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ABSTRACT

In-context learning (ICL) has emerged as a powerful learning paradigm. Going back
to De Finetti’s work on Bayesian inference using observables—as opposed to priors
on latent factors/parameters—we establish an explicit equivalence between ICL and
Bayesian inference a la De Finetti. From this view, pre-training is precisely empir-
ical Bayes: it optimizes the marginal likelihood of observed sequences; compared
to fitting priors in conventional empirical Bayes, pre-training fits posterior predictives
using transformers. Our observation highlights previously under-explored capabilities
of ICL: statistical inference and uncertainty quantification. Our theory highlights the
importance of predictive coherence and motivates a new regularizer for pre-training
sequence models to be logically coherent Bayesians statisticians. Our preliminary
empirical results demonstrate coherency regularization can substantially improve the
inferential capabilities of ICL.

1 INTRODUCTION

In-context learning (ICL) has emerged as a powerful learning paradigm where autoregressive generation
provides a versatile pattern recognition model without explicit training [6]. The ML folk wisdom is that
ICL is akin to Bayesian reasoning. In this work, we provide an exactly characterization of in-context
learning as explicit Bayesian inference. Our observation is tautological and does not rely on particular
architectural structures or elaborate data generation models. Instead of the traditional Bayesian modeler
who posits a prior and likelihood on latent factors that are fundamentally unobservable, we go back to
De Finetti’s celebrated work [9] which focused on modeling observables via posterior predictives.

Our main observation is that autoregressive generative models give rise to a Bayesian inference model
a la De Finetti. We note that autoregressive loss (perplexity) is the marginal likelihood of an observed
sequence prescribed by a Bayesian modeler. Thus, standard pre-training is empirical Bayes: instead of
optimizing marginal likelihoods through priors, it optimizes it by modeling posterior predictives (a.k.a.
autoregressive probabilities). Our perspective highlights the statistical capabilities of ICL: going beyond
the predictive paradigms studied in prior works [14; 1], ICL provides natural statistical inference and
uncertainty quantification. We expand the previously proposed downstream ICL tasks to include those
that require uncertainty quantification.

Our theory suggests how to improve the coherence of the Bayesian reasoning capabilities of ICL. The
formal validity of the Bayesian inference model on observables (which we denote “a la De Finetti”)
relies on the coherence of the pre-trained posterior predictive distributions. i.e., Does it follow the
Bayes rule according to some prior? We focus on a particular coherence condition [10], and propose a
regularizer that pre-trains models for valid Bayesian inference in addition to autoregressive predictive
performance. Our preliminary experimental results demonstrate that our coherence regularizer signifi-
cantly improves the quality of statistical inference.

Several authors recently explored formal models of ICL by using Hidden Markov Models (HMMs) [22],
statistical learning with stability conditions [18], or gradient descent-based algorithms [8; 1]. We take
a different approach by connecting several disparate literatures: Bayesian statistics [9; 2; 12; 11; 17; 4;
5; 10], meta learning [19; 20], and Bayesian deep learning [15]. By articulating the exact connection
between in-context learning and Bayesian inference, we provide insights that ICL has the ability to pose
as a Bayesian statistician, and not merely a predictive model.
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2 BAYESIAN MODELING a la DE FINETTI

Consider i.i.d. sequences Y i
1:Ti

= {Y i
1 , · · · , Y i

Ti
} for i = 1, . . . , n, where Y i

t is a “token” that take on
continuous or discrete values. Define one-step predictive probabilities

p̂t(y) := p̂t(y | Y1:t) := P̂ (Yt+1 = y | Y1:t) . (1)

Generative modeling fits a autoregressive model (e.g., decoder transformer) to optimize the log likeli-
hood of the observed sequences

Pre-training: maximize
p̂(·)

{
1

n

n∑
i=1

log p̂
(
Y i
1:Ti

)
=

1

n

n∑
i=1

Ti−1∑
t=0

log p̂t
(
Y i
t+1

)}
. (2)

A generative model p̂ can be used to tackle a range of different tasks by conditioning on any se-
quence/prompt Y1:s at inference time (“in-context learning”). Although our subsequent results and
algorithms can consider covariates, we ignore them to simplify exposition.

2.1 PRE-TRAINING IS EMPIRICAL BAYES ON POSTERIOR PREDICTIVES

We present a Bayesian modeling paradigm based on observables rather than latent parameters.

Classical Bayesians A classical Bayesian statistician posits a latent factor θ (“parameter”), a distribu-
tion over the parameter, Pθ (“prior”), and how θ governs data-generation, P(Y1:t = · | θ) (“likelihood”).
Given observed data Y1:s, the main quantity of interest is the posterior distribution P(θ = · | Y1:s),
which measures the epistemic uncertainty on the latent structure. De Finetti’s characterization of
an exchangeable sequence Y1:∞ provides the basis of modeling latent factors: there is θ such that
P(Y1:∞ = y1:∞) =

∫ ∏∞
t=1 P(Yt = yt | θ)P(dθ). The main challenge with this modeling paradigm

is the need to specify a model over latent factors and argue for its validity despite its fundamentally
unobservable nature. A practical model validation metric is to check whether the posited model on
unobservables explain observed data well [16]: for a posited model p̂, the marginal likelihood measures
whether p̂ explains observed sequences Rn(p̂) :=

1
n

∑n
i=1 log

∫
p̂ (Y1:Ti | θ) p̂(θ)dθ.

Bayesians a la De Finetti Instead of modeling unobservables, an alternative paradigm is to model
the observable sequence Y1:∞. Unlike a fictitious latent factor θ that the modeler proposes but is never
observed, the sequence Y1:∞ is observable in principle (the “future” sequence Ys+1:∞ is simply yet to
be observed). De Finetti’s celebrated works [7] focus on modeling the relationships between observable
quantities (1); notably, we can now validate the modeler’s claims by masking part of the observed data
from the modeler.

De Finetti’s original representation [9] goes beyond the previous representation result, but shows the
latent factor θ in this representation result is entirely a function of observables Y1:∞. Indeed, for (almost)
any realization of an exchangeable sequence Y1:∞, the strong law of large numbers dictates that there is
a limiting probability P∞(· | y1:∞) such that 1

T

∑T
t=1 1 {Yt(ω) ≤ y} → P∞(y | Y1:∞(ω)). The latent

factor θ := P∞(· | Y1:∞) is entirely determined by the observations Y1:∞, and is no longer a fictitious
never-observable quantity as in the classical regime.

To operationalize De Finetti’s philosophy, we take the posterior predictive probabilities (1) as our mod-
eling primitive to approximate the marginal likelihood P(Y1:T = y1:T ) ≈ p̂(y1:T ) =

∏T−1
t=0 p̂t(yt+1).

Instead of priors and likelihoods, the modeler specifies one-step probabilities (1) on observables. A
long line of work in Bayesian statistics advocates for this approach to Bayesian modeling [2; 12; 11;
17; 4; 5; 10]. They propose simple parameterizations for one-step probabilities (e.g., copulas [17; 10])
and identify conditions under which one-step posterior predictive distributions implicitly characterize
the prior and likelihood over the latent factor θ.

Since it is difficult to specify one-step probabilities over long sequences, we model them using sequence
models (e.g., transformers) following previous works [15; 19; 20]. We adopt the empirical Bayes phi-
losophy: when our one-step probabilities accurately model the data-generating distribution, masked
observations will have high marginal likelihood p̂(Ys+1:t | Y1:s). Note that this is precisely the origi-
nal pre-training problem (2)! We conclude pre-training and in-context learning is empirical Bayes on
posterior predictive densities.
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Machine Learning is a discipline of generalizing across learned representations. As showcased by the
empirical success in language modeling, the empirical Bayes problem (2) will be effective if there is a
wealth of previously observed sequences {Y i

1:Ti
, i = 1, . . . , n}.

2.2 IN-CONTEXT LEARNING AS EXPLICIT BAYESIAN INFERENCE

One-step probabilities (1) may not necessarily correspond to posterior predictions consistent with a
single prior. We discuss conditions on the one-step probabilities that guarantee a notion of predictive
coherence, ensuring that they (roughly) follow the Bayes rule according to some prior. As we show,
coherence provides valid statistical inference and guarantees good performance on downstream tasks
that require uncertainty quantification.

Berti et al. [3] proposes predictive coherence condition that extends the familiar exchangeability.

Definition 1. Y1:∞ is conditionally identically distributed (c.i.d.) if

P(Yt+2 = y | Y1:t) = P(Yt+1 = y | Y1:t) =: pt(y | Y1:t) =: pt(y) for all y ∈ R. (3)

The c.i.d. condition is a starting point for studying previously proposed formalizations of ICL [14].
For example, for a question answering task, we can generalize the condition to a subsequence level
condition P(Yτ1:τ2 = yτ1:τ2 | Y1:τ1) = P(Yτ2:τ3 = yτ2:τ3 | Y1:τ1) where we denote each question-
answer sequence as from τi to τi+1. However, we don’t expect language to satisfy c.i.d. in general.
Conditioning on an incomplete sentence, the distribution of the next token versus the last token should
clearly not follow the same distribution. Relaxing this condition is a topic of future research.

A direct consequence of the c.i.d. condition is that one-step probabilities have a limit [3]. If Y1:∞ is
c.i.d., E[pt(y) | Y1:t−1] = E[1 {Yt+1 = y} | Y1:t−1] = pt−1(y) for any y. Consequently, equation 3
and the martingale convergence theorem yields

∃ random distribution p∞(· | Y1:∞) such that pt(y | Y1:t) → p∞(y | Y1:∞) almost surely. (4)

We interpret the random limit p∞ as a “latent factor” entirely determined by the infinite observations.

Under the c.i.d. condition, autoregressive generation gives a natural Bayesian inference procedure based
on the bootstrap [10]. Consider τ⋆ =

∫
g(y)p∞(y)dy, the mean of some function g : R → R under

p∞. Letting y1:s be the observed data, our goal is to generate a confidence/credible interval around τ⋆.
For T large enough, autoregressively generate Yt+1 ∼ pt(· | y1:s, Ys+1:t) and compute τ̂ = τ(YT ).
Repeating this B times, we obtain τ̂1, . . . , τ̂B

iid∼ PT (·|y1:s). Under the c.i.d. condition, Fong et al. [10]
shows that this provides a valid inferential procedure as T,B → ∞.

3 DOWNSTREAM TASKS THAT REQUIRE UNCERTAINTY QUANTIFICATION

Under the c.i.d. condition, we show the pre-training objective (2) (perplexity) is the correct performance
measure capturing Bayesian inferential capabilities.

Assumption A. The true data-generating distribution and its pre-trained counterpart are c.i.d. (3).

Our subsequent results rely on the limiting marginal likelihood / perplexity.

Theorem 1. Under regularity conditions, 1
T

∑T
t=1 log p̂t(Yt) →

∫
p∞(y) log p̂∞(y)dy =: H(p̂).

The true data-generating distribution is clearly the “best model”: from Jensen’s inequality, for any p̂

E

[
1

T

T∑
t=1

log p̂t(Yt)

]
≤ E

[
1

T

T∑
t=1

log pt(Yt)

]
and

∫
p∞(y) log p̂∞(y)dy ≤

∫
p∞(y) log p∞(y)dy.

Pre-training guarantees valid inference under c.i.d. We articulate several frequently overlooked
applications of in-context learning that require uncertainty quantification and Bayesian reasoning. First,
we highlight how in-context learning can be used for statistical inference, going beyond the usual pre-
dictive applications. Second, we show Bayesian inference allows length generalization in sequence
predictions: robustness to longer sequence prediction or shorter context length than seen during train-
ing.
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For simplicity, we again assume that we are interested in τ⋆ =∫
g(y1, . . . , yk)p

k
∞(y1, . . . , yk)dy1 · · · dyk, the mean of a bounded function g : Rk → R. Note

that τ⋆ has two sources of uncertainty: observables Y1:∞ that determine p∞ (epistemic) and irreducible
noise in the realizations of p∞ (aleatoric). Given limited observables as context Y1:s, ICL provides an
effective way to perform inference on τ⋆ via forward sampling observables Ys:T to a long horizon T .
Under Assumption A, the pre-training objective (marginal log likelihood or negative log perplexity)
offers pathwise control over τ̂T − τ⋆.

lim
T→∞

τ̂T − τ⋆ ≲ ∥g∥∞
√
kDkl (p∞||p̂∞) ∝ H(p̂∞)

1
2 .

Thus, pre-training problem (2) is the “right” objective to guarantee the quality of Bayesian inference
when p̂t is c.i.d..

We show that pre-training objective (2) also governs the sequential prediction performance over long
horizons. Given a “prompt” consisting of the sequence of tokens Y1:s at inference time, consider the
canonical ICL prediction problem where we wish to generate Ŷs+1, Ŷs+2, · · · such that they closely
match the unseen observations Ys+1, Ys+2, · · · . We evaluate ourselves on the T -horizon squared loss
R̂T := 1

T

∑T
t=1(Ŷt − Yt)

2.

We are interested in generalizing beyond the observed sequence length seen during training; the model
must learn to make accurate predictions for longer horizons. We study the limiting behavior of the
model p̂t as t → ∞ and show that the marginal log likelihood (2) directly controls length generalization
capabilities of the fitted model.

lim
T→∞

R̂T ≤ Var
(
g(Ŷ∞)

)
+Var (g(Y∞)) + ∥g∥∞ Dkl (p∞||p̂∞) ∝ ∥g∥∞ (1 +H(p̂)).

c.i.d. regularization Our discussion highlights the importance of predictive coherence guaranteed by
the c.i.d. condition (3). Since the pre-training objective (2) does not guarantee coherence, we propose a
regularizer that measure violations to c.i.d.

Ti−2∑
t=0

Dkl

(
p̂t(·)|| p̂(Ŷ i

t+2 = · | Xi
1:t, Y

i
1:t, X

i
t+1)

)
.

The second distribution is not directly obtainable from an autoregressive model (e.g., transformer).
Recalling Dkl

(
N (µ1, σ

2
1)||N (µ2, σ

2
2)
)
= 1

2

(
σ−1
2 σ1 − 1 + σ−1

2 (µ2 − µ1)
2 + ln σ2

σ1

)
, we estimate its

mean and variance using Monte Carlo samples ζ ∼ p̂t+1.

4 EXPERIMENTS

We present preliminary experimental results that highlight the importance of predictive coherence
in ICL. We consider the meta-learning linear regression setting in Garg et al. [14]. Consider a
class of linear functions F = {f | f(x) = wTx, x ∈ Rd} where each environment/sequence
wi generates observations Y i

t = wi⊤Xi
t + ϵit for Xi

t
iid∼ N(0, Id) and ϵit ∼ N(0, 0.1). In-

stead of point predictions, we modify the architecture of the sequence model to output a probability
p̂it = N (µt(X

i
1:t+1, Y

i
1:t), σt(X

i
1:t+1, Y

i
1:t)). We compare the performance of two types of generative

models: one trained to minimize the usual pre-training objective (2), and one also optimized for predic-
tive coherence using c.i.d. regularizer. Specifically, we train two 1D models on context length 5 and 10,
and test the models’ performances on inference and prediction tasks, given context length 5.

Statistical inference We are interested in generating a confidence interval on w, where we observe
(X1:s, Y1:s) at inference/ICL time. Instead of performing inference over w through a prior and likeli-
hood, we autoregressively generate Y i

t+1 ∼ pit(·) and compute ŵi
1, . . . , ŵ

i
B via the Bayesian bootstrap

procedure described at the end of Section 2.2. In Figure 1, we observe that c.i.d regularization pro-
vides a coherent forward sampled trajectories, compared to a naive generative model that degrades with
more forward samples. Quantitatively, on models trained with context length 5, we observe that the
parameter estimated from KL-regularized sequences were 71.57% closer to the ground truth parameter
in terms of absolute distance (regularized 0.1710, unregularized 0.6014). On models trained with con-
text length 10, KL-regularization also improved absolute distance from the ground truth parameter by
88.10% (regularized 0.0639, unregularized 0.5369).
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Figure 1. Plot(a):ŵ trajectories across independently sampled forward predictions, with context
{x1:5, y1:5}. As we recursively forward sample, the least squared ŵ on each trajectory converges for
c.i.d. regularized model. In contrast, the non-regularized model generates sample paths that degrade as i
increases. Plot (b):Forward prediction up to horizon T = 1000, with context {x1:5, y1:5}, and covariates
x5:T . We then plot the generated {ŷ5:T } against the given coviates x5:T as the above graph.

Sequential prediction We also study the model’s length generalization ability, predicting beyond
the sequence length seen during pre-training. Figure 1 shows that regularized model gives better T -
horizon predictions. We calculate T-horizon squared loss with context length 5 and T = 1000. On
models trained with context length 5, we observe a 92.39% increase (regularized 0.2075, unregularized
2.7249). On models trained with context length 10, we observe a 94.99% increase (regularized 0.0597,
unregularized 1.1924).
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A PROOF OF THEOREM 1

We first restate the theorem with formal assumptions.

A.1 NOTATION

In previous notation, we assume the predictive distributions are all from measure space (Ω∞,A∞),
so we always condition on y∞ = Y1:∞(ω∞). Under this notation, for any t < ∞, we re-interpret
pt(· | y∞) and p̂t(· | ŷ∞) as the one-step random posterior predictive densities at time t+ 1, given the
history up to time t, i.e. ignoring the present and the future realizations.

pt(· | ·)(ω∞) = P(· | Y ω
1:t) p̂t(· | ·)(ω∞) = P̂(· | Ŷ ω

1:t)

For notational simplicity again, we drop the realization y1:∞ in the conditioning in following proof.

We also impose the following coupling assumption so that we can exchangeably condition on random
variables generated by true p or p̂: for any A ∈ A∞

E[1A(Ŷt+1) | Y1:t] = E[1A(Ŷt+1) | Ŷ1:t]

This condition allows the following equation to hold

E[p̂t(y) | Y1:t−1] = E[1(Ŷt+1 = y | Ŷ1:t) | Y1:t−1] = E[1(Ŷt+1 = y) | Y1:t−1]

= E[1(Ŷt+1) | Ŷ1:t−1] = p̂t−1(y)

where the second equality is due to the tower law and the second to last equality is due to the coupling
assumption. Therefore, we have that the martingale property for p̂ holds even if the observations had
come from the true distribution p instead of iteself.

Theorem 2. Under the following assumptions:

1. The true data-generating distribution Yt+1 ∼ pt(·) is c.i.d. (Definition 1). Moreover, assume
that the one-step posterior predictive probabilities converges uniformly, a.s. i.e.

sup
y

|pt(y | y∞)− p∞(y | y∞)| → 0

2. The pre-trained one-step posterior predictive probabilities Ŷt+1 ∼ p̂t also obey the c.i.d iden-
tity (3), i.e., P̂(Ŷt+2 = · | y1:t) = p̂t(· | y1:t) for all t ∈ N and y1:∞. Moreover, assume that
the one-step posterior predictive probabilities converges uniformly, a.s. i.e.

sup
y

|log p̂t(y | y∞)− log p̂∞(y | y∞)| → 0

3. Martingale with difference sequence {Dt = log p̂t(Yt | Y1:t−1) −
∫
pt(y) log p̂t(y)dy} being

L2, and that
∞∑

n=1

P

(
|Dn| >

n

log log n
| Fn−1

)
< ∞ a.s.

√√√√ n∑
i

E
[
D2

j | Fj−1

]
· n log log n → 0 a.s.

4.
∫
log p̂∞(y)dy is bounded.

we have the following convergence almost surely

1

T

T∑
t=1

log p̂t(Yt) →
∫

p∞(y) log p̂∞(y)dy =: H(p̂). (5)

Proof. Again for notational convenience, we drop the realization Y1:∞ in the conditioning in following
proof.
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1

T

T∑
t=1

log p̂t(Yt)−
∫

p∞(y) log p̂∞(y)dy =
1

T

T∑
t=1

(log p̂t(Yt) −
∫

pt(y) log p̂t(y)dy)

(6)

+
1

T

T∑
t=1

(

∫
pt(y) log p̂t(y)dy −

∫
pt(y) log p̂∞(y)dy)

(7)

+
1

T

T∑
t=1

(

∫
pt(y) log p̂∞(y)dy −

∫
p∞(y) log p̂∞(y)dy)

(8)
We then prove that each of the above term converges almost surely to 0.
For the first term, note that

log p̂t(Yt | Y1:t−1) ∈ Ft∫
pt(y) log p̂t(y)dy = EY∼p(·|Y1:t−1)[log p̂t(Yt | Y1:t−1)] ∈ Ft−1

Hence,
E[log p̂t(Yt | Y1:t−1)− EY∼p(·|Y1:t−1)[log p̂t(Yt | Y1:t−1)] | Ft−1]

= E [log p̂t(Yt | Y1:t−1) | Ft−1]− EY∼p(·|Y1:t−1)[log p̂t(Yt | Y1:t−1)]

= 0

Therefore, the sequence Dt = log p̂t(Yt | Y1:t−1) −
∫
pt(y) log p̂t(y)dy = log p̂t(Yt | Y1:t−1) −

E[log p̂t(Yt) | Y1:t−1] is clearly a martingale difference sequence. By the SLLN for martingale differ-
ences, under same conditons around the variance, we have Dt → 0 almost surely by corollary 2 of [21].
Note that furthermore, we can always use azuma-bernstein type of concentration results, here to char-
acterize deviation, though this requires a much stronger assumption on the moment of the difference
sequence.
For the second term, we have that each individual term converges to 0 almost surely.∫

pt(y) log p̂t(y)dy −
∫

pt(y) log p̂∞(y)dy =

∫
pt(y)(log p̂t(y)− log p̂∞(y))dy

≤ sup
y

|log p̂t(y)− log p̂∞(y)|
∫

pt(y)dy

→ 0

Then clearly the averaged summation also converges to the 0 almost surely.
Similarly for the last term, we have∫

pt(y) log p̂∞(y)dy −
∫

p∞(y) log p̂∞(y)dy ≤ sup
y

|pt(y)− p∞(y)|
∫

log p̂∞(y)dy

→ 0

and hence the averaged summation also converges to 0 almost surely. This concludes the proof.

B EXPERIMENTAL SETTING

We train the GPT2 model as specified in [13] with 4 heads, 128 input embeddings, and 12 linear layers
on four A100 Nvidia GPUs. We use the Adam optimizer with a learning rate of 0.0001 and the KL
regularized autoregressive loss. KL regularization term is calculated with M = 120 MC samples. Our
model is exposed to 640, 000 data points, for 1 epoch, on batch size 32.

C RESULTS

On context length 5 and 10, we train two models each with λ = 0 and λ = 100. We then test the
models’ performance on inference and prediction based tasks.
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C.1 SEQUENTIAL PREDICTION

We calculate T -horizon squared loss with context length 5 and T = 1000. On models trained with
context length 5, we observe a 92.39% increase, and on models trained with context length 10, we
observe a 94.99% increase. Refer to the following table for specific numbers 1, and figure 2 for a
visualizaiton of the mean squared error across time-steps.

Train context
length 5

Train context
length 10

Next-step Prediction λ = 0 λ = 100 λ = 0 λ = 100
0.016047357 0.07333319 0.004384955 0.008139687

T -horizon Prediction λ = 0 λ = 100 λ = 0 λ = 100
2.7249305 0.20747349 1.1924113 0.059748333

Table 1. Mean squared error of next-step and T -horizon predictions given context {x1:5, y1:5}. With regu-
larization, the model performs better at long horizon sequential prediction, either with same context length
as training data, or with shorter context length than training data. However, we do see that regularization
slighly undermines the models’ ability to predict the next-step. We suspect that this is due to the fact that
regularization forces the model to be more consistent in forward predictions, which may lead to a slight
increase in immediate next step prediction error.

Figure 2. MSE, averaged across trajectories at each forward sampling time-step, given context
{x1:5, y1:5}. With regularization, the model is able to forward predict with better consistency and ac-
curacy.

C.2 STATISTICAL INFERENCE

We calculate the absolute distance of the estimated parameter from the ground truth parameter. On
models trained with context length 5, we observe that the parameter estimated from KL-regularized
sequences were 71.57% closer to the ground truth parameter in terms of absolute distance. On models
trained with context length 10, KL-regularization also improved absolute distance from the ground truth
parameter by 88.10%. Refer to the following table for specific numbers 2, and figure 1 for a visualizaiton
of the parameter trajectories.
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Train context
length 5

Train context
length 10

Distance to true w
λ = 0 λ = 100 λ = 0 λ = 100
0.6014 0.1710 0.5369 0.0639

Distance to Least Square solution by context w λ = 0 λ = 100 λ = 0 λ = 100
0.6119 0.1595 0.5234 0.0749

Table 2. Absolute distance of the estimated regression parameter from both the ground truth parameter,
and the least square parameter with regards to context {x1:5, y1:5}. With regularization, the model is able
to estimate the parameter with lower error.
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