produced using SuFP quantization.
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