
Pairwise Alignment Improves Graph Domain Adaptation

Shikun Liu 1 Deyu Zou 2 Han Zhao 3 Pan Li 1

Abstract
Graph-based methods, pivotal for label inference
over interconnected objects in many real-world
applications, often encounter generalization chal-
lenges, if the graph used for model training dif-
fers significantly from the graph used for testing.
This work delves into Graph Domain Adaptation
(GDA) to address the unique complexities of dis-
tribution shifts over graph data, where intercon-
nected data points experience shifts in features,
labels, and in particular, connecting patterns. We
propose a novel, theoretically principled method,
Pairwise Alignment (Pair-Align) to counter graph
structure shift by mitigating conditional structure
shift (CSS) and label shift (LS). Pair-Align uses
edge weights to recalibrate the influence among
neighboring nodes to handle CSS and adjusts the
classification loss with label weights to handle LS.
Our method demonstrates superior performance
in real-world applications, including node classi-
fication with region shift in social networks, and
the pileup mitigation task in particle colliding ex-
periments. For the first application, we also curate
the largest dataset by far for GDA studies. Our
method shows strong performance in synthetic
and other existing benchmark datasets. 1

1. Introduction
Graph-based methods are commonly used to enhance label
inference for interconnected objects by utilizing their con-
nection patterns in many real-world applications (Jackson
et al., 2008; Szklarczyk et al., 2019; Shlomi et al., 2020).

1Department of Electrical and Computer Engineering, Georgia
Institute of Technology, Georgia, USA 2School of Data Science,
University of Science and Technology of China, Hefei, China
3Department of Computer Science, University of Illinois Urbana-
Champaign, Champaign, USA. Correspondence to: Shikun Liu
<shikun.liu@gatech.edu>, Pan Li <panli@gatech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Our code and data are available at: https://github.
com/Graph-COM/Pair-Align

Nonetheless, these methods often encounter generalization
challenges, as the objects that lack labels and require infer-
ence may originate from domains that differ significantly
from those with abundant labeled data, thereby exhibiting
distinct interconnecting patterns. For instance, in fraud de-
tection within financial networks, label acquisition may be
constrained to specific network regions due to varying inter-
national legal frameworks and diverse data collection peri-
ods (Wang et al., 2019; Dou et al., 2020). Another example
is particle filtering for Large Hadron Collider (LHC) ex-
periments (Highfield, 2008), where reliance on simulation-
derived labeled data poses a challenge. These simulations
may not accurately capture the nuances of real-world exper-
imental conditions, potentially leading to discrepancies in
label inference performance when applied to actual experi-
ment scenarios (Li et al., 2022b; Komiske et al., 2017).

Graph Neural Networks (GNNs) have recently demonstrated
remarkable effectiveness in utilizing object interconnections
for label inference tasks (Kipf & Welling, 2016; Hamilton
et al., 2017; Veličković et al., 2018). However, their effec-
tiveness is often hampered by the vulnerability to variations
in data distribution (Ji et al., 2023; Ding et al., 2021; Koh
et al., 2021). This has sparked significant interest in devel-
oping GNNs capable of generalization from one domain
(source domain S) to another, potentially different domain
(target domain T). This field of study, known as graph
domain adaptation (GDA), is gaining increasing attention.
GDA distinguishes itself from the traditional domain adap-
tation setting, primarily because the data points in GDA are
interlinked rather than independent. This non-IID nature of
graph data renders traditional domain adaptation techniques
suboptimal when applied to graphs. The distribution shifts
in features, labels, and connecting patterns between objects
may significantly impact the adaptation/generalization accu-
racy. Despite the recent progress made in GDA (Wu et al.,
2020; You et al., 2023; Zhu et al., 2021; Liu et al., 2023),
current solutions still struggle to tackle the various shifts
prevalent in real-world graph data. We provide a detailed
discussion of the limitations of existing GDA methods in
Section 2.2.

This work conducts a systematic study of the distinct chal-
lenges present in GDA and proposes a novel method, named
Pairwise Alignment (Pair-Align) to tackle graph structure
shift for node prediction tasks. Combined with feature align-

1

https://github.com/Graph-COM/Pair-Align
https://github.com/Graph-COM/Pair-Align

Pairwise Alignment Improves Graph Domain Adaptation

Citation Dataset

8

53534

4

138228448

27

...

0
323

0

44462

1

...

... ...
Structure Shift

+

Label Shift (LS)

HEP: OC vs.LC portion is
larger in compared to
Citation:

vs.

...
Conditional Structure Shift (CSS)

Citation:

 -

...

HEP:

 -

Neighboring connections
vary given the same

center node label

In OC particles'
neighorhood, the

OC:LC ratio is larger
in compared to

...

HEP Dataset

particles
to infer

(unknow)

Figure 1. We illustrate structure shifts in real-world datasets: a)
The HEP dataset in pileup mitigation tasks (Bertolini et al., 2014)
has a shift in PU levels (change in the number of other collisions
(OC) around the leading collision (LC) for proton-proton collision
events), where GS is in PU30 and GT is in PU10; Here, in the
green circles, the center nodes in grey are the particles whose labels
are to be inferred. They have different ground-truth labels but the
same neighborhood that includes one OC and one LC particle.b)
The citation MAG dataset shifts in regions, where the source graph
contains papers in the US and the target graph contains papers in
German. More statistics on graph distribution shift from real-world
examples can be found in Appendix E.5.

ment methods offered by traditional non-graph DA tech-
niques (Ganin et al., 2016; Tachet des Combes et al., 2020),
Pair-Align can in principle address a wide range of distribu-
tion shifts in graph data.

Our analysis begins with examining a graph with its adja-
cency matrix A and node labels Y. We observe that graph
structure shift (PS(A,Y) ̸= PT (A,Y)) typically mani-
fests as either conditional structure shift (CSS) or label shift
(LS), or a combination of both. CSS refers to the change in
neighboring connections among nodes within the same class
(PS(A|Y) ̸= PT (A|Y)) whereas LS denotes changes in
the class distribution of nodes (PS(Y) ̸= PT (Y)). These
shifts are illustrated in Fig. 1 via examples in HEP and so-
cial networks, and are justified by statistics from several
real-world applications.

In light of the two types of shifts, the Pair-Align method
aims to estimate and subsequently mitigate the distribu-
tion shift in the neighboring nodes’ representations for any
given node class c. To achieve this, Pair-Align employs a
bootstrapping technique to recalibrate the influence of neigh-
boring nodes in the message aggregation phase of GNNs.
This strategic reweighting is key to effectively countering
CSS. Concurrently, Pair-Align calculates label weights to
alleviate disparities in the label distribution between source
and target domains (addressing LS) by adjusting the classi-
fication loss. Pair-Align is depicted in Figure 2.

To demonstrate the effectiveness of our pipeline, we curate
the regional MAG data that partitions large citation networks
according to the regions where papers got published (Hu
et al., 2020; Wang et al., 2020) to simulate the region shift.
To the best of our knowledge, this is the largest dataset (of≈
380k nodes, 1.35M edges) to study GDA with data retrieved
from the real-world database. We also include other graph
data with shifts, like the pileup mitigation task studied in Liu
et al. (2023). Our method shows strong performance in these
two applications. Moreover, our method also outperforms
baselines significantly in synthetic datasets and other real-
world benchmark datasets.

2. Preliminaries and Related Works
2.1. Notation and The Problem Setup

We use capital letters, e.g., Y to denote scalar random vari-
ables, and lower-case letters, e.g., y to denote their realiza-
tions. The bold counterparts are used for their vector-valued
correspondences, e.g., Y,y, and the calligraphic letters,
e.g. Y , are for the value spaces. We always use capital let-
ters to denote matrices. Let P denote a distribution, whose
subscript U ∈ {S, T } indicates the domain it depicts, e.g.
PS(Y). The probability of a realization, e.g. Y = y, can
then be denoted as PS(Y = y).

Graph Neural Networks (GNNs). We use G = (V, E ,x)
to denote a graph with the node set V , the edge set E and
node features x = [· · ·xu · · ·]u∈V . We focus on undi-
rected graphs where the graph structure can also be rep-
resented as a symmetric adjacency matrix A where the
entries Auv = Avu = 1 when nodes u, v form an edge and
otherwise 0. GNNs take A and x as input and output node
representations {hu,∀u ∈ V}. The standard GNNs (Hamil-
ton et al., 2017) has a message-passing procedure. Specif-
ically, with h

(1)
u = xu, for each node v and each layer

k ∈ [L] := {1, . . . , L},

h(k+1)
u = UPT (h(k)

u ,AGG ({{h(k)
v : v ∈ Nu}})), (1)

where Nv denotes the set of neighbors of node v and {{·}}
denotes a multiset. The AGG function aggregates messages
from the neighbors, and the UPT function updates the node
representations. The last-layer node representation h

(L)
u is

used to predict the label yu ∈ Y in node classification tasks.

Domain Adaptation (DA). In DA, each domain U ∈
{S, T} has its own joint feature and label distribution
PU (X,Y). In the unsupervised setting, we have access
to labeled source data {(xi, yi)}Ni=1 and unlabeled target
data {(xi)}Mi=1 IID sampled from the source and target do-
main respectively. The model comprises a feature encoder
ϕ : X → H and a classifier g : H → Y , with classification
error in domain U denoted as εU (g ◦ ϕ) = PU (g(ϕ(X)) ̸=
Y). The objective is to train the model with available data to

2

Pairwise Alignment Improves Graph Domain Adaptation

1). Weight edges by

2).Training
GNN encoder
and Classifier

3). Optimize

(message from
class 0 node)

3). Optimize

Weight the
classification loss

11

1 0

00
0

11

0

00
0

0

(message from
class 1 node)

to match

Figure 2. The pipeline contains modules in handling CSS with edge weights γ and handling LS with label weights β

minimize target error εT (g◦ϕ) when predicting target labels.
A popular DA strategy is to learn domain-invariant represen-
tation, ensuring similar PS(H) and PT (H) and minimizing
the source error εS(g ◦ ϕ) to retain classification capabil-
ity simultaneously (Zhao et al., 2019). This is achieved
through regularization of distance measures (Long et al.,
2015; Zellinger et al., 2016) or adversarial training (Ganin
et al., 2016; Tzeng et al., 2017; Zhao et al., 2018).

Graph Domain Adaptation (GDA). When extending un-
supervised DA to the graph-structured data, we are given a
source graph GS = (VS , ES ,xS) with node labels yS and a
target graph GT = (VT , ET ,xT). The specific distribution
and shifts in graph-structured data will be defined in Sec.3.
The objective is similar to DA as to minimize the target
error, but with the encoder ϕ switched to a GNN to predict
node labels yT in the target graph.

2.2. Related Works and Existing Gaps

GDA research falls into two main categories, aiming at ad-
dressing domain adaptation for node and graph classification
tasks respectively. Often, graph-level GDA problems can
view each graph as an independent sample, allowing exten-
sion of previous non-graph DA techniques to graphs, such
as causal inference (Rojas-Carulla et al., 2018; Peters et al.,
2017) (more are reviewed in Appendix D). Conversely, node-
level GDA presents challenges due to the interconnected
nodes. Previous works mainly leveraged node representa-
tions as intermediaries to address these challenges.

The dominant idea of existing work on node-level GDA
focused on aligning the marginal distributions of node repre-
sentations, mostly over the last layer h(L), across two graphs
inspired by the domain invariant learning in DA (Liao et al.,
2021). Some of them adopted adversarial training, such
as (Dai et al., 2022; Zhang et al., 2019; Shen et al., 2020a).
UDAGCN (Wu et al., 2020) calculated the point-wise mu-
tual information and inter-graph attention to exploit local
and global consistency on top of the adversarial training.
Other works were motivated by regularizing different dis-
tance measures. Zhu et al. (2021) regularized over the cen-
tral moment discrepancy (Zellinger et al., 2016). You et al.
(2023) minimized the Wasserstein-1 distance between the
distributions of node representations and controlled GNN
Lipschitz via regularizing graph spectral properties. Wu
et al. (2023) introduced graph subtree discrepancy inspired

by the WL subtree kernel (Shervashidze et al., 2011) and
suggested regularizing node representations after each layer
of GNNs. Furthermore, Zhu et al. (2022; 2023) recognized
that there could also be a shift in the label distribution, so
they proposed to align the distribution of label/pseudo-label
in addition to the marginal node representation.

Nonetheless, the marginal alignment methods above are
inadequate when dealing with the structure shift consist-
ing of CSS and LS. Firstly, these methods are flawed un-
der LS. Based on PU (H

(L)) =
∑

Y PU (H
(L)|Y)PU (Y),

even if the marginal alignment PS(H
(L)) = PT (H

(L)) is
achieved, the conditional node representations will still mis-
match PS(H

(L)|Y) ̸= PT (H
(L)|Y) under the LS, which

induces more prediction error (Zhao et al., 2019; Tachet des
Combes et al., 2020). Secondly, they are suboptimal under
CSS. In particular, consider the HEP example in Fig. 1 (the
particles in the two green circles) where CSS may yield
the case that the label of the center particle (node) shifts,
albeit with an unchanged neighborhood distribution. In this
case, methods using a shared GNN encoder for marginal
alignment definitely fail to make the correct prediction.

Liu et al. (2023) have recently analyzed this issue by using
an example based on contextual stochastic block model
(CSBM) (Deshpande et al., 2018) (defined in Appendix A).

Proposition 2.1. (Liu et al., 2023) Suppose the source and
target graphs are generated from the CSBM model of n
nodes with the same label distributions and node feature
distributions. The edge connection probabilities are set to
present a conditional structure shift PS(A|Y) ̸= PT (A|Y)
and showcase the example that the ground truth label of the
center node changes given the same neighborhood distribu-
tion. Then, suppose a GNN encoder ϕ is shared across two
domains, the target classification error εT (g ◦ ϕ) can be
lower bounded by 0.25, where g is the classifier. However,
the GNN encoder ϕ, if allowed to be adjusted according to
the domains, can achieve εT (g ◦ ϕ)→ 0 as n→∞.

To tackle this issue, Liu et al. (2023) proposed the StruRW
method to reweight edges in the source graph based on
weights derived from the CSBM model. However, StruRW
still suffers from many issues. We will provide a more
detailed comparison with StruRW in Sec. 3.6. To the best
of our knowledge, our method is the first effort to address
both CSS and LS in a principled way.

3

Pairwise Alignment Improves Graph Domain Adaptation

3. Pairwise Alignment for Structure Shift
We first define shifts in graphs as feature shift and structure
shift, the latter includes both the Conditional Structure Shift
(CSS) and the Label Shift (LS). Then, we analyze the ob-
jective of solving structure shift and propose our pairwise
alignment algorithm that handles both CSS and LS.

3.1. Distribution Shifts in Graph-structured Data

Sec. 2.2 shows the sub-optimality of enforcing marginal
node representation alignment under structure shifts.
In fact, the necessity of conditional distribution align-
ment PS(H|Y) = PT (H|Y) to deal with feature shift
PS(X|Y) ̸= PT (X|Y) has been explored in non-graph
scenarios, where X denotes a feature vector and H is the
representation after X passes through the encoder, i.e.,
H = ϕ(X). Early efforts such as Zhang et al. (2013); Gong
et al. (2016) assumed that the shift in conditional representa-
tions from domain S to domain T follows a linear transfor-
mation and optimized conditional alignment by introducing
an extra linear transformation to the source domain encoder
to enhance conditional alignment PS(H|Y) = PT (H|Y).
Subsequent works learned the representations with adver-
sarial training to enforce conditional alignment by aligning
the joint distribution over the label predictions and repre-
sentations (Long et al., 2018; Cicek & Soatto, 2019). Later,
some works additionally considered label shift (Tachet des
Combes et al., 2020; Liu et al., 2021) and proposed to match
the label weighted Plw

S (H) with PT (H) with label weights
estimated following Lipton et al. (2018).

In light of the limitations of existing works and the effort
in non-graph DA research, it becomes clear that marginal
alignment of node representations is insufficient for GDA,
which underscores the importance of achieving conditional
node representation alignment.

To address various distribution shifts for GDA in principle,
we first decouple the potential distribution shifts in graph
data by defining feature shift and structure shift in terms of
conditional distributions and label distributions. Our data
generation process can be characterized by the following
model: X ← Y → A, where labels are drawn at each
node first, and then edges as well as features at each node
are generated. Under this model, we define the following
feature shift, which denotes the change of the conditional
feature generation process given the labels.

Definition 3.1 (Feature Shift). Assume the node features
xu, u ∈ V are IID sampled from P(X|Y) given node labels
yu. Therefore, the conditional distribution of x|y, P(X =
x|Y = y) =

∏
u∈V P(X = xu|Y = yu). The feature shift

is then defined as PS(X|Y) ̸= PT (X|Y).

Definition 3.2 (Structure Shift). Given the joint distribution
of the adjacency matrix and node labels P(A,Y). The

Structure Shift is defined as PS(A,Y) ̸= PT (A,Y). With
decomposition as PU (A,Y) = PU (A|Y)PU (Y), it results
in Conditional Structure Shift (CSS) and Label Shift (LS):

• CSS: PS(A|Y) ̸= PT (A|Y)
• LS: PS(Y) ̸= PT (Y)

As shown in Fig. 1, structure shift consisting of CSS and LS
widely exists in real-world applications. Feature shift here,
which is equivalent to the conditional feature shift in non-
graph literature, can be addressed by adapting conventional
conditional shift methods. So, later, we assume that feature
shift has been addressed, i.e., PS(X|Y) = PT (X|Y).

In contrast, structure shift is unique to graph data due to the
non-IID nature caused by node interconnections. Moreover,
the learning of node representations is intrinsically linked
to the graph structure as the GNN encoder takes A as input.
Therefore, even if after one layer of GNN, PS(H

(k)|Y) =
PT (H

(k)|Y) is achieved, CSS could still lead to misalign-
ment of conditional node representation distributions in the
next layer PS(H

(k+1)|Y) ̸= PT (H
(k+1)|Y). Accordingly,

a tailored algorithm is needed to remove this effect of CSS,
which, when combined with techniques for LS, can effec-
tively resolve the structure shift.

3.2. Addressing Conditional Structure Shift

To remove the effect of CSS under GNN, the objective
is to guarantee PS(H

(k+1)|Y) = PT (H
(k+1)|Y) given

PS(H
(k)|Y) = PT (H

(k)|Y). Considering one layer
of GNN encoding in Eq. (1): given PS(H

(k)|Y) =
PT (H

(k)|Y) , the mismatch in k + 1 layer may arise from
the distribution shift of the neighboring multiset {{h(k)

v :
v ∈ Nu}} given the center node label yu. Therefore, the key
is to transform the neighboring multisets in the source graph
to achieve conditional alignment with the target domain
regarding the distributions of such neighboring multisets.
Our approach first starts with a sufficient condition for such
conditional alignment.

Theorem 3.3 (Sufficient conditions for addressing CSS).
Given the following assumptions

• (Conditional Alignment in the previous layer k)
PS(H

(k)|Y) = PT (H
(k)|Y) and ∀u ∈ VU , given Y =

yu, h(k)
u is independently sampled from PU (H

(k)|Y).
• (Edge Conditional Independence) Given node labels y,

edges mutually independently exist in the graph.

if there exists a transformation that modifies the neigh-
borhood of node u: Nu → Ñu,∀u ∈ VS , such that
PS(|Ñu||Yu = i) = PT (|Nu||Yu = i) and PS(Yv|Yu =
i, v ∈ Ñu) = PT (Yv|Yu = i, v ∈ Nu), ∀i ∈ Y , then
PS(H

(k+1)|Y) = PT (H
(k+1)|Y) is satisfied.

Remark 3.4. The assumption edge conditional indepen-
dence essentially assumes an SBM model for the graph

4

Pairwise Alignment Improves Graph Domain Adaptation

structure, which is widely adopted for graph learning algo-
rithm analysis (Liu et al., 2023; Wei et al., 2022).
This theorem reveals that it suffices to align two distribu-
tions with the multiset transformation on the source graph:
1) the distribution of the degree/cardinality of the neigh-
bors PU (|Nu||Yu) and 2) the node label distribution in the
neighborhood PU (Yv|Yu, v ∈ Nu), both conditioned on the
center node label Yu.

Multiset Alignment. Bootstrapping the elements in the
multisets can be used to align the two distributions. In
the context of GNNs, which typically employ sum/mean
pooling functions to aggregate the multisets, such a boot-
strapping process can be translated into assigning weights
to different neighboring nodes given their labels and the
center node’s label. Moreover, practically, mean pooling
is often the preferred choice due to its superior empirical
performance, which is also observed in our experiments.
Aligning the distributions of the node degrees PU (|Nu||Yu)
yields negligible impact with mean pooling (Xu et al., 2018).
Therefore, our method focuses on aligning the distribution
PU (Yv|Yu, v ∈ Nu), in which the edge weights are the
ratios of such probabilities across two domains:
Definition 3.5. Assume PS(Yv = j|Yu = i, v ∈ Nu) >
0,∀i, j ∈ Y , we define γ ∈ R|Y|×|Y| as:

[γ]i,j =
PT (Yv = j|Yu = i, v ∈ Nu)

PS(Yv = j|Yu = i, v ∈ Nu)
,∀i, j ∈ Y

where [γ]i,j is the density ratio between the target and
source graphs from class-i nodes to class-j nodes. Note
that [γ]i,j ̸= [γ]j,i. To differentiate the encoding with and
without the adjusted edge weights for the source and target
graphs, we denote the operation that first adjusts the edge
weights γ and then apply GNN encoding as ϕγ while the
one that directly applies GNN encoding as ϕ. By assuming
the conditions made in Thm 3.3 and applying them in an iter-
ative manner for each layer of GNN, the last-layer alignment
PS(H

(L)|Y) = PT (H
(L)|Y) can be achieved with h

(L)
S =

ϕγ(xS ,AS) and h
(L)
T = ϕ(xT ,AT). Note that based on

conditional alignment in the distribution of randomly sam-
pled node representations PS(H

(L)|Y) = PT (H
(L)|Y)

and under the conditions in Thm 3.3, PS(H
(L)|Y) =

PT (H
(L)|Y) can also be achieved in the matrix form.

γ Estimation. Till now we explain why edge reweighting
using γ can address CSS for GNN encoding, we will de-
tail our pairwise alignment method to obtain γ next. By
definition, γ can be decomposed into another two weights.
Definition 3.6. Assume PS(Yu = i, Yv = j|euv ∈ ES) >
0,∀i, j ∈ Y , we define w ∈ R|Y|×|Y| and α ∈ R|Y|×1 as:

[w]i,j =
PT (Yu = i, Yv = j|euv ∈ ET)
PS(Yu = i, Yv = j|euv ∈ ES)

,

[α]i =
PT (Yu = i|euv ∈ ET)
PS(Yu = i|euv ∈ ES)

,∀i, j ∈ Y

and γ can be estimated via

γ = diag(α)−1w (2)

For domain U , PU (Yu, Yv|euv ∈ EU) is the joint distri-
bution of the label pairs of two nodes that form an edge,
which can be computed for domain S but not for domain
T . PU (Yu|euv ∈ EU) can be obtained by marginalizing
PU (Yu, Yv|euv ∈ EU) over Yv, as PU (Yu = i|euv ∈ EU) =∑

j∈Y PU (Yu = i, Yv = j|euv ∈ EU). Also, it is crucial
to differentiate PU (Yu|euv ∈ EU) from PU (Y): the former
is the label distribution of the end node conditioned on an
edge, while the latter is the label distribution of nodes with-
out conditions. Given w and two distributions computed
over the source graph, α can be derived via

[α]i =

∑
j∈Y([w]i,jPS(Yu = i, Yv = j|euv ∈ ES))

PS(Yu = i|euv ∈ ES)
, (3)

so next, we proceed to estimate w to complete γ calculation.

Pair-wise Alignment. Note that if (Yu, Yv) is viewed as a
type for edge euv, PU (Yu, Yv|euv ∈ EU) essentially repre-
sents an edge-type distribution. In practice, we use pair-wise
pseudo-label distribution alignment to estimate w.

Definition 3.7. Let Σ ∈ R|Y|2×|Y|2 denote the matrix that
stands for the joint distribution of the predicted types of
edges and the true types of edges, and ν ∈ R|Y|2×1 denote
the distribution of the predicted types of edges for the target
domain, ∀i, j, i′, j′ ∈ Y

[Σ]ij,i′j′ = PS(Ŷu = i, Ŷv = j, Yu = i′, Yv = j′|euv ∈ ES)
[ν]ij = PT (Ŷu = i, Ŷv = j|euv ∈ ET)

Specifically, similar to Tachet des Combes et al. (2020,
Lemma 3.2), Lemma 3.8 shows that w can be obtained
by solving the linear system ν = Σw if PS(H

(L)|Y) =
PT (H

(L)|Y) is satisfied.
Lemma 3.8. If PS(H

(L)|Y) = PT (H
(L)|Y) is satisfied,

and node representations are conditionally independent of
graph structures given node labels, then ν = Σw.

Empirically, we estimate Σ̂ and ν̂ based on the classifier g,
where g(h(L)

u) denotes the soft label of node u. Specifically,

[Σ̂]ij,i′j′ =
1

|ES |
∑

euv∈ES ,yu=i′,yv=j′

[g(h(L)
u)]i × [g(h(L)

v)]j

[ν̂]ij =
1

|ET |
∑

eu′v′∈ET

[g(h
(L)
u′)]i × [g(h

(L)
v′)]j .

Then, w can be solved via:

min
w

∥Σ̂w − ν̂∥2, s.t. w ≥ 0, and (4)∑
i,j

[w]i,jPS(Yu = i, Yv = j|euv ∈ ES) = 1,

5

Pairwise Alignment Improves Graph Domain Adaptation

where the constraints guarantee a valid target edge type
distribution PT (Yu, Yv|euv ∈ ET). For undirected graphs,
w can be symmetric, so we may add an extra constraint
[w]i,j = [w]j,i. Finally, we calculate α following Eq. (3)
with the obtained w and compute γ via Eq. (2). Note that
in Appendix 3.5, we will discuss how to improve the robust-
ness of the estimations of w and γ.

In summary, handling CSS is an iterative process where
we begin by employing an estimated γ as edge weights on
the source graph to reduce the gap between PS(H

(L)|Y)
and PT (H

(L)|Y) due to Thm 3.3. With a reduced gap, we
can estimate w more accurately (due to Lemma 3.8) and
thus improve the estimation of γ. Through iterative refine-
ment, γ progressively enhances the conditional alignment
PS(H

(L)|Y) = PT (H
(L)|Y) to address CSS.

3.3. Addressing Label Shift

Inspired by the techniques in Lipton et al. (2018); Aziz-
zadenesheli et al. (2018), we estimate the ratio between the
source and target label distribution by aligning the node-
level pseudo-label distribution to address LS.
Definition 3.9. Assume PS(Yu = i) > 0,∀i ∈ Y , we
define β ∈ R|Y|×1 as the weights of the source and target
label distribution: [β]i =

PT (Y=i)
PS(Y=i) ,∀i ∈ Y .

Definition 3.10. Let C ∈ R|Y|×|Y| denote the confusion
matrix of the classifier for the source domain, and µ ∈
R|Y|×1 denote the distribution of the label predictions for
the target domain, ∀i, i′ ∈ Y

[C]i,i′ = PS(Ŷ = i, Y = i′), [µ]i = PT (Ŷ = i)

The key insight is similar to the estimation of w, when
PS(H

(L)|Y) = PT (H
(L)|Y) is satisfied, β can be esti-

mated by solving a linear system µ = Cβ,
Lemma 3.11. If PS(H

(L)|Y) = PT (H
(L)|Y) is satisfied,

and node representations are conditionally independent of
each other given the node labels, then µ = Cβ.

Empirically, with Ĉ and µ̂ can be estimated as

[Ĉ]i,i′ =
1

|VS |
∑

u∈VS ,yu=i′

[g(h(L)
u)]i

[µ̂]i =
1

|VT |
∑

u′∈VT

[g(h
(L)
u′)]i

β can be solved with a least square problem with the con-
straints to guarantee a valid target label distribution PT (Y).

min
β
∥Ĉβ − µ̂∥2, s.t. β ≥ 0,

∑
i

[β]iPS(Y = i) = 1 (5)

We use β to weight the classification loss to handle LS.
Combined with the previous module that uses γ to solve for
CSS, our algorithm completely addresses the structure shift.

Algorithm 1 Pairwise Alignment
1: Input The source graph GS with node labels YS ; The

target graph GT ; A GNN ϕ and a classifier g; The total
epoch number n, the epoch period t for weight update.

2: Initialize w,γ,β = 1,
3: while epoch < n or not converged do
4: Add edge weights to GS according to γ
5: Get ŶS = g(ϕγ(xS ,AS)) in the source domain
6: Update ϕ and g as minϕ,g Lβ

C(ŶS ,YS) Eq. (6)
7: if epoch ≡ 0 (mod t) then
8: Get ŶS and ŶT = g(ϕ(xT ,AT))

9: Update the estimation of Σ̂, ν̂, Ĉ, µ̂
10: Optimize for w Eq.(4) and calculate for γ Eq.(2)
11: Optimize for β following Eq.(5)
12: end if
13: end while

3.4. Algorithm Overview

Now, we are able to put everything together. The entire
algorithm is shown in Alg. 1. At the start of each epoch,
the estimated γ are used as edge weights in the source
graph (line 4). Then, GNN ϕγ paired with γ yields node
representations that further pass through the classifier g to
get soft labels Ŷ (line 5). The model is trained via the loss
Lβ
C , i.e., a β-weighted cross-entropy loss (line 6):

Lβ
C =

1

|VS |
∑
v∈VS

[β]yvcross-entropy(yv, ŷv) (6)

Then, with every t epoch, update the estimations of w, γ,
and β for the next epoch (lines 7-10).

3.5. Robust Estimation of γ,w,β

To improve robustness of the estimation, we incorporate L2
regularization into the least square optimization for w and
β. Typically, node classification tends to have imperfect ac-
curacy and results in similar prediction probabilities across
classes. This may lead to ill-conditioned Σ̂ and Ĉ in Eq.(4)
and (5), respectively. Specifically, Eq.(4) and (5) can be
revised as

min
w
∥Σ̂w − ν̂∥2 + λ∥w − 1∥2, (7)

s.t. w ≥ 0,
∑
i,j

[w]i,jPS(Yu = i, Yv = j|euv ∈ ES) = 1

min
β
∥Ĉβ − µ̂∥2 + λ∥β − 1∥2 (8)

s.t. β ≥ 0,
∑
i

[β]iPS(Y = i) = 1.

where the added L2 regularization will push estimated w
and β close to 1. In practice, we find this regularization

6

Pairwise Alignment Improves Graph Domain Adaptation

to be important in the early training stage and can guide a
better weight estimation in the later stage.

We also introduce a regularization strategy to improve the
robustness of γ. This is to deal with the variance in edge
formation that may affect PU (Yv|Yu, v ∈ Nu) in γ calcula-
tion.

Take a specific example to demonstrate the idea of regulariz-
ing γ. Suppose node labels are binary and suppose we count
the numbers of edges of different types in the source graph
and obtain P̂S(Yu = 0, Yv = 0|euv ∈ ES) = 0.001 and
P̂S(Yu = 0, Yv = 1|euv ∈ ES) = 0.0005. Then without
any regularization, based on the estimated edge-type dis-
tributions, we obtain P̂S(Yv = 0|Yu = 0, v ∈ Nu) = 2/3

and P̂S(Yv = 0|Yu = 0, v ∈ Nu) = 1/3. However,
the estimation P̂S(Yu = i, Yv = j|euv ∈ ES) may be
inaccurate when its value is close to 0. Because in this
case, the number of edges of the corresponding type (i, j)
is too small in the graph. These edges may be formed
based on randomness. Conversely, larger observed val-
ues like P̂S(Yu = 0, Yv = 0|euv ∈ ES) = 0.2 and
P̂S(Yu = 0, Yv = 1|euv ∈ ES) = 0.1 are often more reli-
able. To address the issue, we may introduce a regularization
term δ when using w to compute γ. We compute w′ =
P̂T (Yu=i,Yv=j|euv∈ES)+δ

P̂S(Yu=i,Yv=j|euv∈ES)+δ
=

[w]ij P̂S(Yu=i,Yv=j|euv∈ES)+δ

P̂S(Yu=i,Yv=j|euv∈ES)+δ
,

and replace w with w′ when computing γ.

3.6. Comparison to StruRW (Liu et al., 2023)

The edge weights estimation in StruRW and Pair-Align
differ in two major points. First, StruRW computes edge
weights as the ratio of the source and target edge connection
probabilities. This by definition, if using our notations,
corresponds to w instead of γ and ignores the effect of
α. However, Thm 3.3 shows that using γ is the key to
reduce CSS. Second, even for the estimation of w, StruRW
suffers from inaccurate estimation. In our notation, StruRW
simply assumes that PS(Ŷ = i|Y = i) = 1,∀i ∈ Y , i.e.,
perfect training in the source domain and uses hard pseudo-
labels in the target domain to estimate w. In contrast, our
optimization to obtain w is more stable. Moreover, StruRW
ignores the effect of LS entirely. From this perspective,
StruRW can be understood as a special case of Pair-Align
under the assumption of no LS and perfect prediction in the
target graph. Furthermore, our work is the first to rigorously
formulate the idea of conditional alignment in graphs.

4. Experiments
We evaluate three variants of Pair-Align to understand how
its different components deal with the distribution shift on
synthetic datasets and 5 real-world datasets. These variants
include PA-CSS with only γ as source graph edge weights

to address CSS, PA-LS with only β as label weights to
address LS, and PA-BOTH that combines both. We next
briefly introduce datasets and settings while leaving more
details in Appendix E.

4.1. Datasets and Experimental Settings

Synthetic Data. CSBMs (see the definition in Appendix A)
are used to generate the source and target graphs with three
node classes. We explore four scenarios in structure shift
without feature shift, where the first three explore CSS with
shifts in the conditional neighboring node’s label distribu-
tion (class ratio), shifts in the conditional node’s degree
distribution (degree), and shifts in both. Considering these
three types of shift is inspired by the argument in Thm 3.3.
The fourth setting examines CSS and LS jointly. In addition,
we consider two degrees of shift under each scenario with
the left column being the smaller shift as shown in Table 3.
The detailed configurations of the CSBM regarding edge
probabilities and node features are in Appendix E.2.

MAG We extract paper nodes and their citation links from
the original MAG (Hu et al., 2020; Wang et al., 2020). Pa-
pers are split into separate graphs based on their countries
of publication determined by their corresponding authors.
The task is to classify the publication venue of the papers.
Our experiments study generation across the top 6 countries
with the most number of papers (in total 377k nodes, 1.35M
edges). We train models on the graphs from US/China and
test them on the graphs from the rest countries.

Pileup Mitigation (Liu et al., 2023) is a dataset of a de-
noising task in HEP named pileup mitigation (Bertolini
et al., 2014). Proton-proton collisions produce particles
with leading collisions (LC) and nearby bunch crossings
as other collisions (OC). The task is to identify whether a
particle is from LC or OC. Nodes are particles and particles
are connected if they are close in the η-ϕ space. We study
two distribution shifts: the shift of pile-up (PU) conditions
(mostly structure shift), where PUk indicates the averaged
number of other collisions in the beam is k, and the shift in
the data generating process (primarily feature shift).

Arxiv (Hu et al., 2020) is a citation network of Arxiv papers
to classify papers’ subject areas. We study the shift in time
by using papers published in earlier periods to train and test
on papers published later. Specifically, we traine on papers
published from 1950 to 2007/ 2009/ 2011 and test on paper
published between 2014 to 2016 and 2016 to 2018.

DBLP and ACM (Tang et al., 2008; Wu et al., 2020) are
two paper citation networks obtained from DBLP and ACM.
Nodes are papers and edges represent citations between
papers. The goal is to predict the research topic of a paper.
We train the GNN on one network and test it on the other.

Baselines DANN (Ganin et al., 2016) and IWDAN (Ta-

7

Pairwise Alignment Improves Graph Domain Adaptation

Table 1. Performance on MAG datasets (accuracy scores). The bold font and underline indicate the best model and baseline respectively

DOMAINS US → CN US → DE US → JP US → RU US → FR CN → US CN → DE CN → JP CN → RU CN → FR

ERM 26.92± 1.08 26.37± 1.16 37.63± 0.36 21.71± 0.38 20.11± 0.34 31.47± 1.25 13.29± 0.36 22.15± 0.89 10.92± 0.82 10.86± 1.04
DANN 24.20± 1.19 26.29± 1.44 37.92± 0.25 21.76± 1.58 20.71± 0.29 30.23± 0.99 13.46± 0.40 21.48± 1.26 11.94± 1.90 10.65± 0.53
IWDAN 23.39± 0.93 25.97± 0.41 34.98± 0.68 22.80± 3.03 21.75± 0.81 31.72± 1.24 13.39± 1.06 19.86± 1.21 10.93± 1.33 11.64± 4.56
UDAGCN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
STRURW 31.58± 3.10 30.03± 2.23 37.20± 0.27 28.97± 2.98 22.73± 1.73 37.08± 1.09 19.93± 1.82 29.76± 2.56 17.94± 9.82 15.81± 3.76
SPECREG 23.74± 1.32 26.68± 1.44 37.68± 0.25 21.47± 0.84 20.91± 0.53 26.52± 1.75 13.76± 0.65 20.50± 0.08 10.50± 0.53 10.45± 1.16

PA-CSS 37.93± 1.65 38.49± 2.66 47.38± 0.61 35.07± 10.2 28.64± 0.08 43.28± 0.16 25.91± 2.70 37.42± 5.64 32.05± 0.81 22.83± 2.46
PA-LS 27.00± 0.50 26.89± 0.90 38.96± 0.94 21.42± 0.91 20.63± 0.45 31.21± 1.45 15.02± 1.04 23.22± 0.57 11.44± 0.57 11.16± 0.56
PA-BOTH 40.06± 0.99 38.85± 4.71 47.43± 1.82 37.07± 5.28 25.21± 3.79 45.16± 0.50 26.19± 1.01 38.26± 2.27 33.34± 1.94 24.16± 1.13

Table 2. Performance on Pileup datasets (f1 scores). The bold font and underline indicate the best model and baseline respectively
PILEUP CONDITIONS PHYSICAL PROCESSES

DOMAINS PU10 → 30 PU30 → 10 PU10 → 50 PU50 → 10 PU30 → 140 PU140 → 30 gg → qq qq → gg

ERM 48.17± 3.87 64.17± 1.50 48.73± 0.45 70.11± 1.12 18.76± 1.50 33.02± 28.77 67.70± 0.31 72.63± 0.54
DANN 49.99± 2.07 64.62± 0.70 48.44± 0.78 68.70± 1.42 28.20± 1.20 21.95± 20.37 66.48± 0.67 71.78± 0.87
IWDAN 35.85± 1.73 62.24± 0.15 26.49± 0.40 67.82± 0.62 8.91± 3.17 40.02± 1.93 66.85± 0.69 73.10± 0.29
UDAGCN 45.39± 2.07 62.27± 1.23 44.75± 1.76 68.93± 0.55 19.95± 0.84 29.66± 5.57 65.99± 1.06 71.99± 0.61
STRURW 52.41± 1.74 67.72± 0.22 47.25± 1.96 70.93± 0.66 37.81± 0.64 37.84± 2.82 67.66± 0.55 72.72± 0.68
SPECREG 52.61± 1.06 65.34± 0.62 48.85± 0.94 67.95± 2.23 28.86± 1.58 28.79± 25.83 66.66± 0.40 72.73± 0.42

PA-CSS 56.00± 0.14 58.44± 3.19 50.77± 0.70 60.95± 6.09 40.31± 0.31 37.24± 7.69 67.75± 0.27 73.24± 0.38
PA-LS 46.84± 0.45 67.12± 0.65 48.51± 1.46 71.17± 0.70 36.29± 0.92 46.38± 0.96 67.63± 0.38 73.40± 0.13
PA-BOTH 55.45± 0.21 68.29± 0.41 51.43± 0.42 71.23± 0.63 40.53± 0.25 51.21± 2.88 67.77± 0.70 73.36± 0.12

chet des Combes et al., 2020) are non-graph methods, we
adapt them to the graph setting with GNN as the encoder.
UDAGCN (Wu et al., 2020), StruRW (Liu et al., 2023) and
SpecReg (You et al., 2023) are chosen as GDA baselines.
We use GraphSAGE (Hamilton et al., 2017) as backbones
and the same model architecture for all baselines.

Evaluation and Metric The source graph is used for train-
ing, 20 percent of the node labels in the target graph are
used for validation and the rest 80 percent are held out for
testing. We select the best model based on the target valida-
tion scores and report its scores on the target testing nodes
in tables. We use accuracy for MAG, Arxiv, DBLP, ACM,
and synthetic datasets. For the MAG datasets, we evaluate
the top 19 classes as we group the remaining classes as a
dummy class. The Pileup dataset uses the binary f1 score.

Hyperparameter Study Our hyperparameter tuning is
mainly for the robustness estimation for γ and β detailed in
section 3.5. We will discuss them in Appendix E.3.

4.2. Result Analysis

In the MAG dataset, Pair-Align methods markedly outper-
form baselines, as detailed in Table 1. Most baselines gen-
erally match the performance of ERM suggesting their lim-
ited effectiveness in addressing CSS and LS. StruRW, how-
ever, stands out, emphasizing the need for CSS mitigation
in MAG. When compared to StruRW, Pair-Align not only
demonstrates superior handling of CSS but also offers ad-
vantages in LS mitigation, resulting in over 25% relative
improvements. Also, IWDAN has not shown improvements
due to the suboptimality of performing only conditional fea-
ture alignment yet ignoring the structure, highlighting the
importance of tailored solutions for GDA like Pair-Align.

HEP results are in Table 2. Considering the shift in pileup
(PU) conditions, baselines with graph structure regulariza-

tion, like StruRW and SpecReg, achieve better performance.
This matches our expectations that PU condition shifts in-
troduce mostly structure shifts as shown in Fig 1 and our
methods further significantly outperform these baselines in
addressing such shifts. Specifically, we observe PA-CSS
excels in transitioning from low PU to high PU, while PA-
LS is more effective in the opposite direction. This dif-
ference stems from the varying dominant impacts of LS
and CSS. High PU datasets have more imbalanced label
distribution with a large OC: LC ratio, where LS induces
more negative effects over CSS, necessitating the LS mitiga-
tion. Conversely, the cases from low PU to high PU, mainly
influenced by CSS, can be addressed better by PA-CSS. Re-
garding shifts in physical processes, Pair-Align methods still
rank the best, but all models have close performance since
structure shift now becomes minor as shown in Table 9.

The synthetic dataset results in Table 3 well justify our the-
ory. We observe minimal performance decay with ERM
in scenarios with only degree shifts, indicating that node
degree impacts are minimal under mean pooling in GNNs.
Additionally, while CSS with both shifts results in lower
ERM performance compared to shift only in class ratio, our
Pair-Align method achieves similar performance, highlight-
ing the adequacy of focusing on shifts in the conditional
neighborhood node label distribution for CSS. Pair-Align
notably outperforms baselines in CSS scenarios, especially
where class ratio shifts are more pronounced (as in the sec-
ond case of each scenario). With joint shifts in CSS and
LS, Pair-Align methods perform the best and IWDAN is the
best baseline as it is designed to address conditional shifts
and LS in non-graph tasks.

For the Arxiv and DBLP/ACM datasets in Table 4, the Pair-
Align methods demonstrate reasonable improvements over
baselines. Regarding the Arxiv dataset, Pair-Align is partic-
ularly effective when the training on pre-2007 papers, which

8

Pairwise Alignment Improves Graph Domain Adaptation

Table 3. Synthetic CSBM results (accuracy). The bold font and the underline indicate the best model and baseline respectively
CSS (ONLY CLASS RATIO SHIFT) CSS (ONLY DEGREE SHIFT) CSS (SHIFT IN BOTH) CSS + LS

ERM 94.22± 0.97 57.04± 3.83 99.01± 0.28 96.21± 0.27 88.90± 0.22 58.01± 1.91 61.35± 4.64 61.65± 0.80
IWDAN 95.85± 0.70 76.75± 1.32 98.97± 0.05 97.15 ± 0.33 93.65± 0.70 79.53± 3.57 92.42± 0.72 87.01± 2.14
UDAGCN 96.82± 0.70 69.93± 5.17 99.52 ± 0.05 97.04± 0.28 93.17± 1.02 67.44± 4.95 87.67± 3.21 83.69± 2.35
STRURW 96.83± 0.33 86.65± 5.62 98.87± 0.19 95.93± 0.55 92.09± 0.55 80.00± 7.49 75.38± 12.11 75.96± 2.96
SPECREG 93.46± 1.21 62.97± 1.01 98.94± 0.03 96.69± 0.23 89.58± 1.58 61.28± 1.19 76.73± 3.18 83.40± 1.38

PA-CSS 96.65± 1.21 91.79± 1.68 98.92± 0.52 96.24± 0.23 94.99± 0.49 91.20± 0.95 94.95± 0.69 95.66± 0.45
PA-LS 94.22± 0.95 57.14± 3.73 99.02± 0.29 96.17± 0.26 88.85± 0.22 57.96± 1.84 61.39± 4.59 67.91± 9.98
PA-BOTH 97.24± 0.33 91.97± 1.49 98.20± 1.04 96.25± 0.33 95.44± 0.51 91.67± 0.38 95.24± 0.11 95.55± 0.65

Table 4. Performance on Arxiv and DBLP/ACM datasets (accuracy). The bold and underline indicate the best model and baseline
1950-2007 1950-2009 1950-2011 DBLP AND ACM

DOMAINS 2014− 2016 2016− 2018 2014− 2016 2016− 2018 2014− 2016 2016− 2018 A → D D → A

ERM 37.91± 0.31 35.22± 0.71 43.50± 0.35 40.19± 3.62 51.76± 0.93 52.56± 1.06 57.26± 1.90 47.77± 6.61
DANN 37.31± 1.54 36.84± 1.40 43.57± 0.47 42.04± 2.70 53.02± 0.67 52.69± 1.26 65.34± 5.91 54.36± 6.20
IWDAN 36.16± 2.91 25.48± 9.77 41.26± 2.08 35.91± 4.28 46.73± 0.62 42.70± 3.21 66.96± 7.38 56.13± 6.48
UDAGCN 38.10± 1.62 OOM 42.85± 2.09 OOM 53.13± 0.31 OOM 57.05± 5.43 58.42± 6.65
STRURW 38.56± 0.77 37.17± 2.75 43.55± 2.37 43.55± 2.37 53.19± 0.45 53.64± 0.65 60.03± 2.18 52.13± 1.25
SPECREG 37.09± 0.62 33.46± 0.83 43.14± 2.16 43.06± 1.09 52.63± 1.29 52.46± 0.83 31.03± 2.45 53.04± 2.21

PA-CSS 39.75± 0.96 40.54± 2.44 44.04± 0.83 44.32± 1.61 53.75± 0.48 51.10± 1.30 65.20± 3.69 60.60± 3.86
PA-LS 39.47± 0.88 41.14± 2.07 43.40± 1.97 43.44± 1.65 52.48± 0.53 52.83± 0.98 72.41± 1.29 61.40± 1.92
PA-BOTH 39.98± 0.77 40.23± 0.30 44.60± 0.42 44.43± 0.34 53.56± 0.98 51.60± 0.24 70.97± 3.87 63.36± 2.90

possess larger shifts as shown in Table 10. Also, all base-
lines perform similarly with no significant gap between the
GDA methods and the non-graph methods, suggesting that
addressing structure shift has limited benefits in this dataset.
Likewise, regarding the DBLP and ACM datasets, we ob-
serve the performance gain of methods that align marginal
node feature distribution, like DANN and UDAGCN, in-
dicating this dataset contains mostly feature shifts. While
in the cases where LS is large (A → D or Arxiv training
on pre-2007, testing on 2016-2018 as shown in Table 10),
PA-LS achieves the best performance.

Ablation Study

Among the three variants of Pair-Align, PA-BOTH performs
the best in most cases. PA-CSS contributes more compared
to PA-LS when CSS dominates (MAG datasets, Arxiv, and
HEP from low PU to high PU). PA-LS alone offers slight
improvements except with highly imbalanced training labels
(from high PU to low PU in HEP datasets). But when
combined with PA-CSS, it will yield additional benefits.

5. Conclusion
This work studies the distribution shifts in graph-structured
data. We analyze distribution shifts in real-world graph data
and decompose structure shifts into two components: condi-
tional structure shift (CSS) and label shift (LS). Our novel
approach, Pairwise Alignment (Pair-Align), well tackles
both CSS and LS in both theory and practice. Importantly,
this work also curates a new, by far the largest dataset MAG
which reflects the actual need for region-based generaliza-
tion of graph learning models. We believe this large dataset
can incentivize more in-depth studies on GDA.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
We greatly thank Yongbin Feng for discussing relevant HEP
applications and Mufei Li for discussing relevant MAG
dataset curation. S. Liu, D. Zou, and P. Li are partially
supported by NSF award PHY-2117997 and IIS-2239565.
The work of HZ was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under Cooper-
ative Agreement Number: HR00112320012 and a research
grant from the IBM-Illinois Discovery Accelerator Institute
(IIDAI).

9

Pairwise Alignment Improves Graph Domain Adaptation

References
Azizzadenesheli, K., Liu, A., Yang, F., and Anandkumar, A.

Regularized learning for domain adaptation under label
shifts. International Conference on Learning Representa-
tions, 2018.

Bertolini, D., Harris, P., Low, M., and Tran, N. Pileup per
particle identification. Journal of High Energy Physics,
2014.

Bevilacqua, B., Zhou, Y., and Ribeiro, B. Size-invariant
graph representations for graph classification extrapola-
tions. International Conference on Machine Learning,
2021.

Cai, R., Wu, F., Li, Z., Wei, P., Yi, L., and Zhang, K. Graph
domain adaptation: A generative view. arXiv preprint
arXiv:2106.07482, 2021.

Chen, Y., Zhang, Y., Bian, Y., Yang, H., Kaili, M., Xie, B.,
Liu, T., Han, B., and Cheng, J. Learning causally invari-
ant representations for out-of-distribution generalization
on graphs. Advances in Neural Information Processing
Systems, 2022.

Chen, Y., Bian, Y., Zhou, K., Xie, B., Han, B., and Cheng, J.
Does invariant graph learning via environment augmenta-
tion learn invariance? Advances in Neural Information
Processing Systems, 2023.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance:
Bridging graph metrics and stability of graph neural net-
works. Advances in Neural Information Processing Sys-
tems, 2022.

Cicek, S. and Soatto, S. Unsupervised domain adaptation
via regularized conditional alignment. Proceedings of the
IEEE/CVF international conference on computer vision,
2019.

Dai, Q., Wu, X.-M., Xiao, J., Shen, X., and Wang, D. Graph
transfer learning via adversarial domain adaptation with
graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 2022.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Con-
textual stochastic block models. Advances in Neural
Information Processing Systems, 31, 2018.

Ding, M., Kong, K., Chen, J., Kirchenbauer, J., Goldblum,
M., Wipf, D., Huang, F., and Goldstein, T. A closer look
at distribution shifts and out-of-distribution generaliza-
tion on graphs. NeurIPS 2021 Workshop on Distribution
Shifts: Connecting Methods and Applications, 2021.

Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., and Yu, P. S.
Enhancing graph neural network-based fraud detectors

against camouflaged fraudsters. Proceedings of the 29th
ACM international conference on information & knowl-
edge management, 2020.

Fan, S., Wang, X., Mo, Y., Shi, C., and Tang, J. Debiasing
graph neural networks via learning disentangled causal
substructure. Advances in Neural Information Processing
Systems, 2022.

Fan, S., Wang, X., Shi, C., Cui, P., and Wang, B. Generaliz-
ing graph neural networks on out-of-distribution graphs.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2023.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 2016.

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and
Schölkopf, B. Domain adaptation with conditional trans-
ferable components. International Conference on Ma-
chine Learning, 2016.

Gui, S., Liu, M., Li, X., Luo, Y., and Ji, S. Joint learning
of label and environment causal independence for graph
out-of-distribution generalization. Advances in Neural
Information Processing Systems, 2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in Neural
Information Processing Systems, 2017.

Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph
data augmentation for graph classification. International
Conference on Machine Learning, 2022.

Highfield, R. Large hadron collider: Thirteen ways to
change the world. The Daily Telegraph. London. Re-
trieved, 2008.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 2020.

Jackson, M. O. et al. Social and economic networks, vol-
ume 3. Princeton university press Princeton, 2008.

Ji, Y., Zhang, L., Wu, J., Wu, B., Li, L., Huang, L.-K., Xu,
T., Rong, Y., Ren, J., Xue, D., et al. Drugood: Out-of-
distribution dataset curator and benchmark for ai-aided
drug discovery–a focus on affinity prediction problems
with noise annotations. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2023.

Jia, T., Li, H., Yang, C., Tao, T., and Shi, C. Graph invariant
learning with subgraph co-mixup for out-of-distribution
generalization. arXiv preprint arXiv:2312.10988, 2023.

10

Pairwise Alignment Improves Graph Domain Adaptation

Jin, W., Zhao, T., Ding, J., Liu, Y., Tang, J., and Shah,
N. Empowering graph representation learning with test-
time graph transformation. International Conference on
Learning Representations, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations, 2016.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-wild
distribution shifts. International Conference on Machine
Learning, 2021.

Komiske, P. T., Metodiev, E. M., Nachman, B., and
Schwartz, M. D. Pileup mitigation with machine learning
(pumml). Journal of High Energy Physics, 2017.

Li, H., Zhang, Z., Wang, X., and Zhu, W. Learning invariant
graph representations for out-of-distribution generaliza-
tion. Advances in Neural Information Processing Systems,
2022a.

Li, T., Liu, S., Feng, Y., Paspalaki, G., Tran, N., Liu, M.,
and Li, P. Semi-supervised graph neural networks for
pileup noise removal. The European Physics Journal C,
2022b.

Liao, P., Zhao, H., Xu, K., Jaakkola, T., Gordon, G. J.,
Jegelka, S., and Salakhutdinov, R. Information obfusca-
tion of graph neural networks. International Conference
on Machine Learning, 2021.

Ling, H., Jiang, Z., Liu, M., Ji, S., and Zou, N. Graph
mixup with soft alignments. International Conference on
Machine Learning, 2023.

Lipton, Z., Wang, Y.-X., and Smola, A. Detecting and
correcting for label shift with black box predictors. Inter-
national Conference on Machine Learning, 2018.

Liu, M., Fang, Z., Zhang, Z., Gu, M., Zhou, S., Wang, X.,
and Bu, J. Rethinking propagation for unsupervised graph
domain adaptation. arXiv preprint arXiv:2402.05660,
2024.

Liu, S., Li, T., Feng, Y., Tran, N., Zhao, H., Qiu, Q., and Li,
P. Structural re-weighting improves graph domain adap-
tation. International Conference on Machine Learning,
2023.

Liu, X., Guo, Z., Li, S., Xing, F., You, J., Kuo, C.-C. J.,
El Fakhri, G., and Woo, J. Adversarial unsupervised do-
main adaptation with conditional and label shift: Infer,
align and iterate. Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 2021.

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In-
ternational Conference on Machine Learning, 2015.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Condi-
tional adversarial domain adaptation. Advances in Neural
Information Processing Systems, 2018.

Miao, S., Liu, M., and Li, P. Interpretable and generaliz-
able graph learning via stochastic attention mechanism.
International Conference on Machine Learning, 2022.

Pang, J., Wang, Z., Tang, J., Xiao, M., and Yin, N. Sa-
gda: Spectral augmentation for graph domain adaptation.
Proceedings of the 31st ACM International Conference
on Multimedia, 2023.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Rojas-Carulla, M., Schölkopf, B., Turner, R., and Peters, J.
Invariant models for causal transfer learning. The Journal
of Machine Learning Research, 2018.

Shen, X., Dai, Q., Chung, F.-l., Lu, W., and Choi, K.-S.
Adversarial deep network embedding for cross-network
node classification. Proceedings of the AAAI conference
on artificial intelligence, 2020a.

Shen, X., Dai, Q., Mao, S., Chung, F.-l., and Choi, K.-S.
Network together: Node classification via cross-network
deep network embedding. IEEE Transactions on Neural
Networks and Learning Systems, 2020b.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(9), 2011.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural
networks in particle physics. Machine Learning: Science
and Technology, 2020.

Sui, Y., Wu, Q., Wu, J., Cui, Q., Li, L., Zhou, J., Wang,
X., and He, X. Unleashing the power of graph data
augmentation on covariate distribution shift. Advances in
Neural Information Processing Systems, 2023.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder,
S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T.,
Morris, J. H., Bork, P., et al. String v11: protein–protein
association networks with increased coverage, support-
ing functional discovery in genome-wide experimental
datasets. Nucleic acids research, 2019.

Tachet des Combes, R., Zhao, H., Wang, Y.-X., and Gordon,
G. J. Domain adaptation with conditional distribution

11

Pairwise Alignment Improves Graph Domain Adaptation

matching and generalized label shift. Advances in Neural
Information Processing Systems, 2020.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z.
Arnetminer: extraction and mining of academic social
networks. Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, 2008.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Ad-
versarial discriminative domain adaptation. Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. Interna-
tional Conference on Learning Representations, 2018.

Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., Yu, Q.,
Zhou, J., Yang, S., and Qi, Y. A semi-supervised graph
attentive network for financial fraud detection. IEEE
International Conference on Data Mining, 2019.

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y., and
Kanakia, A. Microsoft academic graph: When experts
are not enough. Quantitative Science Studies, 2020.

Wang, Q., Wang, Y., and Ying, X. Improved invariant learn-
ing for node-level out-of-distribution generalization on
graphs. Submitted to The Twelfth International Confer-
ence on Learning Representations, 2023.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B. Mixup
for node and graph classification. Proceedings of the Web
Conference, 2021.

Wei, R., Yin, H., Jia, J., Benson, A. R., and Li, P. Un-
derstanding non-linearity in graph neural networks from
the bayesian-inference perspective. Advances in Neural
Information Processing Systems, 2022.

Wu, J., He, J., and Ainsworth, E. Non-iid transfer learn-
ing on graphs. Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

Wu, M., Pan, S., Zhou, C., Chang, X., and Zhu, X. Unsu-
pervised domain adaptive graph convolutional networks.
Proceedings of The Web Conference, 2020.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distribu-
tion shifts on graphs: An invariance perspective. Interna-
tional Conference on Learning Representations, 2022.

Wu, Y., Wang, X., Zhang, A., He, X., and Chua, T.-S. Dis-
covering invariant rationales for graph neural networks.
International Conference on Learning Representations,
2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? International Conference on
Learning Representations, 2018.

Yang, N., Zeng, K., Wu, Q., Jia, X., and Yan, J. Learning
substructure invariance for out-of-distribution molecular
representations. Advances in Neural Information Process-
ing Systems, 2022.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization
in graph neural networks. International Conference on
Machine Learning, 2021.

Yin, N., Shen, L., Li, B., Wang, M., Luo, X., Chen, C.,
Luo, Z., and Hua, X.-S. Deal: An unsupervised domain
adaptive framework for graph-level classification. Pro-
ceedings of the 30th ACM International Conference on
Multimedia, 2022.

Yin, N., Shen, L., Wang, M., Lan, L., Ma, Z., Chen, C.,
Hua, X.-S., and Luo, X. Coco: A coupled contrastive
framework for unsupervised domain adaptive graph clas-
sification. Internationl Conference on Machine Learning,
2023.

You, Y., Chen, T., Wang, Z., and Shen, Y. Graph domain
adaptation via theory-grounded spectral regularization.
International Conference on Learning Representations,
2023.

Yu, J., Xu, T., Rong, Y., Bian, Y., Huang, J., and He, R.
Graph information bottleneck for subgraph recognition.
International Conference on Learning Representations,
2020.

Zellinger, W., Grubinger, T., Lughofer, E., Natschläger,
T., and Saminger-Platz, S. Central moment discrepancy
(cmd) for domain-invariant representation learning. Inter-
national Conference on Learning Representations, 2016.

Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. Do-
main adaptation under target and conditional shift. Inter-
national Conference on Machine Learning, 2013.

Zhang, X., Du, Y., Xie, R., and Wang, C. Adversarial
separation network for cross-network node classification.
Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021.

Zhang, Y., Song, G., Du, L., Yang, S., and Jin, Y. Dane: Do-
main adaptive network embedding. IJCAI International
Joint Conference on Artificial Intelligence, 2019.

Zhao, H., Zhang, S., Wu, G., Moura, J. M., Costeira, J. P.,
and Gordon, G. J. Adversarial multiple source domain
adaptation. Advances in Neural Information Processing
Systems, 2018.

12

Pairwise Alignment Improves Graph Domain Adaptation

Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. On
learning invariant representations for domain adaptation.
International Conference on Machine Learning, 2019.

Zhu, Q., Ponomareva, N., Han, J., and Perozzi, B. Shift-
robust gnns: Overcoming the limitations of localized
graph training data. Advances in Neural Information
Processing Systems, 2021.

Zhu, Q., Zhang, C., Park, C., Yang, C., and Han, J. Shift-
robust node classification via graph adversarial clustering.
arXiv preprint arXiv:2203.15802, 2022.

Zhu, Q., Jiao, Y., Ponomareva, N., Han, J., and Perozzi, B.
Explaining and adapting graph conditional shift. arXiv
preprint arXiv:2306.03256, 2023.

13

Pairwise Alignment Improves Graph Domain Adaptation

A. Some Definitions
Definition A.1 (Contextual Stochastic Block Model). (Deshpande et al., 2018)

The Contextual Stochastic Block Model (CSBM) is a framework combining the stochastic block model with node features
for random graph generation. A CSBM with nodes belonging to k classes is defined by parameters (n,B,P0, . . . ,Pk−1),
where n represents the total number of nodes. The matrix B, a k × k matrix, denotes the edge connection probability
between nodes of different classes. Each Pi (for 0 ≤ i < k) characterizes the feature distribution of nodes from class i. In a
graph generated from CSBM, the probability that an edge exists between a node u from class i and a node v from class j is
specified by Bij , an element of B. For undirected graphs, B is symmetric, i.e., B = B⊤. In CSBM, node features and
edges are generated independently, conditioned on node labels.

B. Omitted Proofs
B.1. Proof for Theorem 3.3

Theorem 3.3 (Sufficient conditions for addressing CSS). Given the following assumptions

• (Conditional Alignment in the previous layer k) PS(H
(k)|Y) = PT (H

(k)|Y) and ∀u ∈ VU , given Y = yu, h(k)
u is

independently sampled from PU (H
(k)|Y).

• (Edge Conditional Independence) Given node labels y, edges mutually independently exist in the graph.

if there exists a transformation that modifies the neighborhood of node u: Nu → Ñu,∀u ∈ VS , such that PS(|Ñu||Yu =
i) = PT (|Nu||Yu = i) and PS(Yv|Yu = i, v ∈ Ñu) = PT (Yv|Yu = i, v ∈ Nu), ∀i ∈ Y , then PS(H

(k+1)|Y) =
PT (H

(k+1)|Y) is satisfied.

Proof. We analyze the distribution PU (H
(k+1)|Y) to see which distributions should be aligned to achieve PS(H

(k+1)|Y) =

PT (H
(k+1)|Y). Since h

(k+1)
u = UPT (h

(k)
u ,AGG ({{h(k)

v : v ∈ Nu}})), PU (H
(k+1)|Y) can be expanded as follows:

PU (h
(k)
u , {{h(k)

v : v ∈ Nu}}|Yu = i)

(a)
= PU (h

(k)
u |Yu = i)PU ({{h(k)

v : v ∈ Nu}}|Yu = i)

= PU (h
(k)
u |Yu = i)PU (|Nu| = d|Yu = i)PU ({{h(k)

v }}|Yu = i, v ∈ Nu, |Nu| = d)

= PU (h
(k)
u |Yu = i)PU (|Nu| = d|Yu = i)PU ({{h(k)

v1 , · · ·h(k)
vd
}}|Yu = i, vt ∈ Nu, for t ∈ [1, d])

(b)
= PU (h

(k)
u |Yu = i)PU (|Nu| = d|Yu = i)(d !)

d∏
t=1

PU (h
(k)
vt |h

(k)
v1:t−1

, Yu = i, vt ∈ Nu)

= PU (h
(k)
u |Yu = i)PU (|Nu| = d|Yu = i)(d !)

d∏
t=1

(
∑
j∈Y

PU (h
(k)
vt |Yvt

= j, h(k)
v1:t−1

, Yu = i, vt ∈ Nu)

PU (Yvt = j|h(k)
v1:t−1

, Yu = i, vt ∈ Nu))

(c)
= PU (h

(k)
u |Yu = i)PU (|Nu| = d|Yu = i)(d !)

d∏
t=1

(
∑
j∈Y

PU (h
(k)
vt |Yvt = j)PU (Yvt = j|Yu = i, vt ∈ Nu)) (9)

(a) is based on the assumption that node attributes and edges are conditionally independent of others given the node labels.
(b), here we suppose that the observed messages hv are different ∀v ∈ Nu, and this assumption does not affect the result
of the theorem. If some of them are identical, we modify the coefficient d! as d!

Πd
t=1mi!

, where mt denotes the repeated

messages. For simplicity, we assume that mt = 1,∀t ∈ [1, d]. (c) is based on the assumption that given Y = yu, h(k)
u is

independently sampled from PU (H
(k)|Y)

With the goal to achieve PS(H
(k+1)|Y) = PT (H

(k+1)|Y), it suffices to achieve by making the input distribution equal
across the source and the target

PS(h
(k)
u , {{h(k)

u : v ∈ Nu}}|Yu = i) = PT (h
(k)
u , {{h(k)

u : v ∈ Nu}}|Yu = i)

14

Pairwise Alignment Improves Graph Domain Adaptation

since the source and target graphs undergo the same set of functions. Based on Eq. (9),this means it suffices to let
PS(h

(k)
u |Yu = i) = PT (h

(k)
u |Yu = i) and PS(h

(k)
vt |Yvt = j) = PT (h

(k)
vt |Yvt = j) since PS(H

(k)|Y) = PT (H
(k)|Y) is

assumed to be true. Therefore, as long as there exists a transformation that modifies the Nu → Ñu such that

PS(|Ñu| = d|Yu = i) = PT (|Nu| = d|Yu = i); PS(Yv = j|Yu = i, v ∈ Ñu)) = PT (Yv = j|Yu = i, v ∈ Nu))

Then, PS(H
(k+1)|Y) = PT (H

(k+1)|Y)

Remark B.1. Iteratively, we can achieve PS(H
(L)|Y) = PT (H

(L)|Y) given no feature shift initially PS(X|Y) = PT (X|Y)
as PS(H

(1)|Y) = PT (H
(1)|Y)

base case: PS(H
(1)|Y) = PT (H

(1)|Y)⇒ PS(H
(2)|Y) = PT (H

(2)|Y)

inductive step: PS(H
(k)|Y) = PT (H

(k)|Y),
(d)⇒ PS(H

(k+1)|Y) = PT (H
(k+1)|Y)

Therefore, PS(H
(L)|Y) = PT (H

(L)|Y).

(d) is proved above that when using a multiset transformation to align two distributions, this can be guaranteed

Under the assumption that given Y = yu, h(k)
u is independently sampled from PU (H

(k)|Y), PS(H
(L)|Y) = PT (H

(L)|Y)
can induce PS(H

(L)|Y) = PT (H
(L)|Y) since P(H(L) = h(L)|Y = y) = Πu∈VP(H(L) = hu|Y = yu)

B.2. Proof for Lemma 3.8

Lemma B.2. If PS(H
(L)|Y) = PT (H

(L)|Y) is satisfied, and node representations are conditionally independent of graph
structures given node labels, then ν = Σw.

Proof.

PT (Ŷu = i, Ŷv = j|Auv = 1) =
∑

i′,j′∈Y
PT (Ŷu = i, Ŷv = j|Yu = i′, Yv = j′, Auv = 1)PT (Yu = i′, Yv = j′|Auv = 1)

(a)
=

∑
i′,j′∈Y

PT (Ŷu = i|Yu = i′)PT (Ŷv = j|Yv = j′)PT (Yu = i′, Yv = j′|Auv = 1)

(b)
=

∑
i′,j′∈Y

PS(Ŷu = i|Yu = i′)PS(Ŷv = j|Yv = j′)PT (Yu = i′, Yv = j′|Auv = 1)

=
∑

i′,j′∈Y
PS(Ŷu = i, Ŷv = j|Yu = i′, Yv = j′, Auv = 1)PT (Yu = i′, Yv = j′|Auv = 1)

=
∑

i′,j′∈Y
PS(Ŷu = i, Ŷv = j, Yu = i′, Yv = j′|Auv = 1)

PT (Yu = i′, Yv = j′|Auv = 1)

PS(Yu = i′, Yv = j′|Auv = 1)

=
∑

i′,j′∈Y
[Σ]ij,i′j′ [w]i′j′

(a) is because ŷu = g(h
(L)
u) and the assumption that node representations and graph structures are conditionally independent

of others given the node labels. And (b) is achieved since PS(H
(L)|Y) = PT (H

(L)|Y) is satisfied, such that PS(g(h
(L)
u) =

i|Yu = i′) = PT (g(h
(L)
u) = i|Yu = i′),∀i′ ∈ Y

B.3. Proof for Lemma 3.11

Lemma B.3. If PS(H
(L)|Y) = PT (H

(L)|Y) is satisfied, and node representations are conditionally independent of each
other given the node labels, then µ = Cβ.

15

Pairwise Alignment Improves Graph Domain Adaptation

Proof.

PT (Ŷu = i) =
∑
i′∈Y

PT (Ŷu = i|Yu = i′)PT (Yu = i′)

(a)
=

∑
i′∈Y

PS(Ŷu = i|Yu = i′)PT (Yu = i′)

=
∑
i′∈Y

PS(Ŷu = i, Yu = i′)
PT (Yu = i′)

PS(Yu = i′)

=
∑
i′∈Y

[C]i,i′ [β]i′

(a) is because, when PS(H
(k+1)|Y) = PT (H

(k+1)|Y) is satisfied, PS(g(h
(L)
u) = i|Yu = i′) = PT (g(h

(L)
u) = i|Yu =

i′),∀i′ ∈ Y

C. Algorithm Details
C.1. Details in optimization for γ

C.1.1. EMPIRICAL ESTIMATION OF Σ AND ν IN MATRIX FORM

For the least square problem that solves for w

Σw = ν

where Σ ∈ R|Y|2×|Y|2 , w ∈ R|Y|2×1, ν ∈ R|Y|2×1

Empirically, we estimate the value of Σ̂ and ν̂ as following:

Σ̂ =
1

|ES |
ESMS

ES ∈ R|Y|2×|ES |, where each column represents the joint distribution of the classes prediction associated with the starting
and ending node of each edge in the source graph. [ES]:,uv = g(h

(L)
u) ⊗ g(h

(L)
v),∀edge uv ∈ ES . And each entry

[ES]ij,uv = [g(h
(L)
u)]i × [g(h

(L)
v)]j ,∀i, j ∈ Y . MS ∈ R|ES |×|Y|2 encodes the ground truth of the starting and ending node

of an edge, as [MS]uv,yuyv
= 1 for each edge uv ∈ ES .

ν̂ =
1

|ET |
ET 1

Similarly, ET ∈ R|Y|2×|ET |, where each column represents the joint distribution of the classes prediction associated with
the starting and ending node of each edge in the target graph. [ET]:,uv = g(h

(L)
u)⊗ g(h

(L)
v),∀edge uv ∈ ET . And each

entry [ET]ij,uv = [g(h
(L)
u)]i × [g(h

(L)
v)]j ,∀i, j ∈ Y . 1 ∈ R|ET |×1 is the all one vector.

C.1.2. CALCULATE FOR α IN MATRIX FORM

To finally solve for the ratio weight γ, we need the value α.

αi =
PT (yu = i|Auv = 1)

PS(yu = i|Auv = 1)
=

∑
j PT (yu = i, yv = j|Auv = 1)∑
j PS(yu = i, yv = j|Auv = 1)

=

∑
j

PT (yu=i,yv=j|Auv=1)
PS(yu=i,yv=j|Auv=1)PS(yu = i, yv = j|Auv = 1)∑

j PS(yu = i, yv = j|Auv = 1)

=

∑
j

PT (yu=i,yv=j|Auv=1)
PS(yu=i,yv=j|Auv=1)PS(yu = i, yv = j|Auv = 1)

PS(yu = i|Auv = 1)

16

Pairwise Alignment Improves Graph Domain Adaptation

In matrix form, we construct K ∈ R|Y|×|Y|2 , where [K]i,ij =
PS(yu=i,yv=j|Auv=1)

PS(yu=i|Auv=1) ,∀i, j ∈ |Y|. Note that [K]i,i′j = 0 for
i′ ̸= i,∀j ∈ |Y|.

α = Kw

C.2. Details in optimization for β

For the least square problem that solves for β

Cβ = µ

where C ∈ R|Y|×|Y|, β ∈ R|Y|×1, µ ∈ R|Y|×1

Empirically, we estimate the value of Ĉ and µ̂ in matrix form as following:

Ĉ =
1

|VS |
DSLS

DS ∈ R|Y|×|VS |, where each column represents the distribution of the class prediction of each node in the source graph.
[DS]:,u = g(h

(L)
u),∀u ∈ VS . And each entry [DS]i,u = [g(h

(L)
u)]i,∀i ∈ Y . LS ∈ R|VS |×|Y| that encodes the ground truth

class of each node, as [LS]u,yu
= 1 for each node u ∈ VS .

µ̂ =
1

|VT |
DT 1

Similarly, DT ∈ R|Y|×|VT |, where each column represents the distribution of the class prediction of each node in the target
graph. [DT]:,u = g(h

(L)
u),∀u ∈ VT . And each entry [DT]i,u = [g(h

(L)
u)]i,∀i ∈ Y . 1 ∈ R|VT |×1 is the all one vector.

D. More Related Works
Other node-level DA works Other domain invariant learning-based methods, like Shen et al. (2020b) proposed to align the
class-conditioned representations with conditional MMD distance by using pseudo-label predictions for the target domain,
Zhang et al. (2021) aimed to use separate networks to capture the domain-specific features in addition to a shared encoder
for adversarial training and further Pang et al. (2023) transformed the node features into spectral domain through Fourier
transform for alignment. Other approaches like Cai et al. (2021) disentangled semantic, domain, and noise variables and
used semantic variables that are better aligned with target graphs for prediction. Liu et al. (2024) explored the role of
GNN propagation layers and linear transformation layers, thus proposing to use a shared transformation layer with more
propagation layers on the target graph instead of a shared encoder.

Node-level OOD works In addition to GDA, many works target the out-of-distribution (OOD) generalization without access
to unlabeled target data. For the node classification task, EERM (Wu et al., 2022) and LoRe-CIA (Wang et al., 2023) both
extended the idea of invariant learning to node-level tasks, where EERM minimized the variance over representations across
different environments and LoRe-CIA enforced the cross-environment Intra-class Alignment of node representations to
remove their reliance on spurious features. Wang et al. (2021) extended mixup to the node representation under node and
graph classification tasks.

Graph-level DA and OOD works The shifts and methods in graph-level problems are significantly different from those for
node-level tasks. The shifts in graph-level tasks can be modeled as IID by considering individual graphs and often satisfy the
covariate shift assumption, which makes some previous IID works applicable. Under the availability of target graphs, there
are several graph-level GDA works like (Yin et al., 2023; 2022), where the former utilized contrastive learning to align the
graph representations with similar semantics and the latter employed graph augmentation to match the target graphs under
adversarial training. Regarding the scenarios in which we do not have access to the target graphs, it becomes the graph OOD
problem. A dominant line of work in graph-level OOD is based on invariant learning originating from causality to identify a
subgraph that remains invariant across graphs under distribution shifts. Among these works, Wu et al. (2021); Chen et al.
(2022); Li et al. (2022a); Yang et al. (2022); Chen et al. (2023); Gui et al. (2023); Fan et al. (2022; 2023) aimed to find the
invariant subgraph, and Miao et al. (2022); Yu et al. (2020) used graph information bottleneck. Furthermore, another line of

17

Pairwise Alignment Improves Graph Domain Adaptation

works adopted graph augmentation strategies, like (Sui et al., 2023; Jin et al., 2022) and some mixup-based methods (Han
et al., 2022; Ling et al., 2023; Jia et al., 2023). Moreover, some works focused on handling the size shift (Yehudai et al.,
2021; Bevilacqua et al., 2021; Chuang & Jegelka, 2022).

E. Experiments details
E.1. Dataset Details

Dataset Statistics Here we report the number of nodes, number of edges, feature dimension, and the number of labels for
each dataset. The Arxiv-year means the graph with papers till that year. The edges are all undirected edges, which are
counted twice in the edge list.

Table 5. real dataset statistics

ACM DBLP ARXIV-2007 ARXIV-2009 ARXIV-2016 ARXIV-2018

#NODES 7410 5578 4980 9410 69499 120740
#EDGES 11135 7341 5849 13179 232419 615415
NODE FEATURE DIMENSION 7537 7537 128 128 128 128
#LABELS 6 6 40 40 40 40

Table 6. MAG dataset statistics

US CN DE JP RU FR

#NODES 132558 101952 43032 37498 32833 29262
#EDGES 697450 285561 126683 90944 67994 78222
NODE FEATURE DIMENSION 128 128 128 128 128 128
#LABELS 20 20 20 20 20 20

Table 7. Pileup dataset statistics

GG-10 QQ-10 GG-30 QQ-30 GG-50 GG-140

#NODES 18611 17242 41390 38929 60054 154750
#EDGES 53725 42769 173392 150026 341930 2081229
NODE FEATURE DIMENSION 28 28 28 28 28 28
#LABELS 2 2 2 2 2 2

DBLP and ACM are two paper citation networks obtained from DBLP and ACM, originally from (Tang et al., 2008) and
processed by (Wu et al., 2020). We use the processed version. Nodes are papers and undirected edges represent citations
between papers. The goal is to predict the 6 research topics of a paper: “Database”, “Data mining”, “Artificial intelligent”,
“Computer vision”, “Information Security” and ”High Performance Computing”.

Arxiv introduced in (Hu et al., 2020) is another citation network of Computer Science (CS) Arxiv papers to predict 40
classes on different subject areas. The feature vector is a 128-dimensional word2vec vector with the average embedding of
the paper’s title and abstract. Originally it is a directed graph with directed citations between papers, we convert it into an
undirected graph.

E.1.1. MORE DETAILS MAG DATASETS

MAG is a subset of the Microsoft Academic Graph (MAG) as detailed in (Hu et al., 2020; Wang et al., 2020), originally
containing entities as papers, authors, institutions, and fields of study. There are four types of directed relations in the
original graph connecting two types of entities: an author ”is affiliated with” an institution, an author ”writes” a paper, a
paper ”cites” a paper, and a paper ”has a topic of” a field of study. The node feature for a paper is the word2vec vector with
128 dimensions. The task is to predict the publication venue of papers, which in total has 349 classes. We curate the graph

18

Pairwise Alignment Improves Graph Domain Adaptation

to include only paper nodes and convert directed citation links to undirected edges. Papers are split into separate graphs
based on the country of the institution the corresponding author is affiliated with. Then, we detail the process of generating a
separate “paper-cites-paper” homogeneous graph for each country from the original ogbn-mag dataset.

Determine the country of origin for each paper. The rule of determining the country of the paper is based on the country of
the institute the corresponding author is affiliated with. Since the original ogbn-mag dataset does not indicate the information
of the corresponding author, we retrieve the metadata of the papers via OpenAlex,2. Specifically, there is a boolean variable
on OpenAlex boolean indicating whether an author is the corresponding author for each paper. Then, we further locate the
institution this corresponding author is affiliated with and retrieve that institution’s country to use as the country code for
the paper. All these operations can be done through OpenAlex. However, not all papers include this corresponding author
information on OpenAlex. Regarding the papers that miss this information, we determine the country of this paper through a
majority vote based on the institution country of all authors in this paper. Namely, we first identify all authors recorded in
the original dataset via the “author—writes—paper” relation and acquire the institute information for these authors through
the relation of “author—is affiliated with—institution”. Then, with the country information retrieved from OpenAlex for
these institutions, we do a majority vote to determine the final country code for the paper.

Generate country-specific graphs. Based on the country information obtained above, we generate a separate citation
graph for a given country C. It will contain all papers that have a country code of C and the edges indicating the citation
relationships within these papers. The edge index set E is initialized as ∅. For each citation pair (vi, vj) in the original
“paper-cites-paper” graph, it is added to E iff. both vi and vj have the same country affiliation C. We then obtain the node
set V based on all unique nodes appearing in E . In the scope of this work, we only focus on the top 19 publication venues
with the most papers for classification and combine the rest of the classes into a single dummy class.

E.1.2. MORE DETAILS FOR HEP DATASETS

Initially, there are multiple graphs with each graph representing a collision event in the large hadron collider (LHC). Here,
we collate the graphs together to form a single large graph. We use 100 graphs in each domain to create the single source
and target graph respectively. In the source graph, the nodes in 60 graphs are used for training, 20 are used for validation
and 20 are used for testing. In the target graph, the nodes in 20 graphs are used for validation and 80 are used for testing.
The particles can be divided into charged and neutral particles, where the labels of the charged particles are known by
the detector. Therefore, the classifications are only done on the neutral particles. The node features contain the particle’s
position in η axis, pt as energy, the pdgID one hot encoding to indicate the type of particle, and the label of the particle
(label for changed, unknown for neutral) to help with classification as neighborhood information.

Pileup (PU) levels indicate the number of other collisions in the background event, it is closely related to the label distribution
of LC and OC. For instance, a high PU graph will have mostly OC particles and few LC particles. Also, it will cause
significant CSS as the distribution of particles easily influences the connections between them. The physical processes
correspond to different types of signal decay of the particles, which mainly causes some slight feature shifts and nearly no
LS or CSS under the same PU level.

E.2. Detailed experimental setting

Model architecture The backbone model is GraphSAGE with mean pooling having 3 GNN layers and 2 MLP layers for
classification. The hidden dimension for GNN is 300 for Arxiv and MAG, 50 for Pileup, 128 for the DBLP/ACM dataset
and 20 for synthetic datasets. The classifier dimension 300 for Arxiv and MAG, 50 for Pileup, 40 for DBLP/ACM dataset
and 20 for synthetic datasets. If there is adversarial training with a domain classifier for some baselines, it has 3 layers and
the hidden dimension is the same as the GNN dimension. All experiments are repeated three times.

Hardware All experiments are run on NVIDIA RTX A6000 with 48G memory and Quadro RTX 6000 with 24G memory.
Specifically, for the UDAGCN baselines, we try with the 48G memory GPU but still out of memory.

Synthetic Datasets The synthetic dataset is generated under the contextual stochastic block model (CSBM), where there are
in total of 6000 nodes and 3 classes. We vary the edge connection probability matrix and the node label distribution in different
settings. The node features are generated from a Gaussian distribution where P0 = N ([1, 0, 0], σ2I), P1 = N ([0, 1, 0], σ2I)
and P2 = N ([0, 0, 1], σ2I), σ = 0.3, and the distribution is the same for the source and target graph in all settings. We

2This is an alternative way considering the Microsoft Academic website and underlying APIs have been retired on Dec. 31, 2021.

19

https://openalex.org/
https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/

Pairwise Alignment Improves Graph Domain Adaptation

denote the format of edge connection probability matrix as B =

 p q q
q p q
q q p

, where p is the intra-class edge probability

and q is the inter-class edge probability.

• The source graph has PY = [1/3, 1/3, 1/3] and p = 0.02, q = 0.005.

• For setting 1 and 2 with the shift in only class ratio, they have the same PY , and setting 1 has p = 0.015, q = 0.0075
and setting 2 has p = 0.01, q = 0.01.

• For setting 3 and 4 with the shift in only cardinality, they have the same PY , and setting 3 has p = 0.02/2, q = 0.005/2
and setting 4 has p = 0.02/4, q = 0.005/4.

• For setting 5 and 6 with the shift in both class ratio and cardinality, they have the same PY , and setting 5 has
p = 0.015/2, q = 0.0075/2 and setting 6 has p = 0.01/2, q = 0.01/2.

• For setting 7 and 8 with shifts in both CSS and label shift, they have the same edge connection probability as
p = 0.015/2, q = 0.0075/2 but different label distributions. Setting 7 has PY = [0.5, 0.25, 0.25] and setting 8 has
PY = [0.1, 0.3, 0.6].

Pileup Regarding the experiments studying the shift in pileup levels, the pair with PU10 and PU30 is from signal qq. The
other two pairs with PU10 and PU50, PU30 and PU140 are from signal gg. The experiments that study the shift in physical
processes are from the same PU level 10. Compared to the Pileup datasets used in the StruRW paper (Liu et al., 2023), we
investigate the physical process shift with datasets from signal qq and signal gg instead of signal gg and signal Z(νν). Also,
we conduct more experiments to study the pileup shifts under the same physical process being signal qq (PU10 vs. PU30) or
signal gg (PU10 vs. PU50 and PU30 vs. PU140). In addition, the StruRW paper treats each event as a single graph. They
train the algorithm using multiple training graphs and adopt the edge weights as the average from each graph. In this paper,
we collate the graphs for all events together for training and weight estimations.

Arxiv The graph is formed based on the ending year, meaning that the graph contains all nodes till the specified ending year.
For instance, for the experiments where the source papers ended in 2007, the source graph contains all nodes and edges
associated with papers that were published no later than 2007. Then, if the target years are from 2014 to 2016, then the
entire target graph contains all papers published till 2016, but we only evaluate on the papers published from 2014 to 2016.

DBLP/ACM Since we observe that this dataset presents additional feature shift, so we additionally add adversarial layers
to align the node representations. Basically, it is the combination of Pair-Align with label-weighted adversarial feature
alignment, and the hyperparameters with additional adversarial layers are the same with DANN and will be detailed below.
Also, note that to systematically control the label shift degree in this relatively small graph (< 10000 nodes), the split of
nodes for training/validation/testing is done regarding each class of nodes. This is slightly different from the data in previous
papers using this dataset, so the results may not be directly comparable.

E.3. Hyperparameter tuning

Hyperparameter tuning involves adjusting δ for edge probability regularization in γ calculation and λ for L2 regularization
in the least square optimizations for w and β. Selecting δ correlates to the degree of structure shift and λ is chosen based on
the number of labels and classification performance. In datasets like Arxiv and MAG, where classification is challenging
and labels are numerous, leading to ill-conditioned or rank-deficient confusion matrices, a larger λ is required. For simpler
tasks with fewer classes, like synthetic and low PU datasets, a lower λ suffices. δ should be small for larger CSS (MAG and
Pileup) and large with smaller CSS (Arxiv and physical process shift in Pileup) to counteract the spurious γ value that may
caused by variance in edge formation. Below is the detailed range of hyperparameters.

The learning rate is 0.003 and the number of epochs is 400 for all experiments. The hyperparameters are tuned mainly for
the robustness control, as the δ in regularizing edges and λ in L2 regularization for optimization of w and β.

Here, for all datasets, λβ for β is chosen from {0.005, 0.01, 0.1, 1, 5} to reweight the ERM loss to handle the LS. Addition-
ally, we also consider reweighting the ERM loss by source label distribution together. Specifically, we found it useful in the
case with imbalanced training label distribution, like both directions in DBLP/ACM datasets, transitioning from high PU to
low PU, and the Arxiv training with papers pre-2007 and pre-2009. In other cases, we do not reweight the ERM loss by
source label distribution.

20

Pairwise Alignment Improves Graph Domain Adaptation

• For the synthetic datasets, the δ is selected from {1e−6, 1e−5, 1e−4}, λw is selected from {0.005, 0.01, 0.1}

• For the MAG dataset, the δ is selected from {1e−5, 1e−4, 1e−3}, λw is selected from {0.1, 1, 5, 10}

• For the DBLP/ACM dataset, the δ is selected from {5e−5, 1e−4, 5e−4}, λw is selected from {20, 25, 30}

• For the Pileup dataset, regarding the settings with pileup shift, δ is selected from {1e−6, 1e−5, 1e−4}, λw is selected
from {0.005, 0.01, 0.1, 1}. Regarding the settings with physical process shift, δ is selected from {1e−5, 1e−4, 5e−4},
λw is selected from {1, 5, 10, 20}

• For the Arxiv dataset, regarding the settings with training data till 2007, the δ is selected from {5e−3, 1e−2, 3e−2}, λw

is selected from {1, 2, 5}. Regarding the settings with training data till 2009, the δ is selected from {3e−2, 5e−2, 8e−2},
λw is selected from {15, 20, 25}. Regarding the settings with training data till 2011, the δ is selected from
{3e−4, 5e−4, 8e−4}, λw is selected from {30, 50, 80}

E.4. Baseline Tuning

• For DANN, we tune two hyperparameters as the coefficient before the domain alignment loss and the max value of the
rate added during the gradient reversal layer. The rate is calculated as q = min((epoch + 1)/nepochs),max-rate). For
all datasets, DA loss coefficient is selected from {0.2, 0.5, 1} and max-rate is selected from {0.05, 0.2, 1}.

• For IWDAN, we tune three hyperparameters, the same two parameters as the coefficient before the domain alignment
loss and the max value of the rate added during the gradient reversal layer. For all datasets, DA loss coefficient is
selected from {0.5, 1} and max-rate is selected from {0.05, 0.2, 1}. Also, we tune the coefficient to update the label
weight calculated after each epoch as (1− λ) ∗ new weight + λ ∗ previous weight, where λ is selected from {0, 0.5}.

• For SpecReg, we totally tune for 5 hyperparameters and we follow the original hyperparameters for the dataset Arxiv and
DBLP/ACM. For DBLP/ACM dataset, γadv is selected from {0.01, 0.2}, γsmooth is selected from {0.01, 0.1}, threshold-
smooth is selected from {0.01,−1}, γmfr is selected from {0.01, 0.1}, threshold-mfr is selected from {0.75,−1}.
For Arxiv dataset, γadv is selected from {0.01}, γsmooth is selected from {0, 0.1}, threshold-smooth is selected from
{0, 1}, γmfr is selected from {0, 0.1}, threshold-mfr is selected from {0, 1}. For the other datasets, γadv is selected
from {0.01}, γsmooth is selected from {0.01, 0.1}, threshold-smooth is selected from {0.1, 1}, γmfr is selected from
{0.01, 0.1}, threshold-mfr is selected from {0.1, 1}. Note that for the DBLP and ACM datasets, we implement their
module (following their published code) on top of GNN instead of the UDAGCN model for fair comparison among
baselines.

• For UDAGCN, we also tune the two hyperparameters from DANN as the coefficient before the domain alignment loss
and the max value of the rate added during the gradient reversal layer. The rate is calculated as q = min((epoch +
1)/nepochs),max-rate). For all datasets, DA loss coefficient is selected from {0.2, 0.5, 1} and max-rate is selected
from {0.05, 0.2, 1}.

• For StruRW, we use the StruRW-ERM baseline and we tune the λ that controls the edge weights in GNN as (1− λ) +
λ ∗ edge weight with range {0.1, 0.3, 0.7, 1} and the epochs to start reweighting the edges from {100, 200, 300}.

E.5. Shift statistics of datasets

We design two metrics to measure the degree of structure shift in terms of CSS and LS.

The metric of CSS is based on the node label distribution in the neighborhood of each class of nodes as PU (Yv|Yu, v ∈ Nu).
Specifically, we calculate the total variation distance of this conditional neighborhood node label distribution of each class
∀i ∈ Y as:

TV (PS(Yv|Yu = i, v ∈ Nu),PT (Yv|Yu = i, v ∈ Nu))

=
1

2
∥PS(Yv|Yu = i, v ∈ Nu)− PT (Yv|Yu = i, v ∈ Nu)∥1

=
1

2

∑
j∈Y
|PS(Yv = j|Yu = i, v ∈ Nu)− PT (Yv = j|Yu = i, v ∈ Nu)|

21

Pairwise Alignment Improves Graph Domain Adaptation

Then, we take a weighted average of the TV distance for each class based on the label distribution of end nodes conditioned
on an edge PU (Yu|euv ∈ EU) since classes that appear more often as a center node in the neighborhood may affect more in
the structure shift. The CSS-src in the table indicates the weighted average by PS(Yu|euv ∈ ES) and CSS-tgt in the table
indicates the weighted average by PT (Yu|euv ∈ ET), and CSS-both is the average of CSS-src and CSS-tgt.

The metric of LS is calculated as the total variation distance between the source and target label distribution as:

TV (PS(Y),PT (Y)) =
1

2

∑
i∈Y
|PS(Y = i)− PT (Y = i)|

The shift metrics for each dataset are shown in the following tables.

Table 8. MAG dataset shift metrics

US → CN US → DE US → JP US → RU US → FR CN → US CN → DE CN → JP CN → RU CN → FR

CSS-SRC 0.1639 0.2299 0.1322 0.3532 0.2530 0.2062 0.1775 0.1487 0.2120 0.1540
CSS-TGT 0.2062 0.2217 0.1438 0.2866 0.2854 0.1639 0.2311 0.1323 0.2027 0.2661
CSS-BOTH 0.1850 0.2258 0.1380 0.3199 0.2692 0.1850 0.2043 0.1405 0.2073 0.2100
LS 0.2734 0.1498 0.1699 0.3856 0.1706 0.2734 0.2691 0.1522 0.2453 0.2256

Table 9. HEP pileup dataset shift metrics

PILEUP CONDITIONS PHYSICAL PROCESSES
DOMAINS PU10→ 30 PU30→ 10 PU10→ 50 PU50→ 10 PU30→ 140 PU140→ 30 gg → qq qq → gg

CSS-SRC 0.1941 0.1567 0.2910 0.2111 0.1871 0.1307 0.0232 0.0222
CSS-TGT 0.1567 0.1941 0.2111 0.2910 0.1307 0.1871 0.0222 0.0232
CSS-BOTH 0.1754 0.1754 0.2510 0.2510 0.1589 0.1589 0.0227 0.0227
LS 0.2258 0.2258 0.3175 0.3175 0.1590 0.1590 0.0348 0.0348

Table 10. Real dataset shift metrics

1950-2007 1950-2009 1950-2011 DBLP AND ACM
DOMAINS 2014− 2016 2016− 2018 2014− 2016 2016− 2018 2014− 2016 2016− 2018 A→ D D → A

CSS-SRC 0.2070 0.2651 0.1531 0.2010 0.1023 0.1443 0.1400 0.2241
CSS-TGT 0.2404 0.3060 0.2043 0.2737 0.1504 0.2301 0.2241 0.1400
CSS-BOTH 0.2237 0.2844 0.1787 0.2374 0.1263 0.1872 0.1820 0.1820
LS 0.2938 0.4396 0.2990 0.4552 0.2853 0.4438 0.3435 0.3435

Table 11. Synthetic CSBM dataset shift metrics

CSS (ONLY CLASS RATIO SHIFT) CSS (ONLY DEGREE SHIFT) CSS (SHIFT IN BOTH) CSS + LS

CSS-SRC 0.1655 0.3322 0.0042 0.0053 0.1673 0.3308 0.1777 0.2939
CSS-TGT 0.1655 0.3322 0.0042 0.0053 0.1673 0.3308 0.1215 0.1840
CSS-BOTH 0.1655 0.3322 0.0042 0.0053 0.1673 0.3308 0.1496 0.2389
LS 0 0 0 0 0 0 0.1650 0.2667

E.6. More results analysis

In this section, we will discuss more regarding our experimental results and provide some explanations of our Pair-Align
performance and comparison over the baselines.

Synthetic Data As discussed in the main text, our major conclusion is that our Pair-Align is practical for handling alignment
by focusing only on the conditional neighborhood node label distribution to address class ratio shifts. Although Pair-Align’s
performance is not the best among the baselines when there is a shift in node degree, we argue that in practice, ERM training
alone is adequate under node degree shifts, especially when the graph size is large. Here, the graph size is only 6000—a

22

Pairwise Alignment Improves Graph Domain Adaptation

small size in practical terms—and the ERM performance with a node degree shift ratio of 2 already achieved 99% accuracy.
It should be perfect when the graph size is larger. Also, in the second setting with a degree shift, the degree ratio shift of 4 is
relatively large, but the accuracy remains at 96%. We expect that the decay should be negligible when the graph size is
larger, often at least 10 times larger than 6000.

Regarding performance gains in addressing structure shifts, we observe that PA-CSS demonstrates significant improvements,
particularly in the second case of each scenario with larger degree shifts. Among the baselines, StruRW consistently
outperforms others in different CSS scenarios, except in node degree shifts. This is expected since StruRW is specifically
designed to handle CSS. Plus, in the synthetic CSBM data used here, the instability commonly associated with using hard
pseudo-labels does not significantly affect performance due to easy classification task. However, compared to our Pair-Align
methods, StruRW still shows limited performance even with only CSS shifts. When both CSS and LS shifts occur, IWDAN
emerges as the best baseline, as its algorithm addresses both conditional shifts and LS in non-graph problems effectively. In
synthetic datasets, shifts are less complex than in real-world graph-structured data, allowing IWDAN to lead to empirical
improvements. Our PA-BOTH outperforms all in scenarios involving CSS and LS shifts. By comparing PA-CSS and PA-LS,
we found that when both CSS and LS occur, the impact of CSS often dominates, making PA-CSS more effective than PA-LS.
However, this observation is based on our source graph’s balanced label distribution and does not hold in the HEP pileup
dataset when moving from highly imbalanced data (high PU conditions) to more balanced data (low PU conditions), which
we will discuss later in relation to the Pileup dataset.

Another advantage of using synthetic dataset results is that they help us understand the experimental results on real datasets
better. For example, by combining the shift statistics from Table 11 with the experimental results, we see that a CSS
metric value around 0.16 does not significantly impact the performance, thus not clearly demonstrating the effectiveness of
Pair-Align. However, Pair-Align methods show substantial benefits under larger shifts, with metric values around 0.3.

MAG Overall, our Pair-Align methods demonstrated significant advantages over the majority of baseline approaches,
including the top-performing baseline, StruRW. When considering the relative improvement to ERM performance (as well
as the performance of other baselines, except StruRW), there is an average relative benefit of over 45% when training on
the US graph and nearly 100% when training on the CN graph. This substantial improvement corroborates our discussion
regarding the existing gap, where current methods fall short in effectively addressing structure shifts. As detailed in the main
text, our PA-CSS methods not only surpass StruRW in performance but also yield additional benefits from handling LS, as
the LS degree indicated in Table 8. We believe the primary advantages stem from our principled approach to addressing CSS
with γ, which remains unbiased by LS, and the enhanced robustness afforded by using soft label predictions and regularized
least square estimations. This also elucidates the shortcomings of IWDAN, a non-graph method for addressing conditional
shift and LS, which underperforms under the MAG dataset conditions as discussed in the main text.

We next explore the relationship between performance improvements and the degree of structure shift. The experimental
results align closely with the CSS measurements shown in Table 8. For example, the transitions from US to JP and CN to
JP involve a smaller degree of CSS compared to other scenarios, resulting in relatively modest improvements. Similarly,
generalizations between the US and CN also show fewer benefits. Conversely, the impact of LS is less evident in the
outcomes associated with PA-LS, as this approach alone yields only marginal improvements. However, when we evaluate
the additional gains from LS mitigation provided by PA-BOTH in comparison to PA-CSS, scenarios with larger LS (such as
US → CN , CN → US, US → RU , and CN → DE) demonstrate more substantial benefits.

Pileup Mitigation The most crucial discussions concerning HEP pileup datasets are detailed in the main text, particularly
focusing on the distinct impacts of CSS and LS in transitions from high PU conditions to low PU conditions, and vice versa.
This underscores that while the two directions have identical measures of LS, the direction of generalization is crucial. From
a training perspective, it is clear that a model trained on a highly imbalanced dataset may neglect nodes in minor classes,
leading to worse performance on more balanced datasets. To improve generalization, it is essential to adjust the classification
loss to increase the model’s focus on these minor nodes during training. This explains why PA-CSS alone does not yield
benefits in scenarios transitioning from high to low PU, and why PA-LS becomes necessary. Conversely, when transitioning
from low to high PU, PA-CSS suffices to address CSS, as LS has a minimal effect on performance in this direction.

We then review baseline performance under the shift in pileup (PU) conditions. As noted in the main text, methods
primarily addressing feature shifts, such as DANN, UDAGCN, and IWDAN, underperform, underscoring that PU conditions
predominantly affect graph structure rather than node features. This observation aligns with the physical interpretation of
PU shifts described in the dataset details in E.1.2. PU shift correlates with changes in the number of other collisions (OC)
during collision events, directly influencing the OC ratio and the pattern of node connections, as illustrated in Fig 1. Given

23

Pairwise Alignment Improves Graph Domain Adaptation

that node features are derived from particle labels (either OC or LC), the feature distribution remains largely unchanged
despite variations in the OC to LC ratio. Consequently, feature shifts are minimal under PU conditions.

Consequently, the baselines like StruRW and SpecReg show some benefits over others in regularizing and adjusting graph
structure to handle structure shift. Specifically, SpecReg shows enhanced benefits during the transition from low PU to
high PU, possibly due to its regularization of spectral smoothness, which mitigates edge perturbations beneficially under
CSS conditions. Despite these improvements in the pileup dataset, SpecReg does not perform as well in other datasets
characterized by CSS, such as MAG. This may be attributed to the fact that spectral regularization is more effective in
scenarios with a limited variety of node connections, akin to the binary cases in the pileup dataset. However, it appears less
capable of managing more complex shifts in neighborhood distribution involving multiple classes, as seen in datasets like
MAG or Arxiv.

Conversely, StruRW achieves comparable performances to PA-BOTH in scenarios transitioning from high PU to low PU,
predominantly influenced by LS. This effectiveness is likely due to the fact that their edge weights incorporate w, which
includes α that implicitly contains the node label ratio. While our analysis suggests that using w directly is not a principled
approach for addressing CSS and LS, it proves beneficial in scenarios where LS significantly affects outcomes, providing a
better calibration compared to approaches that do not address LS, like PA-CSS. However, while StruRW holds an advantage
over PA-CSS, its performance still lags behind PA-BOTH, which offers a more systematic solution for both CSS and LS.

Arxiv Results from the Arxiv datasets align well with expectations and the shift measures detailed in Table 10. Notably,
CSS is most pronounced when the source graph includes papers published before 2007, with experimental results showing
the most substantial improvements under these conditions. In the scenario where papers from 2016-2018 are used for testing,
both PA-CSS and PA-BOTH outperform the baselines significantly, yet PA-LS emerges as the superior variant. This aligns
with the LS metrics reported, which indicate a significant LS in this context. A similar pattern is observed when training on
papers from before 2011 and testing on those from 2016-2018, with PA-LS achieving the best results.

For the target comprising papers from 2014-2016, our model continues to outperform baselines, albeit with a narrower
margin compared to other datasets. In this case, not only does our method perform comparably, but all baselines also
show similar performance levels, suggesting limited potential for improvements in this dataset. Furthermore, insights from
synthetic experiments reveal that a CSS metric value around 0.16 does not lead to substantial performance degradation,
which accounts for the moderate improvements over baselines in scenarios other than those using the source graph with
pre-2007 papers.

In our evaluation of baseline performances, we note that StruRW emerges as the superior baseline, effectively handling CSS.
In contrast, IWDAN tends to underperform relative to other baselines, which we attribute primarily to inaccuracies and
instability in its label weight estimation. Designed for computer vision tasks where accuracy is typically high, IWDAN lacks
mechanisms for regularization and robustness in its estimation processes, leading to its underperformance in our experiments
involving tasks with a total of 40 classes. Meanwhile, the performance of other baselines is comparable to the ERM training.

DBLP/ACM The generalization results between the DBLP and ACM datasets offer insights into the comparative effects of
feature shift versus structure shift. As discussed in the main text, baselines focused on feature alignment tend to perform
well in this dataset, suggesting that this dataset is predominantly influenced by feature shifts rather than structural shifts and
that feature alignment can address the shift effectively. This trend also leads to non-graph methods performing comparably
to, or even better than, graph-based methods due to the dominance of feature shifts.

In response to these observations, we integrated adversarial training into our method to align feature shifts and investigated
whether additional benefits could be derived from mitigating structure shifts. Our analysis of the experimental results, in
conjunction with the shift measures detailed in Table 10, reveals a significant LS between these two datasets. Specifically,
we note that the ACM graph exhibits a more imbalanced label distribution compared to the DBLP graph. This finding aligns
with the experimental outcomes, where PA-LS emerges as the most effective model and IWDAN as the best baseline when
training on ACM and testing on DBLP. Both methods are adept at handling LS, supporting our earlier assertion that LS
plays a crucial role when transitioning from an imbalanced dataset to a more balanced one. Conversely, in the transition
from DBLP to ACM, where LS has a lesser impact, PA-BOTH proves to be the most effective.

24

