

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ANY-ORDER FLEXIBLE LENGTH MASKED DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Masked diffusion models (MDMs) have recently emerged as a promising alternative to autoregressive models over discrete domains. MDMs generate sequences in an any-order, parallel fashion, enabling fast inference and strong performance on non-causal tasks. However, a crucial limitation is that they do not support token insertions and are thus limited to *fixed-length* generations. To this end, we introduce **Flexible Masked Diffusion Models** (FlexMDMs), a discrete diffusion paradigm that simultaneously can model sequences of flexible length while provably retaining MDMs' flexibility of any-order inference. Grounded in an extension of the stochastic interpolant framework, FlexMDMs generate sequences by inserting mask tokens and unmasking them. Empirically, we show that FlexMDMs match MDMs in perplexity while modeling length statistics with much higher fidelity. On a synthetic maze planning task, they achieve $\approx 60\%$ higher success rate than MDM baselines. Finally, we show pretrained MDMs can easily be *retrofitted* into FlexMDMs: on 16 H100s, it takes only three days to fine-tune LLaDA-8B into a FlexMDM, achieving superior performance on math (GSM8K, $58\% \rightarrow 67\%$) and code infilling performance ($52\% \rightarrow 65\%$).

1 INTRODUCTION

While diffusion models (Ho et al., 2020; Song et al., 2020; Sohl-Dickstein et al., 2015) are now the leading paradigm for generative modeling in continuous domains, recent work has begun to expand their scope to discrete spaces. The prevailing approach, Masked Diffusion Models (MDMs) (Shi et al., 2024; Sahoo et al., 2024; Gat et al., 2024), generates sentences in a non-left-to-right, any-order fashion. Compared to autoregressive models, this any-order generation ability yields substantially faster inference and strong downstream performance on non-causal tasks such as planning (Ye et al., 2024), code (Nie et al. (2025); Ye et al. (2025)), and reasoning (Nie et al., 2024).

Despite these successes, current MDMs cannot (1) model distributions supported on sequences of *variable length* and (2) insert new tokens during generation (Figure 1, left). Both capabilities are natural desiderata for generative models over discrete domains. We therefore ask: *Can we model variable-length data while preserving MDMs' any-order generation power?*

We answer in the affirmative by proposing the **Flexible Masked Diffusion Model** (FlexMDM). FlexMDMs start from an empty string and gradually *insert mask tokens* and then *unmask* them (Figure 1, right). Beyond learning the usual *unmasking* posterior—the distribution of a clean token at masked positions—we introduce an *insertion* expectation: the expected number of tokens to insert conditioned on the current sequence. Crucially, we show that FlexMDM is *theoretically grounded* (i.e., under perfect training, it samples from the true data distribution) and *retains the any-order sampling property* of MDMs, thereby directly addressing the question above. Empirically, we demonstrate that FlexMDM offers significant new upgrades to the MDM paradigm,

- A FlexMDM pretrained on OpenWebText is able to *model the length distribution with substantially higher fidelity* while matching the perplexity of an MDM counterpart.
- On *planning tasks*, FlexMDM achieves markedly better results, beating the success rate of MDMs by nearly 60% on a natural synthetic baseline.
- **MDMs can be retrofitted into FlexMDMs at 8B+ scale:** We fine-tune LLaDA-8B (Nie et al., 2025), an open-source MDM, into a FlexMDM using only 16 H100s for three days. The model transfers cleanly from its MDM initialization and, with its newly acquired variable-length capability, attains notably better performance on GSM8K ($58\% \rightarrow 67\%$) and Code infilling ($52\% \rightarrow 65\%$).

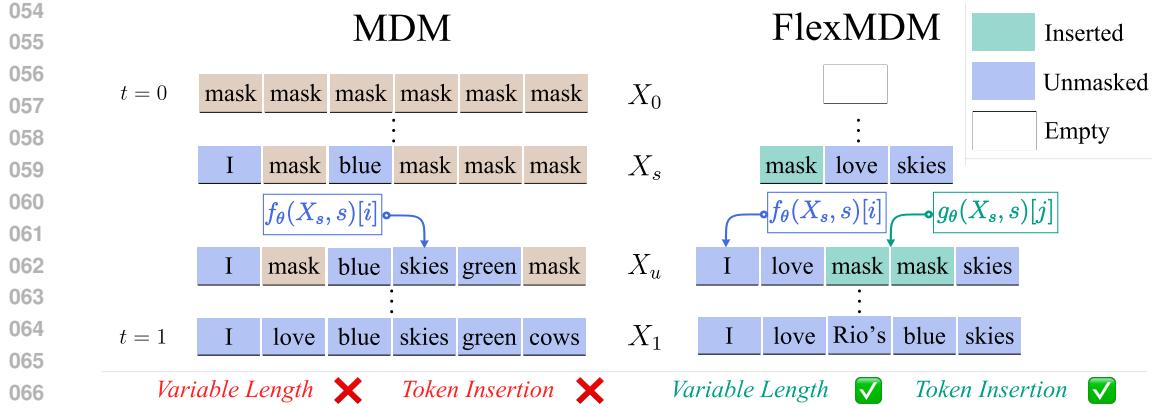


Figure 1: Flexible Masked Diffusion Model (FlexMDM) addresses MDMs’ inability to handle variable-length sequences and token insertion while preserving any-order generation power. At each step, FlexMDM performs **insertion and **unmasking** by predicting **the expected number of mask tokens to insert** (g_θ) and the **posterior over clean tokens** (f_θ), respectively.**

Theoretically, our construction relies on the machinery of continuous-time Markov chains (CTMCs) and in particular introduces the new notion of a *joint interpolant*, a novel extension of *stochastic interpolants* (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023b; Lipman et al., 2022). Recent work (Zheng et al., 2024; Ou et al., 2024) established an equivalence between MDMs and any-order language models—obviating the need for CTMCs. In contrast, we prove that FlexMDMs also possess the flexibility of any-order generation, yet the continuous-time perspective is absolutely essential for them to accurately model the length distribution. Accordingly, we re-derive the connections between MDMs and stochastic interpolants and use them to ground the design of FlexMDMs.

Roadmap. We begin in Section 2 with a broadly accessible review of CTMCs and the connection between MDMs and discrete flow matching. Building on this, Section 3 derives the FlexMDM training objective, and Section 4 introduces our inference procedures. Section 5 presents our experimental results.

Concurrent work. Concurrent works (Wu et al., 2025b; Havasi et al., 2025) attempt to tackle the same problem. Wu et al. (2025b) introduces an auxiliary expand token in training and heuristically replaces each expand token with two mask tokens at inference. Havasi et al. (2025), also based on the discrete flow matching framework, shares a similar theoretical grounding as our result. The main differences lie in our particular choice of interpolant that leads to the development of an any-order sampling algorithm. For clarity, we provide a detailed comparison in Appendix A.

2 PRELIMINARIES: CONTINUOUS-TIME MARKOV CHAINS AND MASKED DIFFUSIONS

In what follows, we provide an overview of continuous-time Markov chains (CTMCs), their role in defining discrete diffusion models, and link them to the MDM framework. As we mentioned in the introduction, this theme is essential to defining FlexMDMs in Section 3.

Transport with continuous-time Markov Chains. Given a target distribution p_1 over sequences with a finite vocabulary set (e.g., text), our aim is to learn to transport samples from a reference distribution p_0 through a continuum of distributions $\{p_t\}_{t \in [0,1]}$ such that $p_{t=1} = p_1$. This type of transport can be realized by a continuous-time Markov chain, which is a stochastic process $\{X_t\}_{t \in [0,1]}$ with $X_0 \sim p_0$ governed by a time-dependent transition rate matrix $\{R_t(\cdot, \cdot)\}_{t \in [0,1]}$ satisfying

$$R_t(x, x) = - \sum_{y \neq x} R_t(x, y), \quad R_t(x, y) \geq 0, \quad x \neq y. \quad (1)$$

Intuitively, the rate matrix determines the infinitesimal likelihood that X_t transitions to any other state y via

$$\mathbb{P}(X_{t+h} = y | X_t = x) = \mathbf{1}_{\{x=y\}} + h R_t(x, y) + o(h), \quad (2)$$

108 where we denote the conditional probability measure $\mathbb{P}(\cdot | X_t = x)$ of a new state given the present
 109 one. Here $o(h)$ is a remainder term that vanishes faster than h as $h \rightarrow 0$. In generative modeling for
 110 these discrete distributions, our aims are to **(a)** specify a path of marginal distributions $\{p_t\}_{t \in [0,1]}$
 111 connecting p_0 to p_1 and **(b)** learn the associated R_t such that these marginals collectively satisfy the
 112 Kolmogorov forward equation:

$$\partial_t p_t(x) = \sum_y p_t(y) R_t(y, x) \quad p_{t=0} = p_0. \quad (3)$$

113 This ensures that at time $t = 1$, the evolution specified by (2) results in a sample from the target
 114 distribution p_1 . The rate matrices defined in this paper are sparse; therefore, we assume that the
 115 unspecified entries are 0 and the diagonal entries are defined through Equation (1).

119 2.1 MASKED DIFFUSION MODELS

120 We briefly review MDMs (Sahoo et al., 2024; Shi et al., 2024) and discrete flow matching with
 121 the masked construction (Gat et al., 2024), through the lens of stochastic interpolants. The target
 122 distribution p_1 assigns probability to length L sequences. The base distribution p_0 employed by these
 123 models is the point mass distribution at the fully masked length- L sequence $(\mathbf{m}, \dots, \mathbf{m})$, where \mathbf{m}
 124 is an auxiliary mask token.

125 To define the intermediate $\{p_t\}_{t \in [0,1]}$ that bridges the base and the target, we make use of a [stochastic interpolant](#) $\{x_t\}_{t \in [0,1]}$, a collection of random variables whose marginal distribution defines the continuum $\{p_t\}_{t \in [0,1]}$, i.e., $x_t \sim p_t$. Although the previous notion of stochastic interpolant (Albergo et al., 2023b) is defined in a continuous space, it naturally extends to a discrete space, and we defer a formal exposition to Appendix C.

126 **Design of distribution path.** The stochastic interpolant relies on a smooth and monotone unmasking
 127 schedule $\alpha_t: [0, 1] \rightarrow [0, 1]$ with boundary condition $(\alpha_0, \alpha_1) = (0, 1)$ and time derivative denoted
 128 by $\dot{\alpha}_t$. To draw x_t , we first sample a clean sequence
 129 $x_1 \sim p_1$; then, independently for every coordinate
 130 i , we draw an unmasking time T^i from density $\dot{\alpha}_t dt$
 131 and set

$$x_t^i = \begin{cases} \mathbf{m} & t < T^i \\ x_1^i & t \geq T^i \end{cases}.$$

132 This process is illustrated in Figure 2. Hence, each
 133 clean token stays masked with probability $1 - \alpha_t$ in a
 134 coordinate-independent fashion, defining $p_t(\cdot | x_1)$.
 135 We then write p_t by marginalizing over $x_1 \sim p_1$.

136 **MDM training.** We now derive the MDM rate matrix that induces a CTMC whose marginals
 137 coincide with $\{p_t\}_{t \in [0,1]}$ and how it is learned in practice. The central object is the [unmasking posterior](#):
 138 the posterior on the clean token x_1^i for masked index i given $x_t = x$ and time step t , i.e.,
 139 $\mathbb{P}(x_1^i = v | x_t = x)$. We model this posterior with a neural network $f_\theta(x, t) \in (\Delta(\Sigma))^n$, where
 140 $\Delta(\Sigma)$ denotes a simplex of probability distributions over the vocabulary Σ .

141 For every position where $x^i = \mathbf{m}$, the network aims to predict $f_\theta(x, t)[i, v] \approx \mathbb{P}(x_1^i = v | x_t = x)$,
 142 and is trained by minimizing the following variational loss:

$$\mathcal{L}_\theta = - \int_0^1 \mathbb{E} \left[\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i: x_t^i = \mathbf{m}} \log f_\theta(x_t, t)[i, x_1^i] \right] dt. \quad (4)$$

143 Here, \mathbb{E} denotes the expectation over $x_1 \sim p_1$ and $x_t \sim p_t(\cdot | x_1)$. The minimizer of this loss is the
 144 ground-truth unmasking posterior, which fully determines the MDM’s rate matrix below. Precisely,
 145 for $t \in [0, 1]$, the rate matrix at time t is given by: for a partially masked sequence $x \in (\Sigma \cup \{\mathbf{m}\})^L$,

$$R_t(x, x[x^i \leftarrow v]) = \frac{\dot{\alpha}_t}{1 - \alpha_t} \underbrace{\mathbb{P}(x_1^i = v | x_t = x)}_{\text{unmasking posterior}}, \quad v \in \Sigma, x^i = \mathbf{m}, \quad (5)$$

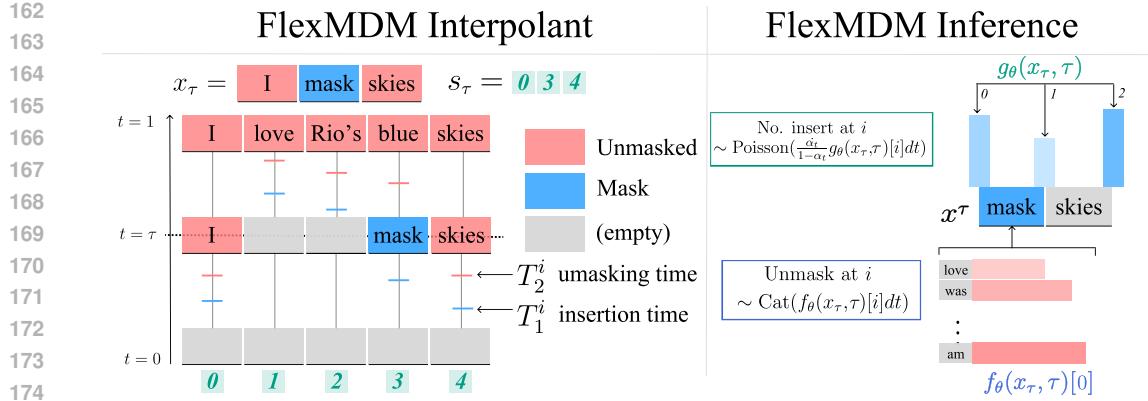


Figure 3: Left (FlexMDM interpolant). To draw a sample x_t , one can equivalently draw a sample $x_1 \sim p_1$, and for each token unmask, mask, or remove it according to the unmasking and insertion times (T_1^i, T_2^i) . An auxiliary interpolant s_t gives closed-form expressions for the FlexMDM rate matrices. **Right (FlexMDM Inference).** Learned unmasking posterior and insertion expectation are later used at inference.

where $x[x^i \leftarrow v]$ denotes the sequence obtained from x by replacing its i -th token with v . Therefore, once f_θ has learned the unmasking posterior, one can simulate the CTMC using the rate matrix in (5). The variational loss (4) quantifies the sampling guarantee of this *estimated* CTMC. Let p_1^θ be the terminal distribution of the estimated CTMC. Then, the loss function bounds the KL-divergence:

$$\mathcal{D}_{\text{KL}}(p_1 || p_1^\theta) \leq \mathcal{L}_\theta,$$

where \mathcal{L}_* is the global minimum of \mathcal{L} . When the loss is in its infimum, the KL divergence vanishes, resulting in the ground truth distribution.

Connections to other MDM frameworks. Connecting to prior works on MDM (Shi et al., 2024; Sahoo et al., 2024; Campbell et al., 2022), defining an interpolant is similar to defining a forward process for the case of diffusion models or a probability path in the case of flow matching. The modeled quantity is identical to the unmasking posterior across all frameworks. For inference, a common scheme is to proceed by: at each intermediate time step, (a) selecting a subset of indices to unmask and (b) sampling clean tokens from the learned posterior. In the infinitesimal limit, this procedure is equivalent to simulating the CTMC of (5). Meanwhile, subsequent work Kim et al. (2025); Nie et al. (2025) shows that MDMs also allow theoretically grounded *any-order inference*: tokens can be unmasked in an arbitrary order without necessarily following the CTMC at (5). We will revisit this aspect in Section 4 and show that our FlexMDM preserves this advantage.

3 VARIABLE LENGTH MASKED DIFFUSIONS: TRAINING

In this section, we introduce **Flexible Length Masked Diffusion Model** (FlexMDM): a discrete diffusion that models a distribution p_1 assigning probabilities to sequences of different lengths. Following the MDM’s recipe, we aim to introduce a stochastic interpolant x_t whose marginal distribution defines the path $\{p_t\}_{t \in [0,1]}$ and learn the corresponding CTMC. Everything hinges on selecting an interpolant that is **(a)** easy to sample at $t = 0$ and **(b)** equipped with a closed-form rate matrix amenable to neural network training.

Challenge. Reusing the MDM interpolant is *inadequate*: at $t = 0$, the base distribution p_0 would consist of fully-masked sentences of *variable lengths*, which is impossible to sample since we do not know the length statistics of p_1 in advance. On the other hand, one can consider an interpolant constructed by masking and removing tokens from a clean sequence. However, this *complicates* the rate matrix characterization—token indices shift as insertions occur. To bridge this gap, we introduce the **joint interpolant**, an extension of the stochastic interpolant that augments the process with an auxiliary variable explicitly tracking token positions. This enlarged state space allows us to construct a broader class of rate matrices while preserving an easy-to-sample base distribution.

Design of distribution path. We now introduce our FlexMDM’s joint interpolant that allows us to model the variable length p_1 . This construction relies on *two* smooth, monotone schedules –

216 an insertion schedule $\alpha: [0, 1] \rightarrow [0, 1]$ and an unmasking schedule $\beta: [0, 1] \rightarrow [0, 1]$, with the
 217 boundary conditions $(\alpha_0, \alpha_1) = (\beta_0, \beta_1) = (0, 1)$ and time derivatives denoted by $\dot{\alpha}_t, \dot{\beta}_t$.
 218

219 To draw x_t , we first sample a clean sentence $x_1 \sim p_1$. Independently for each coordinate i , we
 220 draw an insertion time T_1^i and an unmasking time T_2^i with $T_1^i < T_2^i$ according to the density below.
 221 Accordingly, we either unmask, mask, or remove x_1^i to obtain x_t^i :

$$223 \quad T_1^i \sim \dot{\alpha}_t dt, \quad T_2^i \sim \mathbf{1}_{\{t \geq T_1^i\}} \frac{\dot{\beta}_t}{1 - \beta_{T_1^i}} dt, \quad x_t^i = \begin{cases} (\text{empty}), & 0 < t < T_1^i \\ \mathbf{m}, & T_1^i \leq t < T_2^i \\ x_1^i, & T_2^i \leq t \leq 1 \end{cases} \quad (6)$$

226 Here, $\mathbf{1}$ denotes the indicator function. We obtain x_t by concatenating the symbols x_t^i , and dropping
 227 $x_t^i = (\text{empty})$. Consequently, the length of x_t is equal to or less than that of x_1^1 (see Figure 3,
 228 left). As we mentioned above, we augment x_t with an index-tracking variable s_t , forming the joint
 229 interpolant (x_t, s_t) . Let $\text{len}(x_t)$ denote the length of x_t ; then
 230

$$231 \quad s_t := \{i \in \{0, \dots, \text{len}(x_1) - 1\} \mid T_1^i \leq t\},$$

233 i.e., the set of indices whose clean tokens have *not* been deleted. Equivalently, the positions in x_1
 234 referenced by x_t 's each index. By regarding s_t as a list and ordering its elements in ascending
 235 order, we also have $x_t = (x_1^{s_t[0]}, \dots, x_1^{s_t[\text{len}(s_t) - 1]})$. We revisit s_t shortly to show how it enables an
 236 explicit rate matrix. Since (x_t, s_t) is governed by the sampled unmasking and insertion times, we
 237 write $(x_t, s_t) \sim p_t(\cdot \mid x_1)$. Marginalizing $p_t(\cdot \mid x_1)$ over $x_1 \sim p_1$ yields p_t . Since the boundary
 238 condition sets $\alpha_0 = \beta_0 = 0$, all tokens are deleted at $t = 0$; p_0 is the point mass on the empty string.
 239

240 **FlexMDM training.** We now explain how we train our FlexMDM to learn the desired rate matrix.
 241 We first discuss what the CTMC looks like at a high level: recall from (6) that when t increases, to-
 242 kens are progressively inserted and unmasked. Indeed, one can show that a CTMC that generates the
 243 interpolant can be characterized by two quantities that govern the rate of insertion and unmasking:

- Unmasking posterior (modeled by $f_\theta(x, t)[i] \in \Delta(\Sigma)$): for each index i that $x^i = \mathbf{m}$, the posterior
 244 distribution over the underlying clean token.
- Insertion expectation (modeled by $g_\theta(x, t)[i] \in \mathbb{R}_{\geq 0}$): for all indices i in x , the expected number
 245 of tokens that remain to be inserted in between x^{i-1} and x^i .

246 f_θ resembles the familiar unmasking posterior from MDMs, whereas g_θ is new: it predicts how many
 247 tokens need to be inserted. Intuitively, modeling a *variable-length* p_1 is harder than the fixed-length
 248 setup of MDM—introducing an insertion expectation allows us to parameterize more complicated
 249 CTMC for FlexMDM; its rate matrix will appear soon in Proposition 2. To define the training loss,
 250 we set the boundary values of s_t as $s_t[-1] := -1$ and $s_t[\text{len}(s_t)] := \text{len}(x_1)$, and let $\phi(x, y) =$
 251 $y - x - x \log \frac{x}{y}$ denote a scalar Bregman divergence.
 252

$$253 \quad \mathcal{L}_\theta = - \int_0^1 \mathbb{E} \left[\underbrace{\frac{\dot{\beta}_t}{1 - \beta_t} \sum_{x_t^i = \mathbf{m}} \log f_\theta(x_t, t)[i, x_1^{s_t[i]}]}_{\text{unmasking loss}} + \underbrace{\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i=0}^{\text{len}(x_t)} \phi(s_t[i] - s_t[i-1] - 1, g_\theta(x_t, t)[i])}_{\text{insertion loss}} \right] dt \quad (7)$$

258 Here, the expectation is taken over $x_1 \sim p_1, (x_t, s_t) \sim p_t(\cdot \mid x_1)$. Proposition 1 exactly characterizes
 259 the unmasking posterior and insertion expectation and shows they uniquely minimize (7).
 260

261 **Proposition 1** (FlexMDM training loss). *The loss \mathcal{L}_θ in (7) is uniquely minimized at*

$$262 \quad f_\theta(x, t)[i, v] = \underbrace{\mathbb{P}(x_1^{s_t[i]} = v \mid x_t = x)}_{\text{unmasking posterior}}, \quad g_\theta(x, t)[i] = \underbrace{\mathbb{E}[s_t[i] - s_t[i-1] - 1 \mid x_t = x]}_{\text{insertion expectation}}.$$

266 These quantities match the explanation above: the posterior over the clean token together with the
 267 expected number of insertions. They precisely determine the FlexMDM rate matrix stated next.
 268

269 ¹Writing x_t^i to mean the symbol derived from source position i is this a mild abuse of notation since the
 270 superscript i refers to a position in x_1 rather than a valid index of the (shorter) sequence x_t .

270 **Proposition 2** (FlexMDM Rate Matrix). *Let the rate matrix R_t be defined as:*

$$\begin{aligned} 272 \quad \text{Unmask} : R_t(x, x[x^i \leftarrow v]) &= \frac{\dot{\beta}_t}{1-\beta_t} \cdot \mathbb{P}(x_1^{s_t[i]} = v | x_t = x), \quad v \in \Sigma, x^i = \mathbf{m} \\ 273 \quad \text{Insert} : R_t(x, x \triangleleft_i \mathbf{m}) &= \frac{\dot{\alpha}_t}{1-\alpha_t} \cdot \mathbb{E}[s_t[i] - s_t[i-1] - 1 | x_t = x], \end{aligned} \quad (8)$$

275 where $x \triangleleft_i \mathbf{m}$ is the sequence obtained from x by inserting a mask token in between (x^{i-1}, x^i) .
276 Then R_t solves the KFE (equation (3)) with p_t as the probability mass function of the FlexMDM
277 interpolant x_t .

279 Proposition 1 thus implies that minimizing the loss yields exact recovery of the rate matrix. In
280 practice, we could simulate the CTMC using the learned networks (f_θ, g_θ) in place of the ground-
281 truth quantities in (8). By denoting the resulting terminal distribution as p_1^θ , the variational loss
282 quantifies the terminal-time KL divergence:

$$\mathcal{D}_{\text{KL}}(p_1 || p_1^\theta) \leq \mathcal{L}_\theta$$

285 We defer formal demonstration of propositions and the KL divergence guarantee to Appendix D.
286 Definition of the joint interpolant is reinstated in definition D.2, the rate matrix in proposition D.3,
287 the loss and variational bound in proposition D.4.

288 **Remark.** Our FlexMDM interpolant introduces only one extra quantity beyond MDM’s unmasking
289 posterior: the insertion expectation, a simple scalar per position. This stems from our design choice
290 to gradually insert and then unmask a token. As shown in Section 5.2, this enables efficient task
291 transfer of pretrained MDM weights. In contrast, alternative interpolants would require modeling
292 more complex objects, such as a full token distribution, adding unnecessary training burden.

294 4 VARIABLE LENGTH MASKED DIFFUSIONS: INFERENCE

296 In this section, we outline inference algorithms for FlexMDM, focusing on two variants: **vanilla**
297 **inference** and **adaptive inference**. We begin with a brief overview of inference in MDMs.

298 **Adaptive inference in MDM.** For the case of MDM, MDM inference proceeds by simulating the
299 rate matrix entries in 5. From a high-level one way this can be done is by (a) independently sampling
300 a subset of masked tokens to unmask and (b) sampling clean tokens from the unmasking posterior.
301 Crucially for what follows, the same guarantee holds for non-independent *adaptive* choices of un-
302 masking indices, e.g., confidence-based: correctness hinges on using the ground-truth unmasking
303 posterior, not on following the rate matrix’s unmasking entries. This adaptive inference strategy
304 is widely used due to its empirical performance. We adopt this template and show that FlexMDM
305 inherits the same any-order property.

306 **Vanilla inference.** We begin with the *vanilla inference* of FlexMDM, which is obtained by discretizing
307 the CTMC in (8) using trained neural networks (f_θ, g_θ) . Choosing an appropriate discretization
308 scheme is crucial, as different schemes can lead to markedly different empirical behavior. We adopt
309 τ -leaping—originating in chemical physics and shown to outperform naive Euler discretization for
310 MDMs (Campbell et al., 2022)—which batches all events occurring within a fixed interval $[t, t + \tau]$.
311 At a high level, for each discretized step, we simultaneously (Figure 3, right):

- 312 • **Unmasking:** For each mask token, sample for every unmasking a number according to the un-
313 masking intensities in the rate matrix. Unmask only if a non-zero entry is returned.
- 314 • **Insertion:** Sample the number of *mask-token insertions* from a Poisson distribution parameterized
315 by the insertion rate, then apply those insertions.

316 As the number of steps $\rightarrow \infty$, this inference algorithm recovers the CTMC and the discretization
317 error vanishes. Algorithm 1 details the full sampler.

319 **Adaptive inference.** Notably, one can choose the positions to unmask **adaptively**. Precisely, at each
320 inference step we select the unmasking positions according to a heuristic rule that prioritizes **the most**
321 **confident indices**, where confidence is computed either from the *model’s unmasking posterior* or via
322 a *semi-autoregressive* rule (prioritizing leftmost masks). We find such adaptive choice substantially
323 boosts performance; see Section 5. Since unmasking indices in an adaptive no longer trace the
transitions described by the rate matrix entries defined in (8), one might ask whether sampling

324	Subroutine 1: VLMDM inference	Subroutine 2: Unmasking Step
325	Require: Learned functions (f_θ, g_θ)	
326	Require: Discretization $0 = t_1 < \dots < t_N = 1$	
327	Require: Insertion, Unmasking schedule α_t, β_t	
328	1: Initialize $X_{t_1} \leftarrow \varepsilon$	1: if vanilla inference :
329	2: for $k = 1$ to $N - 1$	2: for $i \in \{i X_{t_k}^i = \mathbf{m}\}$ and $v \in \Sigma$
330	3: $\tau \leftarrow t_{k+1} - t_k$	3: Set rate $r \leftarrow \frac{\beta_{t_k}}{1 - \beta_{t_k}} \cdot \tau$
331	4: Invoke Subroutine 2 for unmasking	4: $k_v \sim \text{Poi}(r \cdot f_\theta(X_{t_k}, t_k)[i, v])$
332	5: for i in $\text{len}(X_{t_k})$	5: if $\exists! v$ such that $k_v = 1$
333	6: Set rate $r \leftarrow \frac{\dot{\alpha}_{t_k}}{1 - \alpha_{t_k}} \cdot \tau$	6: Set $X_{t_k}^i \leftarrow v$
334	7: Sample $\ell \sim \text{Poi}(r \cdot g_\theta(X_{t_k}, t_k)[i])$	7: if adaptive inference :
335	8: Insert ℓ masks between $X_{t_k}^{i-1}$ and $X_{t_k}^i$	8: Select K (the size of $ S $)
336	9: return X_{t_N}	9: for $i \in \{i X_{t_k}^i = \mathbf{m}\}$
337		10: Compute confidence \mathcal{C}^i
338		11: for i in $\text{argmaxK}(\mathcal{C})$
		12: $X_{t_k}^i \sim \text{Cat}(f_\theta(X_{t_k}, t_k)[i])$

339 **Algorithm 1: VLMDM inference.** At each step we perform **unmasking** and **insertion**. For **unmasking**, unmask by τ -leaping (**vanilla**) or by confidence-based selection (**adaptive**). The number 340 of mask tokens to **insert** is drawn from a Poisson distribution. **Notation:** Cat, Poi imply the 341 categorical and Poisson distribution, respectively. $\text{argmaxK}(\mathcal{C})$ is the indices set of the K largest 342 components of \mathcal{C} . We provide more details in Appendix E.

343 still guarantees to sample from the target distribution p_1 in the infinitesimal limit. The following 344 proposition answers in the affirmative.

345 **Proposition 3** (Any-order inference, informal). *Consider any sampling scheme that, at each step:* 346 *(i) unmasks an arbitrary subset of masked positions but draws revealed tokens from the ground-truth* 347 *unmasking posterior; and (ii) applies insertion CTMC governed by the ground-truth rate matrix.* 348 *Then the resulting process samples from the target distribution p_1 .*

349 The formal statement and the proof of Proposition 3 are given in Appendix E. In words, following the 350 unmasking entries of the rate matrix corresponding to the schedule used in training is *not* necessary 351 to preserve the sampling guarantee. Moreover, the samplers as $N \rightarrow \infty$ in Algorithm 1 is subsumed 352 by the class in Proposition 3, therefore, assuming access to the ground-truth unmasking posterior 353 and insertion expectation, the corresponding class of algorithms in Algorithm 1 samples from p_1 up 354 to discretization error.

355 **Remark.** A key technical ingredient underlying the rigor of our adaptive inference is that the re- 356 spective entries of the unmasking posterior of the ground truth rate matrix in Proposition 3 do *not* 357 depend on the choice of unmasking schedule β_t (the proof is given in Appendix E.2.1). This inde- 358 pendence allows a single model f_θ to learn all possible unmasking transitions arising along different 359 paths that ultimately connect p_0 to p_1 , thereby **enabling adaptive unmasking** at inference time. This 360 feature is the same mechanism enabling adaptive inference for MDMs, but for FlexMDMs, proving 361 that it interfaces correctly with insertions is quite subtle. Note that a similar notion—*independence* 362 of the choice of path—has been introduced in continuous spaces Albergo et al. (2023a); Negrel et al. 363 (2025). We defer further discussion to Appendix E.

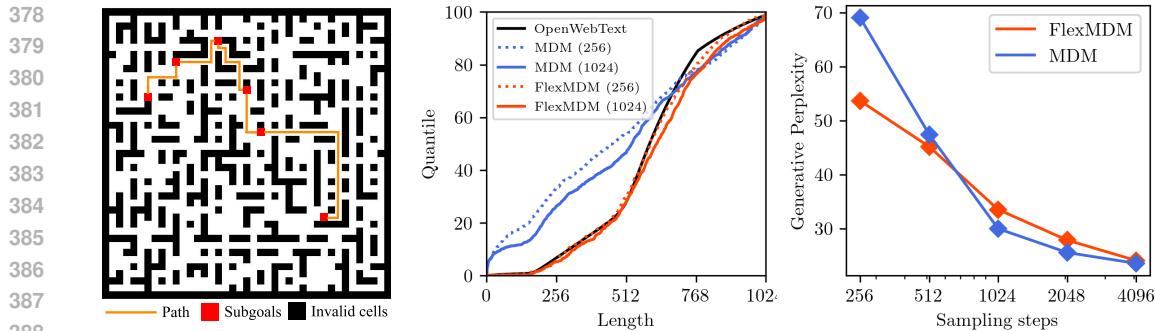
364 5 EXPERIMENT

365 In this section, we present experimental results for FlexMDM, demonstrating the following:

- 366 • **FlexMDM is an effective variable-length learner:** length modeling, planning, local edits.
- 367 • **FlexMDM is scalable:** 8B FlexMDM is obtainable by initializing from a pretrained MDM.

368 Section 5.1 presents from-scratch results for FlexMDM on text and planning tasks distributions, 369 confirming its practical efficiency. Next, Section 5.2 provides an 8B-scale FlexMDM’s training 370 recipe, initialized from LLaDA-8B Nie et al. (2025), and evaluates it in math and code infilling 371 tasks. We begin with the architectural and scheduling choices used throughout.

372 **Training design.** Recall from Section 3 that FlexMDM models the unmasking posterior f_θ and 373 insertion expectation g_θ given state x and time step t . We adopt DiT (Peebles & Xie, 2023), a



(a) **Maze task illustration.** The model is given subgoals and is required to connect them.

(b) **Length modeling.** FlexMDM recovers the true length distribution of OpenWebText training data.

(c) **Perplexity.** FlexMDM achieves generative perplexity on par with MDM.

bidirectional transformer that enables additional embedding, as a backbone. To learn both quantities jointly, we attach two output heads: a standard posterior head for f_θ and a scalar softplus head for g_θ . Moreover, we choose our unmasking and insertion schedule to be both linear, $\alpha_t = \beta_t = t^2$.

5.1 PRETRAINING

In this section, we evaluate FlexMDM’s ability to learn variable-length data from scratch. Our baseline is MDM, which is fixed-length but can handle variable-length sequences by padding to a fixed maximum length with an auxiliary pad token. This padding setup is widely used in instruction fine-tuning when variable-length answers are desired (Nie et al., 2025; 2024; Ye et al., 2025; Gong et al., 2024). For a fair comparison, we use vanilla inference for both MDM and FlexMDM throughout. Further experimental details appear in Appendix F.

5.1.1 PRETRAINING ON TEXT DATA

We first construct a training dataset from the raw OpenWebText corpus (Gokaslan et al., 2019), splitting each article into paragraphs to preserve semantic coherence and yield variable-length sequences. Models pretrained on this data, therefore, generate variable-length text.

Results. We train 175M FlexMDM and MDM with a maximum sequence length 1024 for 500K iterations and batch size 1024. Using the pretrained models, we vary the number of sampling steps and measure (a) generative perplexity as a proxy for text fluency, and (b) the induced length distribution. Figure 4c shows comparative generative perplexity for the two models, improving as sampling steps increase, indicating no fluency degradation for FlexMDM despite its more involved loss objective. Crucially, we observe that FlexMDM matches the true length distribution far more closely (Figure 4b): with only 256 steps it tracks the ground truth distribution (red line), whereas MDM remains miscalibrated even at 1024 steps (blue line). In Appendix F.1.1, we provide additional experimental results: the entropy of given sequences to ensure the generative perplexity is measured under similar conditions and the perplexities for larger sampling steps (8192, 16384, 32768).

Remark. We remark that our pretraining pipeline differs from prior MDM setups that truncate the corpus to a fixed maximum length. Also, one might ask why we do not provide additional metrics on text benchmarks, such as validation perplexity. This is because MDM and FlexMDM use different objectives (see equation (4) and equation (7)), making likelihood comparisons hard to interpret. Albeit, we experimentally confirm that both loss functions can serve as a reliable proxy of the likelihood, although with different scales, by evaluating both pretrained models on a downstream text benchmark (Appendix F.1.1). We address the concern about the absence of the metric by evaluating scaled models on downstream benchmarks in Section 5.2.

5.1.2 PLANNING TASK

We further evaluate FlexMDM’s ability in a planning task in a discrete space. Motivated by an earlier study Janner et al. (2022) that investigated the ability of continuous diffusion in maze tasks, we

²The ground-truth unmasking posterior is independent of β_t , so we condition the network on α_t only; under the linear choice $\alpha_t = t$, this coincides with the usual time embedding.

design a grid-maze benchmark: the maze is fixed but unknown to the model, with a subset of cells invalid. Given a sequence of subgoal grids (g_1, \dots, g_K) , the model must connect this sequence without entering invalid cells (see Figure 4a). This subgoal structure aligns naturally with FlexMDM: starting from (g_1, \dots, g_K) , inference inserts mask tokens between subgoals and then unmasks to generate a feasible path. Theoretically, this can be seen as augmenting the base distribution to contain a data-dependent distribution Albergo et al. (2024). This is in stark contrast to MDM, where it must preassign each subgoal to a specific position, which is difficult to know *a priori*. We provide additional details in Appendix F.2.

Results. We use a 41×41 maze and control the task’s difficulty via varying the number of subgoals $K \in \{2, 7, 12\}$. As K increases, MDM performance degrades markedly, while FlexMDM maintains robust success rates, reaching a gap of up to 60% at $K = 12$. These results firmly support FlexMDM as a principled approach for subgoal-based planning, where preallocating token positions is inherently challenging for fixed-length models.

5.2 SCALING UP FLEXMDM

In this section, we address FlexMDM’s scalability by scaling it to 8B parameters and observing notable improvements over an MDM baseline. We start from the observation that MDM and FlexMDM both share the unmasking posterior as a core component, suggesting effective *task transfer* from a pretrained MDM might be possible. To demonstrate this, concretely, we initialize from LLaDA-Base (Nie et al., 2025) and make the following modifications: (a) add time-embedding layers and a scalar head to model the insertion expectation; (b) attach LoRA adapters. Altogether, the resulting number of trainable parameters is $\approx 400M$. To cover both natural and mathematical language, we train on the 50:50 mixture of OpenWebText (Gokaslan et al., 2019) and Proof-Pile-2 (Azerbayev et al., 2023). Surprisingly, we observe rapid transfer: within three days on 16 H100 GPUs, the model generates variable-length sentences. **Notably, the number of tokens used is ≈ 13.1 B, and this is in contrast much smaller than the number of LLaDA-Base pretraining tokens (≈ 1.5 T)**. We then instruction-fine-tune (IFT) this base FlexMDM to evaluate it on downstream tasks. See Appendix F for more details.³

Results. For comparison, we train FlexMDM and LLaDA-Base from the same number of IFT pairs. For math and code, respectively, we IFT on the GSM8K train split (Cobbe et al. (2021); ≈ 8000 pairs) and the educational split of opc-sft-stage-2 (Huang et al., 2024) ($\approx 0.1M$ pairs), for which IFT-ed models are evaluated in the GSM8K test split and HumanEval-infill (single line) (Bavarian et al., 2022) in zero-shot. Sampling is done by confidence-based sampling with a sliding window. Notably, as the number of sampling steps increases, FlexMDM continues to improve, highlighting its strength in reasoning tasks given sufficient compute—whereas the IFT-ed LLaDA’s performance remains flat. Although in this experiment we use IFT on task-specific pairs, we expect that training on a much more diverse instruction–answer pairs with sufficient compute will yield a more generalized model.

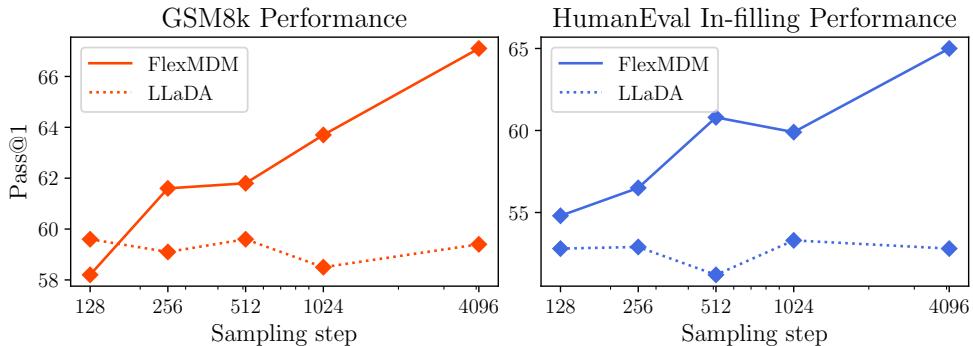


Figure 5: FlexMDM performance exhibits superior scaling when more sampling steps are allocated.

³For a fair comparison, since FlexMDM is not IFT-ed, we IFT LLaDA-Base, rather LLaDA-instruct, this differs from Zhao et al. (2025). We employ zero-shot evaluation, which also differs from Nie et al. (2024).

486

6 CONCLUSION

488 In this work we proposed Flexible Masked Diffusion Models (FlexMDM), a discrete diffusion
 489 framework over variable-length sequences. Theoretically, via a joint interpolant viewpoint, we pro-
 490 vide rigorous guarantees for both training and inference of FlexMDM. Empirically, FlexMDM learns
 491 variable-length structure across diverse scenarios, scales to 8B parameters, trains in only a few GPU-
 492 hours, and yields substantial improvements on math and coding infilling tasks. Further exploration
 493 of FlexMDM’s capabilities is a promising direction for future work.

494 Beyond these results, our goal is to align generative modeling with how humans and nature compose
 495 discrete sequences. Instead of filling fixed positions; they **insert**, revise, and **reorder** tokens. We
 496 hope that our work takes a step in this direction.

498

REFERENCES

500 Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
 501 polants, 2022.

502 Michael S. Albergo, Nicholas M. Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal
 503 generative modeling with stochastic interpolants, 2023a. URL <https://arxiv.org/abs/2310.03695>.

504 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 505 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023b.

506 Michael Samuel Albergo, Mark Goldstein, Nicholas Matthew Boffi, Rajesh Ranganath, and Eric
 507 Vanden-Eijnden. Stochastic interpolants with data-dependent couplings. In *Forty-first Interna-
 508 tional Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=FFILRGD0jG>.

509 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 510 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
 511 systems*, 34:17981–17993, 2021.

512 Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
 513 bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
 514 for mathematics, 2023.

515 Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
 516 Tworek, and Mark Chen. Efficient training of language models to fill in the middle. *arXiv
 517 preprint arXiv:2207.14255*, 2022.

518 Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
 519 masked diffusion models via entropy bounded unmasking. *arXiv preprint arXiv:2505.24857*,
 520 2025.

521 Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
 522 denoising diffusions to denoising markov models, 2024. URL <https://arxiv.org/abs/2211.03595>.

523 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
 524 generative modeling. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 525 <https://openreview.net/forum?id=oYIjw37pTP>.

526 Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
 527 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
 528 longtermism. *arXiv preprint arXiv:2401.02954*, 2024.

529 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 530 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
 531 Information Processing Systems*, 35:28266–28279, 2022.

540 Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
 541 Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023. URL
 542 <https://arxiv.org/abs/2305.16261>.

543 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 544 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 545 *arXiv preprint arXiv:2402.04997*, 2024.

546 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 547 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 548 *recognition*, pp. 11315–11325, 2022.

549 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 550 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 551 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

552 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
 553 efficient exact attention with io-awareness. *Advances in neural information processing systems*,
 554 35:16344–16359, 2022.

555 Google DeepMind. Gemini diffusion, 2025. URL <https://blog.google/technology/google-deepmind/gemini-diffusion/>.

556 Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
 557 programming model for generating optimized attention kernels. *arXiv preprint arXiv:2412.05496*,
 558 2024.

559 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 560 Yaron Lipman. Discrete flow matching. *Advances in Neural Information Processing Systems*, 37:
 561 133345–133385, 2024.

562 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

563 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 564 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 565 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

566 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 567 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
 568 eration. *arXiv preprint arXiv:2506.20639*, 2025.

569 Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
 570 operations. *arXiv preprint arXiv:2506.09018*, 2025.

571 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 572 *neural information processing systems*, 33:6840–6851, 2020.

573 Peter Holderrieth, Michael Samuel Albergo, and Tommi Jaakkola. LEAPS: A discrete neural sam-
 574 pler via locally equivariant networks. In *Forty-second International Conference on Machine*
 575 *Learning*, 2025a. URL <https://openreview.net/forum?id=Hq2RniQAET>.

576 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
 577 Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
 578 markov processes. In *The Thirteenth International Conference on Learning Representations*,
 579 2025b. URL <https://openreview.net/forum?id=RuP17cJtZo>.

580 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 581 and multinomial diffusion: Learning categorical distributions. *Advances in neural information*
 582 *processing systems*, 34:12454–12465, 2021.

583 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 584 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 585 *ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

594 Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
 595 J. H. Liu, Chenchen Zhang, Linzheng Chai, Rui Feng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
 596 Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
 597 top-tier code large language models. 2024. URL <https://arxiv.org/pdf/2411.04905.pdf>.

598 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 599 flexible behavior synthesis. In *International Conference on Machine Learning*, 2022.

600 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
 601 worst, plan for the best: Understanding token ordering in masked diffusions. *arXiv preprint*
 602 *arXiv:2502.06768*, 2025.

603 Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
 604 Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
 605 models based on diffusion. *arXiv preprint arXiv:2506.17298*, 2025.

606 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 607 for generative modeling, 2022.

608 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 609 transfer data with rectified flow, 2022. URL <https://arxiv.org/abs/2209.03003>.

610 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 611 *arXiv:1711.05101*, 2017.

612 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 613 of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.

614 Long Ma, Fangwei Zhong, and Yizhou Wang. Reinforced context order recovery for adaptive rea-
 615 soning and planning. *arXiv preprint arXiv:2508.13070*, 2025a.

616 Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
 617 language models. *arXiv preprint arXiv:2505.15781*, 2025b.

618 Hugo Negrel, Florentin Coeurdoux, Michael S. Albergo, and Eric Vanden-Eijnden. Multitask learn-
 619 ing with stochastic interpolants, 2025. URL <https://arxiv.org/abs/2508.04605>.

620 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 621 Li. Scaling up masked diffusion models on text. *arXiv preprint arXiv:2410.18514*, 2024.

622 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 623 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint*
 624 *arXiv:2502.09992*, 2025.

625 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
 626 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
 627 *arXiv preprint arXiv:2406.03736*, 2024.

628 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 629 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

630 Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL <https://openreview.net/forum?id=oVfIKuhqfC>.

631 Fred Zhangzhi Peng, Zachary Bezemek, Sawan Patel, Jarrid Rector-Brooks, Sherwood Yao,
 632 Avishek Joey Bose, Alexander Tong, and Pranam Chatterjee. Path planning for masked diffu-
 633 sion model sampling. *arXiv preprint arXiv:2502.03540*, 2025.

634 Qwen. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

635 Alec Radford and Jeffrey Wu. Rewon child, david luan, dario amodei, and ilya sutskever. 2019.
 636 *Language models are unsupervised multitask learners*. *OpenAI blog*, 1(8):9, 2019.

637 Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Anchored diffusion language model.
 638 *arXiv preprint arXiv:2505.18456*, 2025.

648 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 649 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 650 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

651 Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
 652 Zhengzhong Liu, Eric King, John Thickstun, and Arash Vahdat. Esoteric language models. *arXiv*
 653 *preprint arXiv:2506.01928*, 2025.

654 Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Kar-
 655 rer, Yaron Lipman, and Ricky TQ Chen. Flow matching with general discrete paths: A kinetic-
 656 optimal perspective. *arXiv preprint arXiv:2412.03487*, 2024.

657 Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Kar-
 658 rer, Yaron Lipman, and Ricky T. Q. Chen. Flow matching with general discrete paths: A kinetic-
 659 optimal perspective. In *The Thirteenth International Conference on Learning Representations*,
 660 2025. URL <https://openreview.net/forum?id=tcvMzR2NrP>.

661 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
 662 ized masked diffusion for discrete data. *Advances in neural information processing systems*, 37:
 663 103131–103167, 2024.

664 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 665 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 666 ing*, pp. 2256–2265. pmlr, 2015.

667 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 668 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 669 *arXiv:2011.13456*, 2020.

670 Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
 671 Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
 672 high-speed inference. *arXiv preprint arXiv:2508.02193*, 2025.

673 Alexander Sverdlow, Mihir Prabhudesai, Siddharth Gandhi, Deepak Pathak, and Katerina Fragki-
 674 adaki. Unified multimodal discrete diffusion. *arXiv preprint arXiv:2503.20853*, 2025.

675 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 676 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 677 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 678 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 679 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 680 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 681 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 682 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 683 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 684 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 685 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 686 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 687 *arXiv preprint arXiv: 2307.09288*, 2023.

688 Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets varia-
 689 tional inference: Controlled monte carlo diffusions, 2025. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2307.01050)
 690 [2307.01050](https://arxiv.org/abs/2307.01050).

691 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 692 Hofmann. Generalized interpolating discrete diffusion. *arXiv preprint arXiv:2503.04482*, 2025.

693 Zhe Wang, Jiaxin Shi, Nicolas Heess, Arthur Gretton, and Michalis K Titsias. Learning-
 694 order autoregressive models with application to molecular graph generation. *arXiv preprint*
 695 *arXiv:2503.05979*, 2025.

696 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 697 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 698 and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025a.

702 Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria
703 W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infill-
704 ing beyond fixed-size canvas, 2025b. URL <https://hkunlp.github.io/blog/2025/dreamon>.
705

706 Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
707 Beyond autoregression: Discrete diffusion for complex reasoning and planning. *arXiv preprint*
708 *arXiv:2410.14157*, 2024.
709

710 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
711 Kong. Dream 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream>.
712

713 Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
714 large language models via reinforcement learning. *arXiv preprint arXiv:2504.12216*, 2025.
715

716 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
717 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
718 sampling. *arXiv preprint arXiv:2409.02908*, 2024.
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Preliminaries: Continuous-Time Markov Chains and Masked Diffusions	2
762	2.1 Masked Diffusion Models	3
763		
764		
765	3 Variable Length Masked Diffusions: Training	4
766		
767	4 Variable Length Masked Diffusions: Inference	6
768		
769	5 Experiment	7
770	5.1 Pretraining	8
771	5.1.1 Pretraining on text data	8
772	5.1.2 Planning task	8
773	5.2 Scaling up FlexMDM	9
774		
775		
776		
777	6 Conclusion	10
778		
779	A Related Works	17
780		
781	B Notation	17
782		
783		
784	C Discrete Stochastic Interpolants: Definitions and Propositions for Section 2	18
785	C.1 Discrete Stochastic Interpolant	18
786	C.2 The Masked Diffusion Interpolant	19
787		
788		
789	D Joint Discrete Stochastic Interpolants: Definitions and Propositions for Section 3	21
790	D.1 Joint Interpolant	21
791	D.2 Flexible-Length Masked Diffusion	22
792		
793		
794	E Details for Section 4	25
795		
796	E.1 Precise detail on the inference algorithms	25
797	E.2 Proof of FlexMDM’s any-order inference capability	26
798	E.2.1 Proof preliminaries	26
799	E.3 Formal guarantee for adaptive inference	26
800	E.4 Proof of Theorem E.1	27
801	E.5 Proof of Lemma E.1	28
802	E.6 Proof of Lemma E.2	28
803		
804		
805		
806		
807	F Experimental details	29
808	F.1 Pretraining on OpenWebText	29
809	F.1.1 Additional experiments	30

810	F.2	Pretraining on the Maze planning task	30
811	F.3	Weight Initialization training from LLaDA	32
812	F.3.1	Additional experiments	33
813			
814			
815			
816			
817			
818			
819			
820			
821			
822			
823			
824			
825			
826			
827			
828			
829			
830			
831			
832			
833			
834			
835			
836			
837			
838			
839			
840			
841			
842			
843			
844			
845			
846			
847			
848			
849			
850			
851			
852			
853			
854			
855			
856			
857			
858			
859			
860			
861			
862			
863			

864 **A RELATED WORKS**
865866 **Discrete diffusion and flows.** Early diffusion models were formulated as continuous-time Markov
867 chains over continuous spaces with Gaussian transition kernels (Sohl-Dickstein et al., 2015; Ho
868 et al., 2020), and were later connected to continuous-time formulations via stochastic differential
869 equations, offering a unifying perspective on score-based generative modeling (Song et al., 2020).
870 In parallel, *discrete* diffusion has been developed from the viewpoint of Markov chains over discrete
871 space (Hoogeboom et al., 2021). Notably, Austin et al. (2021) introduced D3PM with several fami-
872 lies of discrete transition kernels, and Lou et al. (2023) proposed SEDD, which adopts score-based
873 training objectives. A complementary line of work studies *discrete flows* (Campbell et al., 2024; Gat
874 et al., 2024), aiming to understand continuous-time Markov chains (CTMCs) that interpolate be-
875 tween data and base distributions; this perspective aligns with ours. Subsequent extensions consider
876 token-wise paths and path-wise structure within such flows (Shaul et al., 2024).
877878 **Masked Diffusion Models.** Among discrete-transition designs, absorbing-state (a.k.a. masking)
879 kernels have become a popular and strong-performing choice. Recent work shows that this yields
880 a simple and principled training recipe, referred to as Masked Diffusion Models (MDMs) (Sahoo
881 et al., 2024; Shi et al., 2024). A growing body of results demonstrates the scalability of this approach
882 across problem settings and modalities, including large-scale natural language modeling (Nie et al.,
883 2024; 2025; Ye et al., 2025; Song et al., 2025; DeepMind, 2025), code generation (Labs et al., 2025;
884 Gong et al., 2025), and multimodal learning (Swerdlow et al., 2025).
885886 **Any-order inference in MDMs.** With the advent of MDMs, subsequent work has established that
887 they admit theoretically grounded *any-order inference*, wherein tokens can be unmasked in arbitrary
888 orders rather than following a fixed CTMC schedule (Kim et al., 2025; Peng et al., 2025). Practical
889 token-ordering rules span a spectrum of heuristics based on model confidence and uncertainty—e.g.,
890 maximum-probability logits (Chang et al., 2022; Zheng et al., 2024), probability margin (Kim et al.,
891 2025), semi-autoregressive schedules (Nie et al., 2024), and entropy-based criteria (Ben-Hamu et al.,
892 2025)—as well as strategies that leverage reference models to guide the unmasking trajectory (Peng
893 et al., 2025). Beyond heuristics, another thread trains auxiliary modules to anchor or adapt the
894 generation order (Rout et al., 2025), while recent work directly *learns* token orders end-to-end (Ma
895 et al., 2025a; Wang et al., 2025).
896897 **Stochastic interpolant.** Stochastic interpolant (Albergo & Vanden-Eijnden, 2022; Albergo et al.,
898 2023b) is a general framework for building measure-transport based generative models on contin-
899 uous state space. While building off different philosophical grounds, it can be seen as equivalent
900 to flow matching (Lipman et al., 2022; Liu et al., 2022). Extensions of the interpolant have been
901 proposed for conditional generation through data-dependent coupling (Albergo et al., 2024), which
902 we adopt for infilling task design in Section 5.
903904 **Descriptive overview on concurrent work.** The most notable concurrent work is Edit-
905 Flow (Havasi et al., 2025), where the primary mathematical machinery that enabled their construc-
906 tion is referred to as “Flow Matching with Auxiliary Process”. We note that this can be interpreted
907 as mathematically equivalent to the notion of joint interpolant in this work, e.g., our Proposition D.1
908 is equivalent to Theorem 3.1 in Havasi et al. (2025).
909910 The main differences are (1) the choice of interpolant and (2) the guarantee of any-order inference.
911 Whereas EditFlow is built around an explicit probability path, we instead define a pair of coupled
912 random variables that implicitly induce this path, leading to a different choice of intermediate. As
913 discussed in Section 3, our choice of interpolant yields a distinct training objective for an unmasking
914 posterior and an insertion-expectation term. Consequently, it enables the any-order inference
915 guarantee established in Section 4.
916917 **B NOTATION**
918919 In this section, we reiterate the notations used in the main body and introduce auxiliary notations
920 that are used in the proofs of the appendix.
921

918 **Strings.** Let ε denote the empty string, Σ a vocabulary of words, \mathbf{m} a special mask token. We
 919 write x^i the i -th element of x with 0-based indexing, $x|_S$ the string indexed by an index set, e.g.
 920 $abc[\{0, 2\}] = ac$. To insert a token v before position i in string x , we write $x \triangleleft_i v$, e.g., to prepend
 921 a token $abc \triangleleft_0 d = dabc$ and to append a token $abc \triangleleft_3 d = abcd$. To replace the i -th token in x
 922 with v , we write $x[x^i \leftarrow v]$. As much of the work involves masking, we write $x \subseteq y$ if x can be
 923 constructed by partially masking y . We write $\text{mask}(x)$, $\text{unmask}(x) \subseteq [\text{len}(x)]$ for the set of indices
 924 corresponding to mask and clean tokens.

927 C DISCRETE STOCHASTIC INTERPOLANTS: DEFINITIONS AND 928 PROPOSITIONS FOR SECTION 2

931 In continuous spaces, a common approach to define generative transport is the stochastic interpolant
 932 framework, which implicitly defines the interpolation distribution p_t by specifying an interpolant
 933 $\{x_t\}_{t \in [0, 1]}$ and regressing the required quantities to realize the transport.

934 In the section C.1, we introduce a discrete analogue of the stochastic interpolant. To illustrate
 935 this framework, we reformulate the widely used masked diffusion model for sequences of length n
 936 within our setup. Briefly, masked diffusion defines the interpolation p_t by progressively unmasking
 937 tokens in sentences drawn from the data distribution. At time $t = 0$, all tokens are masked, so
 938 p_0 is a point mass at the fully masked sequence, the \mathbf{m} token repeated n times. The transition rates
 939 driving the generative transport can be characterized as functions of per-token posterior probabilities
 940 conditioned on time t . These are typically learned by minimizing a variational objective in the form
 941 of a weighted cross-entropy loss.

943 C.1 DISCRETE STOCHASTIC INTERPOLANT

945 To obtain the target rate matrix, the discrete stochastic interpolant relies on an interpolating rate
 946 matrix that drives a sample from a sample drawn from a sample from p_0 to a sample from p_1 ,
 947 defined as follows:

949 **Definition C.1** (Discrete Stochastic Interpolant and Interpolating Rate). *Let $x_0 \sim p_0$ and $x_1 \sim p_1$.
 950 A **discrete stochastic interpolant** is a family of random variables $\{x_t\}_{t \in [0, 1]}$, defined on a common
 951 probability space and satisfying the boundary conditions $x_{t=0} = x_0$ and $x_{t=1} = x_1$, for which there
 952 exists a continuous-time Markov chain with bounded, time-dependent transition rate matrix $K_t^{x_0, x_1}$
 953 such that, for each $t \in [0, 1]$, $\text{Law}(x_t \mid x_0, x_1)$ coincides with the marginal distribution at time t of
 954 that Markov chain started at X_0 . We refer to $K_t^{x_0, x_1}$ as an **interpolating rate matrix**.*

955 With an interpolating rate of an interpolant, the target rate matrix can then be obtained through
 956 Proposition C.1

958 **Proposition C.1** (Target Rate). *Given a discrete stochastic interpolant x_t and an interpolating rate
 959 matrix $K_t^{x_0, x_1}$, the continuous-time Markov chain with initial distribution p_0 and target transition
 960 rate matrix R_t defined as,*

$$962 \quad 963 \quad R_t(x, y) = \mathbb{E}_{x_0, x_1}[K_t^{x_0, x_1}(x, y) \mid x_t = x]$$

965 *has marginals equal to $\text{Law}(x_t)$.*

970 *Proof.* Writing p_t a probability mass function (pmf) of x_t and $p_t(\cdot \mid x_0, x_1)$ a pmf of x_t conditioned
 971 on x_0, x_1 . We further write $q(x_0, x_1)$ the joint pmf of x_0 and x_1 and $q_t(x_0, x_1 \mid x_t)$ to be the joint
 pmf conditioned on x_t .

972 It suffices to show R_t satisfies the Kolmogorov Forward Equation with pmf p_t as follows:
 973

$$\begin{aligned}
 974 \sum_y R_t(y, x)p_t(y) &= \sum_y \mathbb{E}_{x_0, x_1} [K_t^{x_0, x_1}(y, x) | x_t = y] p_t(y) \\
 975 &= \sum_y \sum_{x_0, x_1} K_t^{x_0, x_1}(y, x) q_t(x_0, x_1 | y) p_t(y) \\
 976 &= \sum_y \sum_{x_0, x_1} K_t^{x_0, x_1}(y, x) p_t(y | x_0, x_1) q(x_0, x_1) \\
 977 &= \mathbb{E}_{x_0, x_1} \left[\sum_y K_t^{x_0, x_1}(y, x) p_t(y | x_0, x_1) \right] \\
 978 &= \mathbb{E}_{x_0, x_1} [\partial_t p_t(y | x_0, x_1)] \\
 979 &= \partial_t p_t(x)
 \end{aligned}$$

980
 981 This concludes the proof. \square
 982
 983
 984
 985
 986

987 **Remarks.** While written considerably differently, the framework is mathematically equivalent to
 988 discrete flow matching Gat et al. (2024). The difference is only philosophical: discrete flow match-
 989 ing relies on the notion of a conditional probability path that the interpolating rate should induce,
 990 whereas we define such a probability path only implicitly through the definition of the interpolant.
 991

992 C.2 THE MASKED DIFFUSION INTERPOLANT

993 As a concrete example of the discrete stochastic interpolant, we reformulate the masked diffusion
 994 model and its learning in the framework. As masked diffusion starts from a point mass, we drop the
 995 dependence of x_0 in writing.

996 **Definition C.2** (The Masked Diffusion Interpolant). *Let $x_1 \sim p_1$ be a sentence of length n drawn
 997 from the data and α_t a smooth unmasking schedule that interpolates from $\alpha_{t=0} = 0$ to $\alpha_{t=1} = 1$.
 998 Define the unmasking times $\{T^i\}_{i \in [0, \dots, n-1]}$ as:*

$$1000 \quad \forall i \in \{0, \dots, n-1\} : \quad T^i \sim \dot{\alpha}_t dt,$$

1001 *Then, the masked diffusion interpolant is defined as:*

$$1002 \quad x_t = \begin{cases} \mathbf{m} & \text{if } t < T_i, \\ x_1^i & \text{if } t \geq T_i. \end{cases}$$

1003 In other words, at each time t , x_t reveals a subset of the tokens of x_1 , with each token x_1^i indepen-
 1004 dently unmasked at its associated time T^i .

1005 **Proposition C.2** (The Masked Diffusion Interpolating Rate). *One interpolating rate $K_t^{x_1}$ of the
 1006 masked diffusion interpolant x_t is given by:*

$$1007 \quad \forall x \subseteq x_1, v \in \Sigma, x^i = \mathbf{m} : \quad K_t(x, x[x^i \leftarrow v]) = \frac{\dot{\alpha}_t}{1 - \alpha_t} \mathbf{1}\{v = x_1^i\}.$$

1008 *Proof.* Let $p_t(\cdot | x_1)$ as the pmf of x_t conditioned on x_1 . From the definition of the interpolant, we
 1009 notice that:

$$1010 \quad p_t(x | x_1) = \prod_{i=0}^{\text{len}(x_1)-1} [(1 - \alpha_t) \mathbf{1}\{x^i = \mathbf{m}\} + \alpha_t \mathbf{1}\{x^i = x_1^i\}]$$

1026 We verify that K_t satisfies the Kolmogorov Forward Equation (3) under the conditioned pmf as
 1027 follows,
 1028

1029 L.H.S

$$\begin{aligned}
 1030 \quad &= \partial_t p_t(x|x_1) \\
 1031 \quad &= \partial_t \left[\prod_{i=0}^{\text{len}(x_1)-1} (1 - \alpha_t) \mathbf{1}\{x^i = \mathbf{m}\} + \alpha_t \mathbf{1}\{x^i = x_1^i\} \right] \\
 1032 \quad &= \sum_{i=0}^{\text{len}(x_1)-1} (-\dot{\alpha}_t \mathbf{1}\{x^i = \mathbf{m}\} + \dot{\alpha}_t \mathbf{1}\{x^i = x_1^i\}) \cdot \prod_{j \neq i} (1 - \alpha_t) \mathbf{1}\{x^j = \mathbf{m}\} + \alpha_t \mathbf{1}\{x^j = x_j^i\},
 \end{aligned}$$

1033 R.H.S

$$\begin{aligned}
 1034 \quad &= \sum_{i=0}^{\text{len}(x_t)-1} \mathbf{1}\{x^i = x_1^i\} \frac{\dot{\alpha}_t}{1 - \alpha_t} p_t(x[x^i \leftarrow \mathbf{m}]|x_1) - \mathbf{1}\{x^i = \mathbf{m}\} \frac{\dot{\alpha}_t}{1 - \alpha_t} p_t(x|x_1) \\
 1035 \quad &= \sum_{i=0}^{\text{len}(x_t)-1} \mathbf{1}\{x^i = x_1^i\} \frac{\dot{\alpha}_t}{1 - \alpha_t} (1 - \alpha_t) \prod_{j \neq i} (1 - \alpha_t) \mathbf{1}\{x^j = \mathbf{m}\} + \alpha_t \mathbf{1}\{x^j = x_j^i\} \\
 1036 \quad &\quad - \sum_{i=0}^{\text{len}(x_t)-1} \mathbf{1}\{x^i = \mathbf{m}\} \frac{\dot{\alpha}_t}{1 - \alpha_t} (1 - \alpha_t) \prod_j (1 - \alpha_t) \mathbf{1}\{x^j = \mathbf{m}\} + \alpha_t \mathbf{1}\{x^j = x_j^i\}) \\
 1037 \quad &= \text{L.H.S.}
 \end{aligned}$$

1048 This concludes the proof. \square

1049 Note that since each T^i is sampled independently from a continuous distribution, the probability that
 1050 two unmasking times coincide is zero. Thus, only a single token is unmasked in any infinitesimal
 1051 transition almost surely.

1052 **Proposition 4** (The Masked Diffusion Target Rate). *By proposition C.1, a target rate R_t that induces
 1053 Law(x_t) is:*

$$1054 \quad \forall x \subseteq x_1, v \in \Sigma, x^i = \mathbf{m} : \quad R_t(x, x[x^i \leftarrow v]) = \frac{\dot{\alpha}_t}{1 - \alpha_t} \mathbb{P}(x_1^i = v | x_t = x).$$

1055 *Proof.* Following proposition C.2, the result follows from invoking proposition C.1. \square

1056 To learn an approximation to R_t , we now parameterize an approximate target rate of the form
 1057 $\hat{R}_t(x, x[x^i \leftarrow v]) := \frac{\dot{\alpha}_t}{1 - \alpha_t} f_\theta(x, t)[i, v]$ where $f_\theta(x, t)[i, v]$ is a learned approximation to the poste-
 1058 rior $\mathbb{P}(x_1^i = v | x_t = x)$.

1059 The target rate can then be characterized by a variational objective that measures the discrepancy
 1060 between the true and approximate path measures.

1061 **Proposition 5** (Variational Loss for Masked Diffusion). *The loss function is defined as:*

$$1062 \quad L[\hat{R}_t] = \int_0^1 \mathbb{E}_{x_1, x_t} \left[-\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i=0}^{n-1} \mathbf{1}\{x_t^i = \mathbf{m}\} \log f_\theta(x_t, t)[i, x_1^i] \right] dt,$$

1063 *is uniquely minimized when $\hat{R}_t = R_t$, and is connected to the terminal KL-divergence by:*

$$1064 \quad \mathcal{D}_{KL}(p_1 || \hat{p}_1) \leq L[\hat{R}_t],$$

1065 *where \hat{p}_1 is the approximate data distribution generated by \hat{R}_t .*

1066 *Proof.* Let \mathbb{P} and $\hat{\mathbb{P}}$ be the path measures associated with the continuous-time Markov chain of the
 1067 target rate matrix R_t in proposition C.1 and an approximation through a neural network \hat{R}_t . The

1080 variational loss follows by expanding the KL-divergence between the two path measures.
 1081

$$\begin{aligned}
 1082 \mathcal{D}_{\text{KL}}(\mathbb{P} \parallel \hat{\mathbb{P}}) &= \mathbb{E}_{\mathbb{P}} \left[\int_{t=0}^{t=1} R_t(x_t, x_t) - \hat{R}_t(x_t, x_t) dt + \sum_{t: x_t \neq x_{t-}} \log \frac{R_t(x_{t-}, x_t)}{\hat{R}_t(x_{t-}, x_t)} \right] \\
 1083 &= \int_0^{t=1} \mathbb{E}_{x_t} \left[\sum_{y \neq x_t} \hat{R}_t(x_t, y) - \sum_{y \neq x_t} R_t(x_t, y) - R_t(x_t, y) \log \frac{R_t(x_t, y)}{\hat{R}_t(x_t, y)} \right] dt \\
 1084 &= \int_0^1 \mathbb{E}_{x_1, x_t} \left[-\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i=0}^{n-1} \mathbf{1}\{x_t^i = \mathbf{m}\} \log f_{\theta}(x_t, t)[i, x_1^i] \right] dt
 \end{aligned}$$

1085 where the first line takes the expectation of the Radon-Nikodym derivative between the two path
 1086 measures. The statement of Radon-Nikodym derivative between two CTMCs can be found in the
 1087 Appendix in Campbell et al. (2024). A discrete-time equivalent derivation can also be found in
 1088 Shaul et al. (2025).
 1089

1090 The terminal KL bound then follows directly from the data processing inequality, that is:
 1091

$$\mathcal{D}_{\text{KL}}(p_1 \parallel \hat{p}_1) \leq \mathcal{D}_{\text{KL}}(\mathbb{P} \parallel \hat{\mathbb{P}})$$

1092 This technique is standard, as shown in Vargas et al. (2025) for the case of path reversal-based
 1093 construction of diffusion generative models, and in Holderrieth et al. (2025a) for discrete diffusion.
 1094 \square
 1095

1102 D JOINT DISCRETE STOCHASTIC INTERPOLANTS: DEFINITIONS AND 1103 PROPOSITIONS FOR SECTION 3

1104 Building on the discrete stochastic interpolant, we proceed to construct a discrete diffusion that
 1105 models a probability distribution whose supports span variable-length sequences.
 1106

1107 On a high level, we would like to define an interpolant constructed by deleting and masking sentences
 1108 from the data distribution. However, the corresponding interpolating rate becomes cumbersome to characterize, as it is no longer clear what each mask token should unmask to.
 1109

1110 To this end, we introduce the **joint interpolant** that allows us to construct a broader class of interpolants
 1111 and interpolating rate matrices by augmenting the interpolant with auxiliary information that
 1112 allows us to specify a more flexible interpolation path. We then leverage this newfound freedom to
 1113 construct the flexible-length masked diffusion model.
 1114

1115 D.1 JOINT INTERPOLANT

1116 By introducing an auxiliary variable coupled with the interpolant, the joint interpolant expands the
 1117 class of interpolating rates that can be defined.
 1118

1119 **Definition D.1** (Joint Interpolant and Joint Interpolating Rate). *Let $x_0 \sim p_0$ and $x_1 \sim p_1$. A joint interpolant is a family of coupled random variables $\{(x_t, s_t)\}_{t \in [0, 1]}$ defined on a common probability space and satisfying the boundary conditions $x_{t=0} = x_0$ and $x_{t=1} = x_1$, for which there exists a continuous-time Markov chain with bounded, time-dependent transition rate matrix $K_t^{x_0, x_1}$ on the joint state space such that, for each $t \in [0, 1]$, the conditional law $\text{Law}(x_t, s_t \mid x_0, x_1)$ coincides with the marginal distribution at time t of this Markov chain started at (x_0, s_0) . We call $K_t^{x_0, x_1}$ a joint interpolating rate matrix.*

1120 **Proposition D.1** (Joint Interpolant Target Rate). *Let $\{(x_t, s_t)\}_{t \in [0, 1]}$ be a joint interpolant with joint interpolating rate matrix $K_t^{x_0, x_1}$. Consider the continuous-time Markov chain with initial distribution p_0 and target transition rate matrix R_t defined by*

$$1121 R_t(x, y) = \mathbb{E}_{s_t, x_0, x_1} \left[\sum_{s' \in \mathcal{S}} K_t^{x_0, x_1}((x, s_t), (y, s')) \mid x_t = x \right],$$

1122 where \mathcal{S} denotes the discrete state space of the auxiliary variable s_t . The marginal of the chain at
 1123 time t is then equal to $\text{Law}(x_t)$.
 1124

1134 We note that this result is equivalent to “Flow Matching with Auxiliary Process” in concurrent work
 1135 Havasi et al. (2025).
 1136

1137 *Proof.* Let $p_t(\cdot, \cdot | x_0, x_1)$ the joint pmf of x_t, s_t conditioned on x_0, x_1 , let $q_t(x_0, x_1, s_t | x_t)$ to be the
 1138 joint of x_0, x_1, s_t conditioned on x_t , and let $q_t(x_0, x_1)$ to be the joint of x_0, x_1 . We proceed to verify
 1139 R_t satisfies the KFE as in Equation 3,

$$\begin{aligned}
 1142 \sum_y R_t(y, x) p_t(y) &= \sum_y \mathbb{E}_{s_t, x_0, x_1} \left[\sum_{s' \in \mathcal{S}} K_t^{x_0, x_1}((y, s_t), (x, s')) \mid x_t = y \right] p_t(y) \\
 1143 &= \sum_y \sum_{s_t, x_0, x_1} \sum_{s' \in \mathcal{S}} K_t^{x_0, x_1}((y, s_t), (x, s')) q_t(x_0, x_1, s_t | y) p_t(y) \\
 1144 &= \sum_y \sum_{s_t, x_0, x_1} \sum_{s' \in \mathcal{S}} K_t^{x_0, x_1}((y, s_t), (x, s')) q_t(x_0, x_1, s_t | y) p_t(y) \\
 1145 &= \sum_y \sum_{s_t, x_0, x_1} \sum_{s' \in \mathcal{S}} K_t^{x_0, x_1}((y, s_t), (x, s')) p_t(y, s_t | x_0, x_1) q(x_0, x_1) \\
 1146 &= \mathbb{E}_{x_0, x_1} \left[\sum_{s'} \partial_t p_t(x, s' | x_0, x_1) \right] \\
 1147 &= \partial_t p_t(x | x_0, x_1)
 \end{aligned}$$

1156 This concludes the proof. □

1158 D.2 FLEXIBLE-LENGTH MASKED DIFFUSION

1159 We then instantiate the joint interpolant to obtain the length-aware masked diffusion model, using
 1160 a sorted list of indices that has been inserted. Again, we drop x_0 in the writing as the model in-
 1161 terpolates between a point mass at an empty sentence to the full data distribution. We redefine the
 1162 interpolant in equation 6 for clarity.

1163 **Definition D.2** (Flexible-Length Masked Diffusion Joint Interpolant). *Let $x_1 = (x_1^0, \dots, x_1^{n-1}) \sim$
 1164 p_1 be a sequence of length n . Let α_t and β_t be monotone and differentiable schedules on $[0, 1]$ such
 1165 that $\alpha_0 = \beta_0 = 0$ and $\alpha_1 = \beta_1 = 1$. Define insertion and unmasking times $\{T_1^i\}_{i=0}^{n-1}$, $\{T_2^i\}_{i=0}^{n-1}$ as
 1166 follows:*

$$\begin{aligned}
 1168 T_1^i &\sim \dot{\alpha}_t \, dt, \\
 1169 T_2^i &\sim \mathbf{1}\{t \geq T_1^i\} \cdot \frac{\dot{\beta}_t}{1 - \beta_{T_1^i}} \, dt.
 \end{aligned}$$

1172 At each time $t \in [0, 1]$, define the sorted index set s_t as:

$$s_t = \{i \in \{0, \dots, n-1\} \mid t > T_1^i\},$$

1174 with ascending order $s_t[0] < \dots < s_t[\text{len}(s_t) - 1]$, and boundary values:

$$s_t[-1] = -1, \quad s_t[\text{len}(s_t)] = n,$$

1177 and define the interpolant state x_t per-coordinate as:

$$x_t^i = \begin{cases} \mathbf{m} & \text{if } t < T_2^{s_t[i]}, \\ x_1^{s_t[i]} & \text{if } t \geq T_2^{s_t[i]}. \end{cases}$$

1182 The process $(s_t, x_t)_{t \in [0, 1]}$ is the **flexible length masked diffusion joint interpolant**.

1183 Here, s_t tracks the ordered set of indices whose tokens have been inserted. The interpolant x_t
 1184 reveals the true token x_1^i only after both insertion and unmasking. Given access to this ordered set,
 1185 one interpolating rate is:

1186 **Proposition D.2** (FlexMDM Interpolating Rate). *A joint interpolating rate matrix $Q_t^{x_0, x_1}$ for the
 1187 joint interpolant above is given by:*

1188 1. *Unmask*: For index set s , $x \subseteq x_1|_s$, $x^i = \mathbf{m}$, and $v \in \Sigma$:

$$1190 \quad 1191 \quad Q_t^{x_1}((x, s), (x[x^i \leftarrow v], s)) = \frac{\dot{\beta}_t}{1 - \beta_t} \cdot \mathbf{1}\{x_1^{s[i]} = v\}$$

1193 2. *Insert*: For index set s , $x \subseteq x_1|_s$, $j \notin s$, and position i such that $s[i-1] < j < s[i]$:

$$1195 \quad Q_t^{x_1}((x, s), (x \triangleleft_i \mathbf{m}, s \cup \{j\})) = \frac{\dot{\alpha}_t}{1 - \alpha_t}$$

1197 *Proof.* We first write down the $p_t(\cdot, \cdot | x_1)$ the conditioned pmf of (s, x) given x_0, x_1 . Let $n =$
1198 $\text{len}(x_t)$, then
1199

$$1200 \quad 1201 \quad p_t(s, x | x_1) = A(t) \prod_{i \in s} I_i(t),$$

$$1203 \quad A(t) := (1 - \alpha_t)^{n - |s|}$$

$$1205 \quad 1206 \quad I_i(t) := \int_0^t \dot{\alpha}_u \left(\frac{1 - \beta_t}{1 - \beta_u} \mathbf{1}\{x^i = \mathbf{m}\} + \frac{\beta_t - \beta_u}{1 - \beta_u} \mathbf{1}\{x^i = x_1^i\} \right) du.$$

1208 Differentiate using the product rule:

$$1209 \quad \partial_t p_t(s, x | x_1) = \dot{A}(t) \prod_{i \in s} I_i(t) + A(t) \sum_{j \in s} \left(\dot{I}_j(t) \prod_{i \in s \setminus \{j\}} I_i(t) \right).$$

1213 For $A(t) = (1 - \alpha_t)^{n - |s|}$ we have

$$1215 \quad \dot{A}(t) = -(n - |s|) \dot{\alpha}_t (1 - \alpha_t)^{n - |s| - 1} = A(t) \left(- \frac{(n - |s|) \dot{\alpha}_t}{1 - \alpha_t} \right).$$

1217 For each $i \in s$ apply the Leibniz rule to $I_i(t)$:

$$1219 \quad 1220 \quad \dot{I}_i(t) = \dot{\alpha}_t \mathbf{1}\{x^i = \mathbf{m}\} + \int_0^t \dot{\alpha}_u \left(\frac{-\dot{\beta}_t}{1 - \beta_u} \mathbf{1}\{x^i = \mathbf{m}\} + \frac{\dot{\beta}_t}{1 - \beta_u} \mathbf{1}\{x^i = x_1^i\} \right) du$$

$$1223 \quad = \dot{\alpha}_t \mathbf{1}\{x^i = \mathbf{m}\} + \dot{\beta}_t \left(- \mathbf{1}\{x^i = \mathbf{m}\} + \mathbf{1}\{x^i = x_1^i\} \right) \int_0^t \frac{\dot{\alpha}_u}{1 - \beta_u} du.$$

1225 Substituting $\dot{A}(t)$ and $\dot{I}_i(t)$ into the product-rule expansion yields

$$1227 \quad \partial_t p_t(s, x | x_1)$$

$$1229 \quad = -(n - |s|) \dot{\alpha}_t (1 - \alpha_t)^{n - |s| - 1} \prod_{i \in s} I_i(t)$$

$$1232 \quad + (1 - \alpha_t)^{n - |s|} \sum_{j \in s} \left[\left(\dot{\alpha}_t \mathbf{1}\{x^j = \mathbf{m}\} + \dot{\beta}_t \left(- \mathbf{1}\{x^j = \mathbf{m}\} + \mathbf{1}\{x^j = x_1^j\} \right) \int_0^t \frac{\dot{\alpha}_u}{1 - \beta_u} du \right) \right.$$

$$1235 \quad \cdot \left. \prod_{i \in s \setminus \{j\}} I_i(t) \right]$$

$$1238 \quad = -(n - |s|) \frac{\dot{\alpha}_t}{1 - \alpha_t} A(t) \prod_{i \in s} I_i(t) - \sum_{j \in s, x^j = \mathbf{m}} \frac{\dot{\beta}_t}{1 - \beta_t} A(t) \prod_{i \in s} I_i(t)$$

$$1241 \quad + \sum_{j \notin s, x^j \neq \mathbf{m}} \frac{\dot{\beta}_t}{1 - \beta_t} A(t) \left(\int_0^t \dot{\alpha}_u \frac{1 - \beta_t}{1 - \beta_u} du \right) \prod_{i \in s \setminus \{j\}} I_i(t) + \sum_{i \in s} \frac{\dot{\alpha}_t}{1 - \alpha_t} (1 - \alpha_t) A(t) \prod_{i \in s \setminus \{j\}} I_i(t)$$

1242 This can then be rewritten term by term as,
 1243

$$\begin{aligned}
 1244 \partial_t p_t(s, x \mid x_1) &= - \sum_{i \notin s} \frac{\dot{\alpha}_t}{1 - \alpha_t} p_t(s, x \mid x_1) - \sum_{x^i = \mathbf{m}} \frac{\dot{\beta}_t}{1 - \beta_t} p_t(s, x \mid x_1) \\
 1245 &\quad + \sum_{x^i \neq \mathbf{m}} \frac{\dot{\beta}_t}{1 - \beta_t} p_t(s, x[x^i \leftarrow \mathbf{m}] \mid x_1) + \sum_{x^i = \mathbf{m}} \frac{\dot{\alpha}_t}{1 - \alpha_t} p_t(s - \{s[i]\}, \text{remove}(x, i) \mid x_1)
 \end{aligned}$$

1250 where $\text{remove}(x, i)$ refers to the string constructed by removing the i -th element of x .
 1251

1252 Notice that this is equivalent to the R.H.S of the KFE (Eq. 3) if one uses the rate matrix $Q_t^{x_1}$. The
 1253 four terms correspond to **1**) Outgoing mass from insertion; **2**) Outgoing mass from unmasking; **3**)
 1254 Incoming mass from unmasking; **4**) Incoming mass from insertion. This concludes the proof. \square
 1255

1256 **Proposition D.3** (FlexMDM Rate Matrix (Restated from Proposition 2)). *By Proposition D.1, the*
 1257 *induced marginal target rate R_t is:*

1258 1. *Unmask: For $x^i = \mathbf{m}$, $v \in \Sigma$:*

$$\begin{aligned}
 1260 R_t(x, x[x^i \leftarrow v]) &= \frac{\dot{\beta}_t}{1 - \beta_t} \cdot \mathbb{P}(x_1^{s_t[i]} = v \mid x_t = x) \\
 1261
 \end{aligned}$$

1263 2. *Insert: For position $i \in \{0, \dots, |x|\}$:*

$$\begin{aligned}
 1265 R_t(x, x \triangleleft_i \mathbf{m}) &= \frac{\dot{\alpha}_t}{1 - \alpha_t} \cdot \mathbb{E}_{s_t} [s_t[i] - s_t[i-1] - 1 \mid x_t = x]
 \end{aligned}$$

1269 *Proof.* The proof follows by noting proposition D.2 and invoking proposition D.1. \square
 1270

1272 Performing an approximate target rate matrix \hat{R}_t in terms of an approximate posterior by token
 1273 $f_\theta(x, t)[i, v] \approx \mathbb{P}(x_1^{s_t[i]} = v \mid x_t = x)$ and an approximate number of insertions $g_\theta(x, t)[i] \approx$
 1274 $\mathbb{E}_{s_t} [s_t[i] - s_t[i-1] - 1 \mid x_t = x]$. The target rate matrix can be learned by minimizing the follow-
 1275 ing variational objective. Note that the variational loss objective below is the same as one we defined
 1276 in equation 7.

1277 **Proposition D.4** (FlexMDM Loss (Restated from Proposition 1)). *The loss function is defined as:*

$$\begin{aligned}
 1279 L[\hat{R}_t] &= \int_0^1 \mathbb{E}_{x_1, s_t, x_t} \left[-\frac{\dot{\beta}_t}{1 - \beta_t} \sum_{i=0}^{\text{len}(x_t)-1} \mathbf{1}\{x_t^i = \mathbf{m}\} \log f_\theta(x_t, t)[i, x_1^{s_t[i]}] \right] dt, \\
 1280 &\quad + \int_0^1 \mathbb{E}_{x_1, s_t, x_t} \left[\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i=0}^{|x_1|} \phi(s_t[i] - s_t[i-1] - 1, g_\theta(x_t, t)[i]) \right] dt,
 \end{aligned}$$

1286 where $\phi(x, y) = y - x + x \log \frac{x}{y}$, is uniquely minimized when $\hat{R}_t = R_t$ and is connected by terminal
 1287 KL-divergence by:

$$\begin{aligned}
 1289 \mathcal{D}_{KL}(p_1 \parallel \hat{p}_1) &\leq L[\hat{R}_t],
 \end{aligned}$$

1290 where \hat{p}_1 is the approximate data distribution induced by \hat{R}_t .

1291 *Proof.* Let \mathbb{P} and $\hat{\mathbb{P}}$ be the path measure of a continuous time Markov chain starting with the empty
 1292 string with rate matrix R_t and \hat{R}_t , respectively.

1296 Consider the KL-divergence between path measures \mathbb{P} and $\hat{\mathbb{P}}$,
1297

$$\begin{aligned}
1298 \mathcal{D}_{\text{KL}}(\mathbb{P} \parallel \hat{\mathbb{P}}) &= \mathbb{E}_{\mathbb{P}} \left[\int_{t=0}^{t=1} R_t(x_t, x_t) - \hat{R}_t(x_t, x_t) dt + \sum_{t: x_t \neq x_{t-}} \log \frac{R_t(x_{t-}, x_t)}{\hat{R}_t(x_{t-}, x_t)} \right] \\
1300 \\
1301 \\
1302 &= \int_0^{t=1} \mathbb{E}_{x_t} \left[\sum_{y \neq x_t} \hat{R}_t(x_t, y) - \sum_{y \neq x_t} R_t(x_t, y) - R_t(x_t, y) \log \frac{R_t(x_t, y)}{\hat{R}_t(x_t, y)} \right] dt \\
1304 \\
1305 &= \int_0^1 \mathbb{E}_{x_1, s_t, x_t} \left[-\frac{\dot{\beta}_t}{1 - \beta_t} \sum_{i=0}^{\text{len}(x_t)-1} \mathbf{1}\{x_t^i = \mathbf{m}\} \log f_{\theta}(x_t, t)[i, x_1^{s_t[i]}] \right] dt \\
1307 \\
1308 &+ \int_0^1 \mathbb{E}_{x_1, s_t, x_t} \left[\frac{\dot{\alpha}_t}{1 - \alpha_t} \sum_{i=0}^{|x_t|} \phi(s_t[i] - s_t[i-1] - 1, g_{\theta}(x_t, t)[i]) \right] dt
\end{aligned}$$

1313 The terminal KL-bound then follows from the data processing inequality, that is:
1314

$$\mathcal{D}_{\text{KL}}(p_1 \parallel \hat{p}_1) \leq \mathcal{D}_{\text{KL}}(\mathbb{P} \parallel \hat{\mathbb{P}})$$

□

1319 E DETAILS FOR SECTION 4

1321 E.1 PRECISE DETAIL ON THE INFERENCE ALGORITHMS

1323 In this section, we provide details on the unmasking steps of vanilla and adaptive inference for
1324 FlexMDM, summarized in Algorithm 1, Subroutine 2. Suppose at inference time we are given the
1325 discretization step size τ , a partially observed sequence X_{t_k} , and the current time step t_k .

1326 **Vanilla inference.** For each masked position i (i.e., $X_{t_k}^i = \mathbf{m}$) and each clean token $v \in \Sigma$, we
1327 sample unmasking events from a Poisson distribution $\text{Poisson}(R_v \tau)$, where R_v is the unmasking
1328 rate toward token v . Concretely, $R_v = \frac{\dot{\beta}_{t_k}}{1 - \beta_{t_k}} \cdot f_{\theta}(X_{t_k}, t_k)[i, v]$, so that the event count is distributed
1329 as $k_v \sim \text{Poi} \left(\tau \cdot \frac{\dot{\beta}_{t_k}}{1 - \beta_{t_k}} \cdot f_{\theta}(X_{t_k}, t_k)[i, v] \right)$. A masked position is unmasked only if *exactly one*
1330 token v produces a count $k_v = 1$ while all others produce zero. This tau-leaping scheme batches all
1331 events that occur within the interval $[t_k, t_k + \tau]$.
1332

1334 **Adaptive inference.** We first draw the number of tokens to unmask, denoted by an integer K .
1335 While Proposition 3 (Theorem E.1) shows that the choice of K does not affect the theoretical guarantees,
1336 in practice, we set K to match the expected number of unmasked tokens under vanilla inference
1337 yields stable behavior. Accordingly, we sample $K \sim \text{Poi} \left(\tau \cdot \frac{\dot{\beta}_{t_k}}{1 - \beta_{t_k}} \cdot \#\{\text{masked tokens in } X_{t_k}\} \right)$.
1338

1339 Next, we compute a confidence score for each masked position, based on heuristics such as:

- Top-K probability (Chang et al., 2022; Zheng et al., 2024): For state x at time t , the confidence at
1342 position i is given by $\max_{v \in \Sigma} f_{\theta}(x, t)[i, v]$.
- Top-K probability with sliding window: We further restrict sampling to the leftmost L tokens,
1344 where

$$L = \min(\lfloor \gamma_1 \cdot L \rfloor, \gamma_2),$$

1346 with γ_1 and γ_2 hyperparameters. This approach is related to semi-autoregressive strategies used
1347 in Nie et al. (2025).

1348 Finally, we select the subset of positions to unmask as the Top-K masked indices with the highest
1349 confidence scores.

1350

E.2 PROOF OF FLEXMDM'S ANY-ORDER INFERENCE CAPABILITY

1351

1352

E.2.1 PROOF PRELIMINARIES

1353

1354

Form of posterior. We first compute, for each x_t^i , the probabilities of being masked or deleted in equation (6). This follows from a straightforward calculation using the joint distribution of (T_1^i, T_2^i) :

1355

1356

1357

1358

1359

$$p(x_t^i = \text{(empty)}) = p(T_1^i > t) = 1 - \alpha_t,$$

$$p(x_t^i = \mathbf{m}) = p(T_1^i \leq t, T_2^i > t) = \int_t^1 \int_0^t \left(\frac{\dot{\beta}_s}{1 - \beta_u} \times \dot{\alpha}_s \right) ds du =: 1 - \gamma_t.$$

1360

1361

1362

1363

1364

Here we define γ_t as $1 - p(x_t^i = \mathbf{m})$. Therefore, the process in equation (6) is equivalent to observing a partially masked subsequence x_t obtained by sampling $x_1 \sim p$ and, for each position of x_1 , independently deleting it with probability $1 - \alpha_t$, masking it with probability $1 - \gamma_t$, or leaving it unchanged with probability $\alpha_t + \gamma_t - 1$. Note that α_t and γ_t both increase from 0 to 1 as t increases from 0 to 1.

1365

The posterior is given by

1366

1367

1368

1369

1370

1371

$$p(x_1 = x^* \mid x_t = x)$$

$$\propto p(x^*) \cdot p(x_t = x \mid x_1 = x^*)$$

$$= p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} (1 - \gamma_t)^{\#\text{mask}(x)} (\alpha_t + \gamma_t - 1)^{\#\text{unmask}(x)} \cdot \#\{s : x \subseteq x^*|_s\}$$

$$\propto p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \#\{s : x \subseteq x^*|_s\}.$$

1372

1373

1374

1375

1376

Importantly, as in the vanilla MDM setting, the posterior does not depend on the unmasking schedule (γ_t) (thus β_t), which will enable us to perform unmasking in adaptively chosen positions. Note also that if all sequences in the support of p were of the same length, this posterior would also be independent of (α_t) ; while we do not prove it, in this case this would allow us to choose an arbitrary order of unmaskings and insertions.

1377

1378

1379

Extension of posterior to $t = 1$. Motivated by the form of the posterior above, we define the following:

1380

1381

$$q_t(x^* \mid x) \propto \begin{cases} p(x^*) \cdot \mathbf{1}_{x \subseteq x^*} & \text{if } t = 1 \\ p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \#\{s : x \subseteq x^*|_s\} & \text{otherwise} \end{cases}$$

1382

1383

1384

1385

1386

1387

1388

Note that for $t < 1$, this is the same as $p(x_1 = x \mid x_t = x)$. We will denote the marginals of $q_t(\cdot \mid x)$ by $q_t^i(\cdot \mid x)$ for $v \in \Sigma$. The reason for extending the definition of the posterior to $t = 1$ is that in an adaptive FlexMDM sampler (see Definition E.1), because we are entirely decoupling unmasking from the schedule of insertions, after the final insertion step the time parameter t may be 1 even though there are still tokens left to unmask. We will assume oracle access to $q_1(\cdot \mid x)$ as in practice these are simply the any-order marginals for p , and furthermore in practice these are already well-approximated by the learned posterior marginals $p(x_1^i \mid x_{1-\delta} = x)$ for arbitrarily small $\delta > 0$.

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

Index-tracking variable. Recall that in the definition of the joint interpolant we defined an index-tracking variable s_t which essentially tracked which indices of x_1 correspond to the tokens in x_t . While our analysis below will not use the language of stochastic interpolants, we will still use the idea of tracking s_t , with slightly modified notation. Specifically, for any $0 \leq t < 1$, we will use the notation $\Pr_{(x_1, s) \mid x_t = x}$ and $\mathbb{E}_{(x_1, s) \mid x_t = x}$ to denote probability and expectation with respect to the distribution given by sampling x_1 from $q_t(\cdot \mid x)$, and then sampling s uniformly random from subsets for which $x \subseteq (x_1)|_s$. When we only care about the marginal distribution over s , we write $\Pr_{s \mid x_t = x}$ and $\mathbb{E}_{s \mid x_t = x}$. Given such a subset s and $i \in \{0, \dots, |s| - 1\}$, we use s_i to denote its i -th element in sorted order; as before, we also define the boundary values $s_{-1} = -1$ and $s_{\text{len}(s)} = \text{len}(x_1)$. The insertion expectations which we had denoted by $\mathbb{E}[s_t[i] - s_t[i-1] - 1]$ in the main body are thus given by $\mathbb{E}_{s \mid x_t = x}[s_i - s_{i-1} - 1]$ in the notation of this section.

1401

1402

1403

E.3 FORMAL GUARANTEE FOR ADAPTIVE INFERENCE

Definition E.1. Given query access to the posterior marginals $q_t^i(\cdot \mid x_t = x)$ and to the insertion expectations $\mathbb{E}_{s \mid x_t = x}[s_i - s_{i-1} - 1]$, an adaptive FlexMDM sampler is any algorithm which produces

1404 a sequence of iterates $\hat{x}_{t_1}, \dots, \hat{x}_{t_n}$, where $0 = t_1 < \dots < t_n = 1$, by starting at $\hat{x}_{t_1} = \varepsilon$ and
 1405 arbitrarily alternating between steps of the following form:

1406
 1407 • Any-order unmasking step: Starting from \hat{x}_{t_j} , if $\text{mask}(\hat{x}_{t_j})$ is nonempty, pick an arbitrary index i
 1408 therein (possibly probabilistically), sample v from $q_{t_j}^i(\cdot | \hat{x}_{t_j})$, and set $\hat{x}_{t_j} \leftarrow \hat{x}_{t_j}[\hat{x}_{t_j}^i \leftarrow v]$.

1409 • Insertion step: Starting from \hat{x}_{t_j} , run the CTMC with rate matrix

$$1411 \quad R_t^{\text{ins}}(x, y) = \begin{cases} \mathbb{E}_{s|x_t=x}[s_i - s_{i-1} - 1] \cdot \frac{\alpha_t}{1-\alpha_t} & \text{if } y = x \triangleleft_i \mathbf{m} \\ -\sum_{i=0}^{\text{len}(x)} R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m}) & \text{if } y = x \\ 0 & \text{otherwise} \end{cases} \quad (9)$$

1415 for $t_j \leq t \leq t_{j+1}$ to obtain $\hat{x}_{t_{j+1}}$. If $t_{j+1} = 1$, then apply any-order unmasking until $\text{mask}(\hat{x}_{t_{j+1}})$
 1416 is empty, and terminate.

1417 Note that the rate matrix in the second bullet point above is identical to the one in the main body
 1418 except that we only consider transitions given by insertions.

1419 Formally, we will show the following:

1420
 1421 **Theorem E.1.** Any adaptive FlexMDM sampler for p will generate a sequence of iterates
 1422 $\hat{x}_{t_1}, \dots, \hat{x}_{t_n}$ such that \hat{x}_{t_n} is exactly a sample from p .

1424 E.4 PROOF OF THEOREM E.1

1425 To show that adaptive sampling works, we inductively prove an even stronger statement: at any
 1426 intermediate step of the sampler after it has produced \hat{x}_{t_j} , the final output \hat{x}_{t_n} is a sample from
 1427 $q_{t_j}(\cdot | \hat{x}_{t_j})$.

1428 The following two lemmas provide the inductive steps for unmasking and insertion respectively:

1429
 1430 **Lemma E.1** (Inductive step for unmasking). Let $0 \leq t \leq 1$ and let x be a partially unmasked
 1431 subsequence of length m . Let $\pi = (\pi_i)_{i \in \text{mask}(x)}$ denote any distribution over masked indices of x .
 1432 Suppose that one runs the following:

- 1433 1. Sample index i from π
- 1434 2. Sample v from the posterior marginal $q_t^i(\cdot | x_t = x)$
- 1435 3. Sample from $q_t(\cdot | x[x^i \leftarrow v])$.

1436 The output of this procedure is a sample x^* from $q_t(\cdot | x)$.

1437
 1438 **Lemma E.2** (Inductive step for insertion). Let $0 \leq t < 1$ and let x be a partially unmasked
 1439 subsequence of length m . Let $0 \leq h \leq 1 - t$ be any duration of time. Suppose that one runs the
 1440 following:

- 1441 1. Starting from x , run the CTMC with rate matrix given by Eq. (9) for time h to obtain x'
- 1442 2. Sample from $q_{t+h}(\cdot | x')$.

1443 The output of this procedure is a sample from the posterior $q_t(\cdot | x)$.

1444 We defer the proofs of these to Sections E.5 and E.6 below. The idea for the former is identical to
 1445 the proof of the folklore fact that vanilla MDMs can sample in any order (Kim et al., 2025). The
 1446 proof for the latter is more involved and involves explicitly verifying that the Kolmogorov backward
 1447 equation is satisfied by the rate matrix we have constructed.

1448 Here we verify that these Lemmas are enough to establish Theorem E.1.

1449
 1450 **Proof of Theorem E.1.** We show more generally that starting from any intermediate time step \hat{x}_{t_j}
 1451 (not just $j = 1$), any adaptive FlexMDM sampler outputs a sample from $q_{t_j}(\cdot | \hat{x}_{t_j})$. We do this by
 1452 inducting on the total number of insertion steps that remain.

1453 As the base case for the induction, if no more insertion steps remain, then we must have $t_j = 1$.
 1454 In this case, we can further induct on the number of unmasking steps and apply Lemma E.1 with t
 1455 therein set to 1 to conclude that the final output is a sample from $q_1(\cdot | \hat{x}_{t_j})$.

1458 For the inductive step, we have $t_j < 1$ and suppose we have shown that for any FlexMDM sampler
 1459 that makes at most m insertion steps, starting from any \hat{x}_{t_j} at intermediate time t_j , it samples from
 1460 $q_{t_j}(\cdot | \hat{x}_{t_j})$. Now consider a FlexMDM sampler that makes at most $m + 1$ insertion steps starting
 1461 from \hat{x}_{t_j} at intermediate time t_j . If in the next step it performs an insertion step, i.e. it runs the
 1462 CTMC with rate matrix defined above for total time $h = t_{j+1} - t_j$, then by Lemma E.2 and the
 1463 inductive hypothesis, it samples from $q_{t_j}(\cdot | \hat{x}_{t_j})$. Alternatively, suppose the sampler performs some
 1464 sequence of ℓ unmasking steps before performing an insertion step. Then by further inducting on ℓ ,
 1465 we conclude by Lemma E.1 that the sampler eventually outputs a sample from $q_{t_j}(\cdot | \hat{x}_{t_j})$.

1466 Finally, the theorem follows from the special case where $t_j = 0$ and $\hat{x}_{t_j} = \varepsilon$. \square
 1467

1468 E.5 PROOF OF LEMMA E.1

1470 *Proof.* Fix any index $i \in \text{mask}(x)$. The marginal $q_t^i(\cdot | x)$ is given by
 1471

$$1472 \Pr_{(x_1, S) | x_t = x}[(x_1)_{|s_i} = v] = \frac{\sum_{x_1, S: (x_1)_{|s_i} = v} p(x) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\}}{\sum_{x_1} p(x_1) (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\}}. \quad (10)$$

1475 The posterior $q_t(\cdot | x[x^i \leftarrow v])$ is given by
 1476

$$1477 q_t(x^* | x[x^i \leftarrow v]) = \frac{p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \#\{S : x[x^i \leftarrow v] \subseteq x^*_{|S}\}}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x[x^i \leftarrow v] \subseteq (x_1)_{|S}\}}. \quad (11)$$

1478 Note that the numerator of Eq. (10) and the denominator of Eq. (11) are the same. So conditioned
 1479 on unmasking index i , the above procedure outputs x^* with probability
 1480

$$1481 \begin{aligned} & \sum_z \Pr_{(x_1, S) | x_t = x}[(x_1)_{|s_i} = v] \cdot q_t(x^* | x[x^i \leftarrow v]) \\ &= \frac{p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \sum_z \#\{S : x[x^i \leftarrow v] \subseteq x^*_{|S}\}}{\sum_{x_1} p(x_1) (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\}} \\ &= q_t(x^* | x). \end{aligned}$$

1482 This holds conditioned on unmasking any $i \in \text{mask}(x)$, so regardless of the choice of π over such
 1483 positions, we will sample from the correct distribution $q_t(\cdot | x)$. \square
 1484

1485 E.6 PROOF OF LEMMA E.2

1486 *Proof.* It suffices to show that the rate matrix satisfies the Kolmogorov *backward* equation
 1487

$$1488 \partial_t q_t(x^* | x) = - \sum_{i=0}^{\text{len}(x)} R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m}) q_t(x^* | x \triangleleft_i \mathbf{m}) - R_t^{\text{ins}}(x, x) q_t(x^* | x).$$

1489 First note that the rate $R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m})$ can be expressed as
 1490

$$1491 \frac{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \sum_{S: x \subseteq (x_1)_{|S}} (s_i - s_{i-1} - 1)}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\}} \cdot \frac{\dot{\alpha}_t}{1 - \alpha_t}.$$

1492 Furthermore, $\sum_i (s_i - s_{i-1} - 1) = \text{len}(x_1) - \text{len}(x)$, so
 1493

$$1494 \begin{aligned} & \sum_i R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m}) \\ &= \frac{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\} \cdot (\text{len}(x_1) - \text{len}(x))}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)_{|S}\}} \cdot \frac{\dot{\alpha}_t}{1 - \alpha_t}. \quad (12) \end{aligned}$$

1512 Let us compute $\partial_t q_t(x^* | x)$:

1513

$$\begin{aligned}
 1514 & - \frac{p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \#\{S : x \subseteq x^*|_S\} \cdot (\text{len}(x^*) - \text{len}(x))}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)|_S\}} \cdot \frac{\dot{\alpha}_t}{1 - \alpha_t} \\
 1515 & + \left[\frac{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)|_S\} \cdot (\text{len}(x_1) - \text{len}(x))}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)|_S\}} \cdot \frac{\dot{\alpha}_t}{1 - \alpha_t} \right. \\
 1516 & \quad \times \left. \frac{p(x^*) \cdot (1 - \alpha_t)^{\text{len}(x^*) - \text{len}(x)} \cdot \#\{S : x \subseteq x^*|_S\}}{\sum_{x_1} p(x_1) \cdot (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x \subseteq (x_1)|_S\}} \right] \tag{13}
 \end{aligned}$$

1517

1518 Note that by Eq. (12), the term in the parentheses in Eq. (13) is exactly

1519

$$\sum_{i=0}^{\text{len}(x)} R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m}) q_t(x^* | x) = -R_t^{\text{ins}}(x, x) q_t(x^* | x),$$

1520

1521 It remains to verify that the first term in Eq. (13) is equal to $-\sum_i R_t^{\text{ins}}(x, x \triangleleft_i \mathbf{m}) q_t(x^* | x \triangleleft_i \mathbf{m})$. To that end, we must show that

1522

$$\begin{aligned}
 1523 & \sum_{i=0}^{\text{len}(x)} \frac{\sum_{x_1} p(x_1) (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \sum_{S: x \subseteq (x_1)|_S} (s_i - s_{i-1} - 1)}{\sum_{x_1} p(x_1) (1 - \alpha_t)^{\text{len}(x_1) - \text{len}(x)} \cdot \#\{S : x_t \triangleleft_i \mathbf{m} \subseteq (x_1)|_S\}} \cdot \#\{S : x \triangleleft_i \mathbf{m} \subseteq x^*|_S\} \\
 1524 & = \#\{S : x \subseteq (x^*)|_S\} \cdot (\text{len}(x^*) - \text{len}(x)) \tag{14}
 \end{aligned}$$

1525

1526 The key combinatorial step is as follows. For any x_1 in the support of p , consider a subset S for
 1527 which $x \subseteq (x_1)|_S$. Note that for every such S , we can uniquely associate exactly $s_i - s_{i-1} - 1$
 1528 different subsets S' of size $|S| + 1$ for which $x \triangleleft_i \mathbf{m} \subseteq (x_1)|_{S'}$. Therefore, $\sum_{S: x \subseteq (x_1)|_S} (s_i - s_{i-1} - 1) = \#\{S : x \triangleleft_i \mathbf{m} \subseteq (x_1)|_S\}$, and the left-hand side of Eq. (14) thus becomes

1529

$$\sum_{i=0}^{\text{len}(x)} \#\{S : x \triangleleft_i \mathbf{m} \subseteq x^*|_S\} = \sum_{i=0}^{\text{len}(x)} \sum_{S: x \subseteq x^*|_S} (s_i - s_{i-1} - 1) = \sum_{S: x \subseteq (x_1)|_S} (\text{len}(x^*) - \text{len}(x_t)),$$

1530

1531 which completes the proof of Eq. (14). \square

1532

F EXPERIMENTAL DETAILS

1533

F.1 PRETRAINING ON OPENWEBTEXT

1534

Dataset preparation. As mentioned in Section 5.1, to obtain a variable-length dataset, we split
 1535 OpenWebText articles paragraph-wise using the GPT-2 tokenizer Radford & Wu (2019). This can be
 1536 implemented by locating the token index corresponding to the delimiter \n \n. Sequences longer
 1537 than 1024 tokens are then chunked recursively by splitting by the delimiter closest to the middle
 1538 sequence, yielding a variable-length dataset with maximum sequence length 1024.

1539

FlexAttention. To handle variable-length sequences during training, we pad each batch to the
 1540 maximum sequence length. In MDM, by design, pad tokens also enter the model input. In contrast,
 1541 FlexMDM is designed to receive only clean or mask tokens as inputs. Ideally, QKV attention should
 1542 not attend to pad tokens; however, current FlashAttention (Dao et al., 2022) does not support this for
 1543 *non-causal* attention (our setup of interest). We therefore adapt FlexAttention (Dong et al., 2024).
 1544 A side benefit is improved training speed, since FlexMDM performs attention over fewer tokens
 1545 than MDM’s full-sequence attention. Note that in the LLaDA experiment, we did not implement
 1546 this optimization; pad tokens can therefore attend to other tokens, though we expect the impact to
 1547 be negligible.

1548

Training configuration. As in Section 5.1, we model FlexMDM with a DiT Peebles & Xie (2023)
 1549 backbone and embed the insertion schedule α_t . For MDM, we use the same DiT configuration with
 1550 time step embedding but without the softplus scalar head. Transformer configuration is: hidden
 1551 size:768, heads:12, conditional dimension:128, dropout:0.05, layers:12.

1566 We train both models on 16 H100 GPUs with a global batch size of 1024 and max training iteration 1M.
 1567 We use the AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay 0.03,
 1568 learning rate $3e-4$, 2000 warmup steps, and an EMA factor of 0.9999. Additionally, we use low-
 1569 discrepancy time-step sampling to reduce variance: one t is drawn uniformly from each interval
 1570 $[i/T, (i+1)/T]_{i=0}^{T-1}$, as in prior MDM training (Shi et al., 2024).
 1571

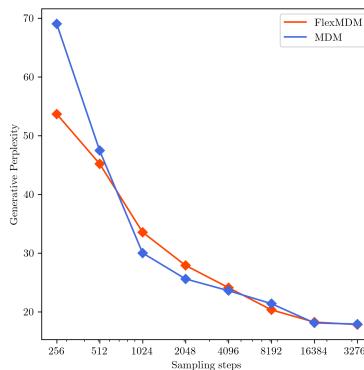
1572 **Metric.** For evaluation, we take sequences generated by both models and retain the clean tokens
 1573 by removing padding (e.g., the leading pad token). We adopt LLaMA-2-7B (Touvron et al., 2023)
 1574 as the reference model to compute likelihoods. We notice that the pretrained MDM generates short
 1575 sentences with unreasonably large (worse) perplexities. Therefore, we filter overly short sequences
 1576 with ≤ 10 tokens when calculating average perplexity.
 1577

1578 F.1.1 ADDITIONAL EXPERIMENTS

1579 **Sequence entropy.** We follow the setup from (Zheng et al., 2024) to measure the entropy of given
 1580 sequence. As we can observe in the table below, both models exhibit comparable sequence entropy
 1581 across different sampling steps.
 1582

Sampling steps	256	512	1024	2048	4096
MDM	4.4732	4.5691	4.4417	4.2259	4.1876
FlexMDM	4.4586	4.5173	4.5660	4.4712	4.4304

1583 **Generative perplexity for extended sampling steps.** Below, we extend the generative perplexity
 1584 measurement to more sampling steps. We observe plateaus around 16,384 steps. This is likely be-
 1585 cause discretization errors for the CTMC and the estimation errors for each transition entry become
 1586 negligible, leading to diminishing generative perplexity.
 1587



1605 **Downstream evaluation on the text understanding.** We follow the evaluation protocol of von
 1606 Rütte et al. (2025).
 1607

Model	HellaSwag	PIQA	ARC-E	ARC-C	BoolQ	OBQA	WinoGrade
FlexMDM	28.75	51.69	25.26	25.75	50.50	24.60	51.78
MDM	29.70	52.55	25.26	26.09	50.05	23.80	49.01

1612 F.2 PRETRAINING ON THE MAZE PLANNING TASK

1613 **Task construction.** We generate mazes with a fully random, recursive division procedure (the
 1614 code is provided in Listing 1), on a 41×41 grid, with some invalid cells. As described in Sec-
 1615 tion 5.1, we consider a subgoal-conditioned planning task: the model is given a sequence of sub-
 1616 goals (g_1, \dots, g_K) and must produce a valid path that connects them in order. To construct training
 1617 examples for a given K , we sample 15000 start–goal pairs (g_1, g_K) , compute the shortest path for
 1618 each pair via breadth-first search, and then add controlled detours to obtain up to 10 distinct valid
 1619 paths per pair. Subgoals are formed by selecting $K - 2$ intermediate cells uniformly at random along

1620 a chosen path (start and goal are already fixed). We use 95% of the pairs for training and hold out
 1621 5% for validation to evaluate generalization to unseen pairs and subgoal sets.
 1622

1623 **Training data construction.** For MDM, the training sequence is $((g_1, \dots, g_K) \text{ [SEP]} \text{ Path})$,
 1624 where [SEP] is a special separator and Path denotes the tokenized path. During training, the
 1625 prompt (g_1, \dots, g_K) bypasses the interpolant so that, at inference time, the model can condition
 1626 on $(g_1, \dots, g_K) \text{ [SEP]}$ and generate the path. For FlexMDM, we use an interpolant in which the
 1627 subgoal tokens are exempt from the process in (6); that is, tokens corresponding to each g_i are kept
 1628 clean at all times. This also enables generation to start from (g_1, \dots, g_K) . Although this conditional
 1629 generation template changes the base distributions p_0 for both MDM and FlexMDM, we note that the
 1630 theoretical guarantee from Section 3 and Section 4 still holds—once the training is perfect (under the
 1631 access to the ground truth unmasking posterior and insertion expectation), the inference algorithms
 1632 recover the ground truth distribution p_1 .
 1633

1634 **Training configuration.** We use the same architectural design as in the OpenWebText pretraining,
 1635 but with a smaller model: `hidden_size:256, heads:8, conditional_dimension:128,`
 1636 `dropout:0.1, layers:8`. Both models have approximately 8.5M parameters. We train them
 1637 on 4 A100 GPUs with a global batch size of 256 for up to 100 epochs. We use AdamW (Loshchilov
 1638 & Hutter, 2017) with weight decay 0.01, learning rate 1×10^{-4} , 20 warmup epochs, and an EMA
 1639 factor of 0.9999.
 1640

1641 **Metric.** Given the final conditionally generated sequence, we report the success rate under two
 1642 criteria: (1) all visited cells are valid (no collisions with invalid cells), and (2) the path connects the
 1643 subgoals consecutively in order. We perform inference both models with the number of sampling
 1644 steps 256.
 1645

Listing 1: Code for the maze Construction

```

1646
1647 # -----
1648 # RECURSIVE DIVISION (perfect maze) -----
1649 # -----
1650 def _divide(g, top, left, h, w):
1651     if h <= 2 or w <= 2:
1652         return
1653     horizontal = w < h # split the longer dimension
1654     if horizontal:
1655         y = random.randrange(top + 1, top + h - 1, 2)
1656         gap = random.randrange(left, left + w, 2)
1657         g[y, left:left + w] = 1
1658         g[y, gap] = 0
1659         _divide(g, top, left, y - top, w)
1660         _divide(g, y + 1, left, top + h - y - 1, w)
1661     else:
1662         x = random.randrange(left + 1, left + w - 1, 2)
1663         gap = random.randrange(top, top + h, 2)
1664         g[top:top + h, x] = 1
1665         g[gap, x] = 0
1666         _divide(g, top, left, h, x - left)
1667         _divide(g, top, x + 1, h, left + w - x - 1)
1668
1669
1670 # -----
1671 # WRAPPER with extra doorways -----
1672 # -----
1673 def division_maze(m, n, seed=2025, extra_door_frac=0.5):
1674     """
1675         m, n           # size in *cells*      (not bitmap coords)
1676         seed          # int or None
1677         extra_door_frac # 0, perfect maze; >0 flicks more doors (loops)
1678     """
1679     random.seed(seed)
1680     H, W = 2 * m + 1, 2 * n + 1

```

```

1674     g = np.zeros((H, W), dtype=np.uint8)
1675     g[0, :], g[H - 1, :], g[:, 0], g[:, W - 1] = 1, 1, 1, 1
1676
1677     _divide(g, 1, 1, H - 2, W - 2)
1678
1679     # ----- optional imperfection: punch extra doorways -----
1680     if extra_door_frac > 0:
1681         candidates = []
1682         for r in range(1, H - 1):
1683             for c in range(1, W - 1):
1684                 if g[r, c] == 1:
1685                     # Check if wall separates two passages orthogonally
1686                     if g[r - 1, c] == 0 and g[r + 1, c] == 0:
1687                         candidates.append((r, c))
1688                     elif g[r, c - 1] == 0 and g[r, c + 1] == 0:
1689                         candidates.append((r, c))
1690         k = int(len(candidates) * extra_door_frac)
1691         for (r, c) in random.sample(candidates, k=k):
1692             g[r, c] = 0
1693
1694     return g

```

F.3 WEIGHT INITIALIZATION TRAINING FROM LLADA

In this section, we describe the procedure for adapting the pretrained LLADA-8B base model into the FlexMDM.

Training configuration. LLADA uses a bidirectional Transformer without an additional time embedding, leveraging the fact that MDM does not require an explicit time signal (Zheng et al., 2024). For FlexMDM, to model the insertion expectation, we inject a time-embedding pathway via AdaLN (Peebles & Xie, 2023). For parameter efficiency, we tie (share) the four AdaLN parameter sets across the intermediate Transformer layers. We also attach a softplus scalar head to parameterize the insertion expectation.

Next, we attach LoRA adapters (Hu et al., 2022) to every attention projection (q-proj, k-proj, v-proj) and to the unmasking-posterior head. We include LoRA on the unmasking posterior head because the unmasking posteriors differ between MDM and FlexMDM: in FlexMDM, unmasking must account for token shifts induced by insertions. This fine-tuning of the last head is crucial for enabling variable-length generation.

The LoRA configuration that we use is $r = 128$, $\alpha = 128$, and dropout 0.1. Training runs for 200,000 gradient steps with a batch size of 64 on 16 H100s, which took approximately 3 days. We optimize with AdamW (Loshchilov & Hutter, 2017) at learning rate 1×10^{-4} and weight decay 0.1, using a cosine warm-restarts scheduler.

Evaluation on GSM8K. We instruction-fine-tune (IFT) the FlexMDM base model on the GSM8K training split. To preserve the instruction–answer format, we modify the interpolant in Eq. 6 so that tokens corresponding to the instruction are excluded from the interpolant—these tokens remain fixed for all time steps. We apply the same strategy to obtain the baseline (that is, IFT from LLADA-base), modifying the MDM interpolant so that instruction tokens remain fixed. This choice is equivalent to the IFT recipe used in Nie et al. (2025); Ye et al. (2025). Both models are IFT-ed for 1000 epochs. (Other IFT hyperparameters match those used in our base setup unless otherwise noted.)

For FlexMDM inference, we start from the instruction prompt at $t = 0$ and run adaptive inference to $t = 1$. Concretely, we use Top-K probability with a sliding window (Appendix E) with $\gamma_1 = 5.0$ and $\gamma_2 = 64$. For LLADA, we report the best result under the semi-autoregressive, confidence-based sampling of (Nie et al., 2025). For both models, we set the token sampling temperature to 0.0, which we confirm to be important for strong Pass@1. Overall, adaptive inference substantially improves performance over vanilla inference.

For a fair comparison, since FlexMDM is not IFT-ed, we IFT LLADA-Base, rather LLADA-instruct, this differs from Zhao et al. (2025). We employ zero-shot evaluation, which also differs from Nie et al. (2024).

1728 **Evaluation on HumanEval-infill.** Code infilling conditions on a prefix and suffix, and asks
 1729 the model to complete the middle part of the code. For FlexMDM, we format training exam-
 1730 ples as (Prefix; [SEP]; [Middle]; [SEP]; Suffix), where [SEP] is a separator token and
 1731 Instruction describes the infilling task for a model. We modify Eq. (6) so that tokens for
 1732 Prefix, Suffix, and [SEP] are fixed in the interpolant (i.e., excluded from the interpolant).
 1733 Thus, at $t = 0$ the state is (Prefix; [SEP]; [SEP]; Suffix).
 1734 For MDM, we use the format (Instruction; [PRE]; Prefix; [SUF]; Suffix; [SEP]; Middle),
 1735 with Instruction prompting infill after prefix and suffix, along with [PRE] and [SUF] sepa-
 1736 rate the prefix and suffix, respectively. Here too, the tokens without Middle are held fixed by the
 1737 modified interpolant. This difference in formatting reflects the fixed-length nature of MDMf MDM
 1738 (no token insertion). This formatting has been used in the code infilling tasks for autoregressive
 1739 models in Bavarian et al. (2022). Naively masking the Middle span yields a base state at $t = 0$ of
 1740 (Prefix; Masked; Suffix), where Masked is a fully masked sequence of length $|\text{Middle}|$.
 1741 This leaks length information—materially simplifying the task—and renders comparisons to
 1742 FlexMDM unfair, since FlexMDM does not observe the target span length. For fair evaluation,
 1743 we therefore avoid length-revealing masks and require methods to infer the span length during
 1744 inference.
 1745 We IFT both models on the educational-instruct split of `opc-sft-stage2`; the architecture and
 1746 optimization configurations match those used for `GSM8K` IFT. At evaluation, we initialize from
 1747 the base distributions: for FlexMDM, (Instruction; Prefix; [SEP]; [SEP]; Suffix); for
 1748 MDM, (Instruction; Prefix; Suffix; [SEP]). We use the same Top-K adaptive inference
 1749 for both and temperature 0.0. Final outputs are scored with the HumanEval-infill verifier toolkit to
 1750 compute success rates.
 1751 **F.3.1 ADDITIONAL EXPERIMENTS**
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781