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ABSTRACT

Density ratio estimation (DRE) is a core technique in machine learning used to
capture relationships between two probability distributions. f -divergence loss
functions, which are derived from variational representations of f -divergence,
have become a standard choice in DRE for achieving cutting-edge performance.
This study provides novel theoretical insights into DRE by deriving upper and
lower bounds on the Lp errors through f -divergence loss functions. These bounds
apply to any estimator belonging to a class of Lipschitz continuous estimators,
irrespective of the specific f -divergence loss function employed. The derived
bounds are expressed as a product involving the data dimensionality and the
expected value of the density ratio raised to the p-th power. Notably, the lower
bound includes an exponential term that depends on the Kullback–Leibler (KL)
divergence, revealing that the Lp error increases significantly as the KL divergence
grows when p > 1. This increase becomes even more pronounced as the value of p
grows. The theoretical insights are validated through numerical experiments.

1 INTRODUCTION

Density ratio estimation (DRE) is a key machine learning technique for computing the density ratio
r∗(x) = q(x)/p(x) between two probability distributions, based on samples independently drawn
from p and q. DRE plays a central role in various machine learning methods, including generative
modeling (Goodfellow et al., 2014; Nowozin et al., 2016; Uehara et al., 2016), mutual information
estimation and representation learning (Belghazi et al., 2018; Hjelm et al., 2018), energy-based
modeling (Gutmann & Hyvärinen, 2010), and covariate shift and domain adaptation (Shimodaira,
2000; Huang et al., 2006).

Recent advancements in DRE have been fueled by approaches employing neural networks as density
ratio estimators. These methods use loss functions derived from variational representations of f -
divergence (Nguyen et al., 2010; Sugiyama et al., 2012), where the optimal function corresponds to
the density ratio via the Legendre transform, leading to state-of-the-art performance.

Despite their empirical success, recent research has started to unravel the theoretical connections
between optimizing f -divergence loss functions and the accuracy of DRE. For integral probability
metric (IPM) loss functions, the upper and lower bounds of the Lp error in DRE have been established
as the minimax bounds of their optimization (Liang, 2017; Niles-Weed & Berthet, 2022). More recent
studies have concentrated on f -divergence loss functions, deriving upper bounds (Belomestny et al.,
2021) and the minimax upper and lower bounds for optimizing Shannon divergence loss (Belomestny
et al., 2021; Puchkin et al., 2024).

Although substantial progress has been made, several aspects of the relationship between the choice
of f -divergence loss functions and the accuracy of DRE remain unresolved. First, minimax lower
bounds do not reflect the true lower bound on the estimation error for the actual density ratio. Second,
the relationship between the true magnitudes of the f -divergences and the sample size requirements
for DRE using divergence loss functions is not fully understood. Specifically, the role of the true
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Kullback–Leibler (KL) divergence in determining the sample size needed for DRE with the KL-loss
function remains unclear, even though it is known that sample size requirements for KL-divergence
estimation increase exponentially as the true value of the divergence grows (Poole et al., 2019; Song
& Ermon, 2019; McAllester & Stratos, 2020). Finally, it remains an open question whether different
f -divergence loss functions, such as total variation loss and KL-divergence loss, yield statistically
equivalent Lp errors (e.g., root mean square errors).

This study aims to address uncertainties in DRE using f -divergence loss functions by deriving the
upper and lower bounds that are independent of the choice of f -divergence. However, the theoretical
optimization of f -divergence loss functions presents challenges due to their dependence on sample
sets drawn from two distributions. The lack of overlap between these sample sets often leads to
unstable optimization points, resulting in losses that do not reach their theoretical optima. In practice,
this issue is commonly mitigated by applying early stopping while monitoring validation losses.

We incorporate this practical approach into our theoretical framework by reformulating the loss
functions conceptually, thereby bridging the gap between the practical and theoretical behaviors
of these functions. Subsequently, we derive upper and lower bounds for the Lp error in DRE by
optimizing f -divergence loss functions. These bounds are obtained based on the expectation of the
distance between nearest neighbors in observations under the assumptions of L-Lipschitz continuity
of the energy function of the distributions and the compactness of the support.

The derived bounds are expressed as a product of terms involving the data dimensionality and the
expected value of the density ratio raised to the p-th power. Notably, the lower bound includes an
exponential term dependent on the KL-divergence, showing that the Lp error increases significantly as
the KL-divergence grows for p > 1, with the rate of increase accelerating for higher values of p. These
bounds apply to a class of Lipschitz continuous estimators, irrespective of the specific f -divergence
loss functions used. The theoretical findings are validated through numerical experiments.

In summary, the key contributions of this study are as follows: (1) We derive universal upper
and lower bounds for the Lp error in DRE through optimizations of variational representations of
f -divergences, providing a novel perspective on DRE with f -divergence loss functions. (2) We
empirically explore the relationship between KL-divergence, data dimensionality, and estimation
accuracy in DRE through optimizations of variational representations of f -divergences. Specifically,
we find that the Lp error increases significantly with larger KL-divergence values for p > 1, and this
effect is amplified by the magnitude of p.

Related Work. This study establishes upper and lower bounds on convergence rates for nonpara-
metric density ratio estimation using f -divergence optimization. Relevant prior research includes
studies on the minimax convergence rates for density estimation in the context of GAN optimization,
particularly for Wasserstein GANs (Arjovsky & Bottou, 2017) and vanilla GANs (Goodfellow et al.,
2014). In Wasserstein GAN optimization, Liang (2017) and Singh & Póczos (2018) derived the
minimax convergence rates for the IPM loss, which encompasses total variation among f -divergences.
Furthermore, Niles-Weed & Berthet (2022) extended these findings to the Wasserstein-p distance
for p > 1. In the context of vanilla GAN optimization, Belomestny et al. (2021) and Puchkin
et al. (2024) provided minimax upper and lower convergence rates for the Shannon divergence loss,
specifically deriving an upper bound for the L2 error. Beyond GAN-based research, Nguyen et al.
(2010) proposed an upper bound for the Hellinger distance in DRE using the KL-divergence loss,
thereby establishing a minimax upper bound for the L1 error in DRE. Additionally, foundational
work by Stone (1980) introduced a minimax convergence rate for nonparametric regression, which is
also applicable as an upper bound for the L1 error in nonparametric density estimation. For detailed
comparisons between our derived bounds and existing DRE bounds, see Section E.1 in Appendix.

2 PRELIMINARIES: NOTATION, SETUP, AND f -DIVERGENCE LOSS
FUNCTIONS

In this section, we define the notation, outline the problem setup, and present the variational repre-
sentation of f -divergence along with the associated loss functions that form the foundation of the
analysis in the subsequent sections.
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2.1 NOTATION, PRELIMINARY CONCEPTS, AND SETUP

Notation: Random variables are represented by uppercase letters, such asX . Lowercase letters denote
specific values of these random variables; for example, x represents a value of the random variable X .
Boldface letters, X and x, are used to denote sets of random variables and their corresponding values,
respectively. ‖y − x‖∞ denotes the maximum norm in Rd. i.e., ‖y − x‖∞ = max1≤i≤d |yi − xi|
for y = (y1, y2, . . . , yd) and x = (x1, x2, . . . , xd). diam(Ω) denotes the diameter of Ω. Specifically,
let diam(Ω) = inf{r > 0 | ∃a ∈ Ω s.t. Ω ⊆ ∆(a, r)}, where ∆(a, r) denotes the d-dimensional
interval centered at a with each side of length r: ∆(a, r) = {x ∈ Rd| ‖x− a‖∞ < r/2}. Op (aN )
denotes stochastic boundedness with rate aN in µ. i.e., X = Op(aN ) (as N → ∞) ⇔ for all ε > 0,
there exist δ(ε) > 0 and N(ε) > 0 such that µ (|X| /aN ≥ δ(ε)) < ε for all N ≥ N(ε).

Preliminary Concepts: Let P and Q represent probability measures on (Ω,F ), where F denotes
the σ-algebra on Ω. P is called absolutely continuous with respect to Q, P (A) = 0 whenever
Q(A) = 0 for anyA ∈ F . This relationship is denoted as P � Q. dP

dQ refers to the Radon–Nikodým
derivative of P with respect to Q for P and Q with P � Q. µ denotes a probability measure on Ω
with P � µ and Q� µ. An example of µ is (P +Q)/2. EP [·] denotes the expectation under the
distribution P , i.e., EP [φ(x)] =

∫
Ωp
φ(x)dP (x), where φ(x) is a measurable function over Ω.

Setup and Assumptions: P and Q represent probability distributions on Ω ⊂ Rd with unknown
probability densities p and q, respectively. We assume p(x) > 0 ⇔ q(x) > 0 almost everywhere
x ∈ Ω. 1

2.2 DRE WITH f -DIVERGENCE VARIATIONAL REPRESENTATION

Here, we introduce the f -divergence variational representation and the corresponding loss functions
used for DRE.

Definition 2.1 (f -divergence). The f -divergence Df between two probability measures P and
Q is defined using a convex function f satisfying f(1) = 0. It is expressed as: Df (Q||P ) =
EP [f(dQ/dP (x))].

Various divergences can be obtained as special cases by selecting an appropriate generator function f .
For instance, choosing the function f(u) = u · log u yields the Kullback–Leibler divergence.

We derive the variational representations of f -divergences using the Legendre transform of the convex
conjugate of a twice differentiable convex function f , f∗(ψ) = supu∈R{ψ · u − f(u)} (Nguyen
et al., 2007):

Df (Q||P ) = sup
φ≥0

{
EQ

[
f ′(φ)

]
− EP

[
f∗(f ′(φ))

]}
, (1)

where the supremum is required over all measurable functions φ : Ω → R with EQ[ |f ′(φ)| ] <∞
and EP [ |f∗(f ′(φ))| ] <∞. The maximum value is achieved when φ(x) = dQ/dP (x). Pairs of the
terms f ′(φ) and f∗(f ′(φ)) in Equation (1) for major f -divergences, along with their corresponding
convex functions f , are provided in Table 2 in the Appendix.

By substituting φ with a neural network model φθ and replacing the expectationE with sample means
Ê, the optimal function for Equation (1) is trained through back-propagation using an f -divergence
loss function.

Lf (φθ) = −
{
ÊQ

[
f ′(φθ)

]
− ÊP

[
f∗(f ′(φθ))

]}
. (2)

Formally, we define the f -divergence loss function within a probabilistic theoretical framework as
follows:

Definition 2.2 (f -Divergence Loss). Let X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P }, Xi

P
iid∼ P denote R i.i.d.

random variables from P , and let X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q}, Xi

Q
iid∼ Q denote S i.i.d. random

variables fromQ. Thereafter, for a twice differentiable convex function f , f -divergence loss L(R,S)
f (·)

1In this study, q(x)/p(x) is used as a notation for dQ
dP

(x) based on the Radon–Nikodým density representation
for improved readability.
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is defined as follows:

L(R,S)
f (φ) =

1

S
·

S∑
i=1

−f ′
(
φ(Xi

Q)
)
+

1

R

R∑
i=1

f∗
(
f ′
(
φ(Xi

P )
))
, (3)

where φ denotes a measurable function over Ω such that φ : Ω → R>0.

3 MAIN RESULTS

This study presents two key contributions. First, we derive common upper and lower bounds for
the Lp error in DRE by employing variational f -divergence optimization. Second, we empirically
explore the relationship between KL-divergence, data dimensionality, and estimation accuracy in
DRE through variational f -divergence optimization. Specifically, we find that the Lp error increases
significantly as the KL-divergence rises for p > 1, and this increase becomes more pronounced with
larger values of p.

3.1 THEORETICAL RESULTS.

In this study, we outline the assumptions required to derive the upper and lower bounds for DRE.
These assumptions are straightforward and primarily pertain to Lipschitz continuity of estimators.
Specifically, we assume the L-Lipschitz continuity of the energy function of the distributions,
T ∗(x) = − log dQ/dP (x).
Assumption 3.1 (Assumption for the Upper Bound). The following assumption is imposed on the
probability distributions P and Q.

U1. T ∗(x) = − log dQ/dP (x) is L-Lipschitz continuous with L > 0 on Ω.
Assumption 3.2 (Assumptions for the Lower Bound). The following assumptions are imposed on
the probability distributions P and Q.

L1. T ∗(x) = − log dQ/dP (x) is L-bi-Lipschitz continuous with L > 1 on Ω.

L2. EP

[(
dQ/dP

)p]
<∞ where p ≤ d.

For the probability distributions P and Q, Assumption L1 plays a crucial role in deriving the lower
bound of the Lp error in DRE. Further details regarding this assumption are provided in Remark 4.6
in Section 4.2.

Additionally, Assumptions 3.3 and 3.4 are essential for deriving both the upper and lower bounds of
the DRE. A discussion comparing Assumption 3.3 with related assumptions in prior work is provided
in Section E.2 in Appendix.
Assumption 3.3 (Assumptions for the Convex Function f ). The convex function f is assumed to
satisfy the following conditions: (F1) f is three-times differentiable; (F2) f ′′(u) > 0 for all u > 0;
and (F3) EP

[
f ′′(dQ/dP )

]
<∞.

Assumption 3.4 (Assumption for the Support). The support Ω is assumed to satisfy the following
conditions: (O1) diam(Ω) <∞.

Under these conditions, we derive the upper and lower bounds for the Lp error in DRE using
variational f -divergence optimization.
Theorem 3.5 (Informal. See Theorem 4.5 and 4.8). Assume Ω is a compact set in Rd, where d ≥ 3,
and f satisfies Assumption 3.3. Let P and Q denote the probability measures on Ω, and let φ
represent a K-Lipschitz function that minimizes the f -divergence loss functions defined in Equation
(3) using early stopping. Additionally, let N = min{R,S}.

(Upper Bound) Assume Assumption 3.1: Thereafter, Equation (4) holds for 1 ≤ p ≤ d/2 such that∥∥∥∥q(x)p(x)
− φ(x)

∥∥∥∥
Lp(Ω,P )

.
diam(Ω)

N1/d
·

L · E

[(
dQ

dP

)2·p
]1/(2·p)

+K

 . (4)
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(Lower Bound) Assume Assumption 3.2: Equations (5) and (6) hold for 1 ≤ p ≤ d such that

EX1
P ···XN

P

[ ∥∥∥∥q(x)p(x)
− φ(x)

∥∥∥∥
Lp(Ω,P )

]
&

1

N1/d
·

{
1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diam(Ω)

}
(5)

&
1

N1/d
·
{
1

L
· e

(p−1)
p ·KL(P ||Q)−1 −K · diam(Ω)

}
,

(6)

where | · |Lp(Ω,P ) denotes the Lp norm on Ω with respect to measure P , and KL(P ||Q) denotes the
KL-divergence between P and Q.

These bounds apply to all K-Lipschitz continuous estimators optimized with early stopping using the
f -divergence loss functions, as discussed in Section 4.3 and supported by Theorem 4.8.

Theorem 3.5 indicates that the curse of dimensionality arises when p = 1. For p > 1, both
the curse of dimensionality and the large sample requirements for high KL-divergence data occur
simultaneously. In particular, Equation (6) shows that the Lp error increases exponentially with
growing KL-divergence for p > 1, and this growth accelerates as p increases. These theoretical
insights are validated by numerical experiments, which are presented in the following section.

3.2 EXPERIMENTAL RESULTS.

We empirically verified the relationship between KL-divergence and data dimensionality, and their
effects on the estimation accuracy of DRE through variational f -divergence optimization. The results,
which corroborate the implications of Theorem 3.5, are presented in detail in Section D of the
Appendix.

Lp Errors vs. the KL-Divergence in Data We conducted experiments to investigate the relation-
ship between L1, L2, and L3 errors in DRE and the KL-divergence of the data. In these experiments,
we generated 100 sets of 5-dimensional datasets with KL-divergence values of 1, 2, 4, 6, 8, 10,
12, and 14. For each dataset, DRE was performed using the α-divergence and KL-divergence loss
functions, and the resulting L1, L2, and L3 errors were recorded. The results are presented in Figure
1. Details of the experimental settings and neural network training procedures are provided in Section
D.

As shown in Figure 1, the estimation errors for p > 1 increased significantly, with this growth
accelerating as p becomes larger. In contrast, when p = 1, the increase in estimation error was
relatively mild. Consistent with Theorem 3.5, these results demonstrate the significant impact of
KL-divergence on Lp errors for p > 1 in DRE with f -divergence loss functions.

Lp Errors vs. the Dimensions of Data We conducted experiments to investigate the relationship
between L1, L2, and L3 errors in DRE and the dimensionality of the data. In the experiments, we
generated 100 datasets with dimensions of 50, 100, and 200, each having a KL-divergence value of 3.
For each dataset, DRE was performed using α-divergence and KL-divergence loss functions, and the
resulting L1, L2, and L3 errors were observed. The results are presented in Figure 2. Details of the
experimental settings and neural network training procedures are provided in Section D.

As depicted in Figure 2, the estimation errors L1, L2, and L3 increased as the dimensionality of the
data increased for both the α-divergence and KL-divergence loss functions. These results indicate
that the curse of dimensionality affects all Lp errors equally, as suggested by Theorem 3.5.

4 OVERVIEW OF UPPER AND LOWER BOUND DERIVATIONS

In this section, we outline the derivation of the upper and lower bounds. We begin by introducing a
conceptual reformulation of the f -divergence loss function, which serves as the foundation of our
theoretical framework. Next, we derive the upper and lower bounds for DRE in terms of the Lp error,
based on this reformulation. Finally, we extend these results to the practical optimization scenario
using the f -divergence loss function, incorporating early stopping by monitoring validation losses.
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Figure 1: The experimental results of Lp errors versus the magnitude of KL-divergence in the data
are presented in Section 3.2. The x-axis represents the magnitude of KL-divergence in synthetic
datasets of fixed dimensionality. The y-axes of the left, center, and right graphs correspond to the
L1, L2, and L3 errors in DRE, respectively. The plots depict the median values of the y-axis, while
the error bars indicate the interquartile range (25th to 75th percentiles). The blue line represents
errors computed using the α-divergence loss function, whereas the orange line corresponds to errors
computed using the KL-divergence loss function.

Figure 2: The experimental results on Lp errors versus the dimensionality of the data are presented
in Section 3.2. The top row displays results using the α-divergence loss function, whereas the bottom
row presents results using the KL-divergence loss function. The x-axis represents the logarithm of
the number of samples utilized in the optimizations of DRE. The y-axes of the left, center, and right
graphs correspond to the L1, L2, and L3 errors in DRE, respectively. The plots show the median
y-axis values, while the error bars represent the interquartile range (25th to 75th percentiles). The
blue, orange, and green lines correspond to data dimensions of 50, 100, and 200, respectively.

This extension represents the core theoretical contribution of this study. Detailed statements and
proofs for the theorems discussed in this section are provided in Section C of the Appendix.

4.1 CONCEPTUAL REFORMULATION OF THE f -DIVERGENCE LOSS FUNCTIONS

The optimization of f -divergence loss functions, denoted as L(R,S)
f (φ) in Equation (3), poses both

practical and theoretical challenges due to its propensity to overfit the training data.

To better understand this issue, consider a deterministic setting as described in Definition 2.2, where
(x1

P ,x
2
P , . . . ,x

R
P ) = (1, 2, . . . , R) and (x1

Q,x
2
Q, . . . ,x

S
Q) = (R + 1, R + 2, . . . , R + S). Notably,

{xi
P }Ri=1 ∩ {xi

Q}Si=1 = ∅. In this setup, we observe that L̂(R,S)
f (φ) → −∞ as f∗

(
f ′
(
φ(xi

P )
))

→
−∞ and −f ′

(
φ(xj

Q)
)
→ −∞ for all 1 ≤ i ≤ R and 1 ≤ j ≤ S. In practice, this issue is mitigated

by implementing early stopping, where validation losses are monitored during optimization. The
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present theoretical framework incorporates this practical strategy, allowing for a deeper analysis of
both the optimization process and its implications for downstream tasks such as DRE.

To bridge the gap between the practical and theoretical behaviors of f -divergence loss functions
within our framework, we propose a conceptual reformulation of the loss function.
Definition 4.1 (µ-Representation f -Divergence Loss). Let µ be a probability measure with P � µ

and Q� µ. Let N = min{R,S} and let X̂µ[N ] = {X1
µ, . . . ,X

N
µ } denote N i.i.d. random variables

from µ. For a twice differentiable convex function f , let

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x), (7)

where f∗ denotes the Legendre transform of f : f∗(ψ) = supu∈R{ψ ·u−f(u)}. The µ-representation
of the f -divergence loss L(R,S)

f (·) in Equation (3) at the points X̂µ[N ] is defined as

L̃(N)
f (φ) =

1

N
·

N∑
i=1

l̃f (φ;X
i
µ), (8)

where φ is a measurable function over Ω such that φ : Ω → R>0.

This representation introduces an error of 1/
√
N between the practical f -divergence loss function

L(R,S)
f (φ) and the µ-representation f -divergence loss L̃(N)

f (φ). However, this error is negligible
when d ≥ 3, which will be discussed in Section 4.3.

The optimization properties of this conceptual loss function are encapsulated in Proposition 4.2.

Proposition 4.2. Assume that f satisfies Assumption 3.3. Let φ∗ = argminφ:Ω→R>0
L̃(N)
f (φ). Then,

φ∗(X
i
µ) =

dQ
dP (Xi

µ), for i = 1, 2, . . . , N .

This reformulation ensures that the conceptual loss function remains bounded. Furthermore, all
optimal points of the conceptual loss function are aligned with the ideal density ratios.

4.2 DERIVATION OF UPPER AND LOWER BOUNDS FOR OPTIMAL FUNCTIONS OF THE
µ-REPRESENTATION f -DIVERGENCE LOSS FUNCTIONS

In this section, we derive the upper and lower bounds for the Lp error in DRE for the optimal function
of L(N)

f (·) as defined in the previous section. These bounds are based on the expected distance
between the nearest neighbors of each Xi

µ, for 1 ≤ i ≤ N .

Hereafter, X(1)
µ[N ](x) denotes the nearest neighbor of x in X̂µ[N ] = {X1

µ, . . . ,X
N
µ }. Specifically,

define X
(1)
µ[N ](x) as Xi

µ in X̂µ[N ] such that ‖Xl
µ − x‖∞ > ‖Xi

µ − x‖∞, for all l < i, and ‖Xu
µ −

x‖∞ ≥ ‖Xi
µ − x‖∞ for all u > i. As in the previous section, let φ∗ = argminφ:Ω→R>0 L̃

(N)
f (φ).

As presented in Proposition 4.2, the optimal points of the µ-representation f -divergence loss functions
L̃(N)
f (φ) coincide with the ideal density ratios. This fact provides the following equation, serving as

the key bridge between the density ratio and its estimation.

φ∗
(
Xi

µ

)
=
dQ

dP

(
Xi

µ

)
=
dQ

dP

(
X

(1)
µ[N ]

(
Xi

µ

))
. (9)

Based on this equation, we can obtain∣∣∣∣φ∗(X(1)
µ[N ](x)

)
− φ∗(x)

∣∣∣∣p =

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ∗(x)

∣∣∣∣p . (10)

Using the triangle inequality in the Lp norm for the density ratios at x and its nearest neighbor, we
obtain{

EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

−
{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ∗(x)

∣∣∣∣p}1/p
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≤
{
EP

∣∣∣∣dQdP (x)− φ∗(x)

∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

+

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ∗(x)

∣∣∣∣p}1/p

. (11)

Assuming the L-bi-Lipschitz continuity of the energy function of the density ratio, T ∗(x) =
− log q(x)/p(x), we yield

1

Lp
·
(
dQ

dP

(
x
))p ∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

+Op

(
1

N1/(2d)

)
≤
∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p
≤ Lp ·

(
dQ

dP

(
x
))p ∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

+Op

(
1

N1/(2d)

)
. (12)

Additionally, from the K-Lipschitz continuity of φ∗(·) and Equation (9),∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ∗(x)

∣∣∣∣p =
∣∣∣φ∗(X(1)

µ[N ](x)
)
− φ∗(x)

∣∣∣p ≤ Kp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞
. (13)

Equations (12) and (13) provide the upper and lower bounds of the difference in density ratios
between x and its nearest neighbor X(1)

µ[N ](x) using their distance.

To evaluate the expectation of the distance between x and its nearest neighbor X(1)
µ[N ](x), we present

the following theorems: Theorem 4.3 provides an upper bound for the expectation on the right-hand
side of Equation (12); and Theorem 4.4 establishes a lower bound for the expectation on the left-hand
side.
Theorem 4.3. Under the assumption that Ω is compact, for 1 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diam(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

. (14)

Theorem 4.4. Let P and Q be probability measures on a compact set Ω in Rd with d ≥ 1. Assume
that P � λ and Q� λ, where λ denotes the Lebesgue measure on Rd. Let p be a positive constant
such that p ≥ 1. Assume E[(dQ/dP )p] <∞. Then,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p

≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (15)

where EX̂P [N]
[·] denotes the expectation over each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.

Notably, using Jensen’s inequality on the right-hand side of Equation (15) in Theorem 4.4, the
KL-divergence between P and Q appears in the lower bound such that

e−1 ·
{
EP

[{
dQ

dP
(x)

}p]}1/p

= e−1 ·

{
EQ

[{
dQ

dP
(x)

}p−1
]}1/p

= e−1 ·
{
EQ

[
e(p−1)·log dQ

dP (x)

]}1/p

≥ e−1 ·
{
eEQ

[
(p−1)·log dQ

dP (x)
]}1/p

= e
p−1
p ·KL(Q||P )−1. (16)

8
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We derive the upper and lower bounds for the Lp error in DRE for the optimally estimated functions
L̃(N)
f (·), as stated in Theorem 4.5.

Theorem 4.5. Assume Ω is a compact set in Rd with d ≥ 3, and that f satisfies Assumption
3.3. Let P and Q be probability measures on Ω, assuming that P � λ and Q � λ, where λ
denotes the Lebesgue measure on Rd. Let T ∗(x) be the energy function of dQ/dP (x) defined as
T ∗(x) = − log dQ/dP (x). Let F̃ (N)

K-Lip denote the set of all K-Lipschitz continuous functions on Ω

that minimize L̃(N)
f (·). Specifically, define

F̃ (N) =

{
φ∗ : Ω → R>0

∣∣∣ L̃(N)
f (φ∗) = min

φ
L̃(N)
f (φ)

}
, (17)

and
FK-Lip =

{
φ : Ω → R>0

∣∣∣ ∣∣φ(y)− φ(x)
∣∣ ≤ K ·

∥∥y − x
∥∥
∞ for all y,x ∈ Ω

}
. (18)

Subsequently, let F̃ (N)
K-Lip = F̃ (N) ∩ FK-Lip .

(Upper Bound) Assume that T ∗(x) satisfies Assumption 3.1. Thereafter, for 1 ≤ p ≤ d/2, Equation
(19) holds for any φ ∈ F̃ (N)

K-Lip such that

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≤ L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diam(Ω). (19)

(Lower Bound) Assume that T ∗(x) satisfies Assumption 3.2. Then, Equations (20) and (21) hold for
any φ ∈ F̃ (N)

K-Lip such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diam(Ω) (20)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diam(Ω) (21)

Remark 4.6. In the case L = 1, Equation (12) with p = 1 implies that
∣∣dQ/dP (y)− dQ/dP (x)

∣∣ =
dQ/dP (x) ·

∥∥y − x
∥∥
∞, for all x,y ∈ Ω. A typical case is when dQ/dP (x1, x2, . . . , xd) ≡

dQ/dP (x1, x2, . . . , xd′) with d′ < d. Thus, this typically occurs when dQ/dP (x) is a replication
of its lower-dimensional distribution. In such cases, the upper and lower bounds for the Lp error in
DRE are determined by the lower-dimensional distribution.

4.3 DERIVATION OF UPPER AND LOWER BOUNDS FOR OPTIMAL FUNCTIONS OF THE
f -DIVERGENCE LOSS FUNCTIONS

To establish upper and lower bounds for practical DRE using f -divergence loss function optimization,
we first statistically evaluate the discrepancy between the outputs of the practically optimized functions
L(R,S)
f (·), which employ early stopping based on validation losses, and the theoretically optimized

functions L̃(N)
f (·). Next, we demonstrate that this discrepancy becomes negligible when d ≥ 3.

Finally, the upper and lower bounds for DRE are expressed in terms of the Lp error for f -divergence
loss function optimization with early stopping. This result constitutes the final theoretical contribution
of this study.

First, according to the central limit theorem, an error of order 1/
√
N in probability arises when

measuring validation losses.

L(R,S)
f (φ)− Eµ

[
L(R,S)
f (φ)

]
= Op

(
1√
N

)
. (22)

9
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Equation (22) implies that there is an error margin of Op

(
1√
N

)
when monitoring validation losses

for early stopping in the optimization of L(R,S)
f (φ).

Subsequently, we use the following theorem to demonstrate that the optimization of Equation
(22), employing early stopping based on validation losses, is governed by the optimization of the
µ-representation f -divergence loss functions L̃(N)

f (·).
Theorem 4.7. Assume the same assumptions as in Proposition 4.2. Let φ∗ =

argminφ:Ω→R>0 L̃
(N)
f (φ). Therefore, for any measurable function φ : Ω → R>0,

φ(Xi
µ)− φ∗(X

i
µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N,

⇐⇒ L(R,S)
f (φ)− min

φ:Ω→R>0

Eµ

[
L(R,S)
f (φ)

]
= Op

(
1√
N

)
, (23)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition 4.1.

In Equation (23), the first term on the right-hand side represents the empirical risk of L(R,S)
f (φ) using

validation data, while the second term denotes the minimum value of its true error. This equation
illustrates that when L(R,S)

f (φ) is within the actual early stopping margin, specifically Op

(
1√
N

)
,

the function φ deviates from the optimal function of L̃(N)
f (φ) by no more than Op

(
1√
N

)
.

Based on Equation (23), we define the optimal function of L(R,S)
f (φ) for use with early stopping

while monitoring validation losses as follows:

φval is optimal in the optimization of L(R,S)
f (φ) using early stopping

, φ∗ +Op

(
1√
N

)
, where φ∗ = arg min

φ:Ω→R>0

Eµ

[
L̃(N)
f (φ)

]
. (24)

The difference Op

(
1√
N

)
, appearing in Equation (24), is negligible for DRE when d ≥ 3. Indeed,

using the triangle inequality in the Lp norm for φ∗ = argminφ:Ω→R>0
L̃(N)
f (φ) and Equation (20),

we observe{
EP

∣∣∣∣dQdP (x)− φval(x)

∣∣∣∣p}1/p

≥
{
EP

∣∣∣∣dQdP (x)− φ∗(x)

∣∣∣∣p}1/p

︸ ︷︷ ︸
=O

(
1

N1/d

)
−
{
EP

∣∣∣∣φval(x)− φ∗(x)

∣∣∣∣p}1/p

︸ ︷︷ ︸
=O

(
1√
N

)
� 1

N1/d

.

(25)

Therefore, we finally obtain the following Theorem 4.8.
Theorem 4.8. Assume the same assumptions and notations as in Theorem 4.5. Additionally, define

F (N)
K-Lip =

{
φ ∈ FK-Lip

∣∣∣ ∃φ∗ ∈ F̃ (N)
K-Lip such that φ = φ∗ +Op

(
1√
N

)}
. (26)

That is, F (N)
K-Lip denotes the set of all functions that differ by at most Op

(
1√
N

)
from some functions

that minimize L̃(N)
f (·). Therefore, the same results as in Theorem 4.5 hold for all φ ∈ F (N)

K-Lip .

5 CONCLUSIONS

We have established upper and lower bounds on the Lp errors in DRE through the optimization of
f -divergence loss functions. These bounds are applicable to any member of a group of Lipschitz
continuous estimators, irrespective of the specific f -divergence loss function employed. These bounds
provide new insights into how data dimensionality and the KL divergence between distributions

10
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influence the accuracy of DRE. Furthermore, numerical experiments validate these theoretical findings,
demonstrating that the relationship between Lp errors, KL divergence, and data dimensionality aligns
with the theoretical implications derived from the bounds. However, challenges remain, especially
in high-dimensional settings, due to the curse of dimensionality and large sample requirements.
Future studies could refine the theoretical framework to explore loss functions that enhance DRE
performance in complex, high-dimensional tasks.

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Francis Bach. Self-concordant analysis for logistic regression. 2010.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Denis Belomestny, Eric Moulines, Alexey Naumov, Nikita Puchkin, and Sergey Samsonov. Rates of
convergence for density estimation with gans. arXiv preprint arXiv:2102.00199, 2021.

Gérard Biau and Luc Devroye. Lectures on the nearest neighbor method, volume 246. Springer,
2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Correcting
sample selection bias by unlabeled data. Advances in neural information processing systems, 19,
2006.

Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. Statistical analysis of kernel-based
least-squares density-ratio estimation. Machine Learning, 86:335–367, 2012.

Masahiro Kato and Takeshi Teshima. Non-negative bregman divergence minimization for deep
direct density ratio estimation. In International Conference on Machine Learning, pp. 5320–5333.
PMLR, 2021.

Masanari Kimura and Howard Bondell. Density ratio estimation via sampling along generalized
geodesics on statistical manifolds. arXiv preprint arXiv:2406.18806, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yoshiaki Kitazawa. Alpha-divergence loss function for neural density ratio estimation. arXiv preprint
arXiv:2402.02041, 2024.

Samory Kpotufe. Lipschitz density-ratios, structured data, and data-driven tuning. In Artificial
Intelligence and Statistics, pp. 1320–1328. PMLR, 2017.

Tengyuan Liang. How well can generative adversarial networks learn densities: A nonparametric
view. arXiv preprint arXiv:1712.08244, 2017.

11



Published as a conference paper at ICLR 2025

Zhexiao Lin, Peng Ding, and Fang Han. Estimation based on nearest neighbor matching: from
density ratio to average treatment effect. Econometrica, 91(6):2187–2217, 2023.

David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information.
In International Conference on Artificial Intelligence and Statistics, pp. 875–884. PMLR, 2020.

XuanLong Nguyen, Martin J Wainwright, and Michael Jordan. Estimating divergence functionals
and the likelihood ratio by penalized convex risk minimization. Advances in neural information
processing systems, 20, 2007.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, 2010.

Jonathan Niles-Weed and Quentin Berthet. Minimax estimation of smooth densities in wasserstein
distance. The Annals of Statistics, 50(3):1519–1540, 2022.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–5180.
PMLR, 2019.

Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, and Alexey Naumov. Rates
of convergence for density estimation with generative adversarial networks. Journal of Machine
Learning Research, 25(29):1–47, 2024.

Igal Sason and Sergio Verdú. f -divergence inequalities. IEEE Transactions on Information Theory,
62(11):5973–6006, 2016.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Shashank Singh and Barnabás Póczos. Minimax distribution estimation in wasserstein distance.
arXiv preprint arXiv:1802.08855, 2018.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. arXiv preprint arXiv:1910.06222, 2019.

Charles J Stone. Optimal rates of convergence for nonparametric estimators. The annals of Statistics,
pp. 1348–1360, 1980.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching under the bregman
divergence: a unified framework of density-ratio estimation. Annals of the Institute of Statistical
Mathematics, 64:1009–1044, 2012.

Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Generative
adversarial nets from a density ratio estimation perspective. arXiv preprint arXiv:1610.02920,
2016.

12



Published as a conference paper at ICLR 2025

A ORGANIZATION OF THE SUPPLEMENTARY DOCUMENT

This supplementary document is organized as follows: Section B provides a list of notations used in
this study. Section C presents the proofs referenced in Sections 3 and 4. Section D provides details of
the experiments conducted. Section E explores further discussions related to this study.

Additionally, the code used for the numerical experiment is included as supplementary material.

B NOTATIONS

We outline all the notations used in the Appendix of this study in Table 1.

C PROOFS

In this section, we present the theorems and proofs referenced in this study. We begin by summarizing
the definitions and assumptions introduced in previous sections, followed by the detailed theorems
and proofs utilized throughout this study.

C.1 DEFINITIONS AND ASSUMPTIONS IN SECTIONS 2, 3, AND 4

C.1.1 DEFINITIONS

Definition C.1 (f -Divergence (Definition 2.1 restated)). The f -divergence Df between two prob-
ability measures P and Q, induced by a convex function f satisfying f(1) = 0, is defined as
Df (Q||P ) = EP [f(q(x)/p(x))].

Definition C.2 (f -Divergence Loss (Definition 2.2 restated)). Let X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P },

Xi
P

iid∼ P denote R i.i.d. random variables from P , and let X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q}, Xi

Q
iid∼ Q

denote S i.i.d. random variables from Q. Then, for a twice differentiable convex function f ,
f -divergence loss L(R,S)

f (·) is defined as follows:

L(R,S)
f (φ) =

1

S
·

S∑
i=1

−f ′
(
φ(Xi

Q)
)
+

1

R

R∑
i=1

f∗
(
f ′
(
φ(Xi

P )
))
, (27)

where φ is a measurable function over Ω such that φ : Ω → R>0.
Definition C.3 (µ-Representation f -Divergence Loss (Definition 4.1 restated)). Let f be a twice
differentiable convex function f . Then, µ-representation function of f for u > 0 at a point x ∈ Ω,
which is written for l̃f (u) in an abbreviated form, is defined as

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x), (28)

where f∗ denotes the Legendre transform of f : f∗(ψ) = supu∈R{ψ·u−f(u)}. LetN = min{R,S},
and let X̂µ[N ] = {X1

µ, . . . ,X
N
µ } denote N i.i.d. random variables from µ. Then, µ-representation of

the f -divergence loss L(R,S)
f (·) in Equation (27) at the points X̂µ[N ] is defined as

L̃(N)
f (φ) =

1

N
·

N∑
i=1

l̃f (u;X
i
µ) (29)

where φ is a measurable function over Ω such that φ : Ω → R>0.

C.1.2 ASSUMPTIONS

Assumption C.4 (Assumption for the Upper Bound (Assumption 3.1 restated)). The following
assumption is imposed on the probability distributions P and Q.

U1. T ∗(x) = − log dQ/dP (x) is L-Lipschitz continuous with L > 0 on Ω. i.e., ∃L > 0 s.t.∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L ·

∥∥y − x
∥∥
∞ for any y,x ∈ Ω.
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Table 1: Notations and definitions used in the proofs
Notations Definitions, Meanings

(Capital, small, and bold let-
ters)

Random variables are denoted by capital letters, such as A. Corre-
sponding values of the random variables are represented by small
letters. Bold letters A and a denote sets of random variables and
their corresponding values, respectively.

R, Rd The set of all real numbers and the d-dimensional vector space
over the real numbers, respectively.

R>0 The set of all positive real numbers: R>0 = {x ∈ R | x > 0}.
Ω A subset of Rd: Ω ⊂ Rd.
f(x) = O(g(x)), as x→ a Asymptotic boundedness with rate g(x) as x → a: f(x) =

O(g(x)) ⇔ lim supx→a |f(x)/g(x)| ≤ C, where C > 0.
f(x) = o(g(x)), as x→ a Asymptotic domination with rate g(x) as x → a: f(x) =

o(g(x)) ⇔ limx→a f(x)/g(x) = 0.
X = Op(aN ), as N → ∞ Stochastic boundedness with rate aN in µ: X = Op(aN ) ⇔

for all ε > 0, there exist δ(ε) > 0 and N(ε) > 0 such that
µ (|X| /aN ≥ δ(ε)) < ε for all N ≥ N(ε).

X = op(aN ), as N → ∞ Convergence in probability with rate aN in µ: X = op(aN ) ⇔
for all ε > 0, for all δ > 0, there exists N(ε, δ) > 0 such that
µ(|X|/aN ≥ δ) < ε for all N ≥ N(ε).

P � Q P is absolutely continuous with respect to Q.
P , Q A pair of probability measures with P � Q and Q� P .
µ A probability measure with P � µ and Q� µ.
dP
dQ The Radon–Nikodým derivative of P with respect to Q.
X̂P [R] R i.i.d. random variables from P : X̂P [R] = {X1

P ,X
2
P , . . . ,X

R
P },

where Xi
P

iid∼ P .
X̂Q[S] S i.i.d. random variables from Q: X̂Q[S] = {X1

Q,X
2
Q, . . . ,X

S
Q},

where Xi
Q

iid∼ Q.
N N = min{R,S}.
X̂µ[N ] N i.i.d. random variables from µ: X̂µ[N ] = {X1

µ,X
2
µ, . . . ,X

N
µ },

where Xi
µ

iid∼ µ.
X

(1)
µ[N ](x) The nearest neighbor variable of x in X̂µ[N ]: X

(1)
µ[N ](x) is the Xi

µ

such that ‖Xi
µ − x‖ < ‖Xj

µ − x‖ for all j 6= i.
Df (Q||P ) f -divergence: Df (Q||P ) = EP [f(q(x)/p(x))]. See Definition

C.1.
L(R,S)
f (·) f -divergence loss function. See Definition C.2.

l̃f (u;x) µ-representation of the f -divergence loss function at x:
l̃f (u;x) = −f ′ (u) · dQ

dµ (x) + f∗ (f ′ (u)) · dP
dµ (x).

L̃(N)
f (·) µ-representation of the f -divergence loss function L(R,S)

f (·). See
Definition 4.1.

Lf (φ) The expectation of the µ-representation of the f -divergence loss
on µ. See Lemma C.11.

‖ · ‖ The Euclidean norm.
‖ · ‖∞ The maximum norm in Rd: ‖y − x‖∞ = max1≤i≤d |yi − xi|.
∆(a, r) The d-dimensional interval centered at a with each side of length

r: ∆(a, r) = {x ∈ Rd|‖x− a‖∞ < r/2}.
diam(B) The diameter of Ω: diam(Ω) = inf{r > 0 | ∃a ∈ Ω s.t. Ω ⊆

∆(a, r)}.
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Assumption C.5 (Assumptions for the Lower Bound (Assumption 3.2 restated)). The following
assumptions are imposed on the probability distributions P and Q.

L1. T ∗(x) = − log dQ/dP (x) is L-bi-Lipschitz continuous on Ω. i.e., ∃L > 1 s.t. (1/L) ≤∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L ·

∥∥y − x
∥∥
∞ for any y,x ∈ Ω.

L2. EP

[(
dQ/dP

)p]
<∞ where p ≤ d.

Assumption C.6 (Assumptions for the Convex Function f (Assmption 3.3 restated)). The following
assumptions are assumed for the convex function f .

F1. f is three-time differentiable.

F2. f ′′(u) > 0 for all u > 0.

F3. EP

[
f ′′(dQ/dP )

]
<∞.

Assumption C.7 (Assumption for the Support (Assmption 3.4 restated)). The following assumption
is assumed for Ω.

O1. diam(Ω) <∞.

C.2 THEOREMS AND PROOFS IN SECTIONS 2, 3, AND 4

Lemma C.8. Let f be a twice differentiable function. Consider l̃f (u;x) defined as in Equation (28).
Then, the first derivative of l̃f (u;x) with respect to u is given by:

d

du
l̃f (u;x) =

{
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x). (30)

Additionally, if l̃f (u;x) is thrice differentiable, its second derivative with respect to u is given by:

d2

du2
l̃f (u;x) =

{(
u− dQ

dP
(x)

)
· f ′′′(u) + f ′′(u)

}
· dP
dµ

(x). (31)

Proof of Lemma C.8. First, note that

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x)

= −f ′(u) · dQ
dµ

(x) + {f ′(u) · u− f(u)} · dP
dµ

(x). (32)

Differentiating Equation (32) with respect to u, we obtain the first and second derivatives of l̃f (u;x)
as follows:

d

du
l̃f (u;x) = −f ′′(u) · dQ

dµ
(x) + u · f ′′(u) · dP

dµ
(x)

=

{
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x), (33)

and

d2

du2
l̃f (u;x) = −f ′′′(u) · dQ

dµ
(x) + f ′′(u) · dP

dµ
(x) + u · f ′′′(u) · dP

dµ
(x)

=

{(
u− dQ

dP
(x)

)
· f ′′′(u) + f ′′(u)

}
· dP
dµ

(x). (34)

This completes the proof.
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Theorem C.9. Assume that f satisfies Assumption C.6. Then, l̃f (u;x), as defined in Equation (28),
is minimized if and only if u∗(x) = dQ

dP (x). Additionally, for u > 0, the following holds:

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2 + o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
, (35)

where f(a) = o(a) (as a→ 0) denotes asymptotic domination such that lima→0
f(a)
a → 0.

Proof of Theorem C.9. Let sign(x) denote the sign of the value x: specifically, sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0, and sign(x) = 0 if x = 0.

From Equation (30) in Lemma C.8, we have

sign
(
d

du
l̃f (u;x)

)
= sign

({
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x)

)
= sign

({
u− dQ

dP
(x)

})
· sign (f ′′(u)) · sign

(
dP

dµ
(x)

)
= sign

(
u− dQ

dP
(x)

)
. (36)

Thus, l̃f (u;x) is minimized only when u∗ = dQ
dP (x).

Next, from Equation (30),

d

du
l̃f

(
dQ

dP
(x);x

)
= 0, (37)

and from Equation (31),

d2

du2
l̃f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x). (38)

Thus, using the second-order Taylor expansion of l̃f (u;x) around u = dQ
dP (x), we have

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2 + o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
. (39)

This completes the proof.

Proposition C.10 (Proposition 4.2 restated). Assume that f satisfies Assumption C.6. Let L̃(N)
f (φ)

denote the µ-representation f -divergence loss as defined in Definition C.3. Then, the minimum value
of L̃(N)

f (φ) over all measurable functions φ : Ω → R>0 is achieved if and only if φ satisfies

φ(Xi
µ) =

dQ

dP
(Xi

µ), for i = 1, 2, . . . , N. (40)

proof of Proposition C.10. From Theorem C.9, we observe that, for i = 1, 2, . . . , N ,

min
u>0

l̃f
(
u;Xi

µ

)
= l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
, (41)

where the minimum value is achieved only at u = dQ
dP (Xi

µ).
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Thus,

min
φ:Ω→R>0

L̃(N)
f (φ) = min

φ:Ω→R>0

1

N
·

N∑
i=1

l̃f (φ(X
i
µ);X

i
µ)

= min
φ(Xi

µ)>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (φ(X
i
µ);X

i
µ)

= min
ui>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
. (42)

Suppose that φ̃(x) is a function on Ω that satisfies Equation (40). From Equation (42), we have

L̃(N)
f

(
φ̃
)
− min

φ:Ω→R>0

L̃(N)
f (φ)

=
1

N
·

N∑
i=1

l̃f

(
φ̃(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)

=
1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
= 0. (43)

Here, we show that the minimum value of L̃(N)
f (φ) over all measurable functions φ : Ω → R>0 is

achieved if φ : Ω → R>0 satisfies Equation (40).

Next, we show that the minimum value of L̃(N)
f (φ) over all measurable functions φ : Ω → R>0 is

achieved only if φ : Ω → R>0 satisfies Equation (40).

We have, for any function φ : Ω → (0,∞),

L̃(N)
f (φ)− min

φ:Ω→R>0

L̃(N)
f (φ)

=
1

N
·

N∑
i=1

l̃f

(
φ(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

min
ui>0,

i=1,2,...,N

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
. (44)

Suppose that φ(Xi
µ) 6=

dQ
dP (Xi

µ). Then, from Equation (41), we have

l̃f
(
φ(Xi

µ);X
i
µ

)
> min

u>0
l̃f (u;X

i
µ). (45)

From Equations (44) and (45), we observe that

L̃(N)
f (φ)− min

φ:Ω→R>0

L̃(N)
f (φ)

=
1

N
·

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
≥ 1

N
·
{
l̃f

(
φ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
> 0 (46)

17



Published as a conference paper at ICLR 2025

Thus, we see that the minimum value of L̃(N)
f (φ) over all measurable functions φ : Ω → R>0 is

achieved only if φ : Ω → R>0 satisfies Equation (40).

This completes the proof.

Lemma C.11. Assume that f satisfies Assumption C.6. Let L̃(N)
f (φ) denote the µ-representation

f -divergence loss as defined in Definition C.3. Define

Lf (φ) = Eµ

[
L̃(N)
f (φ)

]
=

1

N
·

N∑
i=1

Eµ

[
−f ′ (φ(xi)) ·

dQ

dµ
(xi)

]

+
1

N
·

N∑
i=1

Eµ

[
f∗ (f ′ (φ(xi))) ·

dP

dµ
(xi)

]
. (47)

Then,

Eµ

[
min

φ:Ω→R>0

L̃(N)
f (φ)

]
= min

φ:Ω→R>0

Lf (φ) = min
φ:Ω→R>0

Eµ

[
L(R,S)
f (φ)

]
, (48)

where the infimum is taken over all measurable functions φ : Ω → R>0 such thatEP [f(φ(X))] <∞.
Additionally, the equality in Equation (48) hold when φ(x) = dQ

dP (x).

proof of Lemma C.11. Let, l̃∗f (x) = minu∈R>0 l̃f (u;x). From Theorem C.9, we see l̃∗f (x) =

l̃f (dQ/dP (x);x). Then, we have

l̃∗f (x) = l̃f

(
dQ

dP
(x);x

)
= −f ′

(
dQ

dP
(x)

)
· dQ
dµ

(x) +

{
f ′
(
dQ

dP
(x)

)
· dQ
dP

(x)− f

(
dQ

dP
(x)

)}
· dP
dµ

(x)

= −f
(
dQ

dP
(x)

)
· dP
dµ

(x). (49)

Now, we have

min
φ:Ω→R>0

L̃(N)
f (φ) = min

φ:Ω→R>0

1

N
·

N∑
i=1

l̃f (φ(X
i
µ);X

i
µ)

= min
φ(Xi

µ)>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (φ(X
i
µ);X

i
µ)

= min
ui>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

l̃∗f (X
i
µ). (50)

Additionally, we have

Eµ

[
L̃(N)
f (φ)

]
= Eµ

[
1

N
·

N∑
i=1

−f ′ (φ(xi)) ·
dQ

dµ
(xi)

+
1

N
·

N∑
i=1

f∗ (f ′ (φ(xi))) ·
dP

dµ
(xi)

]

18



Published as a conference paper at ICLR 2025

= − 1

N
·

N∑
i=1

Eµ

[
f ′ (φ(xi)) ·

dQ

dµ
(xi)

]

+
1

N
·

N∑
i=1

Eµ

[
f∗ (f ′ (φ(xi))) ·

dP

dµ
(xi)

]

= − 1

N
·

N∑
i=1

EQ [f ′ (φ)] +
1

N
·

N∑
i=1

EP [f∗ (f ′ (φ))]

= −EQ [f ′ (φ)] + EP [f∗ (f ′ (φ))] , (51)

and

E
[
L(R,S)
f (φ)

]
= E

[
1

R
·

S∑
i=1

−f ′ (φ(xq
i ))

+
1

S
·

R∑
i=1

f∗ (f ′ (φ(xp
i )))]

= − 1

S
·

S∑
i=1

EQ [f ′ (φ(xi))]

+
1

R
·

R∑
i=1

EP [f∗ (f ′ (φ(xi)))]

= − 1

S
·

S∑
i=1

EQ [f ′ (φ)] +
1

R
·

R∑
i=1

EP [f∗ (f ′ (φ))]

= −EQ [f ′ (φ)] + EP [f∗ (f ′ (φ))] . (52)

Now, note that, from Equation (1) (Nguyen et al. (2007)), we see

min
φ:Ω→R>0

−EQ [f ′ (φ)] + EP [f∗ (f ′ (φ))] = −Df (Q||P ), (53)

where Df (Q||P ) denotes f -divergence defined in Definition C.1 and the equality in Equation (53)
holds for φ(x) = dQ/dP (x).

From Equations (51), (52) and (53), we have

min
φ:Ω→R>0

Eµ

[
L̃(N)
f (φ)

]
= min

φ:Ω→R>0

E
[
L(R,S)
f (φ)

]
= −Df (Q||P ), (54)

and the equality in Equation (54) holds for φ(x) = dQ/dP (x).

Substituting Equation (49) into Equation (50), we have

min
φ:Ω→R>0

L̃(N)
f (φ) =

1

N
·

N∑
i=1

l̃∗f (X
i
µ)

=
1

N
·

N∑
i=1

−f
(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ). (55)

Thus,

Eµ

[
min

φ:Ω→R>0

L̃(N)
f (φ)

]
= Eµ

[
1

N
·

N∑
i=1

−f
(
dQ

dP
(xi)

)
· dP
dµ

(xi)

]

= − 1

N
·

N∑
i=1

Eµ

[
f

(
dQ

dP
(xi)

)
· dP
dµ

(xi)

]
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= − 1

N
·

N∑
i=1

Df (Q||P )

= −Df (Q||P ), (56)

From Equations (54) and (56), we have

Eµ

[
min

φ:Ω→R>0

L̃(N)
f (φ)

]
= min

φ:Ω→R>0

Lf (φ) = min
φ:Ω→R>0

Eµ

[
L(R,S)
f (φ)

]
, (57)

and the equality in each Equation (57) holds for φ(x) = dQ/dP (x).

This completes the proof.

The following theorem presents the convergence rate of the expected value of the distance between
two neighboring samples. Similar theorems have been discussed in studies on the order statistics of
multidimensional continuous random variables (e.g., Biau & Devroye (2015), p. 17, Theorem 2.1).

Theorem C.12 (Theorem 4.3 restated). Assume that Ω is a compact set, as stated in Assumption C.7.
Let X(1)

µ[N ](x) denote the nearest neighbor of x in X̂µ[N ]. Specifically, let X(1)
µ[N ](x) be Xi

µ in X̂µ[N ]

such that

‖Xi
µ − x‖∞ < ‖Xj

µ − x‖∞ (∀ j < i), and ‖Xi
µ − x‖∞ ≤ ‖Xj

µ − x‖∞ (∀ j > i). (58)

Additionally, let diam(Ω) denote the diameter of Ω. i.e., diam(B) = infr∈R{B ⊆ ∆(a, r) | ∃a ∈ B},
where ∆(a, r) denotes the d-dimensional interval centered at a with each side of length r: ∆(a, r) =
{x ∈ Rd| ‖x− a‖∞ < r/2}.

Then, for 1 ≤ κ ≤ d,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

≤ diam(Ω)κ ·
(

1

N + 1

)κ/d

, for all N ≥ 1. (59)

proof of Theorem C.12. Let we rewrite x in Equation (59) as XN+1
µ . Subsequently, let X̂µ[N+1] =

X̂µ[N ]∪{XN+1
µ }. Let ∆i = Ω∩∆(Xi

µ, ‖X
(1)
µ[N ](X

i
µ)−Xi

µ‖∞), where ∆(a, r) = {x ∈ Rd | ‖x−
a‖∞ < r/2}. Note that, ∆i ∩∆j = φ if i 6= j. Thus, tN+1

i=1 ∆i ⊆ Ω.

Now, let λ denote the Lebesgue measure on Rd. Then, we have

N+1∑
i=1

λ (∆i) = λ
(
tN+1
i=1 ∆i

)
≤ λ (Ω) ≤ diam(Ω)d, (60)

Subsequently, since λ (∆i) =
∥∥∥X(1)

µ[N ](X
i
µ)−Xi

µ

∥∥∥d
∞

, we have

N+1∑
i=1

λ (∆i) =

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞
. (61)

Thus, from Equations (60) and (61), we have

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

≤ diam(Ω)d. (62)

Note that it follows from Jensen’s inequality that

1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥κ
∞

≤

{
1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

}κ/d

. (63)
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From Equations (62) and (63), we have

1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥κ
∞

≤

{
1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

}κ/d

≤
{

1

N + 1
· diam(Ω)d

}κ/d

= diam(Ω)κ ·
(

1

N + 1

)κ/d

.

(64)

Thus,
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

≤ diam(Ω)κ ·
(

1

N + 1

)κ/d

, (65)

where EXi
µ

∥∥∥X(1)
µ[N ](x)−x

∥∥∥κ
∞

denotes the expectation of
∥∥∥X(1)

µ[N ](X
i
µ)−Xi

µ

∥∥∥κ
∞

with respect to Xi
µ.

Note that,
Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

= EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞
. (66)

Therefore,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

=
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞
. (67)

Finally, from Equations (65) and (67), we have

Eµ

∥∥∥X(1)
µ[N ](x)−x

∥∥∥κ
∞

=
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)−x

∥∥∥κ
∞

≤ diam(Ω)κ ·
(

1

N + 1

)κ/d

. (68)

This completes the proof.

Corollary C.13. Assume the same assumption as in Theorem C.12. Then, for 1 ≤ p ≤ d,

lim
N→∞

N1/d ·
{
Eµ

[ ∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

]}1/p

≤ diam(Ω). (69)

proof of Corollary C.13. First, from Theorem C.12 when κ = p,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

≤ diam(Ω)p ·
(

1

N + 1

)p/d

, for all N ≥ 1. (70)

Thus, for all N ≥ 1,{
Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

}1/p

≤

{
diam(Ω)p ·

(
1

N + 1

)p/d
}1/p

= diam(Ω) ·
(

1

N + 1

)1/d

(71)

Taking limN→∞ on both sides of the above inequality, we have

lim
N→∞

N1/d ·
{
Eµ

[∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

]}1/p

≤ lim
N→∞

{
N1/d · diam(Ω) ·

(
1

N + 1

)1/d
}

= diam(Ω). (72)

This completes the proof.
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Corollary C.14. Assume the same assumption as in Theorem C.12. Then, for 1 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diam(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

. (73)

proof of Corollary C.14. First from Theorem C.12 when κ = 2 · p and µ = P ,

EP

∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

≤ diam(Ω)2·p ·
(

1

N + 1

)2·p/d

, for all N ≥ 1. (74)

Thus, for all N ≥ 1,{
EP

∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

}1/(2·p)

≤

{
diam(Ω)2·p ·

(
1

N + 1

)2·p/d
}1/(2·p)

= diam(Ω) ·
(

1

N + 1

)1/d

(75)

Now, using Hölder’s inequality, we have

EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]

≤

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

·
(
EP

[∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

])1/(2·p)

≤

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

· diam(Ω) ·
(

1

N + 1

)1/d

(76)

Taking limN→∞ on both sides of the above inequality, we have

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ lim
N→∞

N1/d ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

· diam(Ω) ·
(

1

N + 1

)1/d


= diam(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

(77)

This completes the proof.

Lemma C.15. Let µ be a probability measure on Rd with d ≥ 1. Assume that µ � λ, where λ
denotes the Lebesgue measure on Rd. Let ‖ · ‖∞ denote the maximum norm in Rd: ‖y − x‖∞ =
max1≤i≤d |yi − xi|, where y = (y1, y2, . . . , yN ) and x = (x1, x2, . . . , xN ). Additionally, let
∆(x, r) denote the d-dimensional interval centered at x with each side of length r: ∆(x, r) = {x′ ∈
Rd | ‖x′ − x‖∞ ≤ r/2}.

Then, for any interior point x in Ω,

µ
(
∆(x, r)

)
=
dµ

dλ
(x) · rd + o

(
rd
)
, as r → 0, (78)

where f(r) = o(g(r)), as r → 0, denotes asymptotic domination such that limr→0 f(r)/g(r) = 0.
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proof of Lemma C.15. Note that, if x is an interior point in Ω, it holds that

lim
r→∞

µ
(
∆(x, r)

)
λ
(
∆(x, r)

) =
dµ

dλ
(x). (79)

From Equation (79), we have

lim
r→∞

µ
(
∆(x, r)

)
rd

= lim
r→∞

µ
(
∆(x, r)

)
rd

= lim
r→∞

µ
(
∆(x, r)

)
λ
(
∆(x, r)

) (80)

=
dµ

dλ

(
x
)
. (81)

Here, we use an equation where λ(∆(x, r)) = rd in Equation (80).

From Equation (81), we observe that

µ
(
∆(x, r)

)
=
dµ

dλ
(x) · rd + o

(
rd
)
, as r → 0. (82)

This completes the proof.

Corollary C.16. Assume the same assumptions as in Lemma C.15. Let X be a random variable
drawn from µ, and let EX denote the expectation with respect to X.

Then, for any interior point x0 in Ω,

EX

[∥∥x0 −X
∥∥p
∞ · I

(
∆(x0, r)

)
(X)

]
=
dµ

dλ
(x0) · rp+d+1 + o

(
rp+d+1

)
, as r → 0, (83)

where I
(
A
)
(·) is the indicator function for A: I(A)(x) = 1 if x ∈ A, and 0 otherwise.

proof of Corollary C.16. Consider the integration variable from x to r such that∥∥x0 − x
∥∥p
∞ = r. (84)

Then, from Lemma C.15, we have, as r → 0,

I
(
∆(x0, r)

)
(x) · dµ

dλ
(x) dx =

dµ

dλ
(x0) · rd + o

(
rd
)
. (85)

From the definition of expectation with the density dµ/dλ and Equation (85), we have, as r → 0,

EX

[∥∥x0 −X
∥∥p
∞ · I

(
∆(x0, r)

)
(X)

]
=

∫ ∥∥x0 − x
∥∥p
∞ · I

(
∆(x0, r)

)
(x) · dµ

dλ
(x) dx

=

∫
rp ·

(
dµ

dλ
(x0) · rd + o

(
rd
))

dr

=
dµ

dλ
(x0) · rp+d+1 + o

(
rp+d+1

)
. (86)

This completes the proof.

Theorem C.17 (Theorem 4.4 restated). Let P and Q be probability measures on a compact set Ω in
Rd with d ≥ 1. Assume that P � λ and Q� λ, where λ denotes the Lebesgue measure on Rd. Let
p be a positive constant such that p ≥ 1. Assume E[(dQ/dP )p] <∞.

Then,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p
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≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (87)

where EX̂P [N]
[·] denotes the expectation on each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.

proof of Theorem C.17. Let

Bi =

{
x ∈ Ω

∣∣∣ ∥∥∥Xi
P − x

∥∥∥
∞

≤
(

1

N

)1/d
}
. (88)

Since X
(1)
P [N ](x) is the nearest neighbor in

{
X1

P ,X
2
P , . . . ,X

N
P

}
for x,

1 ≤ ∃i ≤ N s.t.
∥∥∥Xi

P − x
∥∥∥
∞

≤
(

1

N

)1/d

⇐⇒
∥∥∥X(1)

P [N ](x)− x
∥∥∥
∞

≤
(

1

N

)1/d

(89)

Thus, {
x ∈ Ω

∣∣∣ ∥∥∥X(1)
P [N ](x)− x

∥∥∥
∞

≤
(

1

N

)1/d
}

=

N⋃
i=1

{
x ∈ Ω

∣∣∣ ∥∥∥Xi
P − x

∥∥∥
∞

≤
(

1

N

)1/d
}

=

N⋃
i=1

Bi (90)

Next, define

ZN (x) =

N∑
i=1

I (Bi) (x). (91)

Let XP be a random variable drawn from P with XP ⊥⊥ Xi
P , for 1 ≤ i ≤ N .

From Lemma C.15,

P
(
I (Bi) (XP ) = 1

)
= P

(
Bi

)
=
dP

dλ
(XP ) ·

(
1

N1/d

)d

+ o

(
1

N1/d

)d

=
dP

dλ
(XP ) ·

1

N
+ o

(
1

N

)
=

1

N
+ o

(
1

N

)
, (92)

and I (Bi) (XP ) ∈ {0, 1} and I (Bi) (XP ) ⊥⊥ I (Bj) (XP ) for i 6= j. Namely, ZN

(
XP

)
follows a

binomial distribution with N trials and a success probability for each trial of 1/N + o(1/N).

Then, we obtain

EX̂P [N]

[
I
(
{ZN (XP ) = 0}

)]
=

(
1− 1

N
− o

(
1

N

))N

. (93)

Since limN→∞ 1− 1
N − o

(
1
N

)
= 1, we have(

1− 1

N
− o

(
1

N

))N

=

(
1− 1

N
− o

(
1

N

))N−1

,

as N −→ ∞.
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Thus,

EX̂P [N]

[
I
(
{ZN (XP ) = 0}

)]
=

(
1− 1

N
− o

(
1

N

))N−1

(as N −→ ∞). (94)

In addition, note that

ZN (x) ≥ I

(
N⋃
i=1

Bi

)
(x),

and

ZN (x) ≥ 1 =⇒ I

(
N⋃
i=1

Bi

)
(x) = 1.

In particular,

ZN (x) = 1 =⇒
N∑
i=1

I (Bi) (x) = 1.

Therefore,

ZN (x) = 1 ⇐⇒
N∑
i=1

I (Bi) (x) = 1. (95)

Now, we obtain

Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]
≥ Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I

({
x ∈ Ω

∣∣∣ ∥∥∥X(1)
P [N ](x)− x

∥∥∥
∞

≤
(

1

N

)1/d
})

× I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

})]
= Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I

(
N⋃
i=1

Bi

)
· I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
(by Equation (90))

= Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

×
N∑
i=1

I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
(by Equation (95))

= Np/d ·
N∑
i=1

EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
= Np/d ·

N∑
i=1

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
. (96)
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Now, let

Z−j
N (x) =

N∑
i 6=j

I (Bi) (x).

Then,

I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

})
= I (Bi) · I

({
x ∈ Ω

∣∣∣ Z−i
N (x) = 0

})
.

(97)

Additionally, let X̂−i
P [N ] denote the subset of X̂P [N ] excluding Xi

P . i.e., X̂−i
P [N ] = X̂P [N ] \ {Xi

P }.

Let E−i
N [·] denote the expectation over the variables in X̂−i

P [N ], which is equivalent to EX̂−i
P [N]

.

From Equation (94),

E−i
N

[
I (Bi) · I

({
x ∈ Ω

∣∣∣ Z−i
N (x) = 0

})]
=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

.

(98)

From Equations (97) and (98), we have

E−i
N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
= E−i

N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x)−i = 0

}) ]]
= EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · E−i
N

[
I
({

x ∈ Ω
∣∣∣ ZN (x)−i = 0

}) ]]
= EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)×
(
1− 1

N − 1
− o

(
1

N − 1

))N−2
]

=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

× EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)

]
.

(99)

From Corollary C.16, we have

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)

]
=

{
dQ

dP

(
Xi

P

)}p

·

{
dP

dµ

(
Xi

P

)
·
(

1

N1/d

)p+d+1

+ o

((
1

N1/d

)p+d+1
)}

=
dP

dµ

(
Xi

P

)
·
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)

=

{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)
. (100)

From Equations (99) and (100), we obtain

E−i
N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2
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×
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)
. (101)

From Equations (96) and (101), we obtain, as N −→ ∞,

Np/d · EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]
≥ Np/d · EX̂P [N]

[
N∑
i=1

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
=

N∑
i=1

Np/d · EXi
P

[
E−i

N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]]
(by Equation (96))

=

N∑
i=1

Np/d · EXi
P

[(
1− 1

N − 1
− o

(
1

N − 1

))N−2

×
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)]

= N ·

{(
1− 1

N − 1
− o

(
1

N − 1

))N−2

× EP

[{
dQ

dP
(x)

}p]
·
(

1

N

)
+ o

(
1

N

)}
(by Equation (101))

=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

·
{
EP

[{
dQ

dP
(x)

}p]
+ o (1)

}
.

(102)

As N → ∞, we observe (
1− 1

N − 1
− o

(
1

N − 1

))N−2

−→ e−1. (103)

Then, from Equation (102), we obtain

lim
N→∞

Np/d · EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]
≥ e−1 · EP

[{
dQ

dP
(x)

}p]
. (104)

This completes the proof.

Theorem C.18. Assume that f satisfies Assumption C.6. For L̃(N)
f (φ) defined in Definition C.3, let

φ
(N)
∗ = argminφ:Ω→R>0

L̃(N)
f (φ).

Then, for any measurable function φ : Ω → R>0, the following equivalence holds:

φ(Xi
µ)− φ

(N)
∗ (Xi

µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N

⇐⇒ L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ) = Op

(
1√
N

)
, (105)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition C.3, and Lf (φ) is defined in Lemma C.11.
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proof of Theorem C.18. First, we enumerate several facts used in this proof.

I. From the Central Limit Theorem, we have:

L̃(N)
f

(
φ
(N)
∗

)
− Eµ

[
L̃(N)
f

(
φ
(N)
∗

) ]
= Op

(
1√
N

)
. (106)

II. From Proposition C.10, we have, for all x ∈ X̂µ[N ]:

φ
(N)
∗ (x) =

dQ

dP
(x), (107)

where X̂µ[N ] is defined in Definition C.3.

III. From Equation (107), it follows that:

L̃(N)
f

(
φ
(N)
∗

)
= L̃(N)

f

(
dQ

dP

)
, (108)

and

Eµ

[
L̃(N)
f

(
φ
(N)
∗

) ]
= Eµ

[
L̃(N)
f

(
dQ

dP

)]
. (109)

IV. From Lemma C.11, we have:

min
φ:Ω→R>0

Lf (φ) = Lf

(
dQ

dP

)
= Eµ

[
L̃(N)
f

(
dQ

dP

)]
. (110)

V. From Lemma C.8, for l̃f (u;x) defined in Equation (28), we obtain:

d

du
l̃f

(
dQ

dP
(x);x

)
= 0, (111)

and

d2

du2
l̃f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x). (112)

VI. From Theorem C.9, we have:

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
+ o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
, (113)

where f(a) = o(a) (as a→ 0) denotes asymptotic domination such that lima→0 f(a)/a =
0.

VII. From the assumption that EP [f
′′(dQ/dP )] <∞,

f ′′
(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) = Op (1) , as N → ∞. (114)

Now, we show the direction “=⇒” in Equation (105).

Assume that φ(Xi
µ) = φ

(N)
∗ (Xi

µ) +Op

(
1/
√
N
)

for 1 ≤ i ≤ N .

From Equations (35) in Theorem C.9 and (114), we have

l̃f
(
φ(Xi

µ);X
i
µ

)
− l̃f

(
φ
(N)
∗ (Xi

µ);X
i
µ

)
28
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= l̃f
(
φ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
=

1

2
· f ′′

(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) ·

∣∣∣∣φ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2 + o

(∣∣∣∣φ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2
)

=
1

2
· f ′′

(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) ·

∣∣∣φ(Xi
µ)− φ

(N)
∗ (Xi

µ)
∣∣∣2 + o

(∣∣∣φ(Xi
µ)− φ

(N)
∗ (Xi

µ)
∣∣∣2)

= Op (1) ·Op

({
1√
N

}2
)

= Op

(
1

N

)
. (115)

Thus, we have:

L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)
=

1

N
·

N∑
i=1

{
l̃f
(
φ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}

=
1

N
·

N∑
i=1

Op

(
1

N

)
= Op

(
1

N

)
. (116)

From Equations (106), (108), (110), and (116), we obtain:

L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ)

=
{
L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)}
+

{
L̃(N)
f

(
φ
(N)
∗

)
− min

φ:Ω→R>0

Lf (φ)

}
=
{
L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)}
+

{
L̃(N)
f

(
dQ

dP

)
− min

φ:Ω→R>0

Lf (φ)

}
(by Equation (108))

=
{
L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)}
+

{
L̃(N)
f

(
dQ

dP

)
− E

[
L̃(N)
f

(
dQ

dP

)]}
(by Equation (110))

=
{
L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)}
+
{
L̃(N)
f

(
φ
(N)
∗

)
− E

[
L̃(N)
f

(
φ
(N)
∗

) ]}
(by Equation (108))

= Op

(
1

N

)
+Op

(
1√
N

)
(by Equations (106) and (116))

= Op

(
1√
N

)
. (117)

Thus, we have proved “=⇒”.

Next, we prove the direction “⇐=” in Equation (105).

Suppose

L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ) = Op

(
1√
N

)
. (118)

From Equations (106), (110), (109), and (118), we obtain

L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)
=

{
L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ)

}
+

{
min

φ:Ω→R>0

Lf (φ)− L̃(N)
f

(
φ
(N)
∗

)}
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=

{
L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ)

}
+

{
E
[
L̃(N)
f

(
dQ

dP

)]
− L̃(N)

f

(
φ
(N)
∗

)}
(by Equation (110))

=

{
L̃(N)
f (φ)− min

φ:Ω→R>0

Lf (φ)

}
+
{
E
[
L̃(N)
f

(
φ
(N)
∗

) ]
− L̃(N)

f

(
φ
(N)
∗

)}
(by Equation (109))

= Op

(
1√
N

)
+Op

(
1√
N

)
(by Equations (106) and (118))

= Op

(
1√
N

)
. (119)

From Equation (107), we have

L̃(N)
f (φ)− L̃(N)

f

(
φ
(N)
∗

)
=

1

N
·

N∑
i=1

l̃f

(
φ(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
φ
(N)
∗ (Xi

µ);X
i
µ

)
=

1

N
·

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
− l̃f

(
φ
(N)
∗ (Xi

µ);X
i
µ

)}
.

(120)

From Equations (119) and (120), we have

1

N
·

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}
= Op

(
1√
N

)
. (121)

Let aiN = EP

[∣∣∣φ(Xi
µ)− φ

(k)
∗ (Xi

µ)
∣∣∣]. Since Xi

µ is identically distributed for 1 ≤ i ≤ N , we have

aiN = a1N for any 1 ≤ i ≤ N . Thus, define AN = supk≥N aik = supk≥N a1k.

Using Chebyshev’s inequality, we have for any ε > 0,

P

(∣∣∣φ(Xi
µ)− φ

(k)
∗ (Xi

µ)
∣∣∣ /AN >

1

ε

)

≤
ε · EP

[∣∣∣φ(Xi
µ)− φ

(k)
∗ (Xi

µ)
∣∣∣]

AN

≤ ε · aiN
AN

≤ ε. (122)

Thus, φ(Xi
µ)− φ

(k)
∗ (Xi

µ) = Op(AN ).

Now, we calculate

1

N

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
− l̃f

(
φ
(N)
∗ (Xi

µ);X
i
µ

)}
=

1

N

N∑
i=1

{
l̃f

(
φ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}

=
1

N

N∑
i=1

{
1

2
· λ(Xi

µ) ·Op

(∣∣∣∣φ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2
)

+ op

(∣∣∣∣φ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣4
)}

=
1

N

N∑
i=1

{
1

2
· λ(Xi

µ) ·Op

(∣∣∣φ(Xi
µ)− φ

(N)
∗ (Xi

µ)
∣∣∣2)+ op

(∣∣∣φ(Xi
µ)− φ

(N)
∗ (Xi

µ)
∣∣∣4)}

=
1

N
·N · 1

2
·Op

(√
N
)
·Op

(
A2

N

)
+

1

N
·N · 1

2
· op

(
A4

N

)
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= Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
. (123)

Here, X = op(aN ) denotes the convergence in probability with rate aN in µ as N → ∞: X =
op(aN ) (asN → ∞) ⇔∀ε, ∀δ > 0, ∃N(ε, δ) > 0 such that µ(|X|/aN ≥ δ) < ε for ∀N ≥ N(ε, δ).

From Equations (121) and (123), we have

Op

(
1√
N

)
≥ Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
. (124)

From the definition of AN , we observe that AN decreases as N increases. Thus, limN→∞AN exists
and 0 ≤ limN→∞AN <∞.

Suppose that limN→∞AN > 0. Then, we have

Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
= Op

(√
N
)
+ op (1) . (125)

This contradicts Equation (124). Therefore, limN→∞AN = 0.

From Equation (124), we have

Op

(
1

N

)
≥ Op

(
A2

N

)
+ op

(
A4

N√
N

)
= Op

(
A2

N

)
. (126)

Thus, AN = O
(
1/
√
N
)

.

Finally, we have

φ(Xi
µ)− φ

(N)
∗ (Xi

µ) = Op (AN ) = Op

(
1√
N

)
. (127)

Here, we have proved the direction “⇐=”.

This completes the proof.

Corollary C.19 (Theorem 4.7 restated). Assume the same assumption as in Theorem C.18. let
φ
(N)
∗ = argminφ:Ω→R>0

L̃(N)
f (φ).

Then, for any measurable function φ : Ω → R>0,

φ(Xi
µ)− φ

(N)
∗ (Xi

µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N.

⇐⇒ L(R,S)
f (φ)− inf

φ:Ω→R>0

Eµ

[
L(R,S)
f (φ)

]
= Op

(
1√
N

)
, (128)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition C.3, and L(R,S)

f (φ) is defined in Definition C.2.

proof of Corollary C.19. From Lemma C.11, we have L(R,S)
f (φ) = Lf (φ).

Thus, Equation (128) follows directly from Equation (105).

This completes the proof.

Theorem C.20 (Theorem 4.5 restated). Assume that Ω is a compact set in Rd with d ≥ 3 and
that f satisfies Assumption C.6. Let P and Q be probability measures on Ω. Assume that P � λ
and Q � λ, where λ denotes the Lebesgue measure on Rd. Let T ∗(x) be the energy function of
dQ/dP (x) defined as T ∗(x) = − log dQ/dP (x).
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Let F̃ (N)
K-Lip denote the set of all K-Lipschitz continuous functions on Ω that minimize L̃(N)

f (·).
Specifically, define

F̃ (N) =

{
φ∗ : Ω → R>0

∣∣∣ L̃(N)
f (φ∗) = min

φ
L̃(N)
f (φ)

}
, (129)

and

FK-Lip =
{
φ : Ω → R>0

∣∣∣ ∣∣φ(y)− φ(x)
∣∣ ≤ K ·

∥∥y − x
∥∥
∞ for all y,x ∈ Ω

}
. (130)

Subsequently, let
F̃ (N)

K-Lip = F̃ (N) ∩ FK-Lip . (131)

(Upper Bound) Assume Assumption C.4: there exists L > 0 such that
∣∣T ∗(y)− T ∗(x)

∣∣ ≤ L · ‖y −
x‖∞ for any y,x ∈ Ω, i.e., T ∗(x) is L-Lipschitz continuous on Ω.

Then, Equation (132) holds for 1 ≤ p ≤ d/2, such that for any φ ∈ F̃ (N)
K-Lip ,

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≤ L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diam(Ω). (132)

(Lower Bound) Assume Assumption C.5: there exists L > 1 such that (1/L) · ‖y − x‖∞ ≤∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L · ‖y − x‖∞ for any y,x ∈ Ω, i.e., T ∗(x) is L-bi-Lipschitz continuous on Ω;

and EP [dQ/dP ] <∞ with 1 ≤ p ≤ d.

Then, Equation (133) holds for any φ ∈ F̃ (N)
K-Lip , such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diam(Ω) (133)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diam(Ω) (134)

proof of Theorem C.20. First, we list the equations used in this proof.

I. Using the second-order Taylor expansion of e−t, we have

e−t = 1− t+
1

2
· e−c(t) · t2, where 0 ≤ |c(t)| ≤ |t|. (135)

II. From Equation (135), it follows that∣∣∣∣dQdP (y)− dQ

dP
(x)

∣∣∣∣
= e−T∗(y) ·

∣∣∣1− eT
∗(y)−T∗(x)

∣∣∣
= e−T∗(y)

{
(T ∗(y)− T ∗(x)) +

1

2
· eC(y,x,T∗) · (T ∗(y)− T ∗(x))

2

}
=
dQ

dP
(y)

{
(T ∗(y)− T ∗(x)) +

1

2
· eC(y,x,T∗) · (T ∗(y)− T ∗(x))

2

}
,

where 0 ≤ |C(y,x, T ∗)| ≤ |T ∗(y)− T ∗(x)|. (136)
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III. From Corollary C.13, for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

∥∥∥∥X(1)
µ[N ](x)− x

∥∥∥∥p
∞

}1/p

≤ diam(Ω).

(137)

IV. From Corollary C.14, for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

(138)

V. From Equation (138), for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥2·p
∞

]}1/p

≤ lim
N→∞

N1/d ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p){

EP

[ ∥∥∥X(1)
P [N ](x)− x

∥∥∥4·p
∞

]}1/(2·p)

≤

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

· diam(Ω) · lim
N→∞

N1/d

N2/d

= 0. (139)

VI. From Theorem C.17, for 0 ≤ p ≤ d,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p

≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (140)

where EX̂P [N]
[·] denotes the expectation on each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.

VII. Let X̂µ[N ] denote the set of random variables defined in Proposition C.10. From Proposition
C.10,

φ ∈ F̃ (N)
K-Lip ⇐⇒ φ(Xi

µ) =
dQ

dP
(Xi

µ), for 1 ≤ ∀i ≤ N. (141)

Now, we prove Equation (132). Let φ(x) be a member of F̃ (N)
K-Lip .

By applying the triangle inequality in the Lp norm, we have{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

+

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ(x)

∣∣∣∣p}1/p

.

(142)

From the K-Lipschitz continuity of φ and Equation (141),{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣φ(X(1)
µ[N ](x)

)
− φ(x)

∣∣∣∣p}1/p

(by Equation 141)

≤ K ·
{
EP

∥∥∥∥X(1)
µ[N ](x)− x

∥∥∥∥p
∞

}1/p

. (143)
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From Equations (137) and (143),

lim
N→∞

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ(x)

∣∣∣∣p}1/p

≤ K · diam(Ω). (144)

Next, by substituting y = X
(1)
µ[N ](x) and multiplying by dP

dµ (x) in Equation (136), and using the
L-Lipschitz continuity of T ∗, we have{

EP

∣∣∣∣dQdP (X
(1)
µ[N ](x))−

dQ

dP
(x)

∣∣∣∣p}1/p

=

[
EP

∣∣∣∣dQdP (x) ×
{(

T ∗(X
(1)
µ[N ](x))− T ∗(x)

)
+

1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p]1/p ,
where 0 ≤ C1(x) ≤

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣.
=

{
EP

∣∣∣∣dQdP (x)×
{(

T ∗(X
(1)
µ[N ](x))− T ∗(x)

)}
+

dQ

dP

(
x
)
×
{
1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p}1/p

≤
{
EP

[{
dQ

dP

(
x
)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

+

{
EP

[{
dQ

dP

(
x
)}p

· 1

2p
· ep·C1(x) ·

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣2·p]}1/p

≤
{
EP

[{
dQ

dP

(
x
)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

+

{
EP

[{
dQ

dP

(
x)
)}p

× 1

2p
· ep·

∣∣T∗(X
(1)

µ[N]
(x))−T∗(x)

∣∣
·
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣2·p]}1/p

(
∴ C1(x) ≤

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣)
≤
{
EP

[{
dQ

dP

(
x)
)}p

· Lp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+

{
EP

[{
dQ

dP

(
x)
)}p

× 1

2p
· ep·L·

∥∥X(1)

µ[N]
(x)−x

∥∥
∞ · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

≤
{
EP

[{
dQ

dP

(
x)
)}p

· Lp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+

{
EP

[{
dQ

dP

(
x
)}p

× 1

2p
· ep·L·diam(Ω) · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

= L ·
{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p
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+
1

2
· eL·diam(Ω) ·

{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

(145)

From Equations (138), (139) and (145), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ
(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

≤ lim
N→∞

N1/d · L ·
{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+ lim
N →∞

N1/d · 1
2
· eL·diam(Ω) ·

{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

= L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

. (146)

Finally, from Equations (144), (142), and (146), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≤ L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+ diam(Ω) ·K. (147)

Thus, it is shown that Equation (132) holds.

Next, we prove Equation (133). By applying the triangle inequality in the Lp norm, we have{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≥
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

−
{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− φ(x)

∣∣∣∣p}1/p

.

(148)

By substituting y = X
(1)
µ[N ](x) and multiplying by dP

dµ (x) in Equation (136) along with the L-bi-
Lipschitz continuity of T ∗, we have{

EP

∣∣∣∣dQdP (X
(1)
µ[N ](x))−

dQ

dP
(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
×
{(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)
+

1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p}1/p

where 0 ≤ C1(x) ≤
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣
≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p
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× 1

2p
· ep·

∣∣T∗(X
(1)

µ[N]
(x))−T∗(x)

∣∣
·
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣2·p]}1/p

≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

· 1

Lp
·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

× 1

2p
· ep·L·

∥∥X(1)

µ[N]
(x)−x

∥∥
∞ · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

· 1

Lp
·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

× 1

2p
· ep·L·diam(Ω) · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

=
1

L
·
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

− 1

2
· ediam(Ω) · L ·

{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

(149)

From Equations (138), (139) and (149), we have

lim
N→∞

N1/d ·

{
EX̂P [N]

[(
EP

∣∣∣∣dQdP (x)− φ
(
X

(1)
µ[N ](x)

)∣∣∣∣p )1/p
]}

≥ lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

Lp
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p

−1

2
· ediam(Ω) · L ·

(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
]}

≥ lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

L
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p
]}

− lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

2
· ediam(Ω)

×L ·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
]}

≥ lim
N→∞

N1/d · EX̂P [N]

[
1

L
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p
]

− EX̂P [N]

[
lim

N→∞
N1/d ·

{
1

2
· ediam(Ω)

×L ·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
}]

= e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

. (150)
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Finally, from Equations (144), (148), and (150), we have

lim
N→∞

Np/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p
]

≥ e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

− diam(Ω) ·K. (151)

Thus, it is shown that Equation (133) holds.

Next, we prove Equation (134).

First, we have

{
EP

[{
dQ

dP
(x)

}p]}1/p

=

{
EP

[
dQ

dP
(x) ·

{
dQ

dP
(x)

}p−1
]}1/p

=

{
EQ

[{
dQ

dP
(x)

}p−1
]}1/p

=

{
EQ

[
e(p−1)·log dQ

dP (x)

]}1/p

. (152)

From Jensen’s inequality,{
EQ

[
e(p−1)·log dQ

dP (x)

]}1/p

≥
{
eEQ

[
(p−1)·log dQ

dP (x)
]}1/p

=

{
e (p−1)·EQ

[
log dQ

dP (x)
]}1/p

= e
p−1
p ·EQ

[
log dQ

dP (x)
]

= e
p−1
p ·KL(Q||P ). (153)

From Equations (151), (152) and (153),

lim
N→∞

Np/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p
]

≥ e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

− diam(Ω) ·K

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 − diam(Ω) ·K. (154)

This completes the proof.

Theorem C.21 (Theorem 4.8 restated). Assume the same assumptions and notations as in Theorem
C.20. Additionally, define

F (N)
K-Lip =

{
φ ∈ FK-Lip

∣∣∣ ∃φ∗ ∈ F̃ (N)
K-Lip such that φ = φ∗ +Op

(
1√
N

)}
. (155)

That is, F (N)
K-Lip denotes the set of all functions that differ by at most Op(1/

√
N) from some functions

that minimize L̃(N)
f (·).

Then, the same results as in Theorem C.20 hold for all φ ∈ F (N)
K-Lip . Specifically:
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(Upper Bound) Under Assumption C.4, Equation (132) holds for 1 ≤ p ≤ d/2 such that for any
φ ∈ F (N)

K-Lip ,

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

≤ L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diam(Ω). (156)

(Lower Bound) Under Assumption C.5, Equation (133) holds for any φ ∈ F (N)
K-Lip , such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diam(Ω) (157)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diam(Ω) (158)

Proof of Theorem C.21. First, we prove Equation (156).

Let φ̃ be a member of F (N)
K-Lip . Then, there exists φ ∈ F (N)

K-Lip such that φ̃ = φ+Op(1/
√
N).

Using the triangle inequality in the Lp norm, we obtain{
EP

∣∣∣∣dQdP (x)− φ̃(x)

∣∣∣∣p}1/p

=

{
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∣∣∣∣dQdP (x)− φ(x) +Op

(
1√
N

)∣∣∣∣p}1/p

≤
{
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∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

+

{
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∣∣∣∣Op

(
1√
N

)∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

+O

(
1√
N

)
. (159)

From Equations (132) and (159), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− φ̃(x)

∣∣∣∣p}1/p

≤ lim
N→∞

N1/d ·

[{
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∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

+O

(
1√
N

)]

= lim
N→∞

N1/d ·
{
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∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

+ lim
N→∞

N1/d ·O
(

1√
N

)
= lim

N→∞
N1/d ·

{
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∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

= L · diam(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diam(Ω). (160)

Therefore, Equation (156) is proven.

Next, we prove Equation (157).

By applying the triangle inequality in the Lp norm, we obtain{
EP

∣∣∣∣dQdP (x)− φ̃(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− φ(x) +Op

(
1√
N

)∣∣∣∣p}1/p

38



Published as a conference paper at ICLR 2025

≥
{
EP

∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

−
{
EP

∣∣∣∣Op

(
1√
N

)∣∣∣∣p}1/p

=

{
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∣∣∣∣dQdP (x)− φ(x)

∣∣∣∣p}1/p

−O

(
1√
N

)
. (161)

In a similar manner to the derivation of Equation (160), we have

lim
N→∞

N1/d · EX̂P [N]
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N1/d ·O

(
1√
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N1/d · EX̂P [N]
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∣∣∣∣dQdP (x)− φ(x)
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]

=
1

L
·
{
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dQ
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(x)
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−K · diam(Ω). (162)

Therefore, Equation (157) is proven.

Equation (158) is obtained in the same manner as in the proof of Theorem C.20.

This completes the proof.

D DETAILS OF THE EXPERIMENTS IN SECTION 3

In this section, we provide detailed descriptions of the experiments reported in Section 3. Each dataset,
experimental method, experimental result, and the neural network settings used in the experiments
are presented in separate subsections.

D.1 DATASETS.

We conducted two experiments: one for investigating the relationship between Lp errors and KL-
divergence in the data; the other for investigating the relationship between Lp errors and the di-
mensionality of the data. In both, the datasets were generated from the following distributions: the
numerator distribution was a multidimensional multimodal normal distribution, while the denominator
distribution was a multidimensional standard normal distribution.

Denominator Distribution: The denominator datasets X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P } were gener-

ated from the following d-dimensional standard normal distribution:

Xi
P

iid∼ N (0, Id), (163)

where Id denotes the d-dimensional identity matrix.

Numerator Distribution: The numerator datasets X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q} were generated

from the following d-dimensional, M -multimodal normal distribution:

Xi
Q

iid∼
M∏

m=1

N (µ · rm, Id)Zm , (164)

where for each mode m:

• Zm ∼ Bernoulli(1/M) and
∑M

m=1 Zm = 1.

• rm ∼ Uniform(Sd−1).
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Here, Bernoulli(1/M) denotes the Bernoulli distribution with parameter 1/M , and Uniform(Sd−1)
denotes the uniform distribution on the d-dimensional unit surface Sd−1 =

{
x ∈ Rd : ‖x‖ = 1

}
.

In the aforementioned setting when M = 1, the KL-divergence of the datasets is calculated as:

KL(P ||Q) = EP

[
log

(
dP

dQ

)]
= EN (0,Id)

[
log

(
N (0, Id)

N (µ · rm, Id)

)]
=

1

2
·
[
log

|Σp|
|Σq|

− d+Tr(Σ−1
p · Σq) + (µp − µq)

T · Σ−1
p · (µp − µq)

]
=

1

2
·
[
log

|Id|
|Id|

− d+Tr(Id · Id) + (µ · rm)T · Id · (µ · rm)

]
=

1

2
·
(
0− d+ d+ µ2 · rTm · rm

)
=

1

2
· µ2. (165)

From Equation (165), the KL-divergence of the datasets for M > 1 is calculated as:

KL(P ||Q) = EP

[
log

(
dP

dQ

)]
= EN (0,Id)EZm∼Bernoulli(1/M)

[
log

(
N (0, Id)∏M

m=1 N (µ · rm, Id)Zm

)]

= EN (0,Id)EZm∼Bernoulli(1/M)

[
log

M∏
m=1

(
N (0, Id)

N (µ · rm, Id)

)Zm
]

= EN (0,Id)EZm∼Bernoulli(1/M)

[
M∑

m=1

log

(
N (0, Id)

N (µ · rm, Id)

)]

= EN (0,Id)

[
log

(
N (0, Id)

N (µ · rm, Id)

)]
=

1

2
· µ2. (166)

Thus, we set µ =
√
2 ·KL(P ||Q) in Equation (164) for M = 1, 2, 3, and 4, where KL(P ||Q)

denotes the KL-divergence of the datasets.

D.2 EXPERIMENTAL PROCEDURE.

We trained neural networks using the training datasets by optimizing the KL-divergence or α-
divergence loss functions. Details of these two functions used in the experiments are provided
below.

KL-divergence loss function. We used the following KL-divergence loss function, LKL(·), in our
experiments:

LKL(T ) = ÊP

[
eT
]
− ÊQ [T ]

=
1

S
·

S∑
i=1

eT (Xi
Q) − 1

R
·

R∑
i=1

T (Xi
P ). (167)

α-divergence loss function. We utilize an α-divergence loss function originally proposed in our
previous work (Kitazawa, 2024). The α-divergence loss function is defined as:
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The α-divergence loss function is defined as:

L(R,S)
α-divergence(T ; α) =

1

α
· ÊQ[S]

[
eα·Tθ

]
+

1

1− α
· ÊP [R]

[
e(α−1)·Tθ

]
=

1

α
· 1
S

·
S∑

i=1

eα·T (Xi
Q) +

1

1− α
· 1

R
·

R∑
i=1

e(α−1)·T (Xi
P ). (168)

For further details and theoretical derivations of this loss function, we refer the reader to Kitazawa
(2024).

Lp Errors vs. KL-Divergence in Data. We initially created 100 training, validation, and test
datasets, each consisting of 10000 samples, with a data dimensionality of 5 and KL-divergence values
of 1, 2, 4, 8, 10, 12, and 14. The numerator datasets were generated with modalities of 1, 2, 3, and
4 using the aforementioned distributions. Neural networks were trained using the training datasets
by optimizing both the α-divergence and KL-divergence loss functions. Training was halted if the
validation loss did not improve for an entire epoch. After training, the Lp errors of the estimated
density ratios for p = 1, 2, and 3 were measured using the test datasets. A total of 100 trials were
conducted, and we reported the median Lp errors along with the interquartile range (25th to 75th
percentiles) for each KL-divergence and α-divergence function.

Lp Errors vs. the Dimensions of Data. We initially created 100 training datasets, each consisting
of 20000 samples, and 100 validation and test datasets, each consisting of 5000 samples, with
data dimensionalities of 50, 100, and 200, and a KL-divergence value of 3. Neural networks were
trained using training datasets of sizes 1000, 2000, 4000, 8000, and 16000, by optimizing both
the α-divergence and KL-divergence loss functions. The numerator datasets were generated from
the aforementioned distributions, with modalities M = 1, 2 , 3, and 4. Training was halted if the
validation loss did not improve for an entire epoch. After training, the Lp errors of the estimated
density ratios for p = 1, 2, and 3 were measured using the test datasets. A total of 100 trials were
conducted, and we reported the median Lp errors along with the interquartile range (25th to 75th
percentiles) for each KL-divergence and α-divergence function.

D.3 RESULTS.

Lp Errors vs. the KL-Divergence in Data. The results for each multimodal case M = 1, 2, 3, and
4 of the numerator datasets are shown in Figure 3. The results for M = 1 were reported in Section 3.

As shown in Figure 3, the estimation errors for p > 1 increased significantly, with the rate of increase
accelerating as p becomes larger. In contrast, for p = 1, a relatively mild increase was observed. As
indicated by Theorem 3.5, these results emphasize the impact of the KL-divergence in the data on Lp

errors for p > 1 in DRE with f -divergence loss functions. Additionally, only small differences were
observed in the results among the modalities of the numerator datasets.

Lp Errors vs. the Dimensions of Data. The results for each multimodal case M = 1, 2, 3, and 4
of the numerator datasets are shown in Figure 4 and 5. The results of M = 1 (the first and second
rows in Figure 4) were reported in Section 3.

As shown in Figure 2, the L1, L2, and L3 errors in DRE worsened as the data dimensionality
increased for both the α-divergence and KL-divergence loss functions. These results indicate that
the curse of dimensionality affects all Lp errors equally, as suggested by Theorem 3.5. Additionally,
little difference was observed in the results across the modalities of the numerator datasets.

D.4 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND
HYPERPARAMETERS.

Lp Errors vs. the KL-Divergence in Data. The same neural network architecture, optimization al-
gorithm, and hyperparameters were used for both the KL-divergence and α-divergence loss functions.
A 6-layer perceptron with ReLU activation was employed, with each hidden layer consisting of 1024
nodes. For optimization with both the KL-divergence and α-divergence loss functions, the learning
rate was set to 0.0001, and the batch size was 128. Early stopping was applied with a patience of 3
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Figure 3: The experimental results of Lp errors versus the KL-divergence in the data for each
multimodal case M = 1, 2, 3, and 4 of the numerator datasets are presented, as discussed in Sections
3 and D. The results for M = 1 were reported in Section 3. The x-axis represents the KL-divergence
of synthetic datasets with fixed dimensions. The y-axes of the left, center, and right graphs represent
the L1, L2, and L3 errors in DRE, respectively. The blue line represents errors using the α-divergence
loss function, and the orange line represents errors using the KL-divergence loss function. The error
bars denote the interquartile range (25th to 75th percentiles) of the y-axis values. The plots show the
median y-axis values corresponding to the KL-divergence levels in the synthetic datasets.

epochs, and the maximum number of epochs was set to 5000. The value of α for the α-divergence
loss function was set to 0.5, PyTorch (Paszke et al., 2017) library in Python was used to implement
all models for DRE, with the Adam optimizer (Kingma, 2014) in PyTorch and an NVIDIA T4 GPU
used for training the neural networks.
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Figure 4: The experimental results of Lp errors versus the dimensionality of the data for the
multimodal cases M = 1 and 2 in the numerator datasets are presented, as discussed in Sections 3
and D. The results for M = 1 were reported in Section 3. The top row shows the results using the
α-divergence loss function, while the bottom row shows the results using the KL-divergence loss
function. The x-axis represents the logarithm of the number of samples used for the optimizations for
DRE. The y-axes of the left, center, and right graphs represent the L1, L2, and L3 errors in DRE,
respectively. The blue, orange, and green lines represent the results for data dimensionalities of 50,
100, and 200, respectively. The plots show the median y-axis values, and the error bars indicate the
interquartile range (25th to 75th percentiles) of the y-axis values for the logarithm of the number of
samples used in the optimizations for DRE.

Lp Errors vs. the Dimensions of Data. The same neural network architecture, optimization algo-
rithm, and hyperparameters were used for both the KL-divergence and α-divergence loss functions.
A 6-layer perceptron with ReLU activation was employed, with each hidden layer consisting of 1024
nodes. For optimization with both the KL-divergence and α-divergence loss functions, the learning
rate was set to 0.0001, and the batch size was 128. Early stopping was applied with a patience of 1
epoch, and the maximum number of epochs was set to 5000. The value of α for the α-divergence
loss function was set to 0.5, PyTorch (Paszke et al., 2017) library in Python was used to implement
all models for DRE, with the Adam optimizer (Kingma, 2014) in PyTorch and an NVIDIA T4 GPU
used for training the neural networks.

43



Published as a conference paper at ICLR 2025

Figure 5: The experimental results of Lp errors versus the dimensionality of the data for the multi-
modal case M = 3 and 4 in the numerator datasets are presented, as discussed in Sections D. The top
row shows the results using the α-divergence loss function, while the bottom row shows the results
using the KL-divergence loss function. The x-axis represents the logarithm of the number of samples
used for the optimizations for DRE. The y-axes of the left, center, and right graphs represent the L1,
L2, and L3 errors in DRE, respectively. Blue, orange, and green lines represent the results for data
dimensionalities of 50, 100, and 200, respectively. The plots show the median y-axis values, and
the error bars indicate the interquartile range (25th to 75th percentiles) of the y-axis values for the
logarithm of the number of samples used in the optimizations for DRE.
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E FURTHER DISCUSSIONS RELATED TO THIS STUDY

In this section, we delve into further discussions related to this study. First, we compare the upper
DRE bounds derived in this study with those reported in previous research. Next, we provide remarks
on Assumption 3.3, highlighting its differences and similarities with related assumptions in prior
work. Finally, we discuss the potential applications suggested by the findings of this study.

E.1 COMPARISON WITH EXISTING DRE BOUNDS

We now compare our Lp upper bound, as presented in Equation (4) of Theorem 3.5, to known DRE
bounds from other methods.

The terms related to data dimensionality in our upper bound are tighter than the existing non-
parametric minimax upper bounds in DRE. Furthermore, no prior work has included a term compara-
ble to ours that involves the exponential of the KL-divergence, as shown in Equation (6) of Theorem
3.5.

Nguyen et al. (2010) presented a minimax upper bound rate of O(1/N
1

2+d ) for the Hellinger distance
between the true and estimated density ratio, obtained by optimizing a KL-divergence loss function.
Since the Hellinger distance serves as an upper bound for the total variation distance (Sason & Verdú,
2016), the result from Nguyen et al. (2010) provides an upper bound on the L1 error in DRE using
the KL-divergence loss function. Kanamori et al. (2012) proposed an upper bound of O(1/N

1
2+d )

for DRE using kernel unconstrained least-squares importance fitting (KuLSIF), their proposed DRE
method. Under an assumption on the β-Hölder continuity of the probability ratio function, Kpotufe
(2017) presented an upper bound ofOP (logN/N

β
β+d ) for DRE using an empirical distribution-based

estimator, where our case corresponds to β = 1. A recent study (Lin et al., 2023) provided L1 and
L2 error upper bounds of O(1/N

1
2+d ) in DRE for an estimator using the M -th nearest neighbor, as

M increases along with the sample size.

In terms of comparison with our Lp lower bound, a minimax L1 lower bound of O(1/N
1

2+d ), for
example, was provided by Lin et al. (2023). This lower bound is larger than our lower bound in
Equation (5) in Theorem 3.5 and appears tighter than ours. However, minimax lower bounds may not
represent the true lower bounds and cannot be directly compared to our lower bound, as discussed in
Section 1.

E.2 REMARKS ON ASSUMPTION 3.3 AND RELATED ASSUMPTIONS IN PRIOR WORK

In the following, we provide remarks on Assumption 3.3 by comparing it with related assumptions in
prior work.

An assumption closely related to Assumption 3.3 can be found in the pseudo-self-concordance
property of losses introduced by Bach (2010). While the pseudo-self-concordance assumption
guarantees that the original loss function is smooth and strongly convex proportional to its second
derivative, Assumption 3.3 ensures these properties only for the expectation of the loss function.

First, we briefly review the pseudo-self-concordance assumption and a key property of loss functions
that follows from it. Bach (2010) introduced the following pseudo-self-concordance assumption. 2

Assumption E.1 (Pseudo self-concordance). For any u > 0 and for any r ∈ R, the loss g(u) satisfies
|g′′′(u+ r)| ≤ R · r2 · g′′(u), for some R > 0.

According to Proposition 1 in Bach (2010), under Assumption E.1, we have, for a sufficiently small
r0 > 0,

e−R·r2 ≤ g′′(u+ r)

g′′(u)
≤ eR·r2 , for 0 < r < r0. (169)

2In our discussion, we consider the pseudo-self-concordance assumption only for loss functions defined on a
one-dimensional variable, whereas Bach (2010) introduced it for loss functions in a multidimensional domain.
For a precise formulation, please refer to Propositions 1 and 2 in Bach (2010).
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Now, let Gu(r) = {g(u+ r)− g(u)}/g′′(u). From Equation (169),

1

L
≤ G′′

u(r) ≤ L, for 0 < r < r0, (170)

where L = eR·r20 .

Therefore, the pseudo-self-concordance property implies that Gu(r) is both L-smooth and 1/L-
strongly convex on any interval of fixed length r0, with L independent of u. This property is
considered a key characteristic of loss functions under the pseudo-self-concordance assumption.

Next, we discuss the properties of the loss function derived from our assumptions. Theorem C.9 in
the appendix characterizes the local convexity of the loss function as follows:

l̃f

(
dQ

dP
(x) + r;x

)
− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) · r2 + o
(
r2
)
. (171)

Additionally, from Lemma C.8,

l̃′′f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x), (172)

where

l̃′′f (u;x) =
d2

dr2
l̃f (u+ r;x)

∣∣∣
r=0

.

From Equations (171) and (172), as r → 0,

l̃f

(
dQ
dP (x) + r;x

)
− l̃f

(
dQ
dP (x);x

)
l̃′′f

(
dQ
dP (x);x

) =
r2

2
+ ox (1) , (173)

where ox(1) denotes a quantity that converges to 0 as r → 0, though not uniformly in x; that is,
f(r) = ox(1) if and only if, for every ε > 0, there exists δx > 0 (depending on x) such that
|f(r)| < ε for all 0 < r < δx.

Now, letGu(x)(r) =
{
l̃f (u(x)+r;x)− l̃f (u(x);x)

}
/ l̃′′f (u(x);x), where u(x) = dQ/dP (x). From

Equation (173), we have, for some δx > 0 and Lx ≥ 1,
1

Lx
≤ G′′

u(x)(r) ≤ Lx, for 0 < r < δx, (174)

where δx > 0 and Lx ≥ 1 are determined at each point x ∈ Ω. Because δx and Lx depend on x,
Equation (174) does not imply that Gu(x) is L-smooth or 1/L-strongly convex on any interval of a
fixed length.

However, taking the expectation with respect to µ on both sides of Equation (171) yields

Eµ

[
l̃f

(
dQ

dP
(x) + r;x

)]
− Eµ

[
l̃f

(
dQ

dP
(x);x

)]
=

1

2
· EP

[
f ′′
(
dQ

dP

)]
· r2 + o

(
r2
)
. (175)

From Equation (175), we have

d2

dr2

{
Eµ

[
l̃f

(
dQ

dP
(x) + r;x

)]}∣∣∣
r=0

= EP

[
f ′′
(
dQ

dP

)]
. (176)

Thus,

G(r) =
r2

2
+

o
(
r2
)

EP

[
f ′′
(

dQ
dP

)] , (177)

where

G(r) =
Eµ

[
l̃f

(
dQ
dP (x) + r;x

) ]
− Eµ

[
l̃f

(
dQ
dP (x);x

) ]
d2

dr2

{
Eµ

[
l̃f

(
dQ
dP (x) + r;x

) ]}∣∣
r=0

.
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From Equation (177), we deduce that, for some L > 1 and r0 > 0,

1

L
≤ G′′(r) ≤ L, for 0 < r < r0. (178)

Equation (178) implies that the expectation of the loss function is locally both smooth and strongly
convex, with magnitudes proportional to its second derivative. In contrast, under the pseudo-self-
concordance assumption, the original loss function is guaranteed to possess these properties (see
Equation (170)).

In summary, under Assumption 3.3, the expectation of the loss function exhibits the same local
smoothness and strong convexity properties (proportional to its second derivative) as those guaranteed
by the pseudo-self-concordance assumption.

Furthermore, we note that the expression EP [f
′′(dQ/dP )] in Assumption 3.3 resembles the Fisher

information when f(u) = − log u, as shown in Equations (175) and (176). Thus, as an alternative
perspective, we propose that Assumption 3.3 establishes an information-theoretic bound for estimation
using f -divergence optimization.

E.3 APPLICATIONS OF THIS STUDY

In this section, we provide a brief discussion of potential applications highlighted by our findings.
The following two key applications can be derived from our results.

Selecting a benchmark index for evaluating DRE methods. When evaluating the accuracy of
DRE methods using synthetic datasets, the root mean squared error (RMSE) or mean squared error
(MSE) is recommended over the mean absolute error (MAE). Prior works did not carefully consider
the differences in their behavior with respect to the KL divergence of the datasets. For example,
Kimura & Bondell (2024) used MAE, whereas Kato & Teshima (2021) used MSE.

Fitting the distribution of base noise for f -GAN and Normalizing Flow. The optimization of f -
GANs (Nowozin et al., 2016) could benefit from adjusting the base noise distribution to better match
the data. Since the optimization of f -GANs is equivalent to DRE by optimizing the f -divergence
(Uehara et al., 2016), the accuracy of generative models could be improved by fitting the base
parametric models to the data in terms of KL divergence minimization (i.e., likelihood maximization).
A similar approach could also be applied to the base models in Normalizing Flow (Papamakarios
et al., 2021).
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Table 2: List of f ′(φ) and f∗(f ′(φ)) in Equation (1) together with convex functions, as discussed
in Section 2.2. Part of the list of divergences and their convex functions is based on Nowozin et al.
(2016).

Name convex function f f ′(φ) f∗(f ′(φ))

KL u · log u log
(
φ
)
+ 1 φ

Pearson χ2
(
u− 1

)2
2 · φ− 2 φ2 − 1

Squared Hellinger
(√
u− 1

)2
1− φ−1/2 φ1/2 − 1

GAN u · log u−
(
u+ 1

)
· log

(
u+ 1

)
− log

(
1 + φ−1

)
log
(
1 + φ

)
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