
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANY-ORDER FLEXIBLE LENGTH MASKED DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked diffusion models (MDMs) have recently emerged as a promising alterna-
tive to autoregressive models over discrete domains. MDMs generate sequences in
an any-order, parallel fashion, enabling fast inference and strong performance on
non-causal tasks. However, a crucial limitation is that they do not support token in-
sertions and are thus limited to fixed-length generations. To this end, we introduce
Flexible Masked Diffusion Models (FlexMDMs), a discrete diffusion paradigm
that simultaneously can model sequences of flexible length while provably re-
taining MDMs’ flexibility of any-order inference. Grounded in an extension of
the stochastic interpolant framework, FlexMDMs generate sequences by inserting
mask tokens and unmasking them. Empirically, we show that FlexMDMs match
MDMs in perplexity while modeling length statistics with much higher fidelity.
On a synthetic maze planning task, they achieve ≈ 60% higher success rate than
MDM baselines. Finally, we show pretrained MDMs can easily be retrofitted into
FlexMDMs: on 16 H100s, it takes only three days to fine-tune LLaDA-8B into a
FlexMDM, achieving superior performance on math (GSM8K, 58%→67%) and
code infilling performance (52%→65%).

1 INTRODUCTION

While diffusion models (Ho et al., 2020; Song et al., 2020; Sohl-Dickstein et al., 2015) are now the
leading paradigm for generative modeling in continuous domains, recent work has begun to expand
their scope to discrete spaces. The prevailing approach, Masked Diffusion Models (MDMs) (Shi
et al., 2024; Sahoo et al., 2024; Gat et al., 2024), generates sentences in a non-left-to-right, any-order
fashion. Compared to autoregressive models, this any-order generation ability yields substantially
faster inference and strong downstream performance on non-casual tasks such as planning (Ye et al.,
2024), code Nie et al. (2025); Ye et al. (2025), and reasoning (Nie et al., 2024).

Despite these successes, current MDMs cannot (1) model distributions supported on sequences of
variable length and (2) insert new tokens during generation (Figure 1, left). Both capabilities are
natural desiderata for generative models over discrete domains. We therefore ask: Can we model
variable-length data while preserving MDMs’ any-order generation power?

We answer in the affirmative by proposing the Flexible Masked Diffusion Model (FlexMDM).
FlexMDMs start from an empty string and gradually insert mask tokens and then unmask them
(Figure 1, right). Beyond learning the usual unmasking posterior–the distribution of a clean to-
ken at masked positions–we introduce an insertion expectation: the expected number of tokens
to insert conditioned on the current sequence. Crucially, we show that FlexMDM is theoretically
grounded (i.e., under perfect training, it samples from the true data distribution) and retains the any-
order sampling property of MDMs, thereby directly addressing the question above. Empirically, we
demonstrate that FlexMDM offers significant new upgrades to the MDM paradigm,
• A FlexMDM pretrained on OpenWebText is able to model the length distribution with substan-

tially higher fidelity while matching the perplexity of an MDM counterpart.
• On planning tasks, FlexMDM achieves markedly better results, beating the success rate of MDMs

by nearly 60% on a natural synthetic baseline.
• MDMs can be retrofitted into FlexMDMs at 8B+ scale: We fine-tune LLaDA-8B (Nie et al., 2025),

an open-source MDM, into a FlexMDM using only 16 H100s for three days. The model transfers
cleanly from its MDM initialization and, with its newly acquired variable-length capability, attains
notably better performance on GSM8K (58%→67%) and Code infilling (52%→65-%).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MDM FlexMDM

Variable Length Token Insertion Variable Length Token Insertion

I

I I

I love

love

lovegreen

green

mask

mask mask

cows Rio’s

skies

skies

skies

skies

blue

blue

blueblue

mask maskmaskmaskmaskmask

I love skies

mask

mask mask

mask

maskmask

Unmasked

Empty

Inserted

Figure 1: Flexible Masked Diffusion Model (FlexMDM) addresses MDMs’ inability to handle
variable-length sequences and token insertion while preserving any-order generation power. At
each step, FlexMDM performs insertion and unmasking by predicting the expected number of
mask tokens to insert (gθ) and the posterior over clean tokens (fθ), respectively.

Theoretically, our construction relies on the machinery of continuous-time Markov chains (CTMCs)
and in particular introduces the new notion of a joint interpolant, a novel extension of stochastic
interpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023b; Lipman et al., 2022). Recent
work (Zheng et al., 2024; Ou et al., 2024) established an equivalence between MDMs and any-order
language models–obviating the need for CTMCs. In contrast, we prove that FlexMDMs also possess
the flexibility of any-order generation, yet the continuous-time perspective is absolutely essential for
them to accurately model the length distribution. Accordingly, we re-derive the connections between
MDMs and stochastic interpolants and use them to ground the design of FlexMDMs.

Roadmap. We begin in Section 2 with a broadly accessible review of CTMCs and the connection
between MDMs and discrete flow matching. Building on this, Section 3 derives the FlexMDM
training objective, and Section 4 introduces our inference procedures. Section 5 presents our exper-
imental results.

Concurrent work. Concurrent works (Wu et al., 2025b; Havasi et al., 2025) attempt to tackle the
same problem. Wu et al. (2025b) introduces an auxiliary expand token in training and heuristically
replaces each expand token with two mask tokens at inference. Havasi et al. (2025), also based on
the discrete flow matching framework, shares a similar theoretical grounding as our result. The main
differences lie in our particular choice of interpolant that leads to the development of an any-order
sampling algorithm. For clarity, we provide a detailed comparison in Appendix A.

2 PRELIMINARIES: CONTINUOUS-TIME MARKOV CHAINS AND MASKED
DIFFUSIONS

In what follows, we provide an overview of continuous-time Markov chains (CTMCs), their role in
defining discrete diffusion models, and link them to the MDM framework. As we mentioned in the
introduction, this theme is essential to defining FlexMDMs in Section 3.

Transport with continuous-time Markov Chains. Given a target distribution p1 over sequences
with a finite vocabulary set (e.g., text), our aim is to learn to transport samples from a reference dis-
tribution p0 through a continuum of distributions {pt}t∈[0,1] such that pt=1 = p1. This type of trans-
port can be realized by a continuous-time Markov chain, which is a stochastic process {Xt}t∈[0,1]

with X0 ∼ p0 governed by a time-dependent transition rate matrix {Rt(·, ·)}t∈[0,1] satisfying

Rt(x, x) = −
∑
y ̸=x

Rt(x, y), Rt(x, y) ≥ 0, x ̸= y. (1)

Intuitively, the rate matrix determines the infinitesimal likelihood that Xt transitions to any other
state y via

P(Xt+h = y|Xt = x) = 1{x=y} + hRt(x, y) + o(h) , (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where we denote the conditional probability measure P(·|Xt = x) of a new state given the present
one. Here o(h) is a remainder term that vanishes faster than h as h→ 0. In generative modeling for
these discrete distributions, our aims are to (a) specify a path of marginal distributions {pt}t∈[0,1]

connecting p0 to p1 and (b) learn the associated Rt such that these marginals collectively satisfy the
Kolmogorov forward equation:

∂tpt(x) =
∑
y

pt(y)Rt(y, x) pt=0 = p0. (3)

This ensures that at time t = 1, the evolution specified by (2) results in a sample from the target
distribution p1. The rate matrices defined in this paper are sparse; therefore, we assume that the
unspecified entries are 0 and the diagonal entries are defined through Equation (1).

2.1 MASKED DIFFUSION MODELS

We briefly review MDMs (Sahoo et al., 2024; Shi et al., 2024) and discrete flow matching with
the masked construction (Gat et al., 2024), through the lens of stochastic interpolants. The target
distribution p1 assigns probability to length L sequences. The base distribution p0 employed by these
models is the point mass distribution at the fully masked length-L sequence (m, . . . ,m), where m
is an auxiliary mask token.

To define the intermediate {pt}t∈[0,1] that bridges the base and the target, we make use of a stochas-
tic interpolant {xt}t∈[0,1], a collection of random variables whose marginal distribution defines the
continuum {pt}t∈[0,1], i.e., xt ∼ pt. Although the previous notion of stochastic interpolant (Albergo
et al., 2023b) is defined in a continuous space, it naturally extends to a discrete space, and we defer
a formal exposition to Appendix C.

Design of distribution path. The stochastic inter-
polant relies on a smooth and monotone unmasking
schedule αt : [0, 1] → [0, 1] with boundary condi-
tion (α0, α1) = (0, 1) and time derivative denoted
by α̇t. To draw xt, we first sample a clean sequence
x1 ∼ p1; then, independently for every coordinate
i, we draw an unmasking time T i from density α̇tdt
and set

xi
t =

{
m t < T i

xi
1 t ≥ T i .

This process is illustrated in Figure 2. Hence, each
clean token stays masked with probability 1−αt in a
coordinate-independent fashion, defining pt(· | x1).
We then write pt by marginalizing over x1 ∼ p1.

mask

love

MDM Interpolant

I

Mask

Unmasked

umasking time

maskI skies

skies

I skies

mask mask mask

love

Figure 2: To draw a sample xt, one can
equivalently sample the clean sequence x1 ∼
p1, draw unmasking times, and then accord-
ingly unmask or mask each coordinate’s to-
ken.

MDM training. We now derive the MDM rate matrix that induces a CTMC whose marginals
coincide with {pt}t∈[0,1] and how it is learned in practice. The central object is the unmasking pos-
terior: the posterior on the clean token xi

1 for masked index i given xt = x and time step t, i.e.,
P(xi

1 = v|xt = x). We model this posterior with a neural network fθ(x, t) ∈ (∆(Σ))n, where
∆(Σ) denotes a simplex of probability distributions over the vocabulary Σ.

For every position where xi = m, the network aims to predict fθ(x, t)[i, v] ≈ P(xi
1 = v|xt = x),

and is trained by minimizing the following variational loss:

Lθ = −
∫ 1

0

E

 α̇t

1− αt

∑
i : xi

t=m

log fθ(xt, t)[i, x
i
1]

 dt. (4)

Here, E denotes the expectation over x1 ∼ p1 and xt ∼ pt(·|x1). The minimizer of this loss is the
ground-truth unmasking posterior, which fully determines the MDM’s rate matrix below. Precisely,
for t ∈ [0, 1], the rate matrix at time t is given by: for a partially masked sequence x ∈ (Σ∪{m})L,

Rt(x, x[x
i ← v]) =

α̇t

1− αt
P(xi

1 = v|xt = x)︸ ︷︷ ︸
unmasking posterior

, v ∈ Σ, xi = m, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FlexMDM Inference

love

skiesmask

was

am

FlexMDM Interpolant
30

0 1 2 3 4

4

Rio’s blueI love skies

maskmask

mask

I

I

skies

skies

Mask

Unmasked

(empty)

umasking time

insertion time

20 1

Figure 3: Left (FlexMDM interpolant). To draw a sample xt, one can equivalently draw a sample
x1 ∼ p1, and for each token unmask, mask, or remove it according to the unmasking and insertion
times (T i

1, T
i
2). An auxiliary interpolant st gives closed-form expressions for the FlexMDM rate

matrices. Right (FlexMDM Inference). Learned unmasking posterior and insertion expectation
are later used at inference.

where x[xi ← v] denotes the sequence obtained from x by replacing its i-th token with v. Therefore,
once fθ has learned the unmasking posterior, one can simulate the CTMC using the rate matrix in
(5). The variational loss (4) quantifies the sampling guarantee of this estimated CTMC. Let pθ1 be
the terminal distribution of the estimated CTMC. Then, the loss function bounds the KL-divergence:

DKL(p1||pθ1) ≤ Lθ,

where L⋆ is the global minimum of L. When the loss is in its infimum, the KL divergence vanishes,
resulting in the ground truth distribution.

Connections to other MDM frameworks. Connecting to prior works on MDM (Shi et al., 2024;
Sahoo et al., 2024; Campbell et al., 2022), defining an interpolant is similar to defining a forward
process for the case of diffusion models or a probability path in the case of flow matching. The
modeled quantity is identical to the unmasking posterior across all frameworks. For inference, a
common scheme is to proceed by: at each intermediate time step, (a) selecting a subset of indices
to unmask and (b) sampling clean tokens from the learned posterior. In the infinitesimal limit, this
procedure is equivalent to simulating the CTMC of (5). Meanwhile, subsequent work Kim et al.
(2025); Nie et al. (2025) shows that MDMs also allow theoretically grounded any-order inference:
tokens can be unmasked in an arbitrary order without necessarily following the CTMC at (5). We
will revisit this aspect in Section 4 and show that our FlexMDM preserves this advantage.

3 VARIABLE LENGTH MASKED DIFFUSIONS: TRAINING

In this section, we introduce Flexible Length Masked Diffusion Model (FlexMDM): a discrete
diffusion that models a distribution p1 assigning probabilities to sequences of different lengths. Fol-
lowing the MDM’s recipe, we aim to introduce a stochastic interpolant xt whose marginal distribu-
tion defines the path {pt}t∈[0,1] and learn the corresponding CTMC. Everything hinges on selecting
an interpolant that is (a) easy to sample at t = 0 and (b) equipped with a closed-form rate matrix
amenable to neural network training.

Challenge. Reusing the MDM interpolant is inadequate: at t = 0, the base distribution p0 would
consist of fully-masked sentences of variable lengths, which is impossible to sample since we do
not know the length statistics of p1 in advance. On the other hand, one can consider an interpolant
constructed by masking and removing tokens from a clean sequence. However, this complicates the
rate matrix characterization–token indices shift as insertions occur. To bridge this gap, we introduce
the joint interpolant, an extension of the stochastic interpolant that augments the process with an
auxiliary variable explicitly tracking token positions. This enlarged state space allows us to construct
a broader class of rate matrices while preserving an easy-to-sample base distribution.

Design of distribution path. We now introduce our FlexMDM’s joint interpolant that allows us
to model the variable length p1. This construction relies on two smooth, monotone schedules –

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

an insertion schedule α : [0, 1] → [0, 1] and an unmasking schedule β : [0, 1] → [0, 1], with the
boundary conditions (α0, α1) = (β0, β1) = (0, 1) and time derivatives denoted by α̇t, β̇t.

To draw xt, we first sample a clean sentence x1 ∼ p1. Independently for each coordinate i, we
draw an insertion time T i

1 and an unmasking time T i
2 with T i

1 < T i
2 according to the density below.

Accordingly, we either unmask, mask, or remove xi
1 to obtain xi

t:

T i
1 ∼ α̇t dt, T i

2 ∼ 1{t≥T i
1}

β̇t

1− βT1

dt, xi
t =


(empty), 0 < t < T i

1

m, T i
1 ≤ t < T i

2

xi
1, T i

2 ≤ t ≤ 1

(6)

Here, 1 denotes the indicator function. We obtain xt by concatenating the symbols xi
t, and dropping

xi
t = (empty). Consequently, the length of xt is equal to or less than that of x1

1 (see Figure 3,
left). As we mentioned above, we augment xt with an index-tracking variable st, forming the joint
interpolant (xt, st). Let len(xt) denote the length of xt; then

st : = {i ∈ {0, . . . , len(x1)− 1} | T i
1 ≤ t},

i.e., the set of indices whose clean tokens have not been deleted. Equivalently, the positions in x1

referenced by xt’s each index. By regarding st as a list and ordering its elements in ascending
order, we also have xt = (x

st[0]
1 , . . . , x

st[len(st)−1]
1). We revisit st shortly to show how it enables an

explicit rate matrix. Since (xt, st) is governed by the sampled unmasking and insertion times, we
write (xt, st) ∼ pt(· | x1). Marginalizing pt(· | x1) over x1 ∼ p1 yields pt. Since the boundary
condition sets α0 = β0 = 0, all tokens are deleted at t = 0; p0 is the point mass on the empty string.

FlexMDM training. We now explain how we train our FlexMDM to learn the desired rate matrix.
We first discuss what the CTMC looks like at a high level: recall from (6) that when t increases, to-
kens are progressively inserted and unmasked. Indeed, one can show that a CTMC that generates the
interpolant can be characterized by two quantities that govern the rate of insertion and unmasking:

• Unmasking posterior (modeled by fθ(x, t)[i] ∈ ∆(Σ)): for each index i that xi = m, the posterior
distribution over the underlying clean token.

• Insertion expectation (modeled by gθ(x, t)[i] ∈ R≥0): for all indices i in x, the expected number
of tokens that remain to be inserted in between xi−1 and xi.

fθ resembles the familiar unmasking posterior from MDMs, whereas gθ is new: it predicts how many
tokens need to be inserted. Intuitively, modeling a variable-length p1 is harder than the fixed-length
setup of MDM–introducing an insertion expectation allows us to parameterize more complicated
CTMC for FlexMDM; its rate matrix will appear soon in Proposition 2. To define the training loss,
we set the boundary values of st as st[−1] := −1 and st[len(st)] := len(x1), and let ϕ(x, y) =
y − x− x log x

y denote a scalar Bregman divergence.

Lθ = −
∫ 1

0

E

[
β̇t

1− βt

∑
xi
t=m

log fθ(xt, t)[i, x
st[i]
1]

︸ ︷︷ ︸
unmasking loss

+
α̇t

1− αt

len(xt)∑
i=0

ϕ(st[i]− st[i− 1]− 1, gθ(xt, t)[i])︸ ︷︷ ︸
insertion loss

]
dt

(7)
Here, the expectation is taken over x1 ∼ p1, (xt, st) ∼ pt(·|x1). Proposition 1 exactly characterizes
the unmasking posterior and insertion expectation and shows they uniquely minimize (7).

Proposition 1 (FlexMDM training loss). The loss Lθ in (7) is uniquely minimized at

fθ(x, t)[i, v] = P(xst[i]
1 = v|xt = x)︸ ︷︷ ︸

unmasking posterior

, gθ(x, t)[i] = E[st[i]− st[i− 1]− 1|xt = x]︸ ︷︷ ︸
insertion expectation

.

These quantities match the explanation above: the posterior over the clean token together with the
expected number of insertions. They precisely determine the FlexMDM rate matrix stated next.

1Writing xi
t to mean the symbol derived from source position i is this a mild abuse of notation since the

superscript i refers to a position in x1 rather than a valid index of the (shorter) sequence xt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 2 (FlexMDM Rate Matrix). Let the rate matrix Rt be defined as:

Unmask : Rt

(
x, x[xi ← v]

)
= β̇t

1−βt
· P(xst[i]

1 = v|xt = x), v ∈ Σ, xi = m

Insert : Rt (x, x ◁i m) = α̇t

1−αt
· E [st[i]− st[i− 1]− 1|xt = x] ,

(8)

where x ◁i m is the sequence obtained from x by inserting a mask token in between (xi−1, xi).
Then Rt solves the KFE (equation (3)) with pt as the probability mass function of the FlexMDM
interpolant xt.

Proposition 1 thus implies that minimizing the loss yields exact recovery of the rate matrix. In
practice, we could simulate the CTMC using the learned networks (fθ, gθ) in place of the ground-
truth quantities in (8). By denoting the resulting terminal distribution as pθ1, the variational loss
quantifies the terminal-time KL divergence:

DKL(p1||pθ1) ≤ Lθ

We defer formal demonstration of propositions and the KL divergence guarantee to Appendix D.
Definition of the joint interpolant is reinstated in definition D.2, the rate matrix in proposition D.3,
the loss and variational bound in proposition D.4.

Remark. Our FlexMDM interpolant introduces only one extra quantity beyond MDM’s unmasking
posterior: the insertion expectation, a simple scalar per position. This stems from our design choice
to gradually insert and then unmask a token. As shown in Section 5.2, this enables efficient task
transfer of pretrained MDM weights. In contrast, alternative interpolants would require modeling
more complex objects, such as a full token distribution, adding unnecessary training burden.

4 VARIABLE LENGTH MASKED DIFFUSIONS: INFERENCE

In this section, we outline inference algorithms for FlexMDM, focusing on two variants: vanilla
inference and adaptive inference. We begin with a brief overview of inference in MDMs.

Adaptive inference in MDM. For the case of MDM, MDM inference proceeds by simulating the
rate matrix entries in 5. From a high-level one way this can be done is by (a) independently sampling
a subset of masked tokens to unmask and (b) sampling clean tokens from the unmasking posterior.
Crucially for what follows, the same guarantee holds for non-independent adaptive choices of un-
masking indices, e.g., confidence-based: correctness hinges on using the ground-truth unmasking
posterior, not on following the rate matrix’s unmasking entries. This adaptive inference strategy
is widely used due to its empirical performance. We adopt this template and show that FlexMDM
inherits the same any-order property.

Vanilla inference. We begin with the vanilla inference of FlexMDM, which is obtained by discretiz-
ing the CTMC in (8) using trained neural networks (fθ, gθ). Choosing an appropriate discretization
scheme is crucial, as different schemes can lead to markedly different empirical behavior. We adopt
τ -leaping—originating in chemical physics and shown to outperform naive Euler discretization for
MDMs (Campbell et al., 2022)—which batches all events occurring within a fixed interval [t, t+ τ].
At a high level, for each discretized step, we simultaneously (Figure 3, right):

• Unmasking: For each mask token, sample for every unmasking a number according to the un-
masking intensities in the rate matrix. Unmask only if a non-zero entry is returned.

• Insertion: Sample the number of mask-token insertions from a Poisson distribution parameterized
by the insertion rate, then apply those insertions.

As the number of steps → ∞, this inference algorithm recovers the CTMC and the discretization
error vanishes. Algorithm 1 details the full sampler.

Adaptive inference. Notably, one can choose the positions to unmask adaptively. Precisely, at each
inference step we select the unmasking positions according to a heuristic rule that prioritizes the most
confident indices, where confidence is computed either from the model’s unmasking posterior or via
a semi-autoregressive rule (prioritizing leftmost masks). We find such adaptive choice substantially
boosts performance; see Section 5. Since unmasking indices in an adaptive no longer trace the
transitions described by the rate matrix entries defined in (8), one might ask whether sampling

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Subroutine 1: VLMDM inference
Require: Learned functions (fθ, gθ)
Require: Discretization 0 = t1 < · · · < tN = 1
Require: Insertion, Unmasking schedule αt, βt

1: Initialize Xt1 ← ε
2: for k = 1 to N − 1
3: τ ← tk+1 − tk
4: Invoke Subroutine 2 for unmasking
5: for i in [len(Xtk)]

6: Set rate r ← α̇tk

1−αtk
· τ

7: Sample ℓ ∼ Poi (r · gθ(Xtk , tk)[i])
8: Insert ℓ masks between Xi−1

tk
and Xi

tk

9: return XtN

Subroutine 2: Unmasking Step

1: if vanilla inference :
2: for i ∈ {i|Xi

tk
= m} and v ∈ Σ

3: Set rate r ← β̇tk

1−βtk
· τ

4: kv ∼ Poi(r · fθ(Xtk , tk)[i, v])
5: if ∃!v such that kv = 1
6: Set Xi

tk
← v

7: if adaptive inference :
8: Select K (the size of |S|)
9: for i ∈ {i|Xi

tk
= m}

10: Compute confidence Ci
11: for i in argmaxK(C)
12: Xi

tk
∼ Cat(fθ(Xtk , tk)[i])

Algorithm 1: VLMDM inference. At each step we perform unmasking and insertion. For un-
masking, unmask by τ -leaping (vanilla) or by confidence-based selection (adaptive). The number
of mask tokens to insert is drawn from a Poisson distribution. Notation: Cat, Poi imply the cat-
egorical and Poisson distribution, respectively. argmaxK(C) is the indices set of the K largest
components of C. We provide more details in Appendix E.

still guarantees to sample from the target distribution p1 in the infinitesimal limit. The following
proposition answers in the affirmative.
Proposition 3 (Any-order inference, informal). Consider any sampling scheme that, at each step:
(i) unmasks an arbitrary subset of masked positions but draws revealed tokens from the ground-truth
unmasking posterior; and (ii) applies insertion CTMC governed by the ground-truth rate matrix.
Then the resulting process samples from the target distribution p1.

The formal statement and the proof of Proposition 3 are given in Appendix E. In words, following the
unmasking entries of the rate matrix corresponding to the schedule used in training is not necessary
to preserve the sampling guarantee. Moreover, the samplers as N →∞ in Algorithm 1 is subsumed
by the class in Proposition 3, therefore, assuming access to the ground-truth unmasking posterior
and insertion expectation, the corresponding class of algorithms in Algorithm 1 samples from p1 up
to discretization error.

Remark. A key technical ingredient underlying the rigor of our adaptive inference is that the re-
spective entries of the unmasking posterior of the ground truth rate matrix in Proposition 3 do not
depend on the choice of unmasking schedule βt (the proof is given in Appendix E.2.1). This inde-
pendence allows a single model fθ to learn all possible unmasking transitions arising along different
paths that ultimately connect p0 to p1, thereby enabling adaptive unmasking at inference time. This
feature is the same mechanism enabling adaptive inference for MDMs, but for FlexMDMs, proving
that it interfaces correctly with insertions is quite subtle. Note that a similar notion—independence
of the choice of path—has been introduced in continuous spaces Albergo et al. (2023a); Negrel et al.
(2025). We defer further discussion to Appendix E.

5 EXPERIMENT

In this section, we present experimental results for FlexMDM, demonstrating the following:

• FlexMDM is an effective variable-length learner: length modeling, planning, local edits.
• FlexMDM is scalable: 8B FlexMDM is obtainable by initializing from a pretrained MDM.

Section 5.1 presents from-scratch results for FlexMDM on text and planning tasks distributions,
confirming its practical efficiency. Next, Section 5.2 provides an 8B-scale FlexMDM’s training
recipe, initialized from LLaDA-8B Nie et al. (2025), and evaluates it in math and code infilling
tasks. We begin with the architectural and scheduling choices used throughout.

Training design. Recall from Section 3 that FlexMDM models the unmasking posterior fθ and
insertion expectation gθ given state x and time step t. We adopt DiT (Peebles & Xie, 2023), a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Path Subgoals Invalid cells

(a) Maze task illustration. The
model is given subgoals and is re-
quired to connect them.

(b) Length modeling. FlexMDM
recovers the true length distribution
of OpenWebText training data.

(c) Perplexity. FlexMDM achieves
generative perplexity on par with
MDM.

bidirectional transformer that enables additional embedding, as a backbone. To learn both quantities
jointly, we attach two output heads: a standard posterior head for fθ and a scalar softplus head for
gθ. Moreover, we choose our unmasking and insertion schedule to be both linear, αt = βt = t2.

5.1 PRETRAINING

In this section, we evaluate FlexMDM’s ability to learn variable-length data from scratch. Our base-
line is MDM, which is fixed-length but can handle variable-length sequences by padding to a fixed
maximum length with an auxiliary pad token. This padding setup is widely used in instruction fine-
tuning when variable-length answers are desired (Nie et al., 2025; 2024; Ye et al., 2025; Gong et al.,
2024). For a fair comparison, we use vanilla inference for both MDM and FlexMDM throughout.
Further experimental details appear in Appendix F.

5.1.1 PRETRAINING ON TEXT DATA

We first construct a training dataset from the raw OpenWebText corpus (Gokaslan et al., 2019), split-
ting each article into paragraphs to preserve semantic coherence and yield variable-length sequences.
Models pretrained on this data, therefore, generate variable-length text.

Results. We train 175M FlexMDM and MDM with a maximum sequence length 1024 for 500K
iterations and batch size 1024. Using the pretrained models, we vary the number of sampling steps
and measure (a) generative perplexity as a proxy for text fluency, and (b) the induced length distribu-
tion. Figure 4c shows comparative generative perplexity for the two models, improving as sampling
steps increase, indicating no fluency degradation for FlexMDM despite its more involved loss ob-
jective. Crucially, we observe that FlexMDM matches the true length distribution far more closely
(Figure 4b): with only 256 steps it tracks the ground truth distribution (red line, whereas MDM
remains miscalibrated even at 1024 steps (blue line). In Appendix F.1.1, we provide additional ex-
perimental results: the entropy of given sequences to ensure the generative perplexity is measured
under similar conditions and the perplexities for larger sampling steps (8192, 16384, 32768).

Remark. We remark that our pretraining pipeline differs from prior MDM setups that truncate the
corpus to a fixed maximum length. Also, one might ask why we do not provide additional metrics
on text benchmarks, such as validation perplexity. This is because MDM and FlexMDM use differ-
ent objectives (see equation (4) and equation (7)), making likelihood comparisons hard to interpret.
Albeit, we experimentally confirm that both loss functions can serve as a reliable proxy of the like-
lihood, although with different scales, by evaluating both pretrained models on a downstream text
benchmark (Appendix F.1.1). We address the concern about the absence of the metric by evaluating
scaled models on downstream benchmarks in Section 5.2.

5.1.2 PLANNING TASK

We further evaluate FlexMDM’s ability in a planning task in a discrete space. Motivated by an ear-
lier study Janner et al. (2022) that investigated the ability of continuous diffusion in maze tasks, we

2The ground-truth unmasking posterior is independent of βt, so we condition the network on αt only; under
the linear choice αt = t, this coincides with the usual time embedding.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

design a grid-maze benchmark: the maze is fixed but unknown to the model, with a subset of cells
invalid. Given a sequence of subgoal grids (g1, . . . , gK), the model must connect this sequence with-
out entering invalid cells (see Figure 4a). This subgoal structure aligns naturally with FlexMDM:
starting from (g1, . . . , gK), inference inserts mask tokens between subgoals and then unmasks to
generate a feasible path. Theoretically, this can be seen as augmenting the base distribution to con-
tain a data-dependent distribution Albergo et al. (2024). This is in stark contrast to MDM, where it
must preassign each subgoal to a specific position, which is difficult to know a priori. We provide
additional details in Appendix F.2.

Results. We use a 41 × 41 maze and control the
task’s difficulty via varying the number of subgoals K ∈
{2, 7, 12}. As K increases, MDM performance degrades
markedly, while FlexMDM maintains robust success rates,
reaching a gap of up to 60% at K = 12. These results firmly
support FlexMDM as a principled approach for subgoal-based
planning, where preallocating token positions is inherently
challenging for fixed-length models.

Difficulty MDM FlexMDM
Easy 68.4% 92.3%
Medium 29.3% 90.4%
Hard 24.2% 90.0%

Table 1: FlexMDM outperforms
MDM on the subgoal-style maze-
planning task.

5.2 SCALING UP FLEXMDM

In this section, we address FlexMDM’s scalability by scaling it to 8B parameters and observing no-
table improvements over an MDM baseline. We start from the observation that MDM and FlexMDM
both share the unmasking posterior as a core component, suggesting effective task transfer from a
pretrained MDM might be possible. To demonstrate this, concretely, we initialize from LLaDA-
Base (Nie et al., 2025) and make the following modifications: (a) add time-embedding layers and a
scalar head to model the insertion expectation; (b) attach LoRA adapters. Altogether, the resulting
number of trainable parameters is ≈400M. To cover both natural and mathematical language, we
train on the 50:50 mixture of OpenWebText (Gokaslan et al., 2019) and Proof-Pile-2 (Azerbayev
et al., 2023). Surprisingly, we observe rapid transfer: within three days on 16 H100 GPUs, the
model generates variable-length sentences. Notably, the number of tokens used is ≈13.1 B, and this
is in contrast much smaller than the number of LLaDA-Base pretraining tokens (≈1.5T). We then
instruction-fine-tune (IFT) this base FlexMDM to evaluate it on downstream tasks. See Appendix F
for more details. 3

Results. For comparison, we train FlexMDM and LLaDA-Base from the same number of IFT pairs.
For math and code, respectively, we IFT on the GSM8K train split(Cobbe et al. (2021);≈8000 pairs)
and the educational split of opc-sft-stage-2 (Huang et al., 2024) (≈0.1M pairs), for which IFT-ed
models are evaluated in the GSM8K test split and HumanEval-infill (single line) (Bavarian et al.,
2022) in zero-shot. Sampling is done by confidence-based sampling with a sliding window. Notably,
as the number of sampling steps increases, FlexMDM continues to improve, highlighting its strength
in reasoning tasks given sufficient compute—whereas the IFT-ed LLaDA’s performance remains flat.
Although in this experiment we use IFT on task-specific pairs, we expect that training on a much
more diverse instruction–answer pairs with sufficient compute will yield a more generalized model.

128 256 512 1024 4096

Sampling step

58

60

62

64

66

P
as

s@
1

GSM8k Performance

FlexMDM

LLaDA

128 256 512 1024 4096

Sampling step

55

60

65

HumanEval In-filling Performance

FlexMDM

LLaDA

Figure 5: FlexMDM performance exhibits superior scaling when more sampling steps are allocated.
3For a fair comparison, since FlexMDM is not IFT-ed, we IFT LLaDA-Base, rather LLaDA-instruct, this

differs from Zhao et al. (2025). We employ zero-shot evaluation, which also differs from Nie et al. (2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work we proposed Flexible Masked Diffusion Models (FlexMDM), a discrete diffusion
framework over variable-length sequences. Theoretically, via a joint interpolant viewpoint, we pro-
vide rigorous guarantees for both training and inference of FlexMDM. Empirically, FlexMDM learns
variable-length structure across diverse scenarios, scales to 8B parameters, trains in only a few GPU-
hours, and yields substantial improvements on math and coding infilling tasks. Further exploration
of FlexMDM’s capabilities is a promising direction for future work.

Beyond these results, our goal is to align generative modeling with how humans and nature compose
discrete sequences. Instead of filling fixed positions; they insert, revise, and reorder tokens. We
hope that our work takes a step in this direction.

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants, 2022.

Michael S. Albergo, Nicholas M. Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal
generative modeling with stochastic interpolants, 2023a. URL https://arxiv.org/abs/
2310.03695.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023b.

Michael Samuel Albergo, Mark Goldstein, Nicholas Matthew Boffi, Rajesh Ranganath, and Eric
Vanden-Eijnden. Stochastic interpolants with data-dependent couplings. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=FFILRGD0jG.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2023.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857,
2025.

Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
denoising diffusions to denoising markov models, 2024. URL https://arxiv.org/abs/
2211.03595.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=oYIjw37pTP.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

10

https://arxiv.org/abs/2310.03695
https://arxiv.org/abs/2310.03695
https://openreview.net/forum?id=FFILRGD0jG
https://openreview.net/forum?id=FFILRGD0jG
https://arxiv.org/abs/2211.03595
https://arxiv.org/abs/2211.03595
https://openreview.net/forum?id=oYIjw37pTP

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023. URL
https://arxiv.org/abs/2305.16261.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315–11325, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Google DeepMind. Gemini diffusion, 2025. URL https://blog.google/technology/
google-deepmind/gemini-diffusion/.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
operations. arXiv preprint arXiv:2506.09018, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Peter Holderrieth, Michael Samuel Albergo, and Tommi Jaakkola. LEAPS: A discrete neural sam-
pler via locally equivariant networks. In Forty-second International Conference on Machine
Learning, 2025a. URL https://openreview.net/forum?id=Hq2RniQAET.

Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
markov processes. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=RuP17cJtZo.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in neural information
processing systems, 34:12454–12465, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

11

https://arxiv.org/abs/2305.16261
https://blog.google/technology/google-deepmind/gemini-diffusion/
https://blog.google/technology/google-deepmind/gemini-diffusion/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=Hq2RniQAET
https://openreview.net/forum?id=RuP17cJtZo
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Long Ma, Fangwei Zhong, and Yizhou Wang. Reinforced context order recovery for adaptive rea-
soning and planning. arXiv preprint arXiv:2508.13070, 2025a.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025b.

Hugo Negrel, Florentin Coeurdoux, Michael S. Albergo, and Eric Vanden-Eijnden. Multitask learn-
ing with stochastic interpolants, 2025. URL https://arxiv.org/abs/2508.04605.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https://
openreview.net/forum?id=oVfIKuhqfC.

Fred Zhangzhi Peng, Zachary Bezemek, Sawan Patel, Jarrid Rector-Brooks, Sherwood Yao,
Avishek Joey Bose, Alexander Tong, and Pranam Chatterjee. Path planning for masked diffu-
sion model sampling. arXiv preprint arXiv:2502.03540, 2025.

Qwen. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Alec Radford and Jeffrey Wu. Rewon child, david luan, dario amodei, and ilya sutskever. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Anchored diffusion language model.
arXiv preprint arXiv:2505.18456, 2025.

12

https://arxiv.org/pdf/2411.04905
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2508.04605
https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Kar-
rer, Yaron Lipman, and Ricky TQ Chen. Flow matching with general discrete paths: A kinetic-
optimal perspective. arXiv preprint arXiv:2412.03487, 2024.

Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Kar-
rer, Yaron Lipman, and Ricky T. Q. Chen. Flow matching with general discrete paths: A kinetic-
optimal perspective. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=tcvMzR2NrP.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

Alexander Swerdlow, Mihir Prabhudesai, Siddharth Gandhi, Deepak Pathak, and Katerina Fragki-
adaki. Unified multimodal discrete diffusion. arXiv preprint arXiv:2503.20853, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets varia-
tional inference: Controlled monte carlo diffusions, 2025. URL https://arxiv.org/abs/
2307.01050.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized interpolating discrete diffusion. arXiv preprint arXiv:2503.04482, 2025.

Zhe Wang, Jiaxin Shi, Nicolas Heess, Arthur Gretton, and Michalis K Titsias. Learning-
order autoregressive models with application to molecular graph generation. arXiv preprint
arXiv:2503.05979, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025a.

13

https://openreview.net/forum?id=tcvMzR2NrP
https://arxiv.org/abs/2307.01050
https://arxiv.org/abs/2307.01050

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zirui Wu, Lin Zheng, Zhihui Xie, Jiacheng Ye, Jiahui Gao, Yansong Feng, Zhenguo Li, Victoria
W., Guorui Zhou, and Lingpeng Kong. Dreamon: Diffusion language models for code infill-
ing beyond fixed-size canvas, 2025b. URL https://hkunlp.github.io/blog/2025/
dreamon.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint
arXiv:2410.14157, 2024.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

14

https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dreamon
https://hkunlp.github.io/blog/2025/dream

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries: Continuous-Time Markov Chains and Masked Diffusions 2

2.1 Masked Diffusion Models . 3

3 Variable Length Masked Diffusions: Training 4

4 Variable Length Masked Diffusions: Inference 6

5 Experiment 7

5.1 Pretraining . 8

5.1.1 Pretraining on text data . 8

5.1.2 Planning task . 8

5.2 Scaling up FlexMDM . 9

6 Conclusion 10

A Related Works 17

B Notation 17

C Discrete Stochastic Interpolants: Definitions and Propositions for Section 2 18

C.1 Discrete Stochastic Interpolant . 18

C.2 The Masked Diffusion Interpolant . 19

D Joint Discrete Stochastic Interpolants: Definitions and Propositions for Section 3 21

D.1 Joint Interpolant . 21

D.2 Flexible-Length Masked Diffusion . 22

E Details for Section 4 25

E.1 Precise detail on the inference algorithms . 25

E.2 Proof of FlexMDM’s any-order inference capability 26

E.2.1 Proof preliminaries . 26

E.3 Formal guarantee for adaptive inference . 26

E.4 Proof of Theorem E.1 . 27

E.5 Proof of Lemma E.1 . 28

E.6 Proof of Lemma E.2 . 28

F Experimental details 29

F.1 Pretraining on OpenWebText . 29

F.1.1 Additional experiments . 30

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F.2 Pretraining on the Maze planning task . 30

F.3 Weight Initialization training from LLaDA . 32

F.3.1 Additional experiments . 33

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Discrete diffusion and flows. Early diffusion models were formulated as continuous-time Markov
chains over continuous spaces with Gaussian transition kernels (Sohl-Dickstein et al., 2015; Ho
et al., 2020), and were later connected to continuous-time formulations via stochastic differential
equations, offering a unifying perspective on score-based generative modeling (Song et al., 2020).
In parallel, discrete diffusion has been developed from the viewpoint of Markov chains over discrete
space (Hoogeboom et al., 2021). Notably, Austin et al. (2021) introduced D3PM with several fami-
lies of discrete transition kernels, and Lou et al. (2023) proposed SEDD, which adopts score-based
training objectives. A complementary line of work studies discrete flows (Campbell et al., 2024; Gat
et al., 2024), aiming to understand continuous-time Markov chains (CTMCs) that interpolate be-
tween data and base distributions; this perspective aligns with ours. Subsequent extensions consider
token-wise paths and path-wise structure within such flows (Shaul et al., 2024).

Masked Diffusion Models. Among discrete-transition designs, absorbing-state (a.k.a. masking)
kernels have become a popular and strong-performing choice. Recent work shows that this yields
a simple and principled training recipe, referred to as Masked Diffusion Models (MDMs) (Sahoo
et al., 2024; Shi et al., 2024). A growing body of results demonstrates the scalability of this approach
across problem settings and modalities, including large-scale natural language modeling (Nie et al.,
2024; 2025; Ye et al., 2025; Song et al., 2025; DeepMind, 2025), code generation (Labs et al., 2025;
Gong et al., 2025), and multimodal learning (Swerdlow et al., 2025).

Any-order inference in MDMs. With the advent of MDMs, subsequent work has established that
they admit theoretically grounded any-order inference, wherein tokens can be unmasked in arbitrary
orders rather than following a fixed CTMC schedule (Kim et al., 2025; Peng et al., 2025). Practical
token-ordering rules span a spectrum of heuristics based on model confidence and uncertainty—e.g.,
maximum-probability logits (Chang et al., 2022; Zheng et al., 2024), probability margin (Kim et al.,
2025), semi-autoregressive schedules (Nie et al., 2024), and entropy-based criteria (Ben-Hamu et al.,
2025)—as well as strategies that leverage reference models to guide the unmasking trajectory (Peng
et al., 2025). Beyond heuristics, another thread trains auxiliary modules to anchor or adapt the
generation order (Rout et al., 2025), while recent work directly learns token orders end-to-end (Ma
et al., 2025a; Wang et al., 2025).

Stochastic interpolant. Stochastic interpolant (Albergo & Vanden-Eijnden, 2022; Albergo et al.,
2023b) is a general framework for building measure-transport based generative models on contin-
uous state space. While building off different philosophical grounds, it can be seen as equivalent
to flow matching (Lipman et al., 2022; Liu et al., 2022). Extensions of the interpolant have been
proposed for conditional generation through data-dependent coupling (Albergo et al., 2024), which
we adopt for infilling task design in Section 5.

Descriptive overview on concurrent work. The most notable concurrent work is Edit-
Flow (Havasi et al., 2025), where the primary mathematical machinery that enabled their construc-
tion is referred to as “Flow Matching with Auxiliary Process”. We note that this can be interpreted
as mathematically equivalent to the notion of joint interpolant in this work, e.g., our Proposition D.1
is equivalent to Theorem 3.1 in Havasi et al. (2025).

The main differences are (1) the choice of interpolant and (2) the guarantee of any-order inference.
Whereas EditFlow is built around an explicit probability path, we instead define a pair of coupled
random variables that implicitly induce this path, leading to a different choice of intermediate. As
discussed in Section 3, our choice of interpolant yields a distinct training objective for an unmask-
ing posterior and an insertion-expectation term. Consequently, it enables the any-order inference
guarantee established in Section 4.

B NOTATION

In this section, we reiterate the notations used in the main body and introduce auxiliary notations
that are used in the proofs of the appendix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Strings. Let ε denote the empty string, Σ a vocabulary of words, m a special mask token. We
write xi the i-th element of x with 0-baesd indexing, x|S the string indexed by an index set, e.g.
abc[{0, 2}] = ac. To insert a token v before position i in string x, we write x ◁i v, e.g., to prepend
a token abc ◁0 d = dabc and to append a token abc ◁3 d = abcd. To replace the i-th token in x
with v, we write x[xi ← v]. As much of the work involves masking, we write x ⊆ y if x can be
constructed by partially masking y. We write mask(x),unmask(x) ⊆ [len(x)] for the set of indices
corresponding to mask and clean tokens.

C DISCRETE STOCHASTIC INTERPOLANTS: DEFINITIONS AND
PROPOSITIONS FOR SECTION 2

In continuous spaces, a common approach to define generative transport is the stochastic interpolant
framework, which implicitly defines the interpolation distribution pt by specifying an interpolant
{xt}t∈[0,1] and regressing the required quantities to realize the transport.

In the section C.1, we introduce a discrete analogue of the stochastic interpolant. To illustrate
this framework, we reformulate the widely used masked diffusion model for sequences of length n
within our setup. Briefly, masked diffusion defines the interpolation pt by progressively unmasking
tokens in sentences drawn from the data distribution. At time t = 0, all tokens are masked, so
p0 is a point mass at the fully masked sequence, the m token repeated n times. The transition rates
driving the generative transport can be characterized as functions of per-token posterior probabilities
conditioned on time t. These are typically learned by minimizing a variational objective in the form
of a weighted cross-entropy loss.

C.1 DISCRETE STOCHASTIC INTERPOLANT

To obtain the target rate matrix, the discrete stochastic interpolant relies on an interpolating rate
matrix that drives a sample from a sample drawn from a sample from p0 to a sample from p1,
defined as follows:

Definition C.1 (Discrete Stochastic Interpolant and Interpolating Rate). Let x0 ∼ p0 and x1 ∼ p1.
A discrete stochastic interpolant is a family of random variables {xt}t∈[0,1], defined on a common
probability space and satisfying the boundary conditions xt=0 = x0 and xt=1 = x1, for which there
exists a continuous-time Markov chain with bounded, time-dependent transition rate matrix Kx0,x1

t
such that, for each t ∈ [0, 1], Law(xt | x0, x1) coincides with the marginal distribution at time t of
that Markov chain started at X0. We refer to Kx0,x1

t as an interpolating rate matrix.

With an interpolating rate of an interpolant, the target rate matrix can then be obtained through
Proposition C.1

Proposition C.1 (Target Rate). Given a discrete stochastic interpolant xt and an interpolating rate
matrix Kx0,x1

t , the continuous-time Markov chain with initial distribution p0 and target transition
rate matrix Rt defined as,

Rt(x, y) = Ex0,x1
[Kx0,x1

t (x, y)|xt = x]

has marginals equal to Law(xt).

Proof. Writing pt a probability mass function (pmf) of xt and pt(·|x0, x1) a pmf of xt conditioned
on x0, x1. We further write q(x0, x1) the joint pmf of x0 and x1 and qt(x0, x1|xt) to be the joint
pmf conditioned on xt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

It suffices to show Rt satisfies the Kolmogorov Forward Equation with pmf pt as follows:∑
y

Rt(y, x)pt(y) =
∑
y

Ex0,x1
[Kx0,x1

t (y, x)|xt = y]pt(y)

=
∑
y

∑
x0,x1

Kx0,x1

t (y, x)qt(x0, x1|y)pt(y)

=
∑
y

∑
x0,x1

Kx0,x1

t (y, x)pt(y|x0, x1)q(x0, x1)

= Ex0,x1

[∑
y

Kx0,x1

t (y, x)pt(y|x0, x1)

]
= Ex0,x1 [∂tpt(y|x0, x1)]

= ∂tpt(x)

This concludes the proof.

Remarks. While written considerably differently, the framework is mathematically equivalent to
discrete flow matching Gat et al. (2024). The difference is only philosophical: discrete flow match-
ing relies on the notion of a conditional probability path that the interpolating rate should induce,
whereas we define such a probability path only implicitly through the definition of the interpolant.

C.2 THE MASKED DIFFUSION INTERPOLANT

As a concrete example of the discrete stochastic interpolant, we reformulate the masked diffusion
model and its learning in the framework. As masked diffusion starts from a point mass, we drop the
dependence of x0 in writing.

Definition C.2 (The Masked Diffusion Interpolant). Let x1 ∼ p1 be a sentence of length n drawn
from the data and αt a smooth unmasking schedule that interpolates from αt=0 = 0 to αt=1 = 1.
Define the unmasking times {T i}i∈[0,...,n−1] as:

∀i ∈ {0, . . . , n− 1} : T i ∼ α̇t dt,

Then, the masked diffusion interpolant is defined as:

xt =

{
m if t < Ti,

xi
1 if t ≥ Ti.

In other words, at each time t, xt reveals a subset of the tokens of x1, with each token xi
1 indepen-

dently unmasked at its associated time T i.

Proposition C.2 (The Masked Diffusion Interpolating Rate). One interpolating rate Kx1
t of the

masked diffusion interpolant xt is given by:

∀x ⊆ x1, v ∈ Σ, xi = m : Kt(x, x[x
i ← v]) =

α̇t

1− αt
1{v = xi

1}.

Proof. Let pt(·|x1) as the pmf of xt conditioned on x1. From the definition of the interpolant, we
notice that:

pt(x|x1) =

len(x1)−1∏
i=0

[
(1− αt)1{xi = m}+ αt1{xi = xi

1}
]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We verify that Kt satisfies the Kolmogorov Forward Equation (3) under the conditioned pmf as
follows,

L.H.S
= ∂tpt(x|x1)

= ∂t

len(x1)−1∏
i=0

(1− αt)1{xi = m}+ αt1{xi = xi
1}


=

len(x1)−1∑
i=0

(
−α̇t1{xi = m}+ α̇t1{xi = xi

1}
)
·
∏
j ̸=i

(1− αt)1{xj = m}+ αt1{xj = xi
j},

R.H.S

=

len(xt)−1∑
i=0

1{xi = xi
1}

α̇t

1− αt
pt(x[x

i ←m]|x1)− 1{xi = m} α̇t

1− αt
pt(x|x1)

=

len(xt)−1∑
i=0

1{xi = xi
1}

α̇t

1− αt
(1− αt)

∏
j ̸=i

(1− αt)1{xj = m}+ αt1{xj = xi
j}

−
len(xt)−1∑

i=0

1{xi = m} α̇t

1− αt
(1− αt)

∏
j

(1− αt)1{xj = m}+ αt1{xj = xi
j})

= L.H.S.

This concludes the proof.

Note that since each T i is sampled independently from a continuous distribution, the probability that
two unmasking times coincide is zero. Thus, only a single token is unmasked in any infinitesimal
transition almost surely.

Proposition 4 (The Masked Diffusion Target Rate). By proposition C.1, a target rate Rt that induces
Law(xt) is:

∀x ⊆ x1, v ∈ Σ, xi = m : Rt(x, x[x
i ← v]) =

α̇t

1− αt
P(xi

1 = v|xt = x).

Proof. Following proposition C.2, the result follows from invoking proposition C.1.

To learn an approximation to Rt, we now parameterize an approximate target rate of the form
R̂t(x, x[x

i ← v]) := α̇t

1−αt
fθ(x, t)[i, v] where fθ(x, t)[i, v] is a learned approximation to the poste-

rior P(xi
1 = v | xt = x).

The target rate can then be characterized by a variational objective that measures the discrepancy
between the true and approximate path measures.

Proposition 5 (Variational Loss for Masked Diffusion). The loss function is defined as:

L[R̂t] =

∫ 1

0

Ex1,xt

[
− α̇t

1− αt

n−1∑
i=0

1{xi
t = m} log fθ(xt, t)[i, x

i
1]

]
dt,

is uniquely minimized when R̂t = Rt, and is connected to the terminal KL-divergence by:

DKL(p1||p̂1) ≤ L[R̂t],

where p̂1 is the approximate data distribution generated by R̂t.

Proof. Let P and P̂ be the path measures associated with the continuous-time Markov chain of the
target rate matrix Rt in proposition C.1 and an approximation through a neural network R̂t. The

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

variational loss follows by expanding the KL-divergence between the two path measures.

DKL(P || P̂) = EP

∫ t=1

t=0

Rt(xt, xt)− R̂t(xt, xt) dt+
∑

t:xt ̸=xt−

log
Rt(xt−, xt)

R̂t(xt−, xt)


=

∫ t=1

0

Ext

∑
y ̸=xt

R̂t(xt, y)−
∑
y ̸=xt

Rt(xt, y)−Rt(xt, y) log
Rt(xt, y)

R̂t(xt, y)

 dt

=

∫ 1

0

Ex1,xt

[
− α̇t

1− αt

n−1∑
i=0

1{xi
t = m} log fθ(xt, t)[i, x

i
1]

]
dt

where the first line takes the expectation of the Radon-Nikodym derivative between the two path
measures. The statement of Radon-Nikodym derivative between two CTMCs can be found in the
Appendix in Campbell et al. (2024). A discrete-time equivalent derivation can also be found in
Shaul et al. (2025).

The terminal KL bound then follows directly from the data processing inequality, that is:

DKL(p1 || p̂1) ≤ DKL(P||P̂)
This technique is standard, as shown in Vargas et al. (2025) for the case of path reversal-based
construction of diffusion generative models, and in Holderrieth et al. (2025a) for discrete diffusion.

D JOINT DISCRETE STOCHASTIC INTERPOLANTS: DEFINITIONS AND
PROPOSITIONS FOR SECTION 3

Building on the discrete stochastic interpolant, we proceed to construct a discrete diffusion that
models a probability distribution whose supports span variable-length sequences.

On a high level, we would like to define an interpolant constructed by deleting and masking sen-
tences from the data distribution. However, the corresponding interpolating rate becomes cumber-
some to characterize, as it is no longer clear what each mask token should unmask to.

To this end, we introduce the joint interpolant that allows us to construct a broader class of inter-
polants and interpolating rate matrices by augmenting the interpolant with auxiliary information that
allows us to specify a more flexible interpolation path. We then leverage this newfound freedom to
construct the flexible-length masked diffusion model.

D.1 JOINT INTERPOLANT

By introducing an auxiliary variable coupled with the interpolant, the joint interpolant expands the
class of interpolating rates that can be defined.
Definition D.1 (Joint Interpolant and Joint Interpolating Rate). Let x0 ∼ p0 and x1 ∼ p1. A
joint interpolant is a family of coupled random variables {(xt, st)}t∈[0,1] defined on a common
probability space and satisfying the boundary conditions xt=0 = x0 and xt=1 = x1, for which there
exists a continuous-time Markov chain with bounded, time-dependent transition rate matrix Kx0,x1

t
on the joint state space such that, for each t ∈ [0, 1], the conditional law Law(xt, st | x0, x1)
coincides with the marginal distribution at time t of this Markov chain started at (x0, s0). We call
Kx0,x1

t a joint interpolating rate matrix.
Proposition D.1 (Joint Interpolant Target Rate). Let {(xt, st)}t∈[0,1] be a joint interpolant with
joint interpolating rate matrix Kx0,x1

t . Consider the continuous-time Markov chain with initial
distribution p0 and target transition rate matrix Rt defined by

Rt(x, y) = Est,x0,x1

[∑
s′∈S

Kx0,x1

t

(
(x, st), (y, s

′)
)
| xt = x

]
,

where S denotes the discrete state space of the auxiliary variable st. The marginal of the chain at
time t is then equal to Law(xt).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We note that this result is equivalent to “Flow Matching with Auxiliary Process” in concurrent work
Havasi et al. (2025).

Proof. Let pt(·, ·|x0, x1) the joint pmf of xt, st conditioned on x0, x1, let qt(x0, x1, st|xt) to be the
joint of x0, x1, st conditioned on xt, and let qt(x0, x1) to be the joint of x0, x1. We proceed to verify
Rt satifies the KFE as in Equation 3,

∑
y

Rt(y, x)pt(y) =
∑
y

Est,x0,x1

[∑
s′∈S

Kx0,x1

t

(
(y, st), (x, s

′)
)
| xt = y

]
pt(y)

=
∑
y

∑
st,x0,x1

∑
s′∈S

Kx0,x1

t

(
(y, st), (x, s

′)
)
qt(x0, x1, st|y)pt(y)

=
∑
y

∑
st,x0,x1

∑
s′∈S

Kx0,x1

t

(
(y, st), (x, s

′)
)
qt(x0, x1, st|y)pt(y)

=
∑
y

∑
st,x0,x1

∑
s′∈S

Kx0,x1

t

(
(y, st), (x, s

′)
)
pt(y, st|x0, x1)q(x0, x1)

= Ex0,x1

[∑
s′

∂tpt(x, s
′|x0, x1)

]
= ∂tpt(x|x0, x1)

This concludes the proof.

D.2 FLEXIBLE-LENGTH MASKED DIFFUSION

We then instantiate the joint interpolant to obtain the length-aware masked diffusion model, using
a sorted list of indices that has been inserted. Again, we drop x0 in the writing as the model in-
terpolates between a point mass at an empty sentence to the full data distribution. We redefine the
interpolant in equation 6 for clarity.
Definition D.2 (Flexible-Length Masked Diffusion Joint Interpolant). Let x1 = (x0

1, . . . , x
n−1
1) ∼

p1 be a sequence of length n. Let αt and βt be monotone and differentiable schedules on [0, 1] such
that α0 = β0 = 0 and α1 = β1 = 1. Define insertion and unmasking times {T i

1}n−1
i=0 , {T i

2}n−1
i=0 as

follows:

T i
1 ∼ α̇t dt,

T i
2 ∼ 1{t ≥ T i

1} ·
β̇t

1− βT i
1

dt.

At each time t ∈ [0, 1], define the sorted index set st as:

st = {i ∈ {0, . . . , n− 1} | t > T i
1},

with ascending order st[0] < · · · < st[len(st)− 1], and boundary values:

st[−1] = −1, st[len(st)] = n,

and define the interpolant state xt per-coordinate as:

xi
t =

{
m if t < T

st[i]
2 ,

x
st[i]
1 if t ≥ T

st[i]
2 .

The process (st, xt)t∈[0,1] is the flexible length masked diffusion joint interpolant.

Here, st tracks the ordered set of indices whose tokens have been inserted. The interpolant xt

reveals the true token xi
1 only after both insertion and unmasking. Given access to this ordered set,

one interpolating rate is:
Proposition D.2 (FlexMDM Interpolating Rate). A joint interpolating rate matrix Qx0,x1

t for the
joint interpolant above is given by:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1. Unmask: For index set s, x ⊆ x1|s, xi = m, and v ∈ Σ:

Qx1
t

(
(x, s), (x[xi ← v], s)

)
=

β̇t

1− βt
· 1{xs[i]

1 = v}

2. Insert: For index set s, x ⊆ x1|s, j /∈ s, and position i such that s[i−1] < j < s[i]:

Qx1
t

(
(x, s), (x ◁i m, s ∪ {j})

)
=

α̇t

1− αt

Proof. We first write down the pt(·, ·|x1) the conditioned pmf of (s, x) given x0, x1. Let n =
len(xt), then

pt(s, x | x1) = A(t)
∏
i∈st

Ii(t),

A(t) := (1− αt)
n−|s|

Ii(t) :=

∫ t

0

α̇u

(
1− βt

1− βu
1{xi = m}+ βt − βu

1− βu
1{xi = xi

1}
)
du.

Differentiate using the product rule:

∂tpt(s, x | x1) = Ȧ(t)
∏
i∈s

Ii(t) +A(t)
∑
j∈s

(
İj(t)

∏
i∈s\{j}

Ii(t)
)
.

For A(t) = (1− αt)
n−|s| we have

Ȧ(t) = −(n− |s|)α̇t(1− αt)
n−|s|−1 = A(t)

(
− (n− |s|)α̇t

1− αt

)
.

For each i ∈ s apply the Leibniz rule to Ii(t):

İi(t) = α̇t 1{xi = m}+
∫ t

0

α̇u

(
−β̇t

1− βu
1{xi = m}+ β̇t

1− βu
1{xi = xi

1}

)
du

= α̇t 1{xi = m}+ β̇t

(
− 1{xi = m}+ 1{xi = xi

1}
)∫ t

0

α̇u

1− βu
du.

Substituting Ȧ(t) and İi(t) into the product-rule expansion yields

∂tpt(s, x | x1)

= −(n− |s|)α̇t(1− αt)
n−|s|−1

∏
i∈s

Ii(t)

+ (1− αt)
n−|s|

∑
j∈s

[(
α̇t1{xj = m}+ β̇t

(
− 1{xj = m}+ 1{xj = xj

1}
)∫ t

0

α̇u

1− βu
du
)

·
∏

i∈s\{j}

Ii(t)

]

= −(n− |s|) α̇t

1− αt
A(t)

∏
i∈s

Ii(t)−
∑

j∈s,xj=m

β̇t

1− βt
A(t)

∏
i∈s

Ii(t)

+
∑

j /∈s,xk ̸=m

β̇t

1− βt
A(t)(

∫ t

0

α̇u
1− βt

1− βu
du)

∏
i∈s−{j}

Ii(t) +
∑
i∈s

α̇t

1− αt
(1− αt)A(t)

∏
i∈s−{j}

Ii(t)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This can then be rewritten term by term as,

∂tpt(s, x | x1) = −
∑
i/∈s

α̇t

1− αt
pt(s, x | x1)−

∑
xi=m

β̇t

1− βt
pt(s, x | x1)

+
∑
xi ̸=m

β̇t

1− βt
pt(s, x[x

i ←m]|x1) +
∑
xi=m

α̇t

1− αt
pt(s− {s[i]}, remove(x, i) | x1)

where remove(x, i) refers to the string constructed by removing the i-th element of x.

Notice that this is equivalent to the R.H.S of the KFE (Eq. 3) if one uses the rate matrix Qx1
t . The

four terms correspond to 1) Outgoing mass from insertion; 2) Outgoing mass from unmasking; 3)
Incoming mass from unmasking; 4) Incoming mass from insertion. This concludes the proof.

Proposition D.3 (FlexMDM Rate Matrix (Restated from Proposition 2)). By Proposition D.1, the
induced marginal target rate Rt is:

1. Unmask: For xi = m, v ∈ Σ:

Rt

(
x, x[xi ← v]

)
=

β̇t

1− βt
· P(xst[i]

1 = v | xt = x)

2. Insert: For position i ∈ {0, . . . , |x|}:

Rt

(
x, x ◁i m

)
=

α̇t

1− αt
· Est [st[i]− st[i− 1]− 1 | xt = x]

Proof. The proof follows by noting proposition D.2 and invoking proposition D.1.

Performing an approximate target rate matrix R̂t in terms of an approximate posterior by token
fθ(x, t)[i, v] ≈ P(xst[i]

1 = v | xt = x) and an approximate number of insertions gθ(x, t)[i] ≈
Est [st[i]− st[i− 1]− 1 | xt = x]. The target rate matrix can be learned by minimizing the follow-
ing variational objective. Note that the variational loss objective below is the same as one we defined
in equation 7.

Proposition D.4 (FlexMDM Loss (Restated from Proposition 1)). The loss function is defined as:

L[R̂t] =

∫ 1

0

Ex1,st,xt

− β̇t

1− βt

len(xt)−1∑
i=0

1{xi
t = m} log fθ(xt, t)[i, x

st[i]
1]

 dt,

+

∫ 1

0

Ex1,st,xt

 α̇t

1− αt

|x1|∑
i=0

ϕ(st[i]− st[i− 1]− 1, gθ(xt, t)[i])

 dt,

where ϕ(x, y) = y−x+x log x
y , is uniquely minimized when R̂t = Rt and is connected by terminal

KL-divergence by:

DKL(p1||p̂1) ≤ L[R̂t],

where p̂1 is the approximate data distribution induced by R̂t.

Proof. Let P and P̂ be the path measure of a continuous time Markov chain starting with the empty
string with rate matrix Rt and R̂t, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Consider the KL-divergence between path measures P and P̂,

DKL(P || P̂) = EP

∫ t=1

t=0

Rt(xt, xt)− R̂t(xt, xt) dt+
∑

t:xt ̸=xt−

log
Rt(xt−, xt)

R̂t(xt−, xt)



=

∫ t=1

0

Ext

∑
y ̸=xt

R̂t(xt, y)−
∑
y ̸=xt

Rt(xt, y)−Rt(xt, y) log
Rt(xt, y)

R̂t(xt, y)

 dt

=

∫ 1

0

Ex1,st,xt

− β̇t

1− βt

len(xt)−1∑
i=0

1{xi
t = m} log fθ(xt, t)[i, x

st[i]
1]

 dt

+

∫ 1

0

Ex1,st,xt

 α̇t

1− αt

|x1|∑
i=0

ϕ(st[i]− st[i− 1]− 1, gθ(xt, t)[i])

 dt

The terminal KL-bound then follows from the data processing inequality, that is:

DKL(p1||p̂1) ≤ DKL(P||P̂)

E DETAILS FOR SECTION 4

E.1 PRECISE DETAIL ON THE INFERENCE ALGORITHMS

In this section, we provide details on the unmasking steps of vanilla and adaptive inference for
FlexMDM, summarized in Algorithm 1, Subroutine 2. Suppose at inference time we are given the
discretization step size τ , a partially observed sequence Xtk , and the current time step tk.

Vanilla inference. For each masked position i (i.e., Xi
tk

= m) and each clean token v ∈ Σ, we
sample unmasking events from a Poisson distribution Poisson(Rvτ), where Rv is the unmasking

rate toward token v. Concretely, Rv =
β̇tk

1−βtk
·fθ(Xtk , tk)[i, v], so that the event count is distributed

as kv ∼ Poi
(
τ · β̇tk

1−βtk
· fθ(Xtk , tk)[i, v]

)
. A masked position is unmasked only if exactly one

token v produces a count kv = 1 while all others produce zero. This tau-leaping scheme batches all
events that occur within the interval [tk, tk + τ].

Adaptive inference. We first draw the number of tokens to unmask, denoted by an integer K.
While Proposition 3 (Theorem E.1) shows that the choice of K does not affect the theoretical guaran-
tees, in practice, we set K to match the expected number of unmasked tokens under vanilla inference

yields stable behavior. Accordingly, we sample K ∼ Poi
(
τ · β̇tk

1−βtk
·#{masked tokens in Xtk}

)
.

Next, we compute a confidence score for each masked position, based on heuristics such as:

• Top-K probability (Chang et al., 2022; Zheng et al., 2024): For state x at time t, the confidence at
position i is given by maxv∈Σ fθ(x, t)[i, v].

• Top-K probability with sliding window: We further restrict sampling to the leftmost L tokens,
where

L = min(⌊γ1 · L⌋, γ2),
with γ1 and γ2 hyperparameters. This approach is related to semi-autoregressive strategies used
in Nie et al. (2025).

Finally, we select the subset of positions to unmask as the Top-K masked indices with the highest
confidence scores.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.2 PROOF OF FLEXMDM’S ANY-ORDER INFERENCE CAPABILITY

E.2.1 PROOF PRELIMINARIES

Form of posterior. We first compute, for each xi
t, the probabilities of being masked or deleted in

equation (6). This follows from a straightforward calculation using the joint distribution of (T i
1, T

i
2):

p(xi
t = (empty)) = p(T i

1 > t) = 1− αt,

p(xi
t = m) = p(T i

1 ≤ t, T i
2 > t) =

∫ 1

t

∫ t

0

(
β̇s

1− βu
× α̇s

)
dsdu =: 1− γt.

Here we define γt as 1 − p(xi
t = m). Therefore, the process in equation (6) is equivalent to

observing a partially masked subsequence xt obtained by sampling x1 ∼ p and, for each position of
x1, independently deleting it with probability 1−αt, masking it with probability 1−γt, or leaving it
unchanged with probability αt + γt− 1. Note that αt and γt both increase from 0 to 1 as t increases
from 0 to 1.

The posterior is given by
p(x1 = x∗ | xt = x)

∝ p(x∗) · p(xt = x | x1 = x∗)

= p(x∗) · (1− αt)
len(x∗)−len(x)(1− γt)

#mask(x)(αt + γt − 1)#unmask(x) ·#{s : x ⊆ x∗|s}
∝ p(x∗) · (1− αt)

len(x∗)−len(x) ·#{s : x ⊆ x∗|s} .

Importantly, as in the vanilla MDM setting, the posterior does not depend on the unmasking schedule
(γt) (thus βt), which will enable us to perform unmasking in adaptively chosen positions. Note
also that if all sequences in the support of p were of the same length, this posterior would also be
independent of (αt); while we do not prove it, in this case this would allow us to choose an arbitrary
order of unmaskings and insertions.

Extension of posterior to t = 1. Motivated by the form of the posterior above, we define the
following:

qt(x
∗ | x) ∝

{
p(x∗) · 1x⊆x∗ if t = 1

p(x∗) · (1− αt)
len(x∗)−len(x) ·#{s : x ⊆ x∗|s} otherwise

Note that for t < 1, this is the same as p(x1 = x | xt = x). We will denote the marginals of
qt(· | x) by qit(· | x) for v ∈ Σ. The reason for extending the definition of the posterior to t = 1
is that in an adaptive FlexMDM sampler (see Definition E.1), because we are entirely decoupling
unmasking from the schedule of insertions, after the final insertion step the time parameter t may be
1 even though there are still tokens left to unmask. We will assume oracle access to q1(· | x) as in
practice these are simply the any-order marginals for p, and furthermore in practice these are already
well-approximated by the learned posterior marginals p(xi

1· | x1−δ = x) for arbitrarily small δ > 0.

Index-tracking variable. Recall that in the definition of the joint interpolant we defined an index-
tracking variable st which essentially tracked which indices of x1 correspond to the tokens in xt.
While our analysis below will not use the language of stochastic interpolants, we will still use the
idea of tracking st, with slightly modified notation. Specifically, for any 0 ≤ t < 1, we will
use the notation Pr(x1,s)|xt=x and E(x1,s)|xt=x to denote probability and expectation with respect
to the distribution given by sampling x1 from qt(· | x), and then sampling s uniformly random
from subsets for which x ⊆ (x1)|s. When we only care about the marginal distribution over s,
we write Prs|xt=x and Es|xt=x. Given such a subset s and i ∈ {0, . . . , |s| − 1}, we use si to
denote its i-th element in sorted order; as before, we also define the boundary values s−1 = −1 and
slen(s) = len(x1). The insertion expectations which we had denoted by E[st[i] − st[i − 1] − 1] in
the main body are thus given by Es|xt=x[si − si−1 − 1] in the notation of this section.

E.3 FORMAL GUARANTEE FOR ADAPTIVE INFERENCE

Definition E.1. Given query access to the posterior marginals qit(· | xt = x) and to the insertion
expectations Es|xt=x[si−si−1−1], an adaptive FlexMDM sampler is any algorithm which produces

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

a sequence of iterates x̂t1 , . . . , x̂tn , where 0 = t1 < · · · < tn = 1, by starting at x̂t1 = ε and
arbitrarily alternating between steps of the following form:

• Any-order unmasking step: Starting from x̂tj , if mask(x̂tj) is nonempty, pick an arbitrary index i
therein (possibly probabilistically), sample v from qitj (· | x̂tj), and set x̂tj ← x̂tj [x̂

i
tj ← v].

• Insertion step: Starting from x̂tj , run the CTMC with rate matrix

Rins
t (x, y) =


Es|xt=x[si − si−1 − 1] · α̇t

1−αt
if y = x ◁i m

−
∑len(x)

i=0 Rins
t (x, x ◁i m) if y = x

0 otherwise
(9)

for tj ≤ t ≤ tj+1 to obtain x̂tj+1
. If tj+1 = 1, then apply any-order unmasking until mask(x̂tj+1

)
is empty, and terminate.

Note that the rate matrix in the second bullet point above is identical to the one in the main body
except that we only consider transitions given by insertions.

Formally, we will show the following:
Theorem E.1. Any adaptive FlexMDM sampler for p will generate a sequence of iterates
x̂t1 , . . . , x̂tn such that x̂tn is exactly a sample from p.

E.4 PROOF OF THEOREM E.1

To show that adaptive sampling works, we inductively prove an even stronger statement: at any
intermediate step of the sampler after it has produced x̂tj , the final output x̂tn is a sample from
qtj (· | x̂tj).

The following two lemmas provide the inductive steps for unmasking and insertion respectively:
Lemma E.1 (Inductive step for unmasking). Let 0 ≤ t ≤ 1 and let x be a partially unmasked
subsequence of length m. Let π = (πi)i∈mask(x) denote any distribution over masked indices of x.
Suppose that one runs the following:

1. Sample index i from π

2. Sample v from the posterior marginal qit(· | xt = x)

3. Sample from qt(· | x[xi ← v]).

The output of this procedure is a sample x∗ from qt(· | x).
Lemma E.2 (Inductive step for insertion). Let 0 ≤ t < 1 and let x be a partially unmasked
subsequence of length m. Let 0 ≤ h ≤ 1 − t be any duration of time. Suppose that one runs the
following:

1. Starting from x, run the CTMC with rate matrix given by Eq. (9) for time h to obtain x′

2. Sample from qt+h(· | x′).

The output of this procedure is a sample from the posterior qt(· | x).

We defer the proofs of these to Sections E.5 and E.6 below. The idea for the former is identical to
the proof of the folklore fact that vanilla MDMs can sample in any order (Kim et al., 2025). The
proof for the latter is more involved and involves explicitly verifying that the Kolmogorov backward
equation is satisfied by the rate matrix we have constructed.

Here we verify that these Lemmas are enough to establish Theorem E.1.

Proof of Theorem E.1. We show more generally that starting from any intermediate time step x̂tj
(not just j = 1), any adaptive FlexMDM sampler outputs a sample from qtj (· | x̂tj). We do this by
inducting on the total number of insertion steps that remain.

As the base case for the induction, if no more insertion steps remain, then we must have tj = 1.
In this case, we can further induct on the number of unmasking steps and apply Lemma E.1 with t
therein set to 1 to conclude that the final output is a sample from q1(· | x̂tj).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For the inductive step, we have tj < 1 and suppose we have shown that for any FlexMDM sampler
that makes at most m insertion steps, starting from any x̂tj at intermediate time tj , it samples from
qtj (· | x̂tj). Now consider a FlexMDM sampler that makes at most m + 1 insertion steps starting
from x̂tj at intermediate time tj . If in the next step it performs an insertion step, i.e. it runs the
CTMC with rate matrix defined above for total time h = tj+1 − tj , then by Lemma E.2 and the
inductive hypothesis, it samples from qtj (· | x̂tj). Alternatively, suppose the sampler performs some
sequence of ℓ unmasking steps before performing an insertion step. Then by further inducting on ℓ,
we conclude by Lemma E.1 that the sampler eventually outputs a sample from qtj (· | x̂tj).

Finally, the theorem follows from the special case where tj = 0 and x̂tj = ε.

E.5 PROOF OF LEMMA E.1

Proof. Fix any index i ∈ mask(x). The marginal qit(· | x) is given by

Pr
(x1,S)|xt=x

[(x1)|si = v] =

∑
x1,S:(x1)|si=v p(x) · (1− αt)

len(x1)−len(x) ·#{S : x ⊆ (x1)|S}∑
x1

p(x1)(1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}
.

(10)
The posterior qt(· | x[xi ← v]) is given by

qt(x
∗ | x[xi ← v]) =

p(x∗) · (1− αt)
len(x∗)−len(x) ·#{S : x[xi ← v] ⊆ x∗|S}∑

x1
p(x1) · (1− αt)len(x1)−len(x) ·#{S : x[xi ← v] ⊆ (x1)|S}

. (11)

Note that the numerator of Eq. (10) and the denominator of Eq. (11) are the same. So conditioned
on unmasking index i, the above procedure outputs x∗ with probability∑

z

Pr
(x1,S)|xt=x

[(x1)|si = v] · qt(x∗ | x[xi ← v])

=
p(x∗) · (1− αt)

len(x∗)−len(x) ·
∑

z #{S : x[xi ← v] ⊆ x∗|S}∑
x1

p(x1)(1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}
= qt(x

∗ | x) .

This holds conditioned on unmasking any i ∈ mask(x), so regardless of the choice of π over such
positions, we will sample from the correct distribution qt(· | x).

E.6 PROOF OF LEMMA E.2

Proof. It suffices to show that the rate matrix satisfies the Kolmogorov backward equation

∂tqt(x
∗ | x) = −

len(x)∑
i=0

Rins
t (x, x ◁i m)qt(x

∗ | x ◁i m)−Rins
t (x, x)qt(x

∗ | x) .

First note that the rate Rins
t (x, x ◁i m) can be expressed as∑

x1
p(x1) · (1− αt)

len(x1)−len(x) ·
∑

S:x⊆(x1)|S (si − si−1 − 1)∑
x1

p(x1) · (1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}
· α̇t

1− αt
.

Furthermore,
∑

i(si − si−1 − 1) = len(x1)− len(x), so∑
i

Rins
t (x, x ◁i m)

=

∑
x1

p(x1) · (1− αt)
len(x1)−len(x) ·#{S : x ⊆ (x1)|S} · (len(x1)− len(x))∑

x1
p(x1) · (1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}

· α̇t

1− αt
. (12)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Let us compute ∂tqt(x
∗ | x):

− p(x∗) · (1− αt)
len(x∗)−len(x) ·#{S : x ⊆ x∗|S} · (len(x∗)− len(x))∑

x1
p(x1) · (1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}

· α̇t

1− αt

+
[∑

x1
p(x1) · (1− αt)

len(x1)−len(x) ·#{S : x ⊆ (x1)|S} · (len(x1)− len(x))∑
x1

p(x1) · (1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}
· α̇t

1− αt

× p(x∗) · (1− αt)
len(x∗)−len(x) ·#{S : x ⊆ x∗|S}∑

x1
p(x1) · (1− αt)len(x1)−len(x) ·#{S : x ⊆ (x1)|S}

]
(13)

Note that by Eq. (12), the term in the parentheses in Eq. (13) is exactly

len(x)∑
i=0

Rins
t (x, x ◁i m)qt(x

∗ | x) = −Rins
t (x, x)qt(x

∗ | x) ,

It remains to verify that the first term in Eq. (13) is equal to −
∑

i R
ins
t (x, x ◁i m)qt(x

∗ | x ◁i m).
To that end, we must show that

len(x)∑
i=0

∑
x1

p(x1)(1− αt)
len(x1)−len(x) ·

∑
S:x⊆(x1)|S (si − si−1 − 1)∑

x1
p(x1)(1− αt)len(x1)−len(x) ·#{S : xt ◁i m ⊆ (x1)|S}

·#{S : x ◁i m ⊆ x∗|S}

= #{S : x ⊆ (x∗)|S} · (len(x∗)− len(x)) (14)

The key combinatorial step is as follows. For any x1 in the support of p, consider a subset S for
which x ⊆ (x1)|S . Note that for every such S, we can uniquely associate exactly si − si−1 − 1
different subsets S′ of size |S|+1 for which x ◁im ⊆ (x1)|S′ . Therefore,

∑
S:x⊆(x1)|S (si−si−1−

1) = #{S : x ◁i m ⊆ (x1)|S}, and the left-hand side of Eq. (14) thus becomes

len(x)∑
i=0

#{S : x ◁i m ⊆ x∗|S} =
len(x)∑
i=0

∑
S:x⊆x∗|S

(si− si−1− 1) =
∑

S:x⊆(x1)|S

(len(x∗)− len(xt)) ,

which completes the proof of Eq. (14).

F EXPERIMENTAL DETAILS

F.1 PRETRAINING ON OPENWEBTEXT

Dataset preparation. As mentioned in Section 5.1, to obtain a variable-length dataset, we split
OpenWebText articles paragraph-wise using the GPT-2 tokenizer Radford & Wu (2019). This can be
implemented by locating the token index corresponding to the delimiter \n \n. Sequences longer
than 1024 tokens are then chunked recursively by splitting by the delimiter closest to the middle
sequence, yielding a variable-length dataset with maximum sequence length 1024.

FlexAttention. To handle variable-length sequences during training, we pad each batch to the
maximum sequence length. In MDM, by design, pad tokens also enter the model input. In contrast,
FlexMDM is designed to receive only clean or mask tokens as inputs. Ideally, QKV attention should
not attend to pad tokens; however, current FlashAttention (Dao et al., 2022) does not support this for
non-causal attention (our setup of interest). We therefore adapt FlexAttention (Dong et al., 2024).
A side benefit is improved training speed, since FlexMDM performs attention over fewer tokens
than MDM’s full-sequence attention. Note that in the LLaDA experiment, we did not implement
this optimization; pad tokens can therefore attend to other tokens, though we expect the impact to
be negligible.

Training configuration. As in Section 5.1, we model FlexMDM with a DiT Peebles & Xie (2023)
backbone and embed the insertion schedule αt. For MDM, we use the same DiT configuration with
time step embedding but without the softplus scalar head. Transformer configuration is: hidden
size:768, heads:12, conditional dimension:128, dropout:0.05, layers:12.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

We train both models on 16 H100 GPUs with a global batch size of 1024 and max training iter-
ation 1M . We use the AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay 0.03,
learning rate 3e−4, 2000 warmup steps, and an EMA factor of 0.9999. Additionally, we use low-
discrepancy time-step sampling to reduce variance: one t is drawn uniformly from each interval
[i/T, (i+ 1)/T]

T−1
i=0 , as in prior MDM training (Shi et al., 2024).

Metric. For evaluation, we take sequences generated by both models and retain the clean tokens
by removing padding (e.g., the leading pad token). We adopt LLaMA-2-7B (Touvron et al., 2023)
as the reference model to compute likelihoods. We notice that the pretrained MDM generates short
sentences with unreasonably large (worse) perplexities. Therefore, we filter overly short sequences
with ≤ 10 tokens when calculating average perplexity.

F.1.1 ADDITIONAL EXPERIMENTS

Sequence entropy. We follow the setup from (Zheng et al., 2024) to measure the entropy of given
sequence. As we can observe in the table below, both models exhibit comparable sequence entropy
across different sampling steps.

Sampling steps 256 512 1024 2048 4096
MDM 4.4732 4.5691 4.4417 4.2259 4.1876
FlexMDM 4.4586 4.5173 4.5660 4.4712 4.4304

Generative perplexity for extended sampling steps. Below, we extend the generative perplexity
measurement to more sampling steps. We observe plateaus around 16,384 steps. This is likely be-
cause discretization errors for the CTMC and the estimation errors for each transition entry become
negligible, leading to diminishing generative perplexity.

Downstream evaluation on the text understanding. We follow the evaluation protocol of von
Rütte et al. (2025).

Model HellaSwag PIQA ARC-E ARC-C BoolQ OBQA WinoGrade
FlexMDM 28.75 51.69 25.26 25.75 50.50 24.60 51.78
MDM 29.70 52.55 25.26 26.09 50.05 23.80 49.01

F.2 PRETRAINING ON THE MAZE PLANNING TASK

Task construction. We generate mazes with a fully random, recursive division procedure (the
code is provided in Listing 1), on a 41 × 41 grid, with some invalid cells. As described in Sec-
tion 5.1, we consider a subgoal-conditioned planning task: the model is given a sequence of sub-
goals (g1, . . . , gK) and must produce a valid path that connects them in order. To construct training
examples for a given K, we sample 15000 start–goal pairs (g1, gK), compute the shortest path for
each pair via breadth-first search, and then add controlled detours to obtain up to 10 distinct valid
paths per pair. Subgoals are formed by selecting K−2 intermediate cells uniformly at random along

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

a chosen path (start and goal are already fixed). We use 95% of the pairs for training and hold out
5% for validation to evaluate generalization to unseen pairs and subgoal sets.

Training data construction. For MDM, the training sequence is ((g1, . . . , gK) [SEP] Path),
where [SEP] is a special separator and Path denotes the tokenized path. During training, the
prompt (g1, . . . , gK) bypasses the interpolant so that, at inference time, the model can condition
on (g1, . . . , gK) [SEP] and generate the path. For FlexMDM, we use an interpolant in which the
subgoal tokens are exempt from the process in (6); that is, tokens corresponding to each gi are kept
clean at all times. This also enables generation to start from (g1, . . . , gK). Although this conditional
generation template changes the base distributions p0 for both MDM and FlexMDM, we note that the
theoretical guarantee from Section 3 and Section 4 still holds–once the training is perfect (under the
access to the ground truth unmasking posterior and insertion expectation), the inference algorithms
recover the ground truth distribution p1.

Training configuration. We use the same architectural design as in the OpenWebText pretraining,
but with a smaller model: hidden size:256, heads:8, conditional dimension:128,
dropout:0.1, layers:8. Both models have approximately 8.5M parameters. We train them
on 4 A100 GPUs with a global batch size of 256 for up to 100 epochs. We use AdamW (Loshchilov
& Hutter, 2017) with weight decay 0.01, learning rate 1 × 10−4, 20 warmup epochs, and an EMA
factor of 0.9999.

Metric. Given the final conditionally generated sequence, we report the success rate under two
criteria: (1) all visited cells are valid (no collisions with invalid cells), and (2) the path connects the
subgoals consecutively in order. We perform inference both models with the number of sampling
steps 256.

Listing 1: Code for the maze Construction
--
RECURSIVE DIVISION (perfect maze) -----------------------------------
--
def _divide(g, top, left, h, w):

if h <= 2 or w <= 2:
return

horizontal = w < h # split the longer dimension
if horizontal:

y = random.randrange(top + 1, top + h - 1, 2)
gap = random.randrange(left, left + w, 2)
g[y, left:left + w] = 1
g[y, gap] = 0
_divide(g, top, left, y - top, w)
_divide(g, y + 1, left, top + h - y - 1, w)

else:
x = random.randrange(left + 1, left + w - 1, 2)
gap = random.randrange(top, top + h, 2)
g[top:top + h, x] = 1
g[gap, x] = 0
_divide(g, top, left, h, x - left)
_divide(g, top, x + 1, h, left + w - x - 1)

--
WRAPPER with extra doorways ----------------------
--
def division_maze(m, n, seed=2025, extra_door_frac=0.5):

"""
m, n # size in *cells* (not bitmap coords)
seed # int or None
extra_door_frac # 0, perfect maze; >0 flicks more doors (loops)
"""
random.seed(seed)
H, W = 2 * m + 1, 2 * n + 1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

g = np.zeros((H, W), dtype=np.uint8)
g[0, :], g[H - 1, :], g[:, 0], g[:, W - 1] = 1, 1, 1, 1

_divide(g, 1, 1, H - 2, W - 2)

---------- optional imperfection: punch extra doorways ------------
if extra_door_frac > 0:

candidates = []
for r in range(1, H - 1):

for c in range(1, W - 1):
if g[r, c] == 1:

Check if wall separates two passages orthogonally
if g[r - 1, c] == 0 and g[r + 1, c] == 0:

candidates.append((r, c))
elif g[r, c - 1] == 0 and g[r, c + 1] == 0:

candidates.append((r, c))
k = int(len(candidates) * extra_door_frac)
for (r, c) in random.sample(candidates, k=k):

g[r, c] = 0
return g

F.3 WEIGHT INITIALIZATION TRAINING FROM LLADA

In this section, we describe the procedure for adapting the pretrained LLaDA-8B base model into
the FlexMDM.

Training configuration. LLaDA uses a bidirectional Transformer without an additional time em-
bedding, leveraging the fact that MDM does not require an explicit time signal (Zheng et al., 2024).
For FlexMDM, to model the insertion expectation, we inject a time-embedding pathway via AdaLN
(Peebles & Xie, 2023). For parameter efficiency, we tie (share) the four AdaLN parameter sets
across the intermediate Transformer layers. We also attach a softplus scalar head to parameterize
the insertion expectation.

Next, we attach LoRA adapters (Hu et al., 2022) to every attention projection (q proj, k proj, v proj)
and to the unmasking-posterior head. We include LoRA on the unmasking posterior head because
the unmasking posteriors differ between MDM and FlexMDM: in FlexMDM, unmasking must ac-
count for token shifts induced by insertions. This fine-tuning of the last head is crucial for enabling
variable-length generation.

The LoRA configuration that we use is r = 128, α = 128, and dropout 0.1. Training runs for
200, 000 gradient steps with a batch size of 64 on 16 H100s, which took approximately 3 days. We
optimize with AdamW (Loshchilov & Hutter, 2017) at learning rate 1×10−4 and weight decay 0.1,
using a cosine warm-restarts scheduler.

Evaluation on GSM8K. We instruction-fine-tune (IFT) the FlexMDM base model on the GSM8K
training split. To preserve the instruction–answer format, we modify the interpolant in Eq. 6 so that
tokens corresponding to the instruction are excluded from the interpolant—these tokens remain fixed
for all time steps. We apply the same strategy to obtain the baseline (that is, IFT from LLaDA-base),
modifying the MDM interpolant so that instruction tokens remain fixed. This choice is equivalent to
the IFT recipe used in Nie et al. (2025); Ye et al. (2025). Both models are IFT-ed for 1000 epochs.
(Other IFT hyperparameters match those used in our base setup unless otherwise noted.)

For FlexMDM inference, we start from the instruction prompt at t = 0 and run adaptive inference
to t = 1. Concretely, we use Top-K probability with a sliding window (Appendix E) with γ1 = 5.0
and γ2 = 64. For LLaDA, we report the best result under the semi-autoregressive, confidence-based
sampling of (Nie et al., 2025). For both models, we set the token sampling temperature to 0.0, which
we confirm to be important for strong Pass@1. Overall, adaptive inference substantially improves
performance over vanilla inference.

For a fair comparison, since FlexMDM is not IFT-ed, we IFT LLaDA-Base, rather LLaDA-instruct,
this differs from Zhao et al. (2025). We employ zero-shot evaluation, which also differs from Nie
et al. (2024).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Evaluation on HumanEval-infill. Code infilling conditions on a prefix and suffix, and asks
the model to complete the middle part of the code. For FlexMDM, we format training exam-
ples as (Prefix;[SEP];[Middle];[SEP];Suffix), where [SEP] is a separator token and
Instruction describes the infilling task for a model. We modify Eq. (6) so that tokens for
Prefix, Suffix, and [SEP] are fixed in the interpolant (i.e., excluded from the interpolant).
Thus, at t = 0 the state is (Prefix;[SEP];[SEP];Suffix).

For MDM, we use the format (Instruction;[PRE];Prefix;[SUF];Suffix;[SEP];Middle),
with Instruction prompting infill after prefix and suffix, along with [PRE] and [SUF] sepa-
rate the prefix and suffix, respectively. Here too, the tokens without Middle are held fixed by the
modified interpolant. This difference in formatting reflects the fixed-length nature of MDMf MDM
(no token insertion). This formatting has been used in the code infilling tasks for autoregressive
models in Bavarian et al. (2022). Naively masking the Middle span yields a base state at t = 0 of
(Prefix;Masked;Suffix), where Masked is a fully masked sequence of length |Middle|.
This leaks length information—materially simplifying the task— and renders comparisons to
FlexMDM unfair, since FlexMDM does not observe the target span length. For fair evaluation,
we therefore avoid length-revealing masks and require methods to infer the span length during
inference.

We IFT both models on the educational-instruct split of opc-sft-stage2; the architecture and
optimization configurations match those used for GSM8K IFT. At evaluation, we initialize from
the base distributions: for FlexMDM, (Instruction;Prefix;[SEP];[SEP];Suffix); for
MDM, (Instruction;Prefix;Suffix;[SEP]). We use the same Top-K adaptive inference
for both and temperature 0.0. Final outputs are scored with the HumanEval-infill verifier toolkit to
compute success rates.

F.3.1 ADDITIONAL EXPERIMENTS

33

	Introduction
	Preliminaries: Continuous-Time Markov Chains and Masked Diffusions
	Masked Diffusion Models

	Variable Length Masked Diffusions: Training
	Variable Length Masked Diffusions: Inference
	Experiment
	Pretraining
	Pretraining on text data
	Planning task

	Scaling up FlexMDM

	Conclusion
	Related Works
	Notation
	Discrete Stochastic Interpolants: Definitions and Propositions for Section 2
	Discrete Stochastic Interpolant
	The Masked Diffusion Interpolant

	Joint Discrete Stochastic Interpolants: Definitions and Propositions for Section 3
	Joint Interpolant
	Flexible-Length Masked Diffusion

	Details for Section 4
	Precise detail on the inference algorithms
	Proof of FlexMDM's any-order inference capability
	Proof preliminaries

	Formal guarantee for adaptive inference
	Proof of Theorem E.1
	Proof of Lemma E.1
	Proof of Lemma E.2

	Experimental details
	Pretraining on OpenWebText
	Additional experiments

	Pretraining on the Maze planning task
	Weight Initialization training from LLaDA
	Additional experiments

