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Abstract

Understanding human tasks through video observations is an essential capability
of intelligent agents. The challenges of such capability lie in the difficulty of
generating a detailed understanding of situated actions, their effects on object states
(i.e., state changes), and their causal dependencies. These challenges are further
aggravated by the natural parallelism from multi-tasking and partial observations
in multi-agent collaboration. Most prior works leverage action localization or
future prediction as an indirect metric for evaluating such task understanding from
videos. To make a direct evaluation, we introduce the EgoTaskQA benchmark that
provides a single home for the crucial dimensions of task understanding through
question-answering on real-world egocentric videos. We meticulously design
questions that target the understanding of (1) action dependencies and effects,
(2) intents and goals, and (3) agents’ beliefs about others. These questions are
divided into four types, including descriptive (what status?), predictive (what will?),
explanatory (what caused?), and counterfactual (what if?) to provide diagnostic
analyses on spatial, temporal, and causal understandings of goal-oriented tasks.
We evaluate state-of-the-art video reasoning models on our benchmark and show
their significant gaps between humans in understanding complex goal-oriented
egocentric videos. We hope this effort will drive the vision community to move
onward with goal-oriented video understanding and reasoning.

1 Introduction

The study of human motion perception has suggested that humans perceive motion as goal-directed
behaviors rather than plain pattern movements [1–3]. Developmental psychologists [4] categorized
such an ability into two distinct mechanisms: (1) action-effect associations that the desired effects
activate the corresponding action; and (2) simulative procedures, which argues that goal attribution
comes from planning under the rational action principle in others’ shoes. Both mechanisms require
detailed knowledge of action dependencies and effects, agent’s intents and goals and beliefs about
other agents. With such knowledge playing crucial roles in human cognitive development, learning
them from visual observation is pivotal for building more intelligent agents.

:Work done during internship at BIGAI.
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Figure 1: An overview of EgoTaskQA. We show an illustrative scenario where two subjects collaborate to
make and drink cereal. Based on egocentric observations, we generate questions on these seen or unseen video
intervals with different question types, targeting semantics and question scopes. Note that we use both direct
(e.g., when the person open something...) and indirect (e.g., the action before getting something...) references on
actions and objects, where the same color indicates the same referred actions (best viewed in color).

Taking a closer look at how humans learn from interacting with the world, we locate objects,
change their positions and manipulate them in various ways, all presumably under visual control
from an egocentric perspective [5]. This unique first-person experience provides essential visual
cues for human attention and goal-oriented task understanding. Moreover, egocentric perception
naturally reflects how humans reason and perform in a partially observable environment, making
it the most available learning source for learning actions, tasks [6], and belief modeling [7]. The
past few years have witnessed significant progress in egocentric video understanding, especially
action recognition and future anticipation [8–13]. However, these two tasks merely cover the tip of
the iceberg, considering how humans learn from visual observations to obtain knowledge for more
profound tasks such as learning world models, planning for desired goals, and building beliefs about
others. With their essential roles in human cognitive development, we urge the need for a benchmark
that addresses these missing dimensions in egocentric activity understanding.

Hence, we present EgoTaskQA, a challenging egocentric, goal-oriented video question-answering
benchmark based on the LEMMA dataset [11]. The LEMMA dataset collects egocentric videos in
goal-oriented and multi-agent collaborative activities with fine-grained action and task annotation.
By extending the LEMMA dataset with annotations consisting of object status, human-object and
multi-agent relationships, and causal dependency structures between actions, we design questions that
target three specific scopes: (1) actions with world state transitions and their dependencies, (2) agents’
intents and goals in task execution, and (3) agents’ belief about others in collaboration to provide an
in-depth evaluation metric for task understanding. These questions are procedurally generated within
four types: descriptive, predictive, explanatory, and counterfactual, to systematically test models’
capabilities over spatial, temporal, and causal domains of goal-oriented task understanding. To
avoid spurious correlations in questions, we include both direct and indirect references to actions and
objects. We further balance the answer distribution by the reasoning type of questions and carefully
design benchmarking train/test splits to provide a systematic test on goal-oriented reasoning and
indirect reference understanding; see Fig. 1 for an example and more details in Sec. 3.

As shown in Tab. 1, EgoTaskQA complements existing video reasoning benchmarks on various
dimensions. With models exhibiting large performance gaps compared with humans, we devise
diagnostic experiments to reveal both the easy and challenging spots in our benchmark. We hope
such designs and analyses will foster new insights into goal-oriented activity understanding.

Contributions In summary, our main contributions are three-fold:

• We extend the LEMMA dataset with annotations of object status, human-object and multi-agent
relationships to facilitate egocentric activity understanding. We further generate causal dependency
structures between actions to provide ground truth for procedural task understanding.
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Table 1: A comparison between EgoTaskQA and existing video question-answering benchmarks. We use “world”
for world model-related information, including action preconditions, post-effects, and dependencies. We use
FPV as short for egocentric and TPV for third-person-view videos. We use MC as short for multiple-choice
question-answering, and OP for open-answer question-answering.

Dataset
Video Question Scope Question type Answer

Type # questions
View Real-world World Intents & Goals Multi-agent Descriptive Predictive Explanatory Counterfactual

MarioQA [42] TPV ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ OP 188K
Pororo-QA [43] TPV ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ MC 9K
CLEVRER [44] TPV ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ OP+MC 282K

Env-QA [45] FPV ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ OP 85K
MovieQA [46] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 14K
Social-IQ [47] TPV ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ MC 7.5K

TVQA [48] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 152.5K
TVQA+ [49] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ MC 29.4K

MSVD-QA [50] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 50.5K
MSRVTT-QA [50] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 243K

Video-QA [51] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 175K
ActivityNet-QA [52] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 58K

TGIF-QA [53] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ MC 165.2K
How2QA [54] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ MC 44K

HowToVQA69M [55] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 69M
AGQA [56] TPV ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ OP 3.6M

NExT-QA [57] TPV ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ OP+MC 52K
STAR [58] TPV ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ MC 60K

EgoVQA [59] FPV ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ OP+MC 520

EgoTaskQA (Ours) FPV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ OP 40K

• We construct a balanced video question-answering benchmark, EgoTaskQA, to measure models’
capability in understanding action dependencies and effects, intents and goals, as well as beliefs
in multi-agent scenarios. We procedurally generate four challenging types of questions (descrip-
tive, predictive, explanatory, and counterfactual) with both direct and indirect references for our
benchmark and potential research on video-grounded compositional reasoning.

• We devise challenging benchmarking splits over EgoTaskQA to provide a systematic evaluation
of goal-oriented reasoning and indirect reference understanding. We experiment with various
state-of-the-art video reasoning models, show their performance gap compared with humans,
and Acknowledgementanalyze their strengths and weaknesses to promote future research on
goal-oriented task understanding.

2 Related Work

Action as Inverse Planning Action understanding has been seen as an inverse planning problem on
agents’ mental states [14, 15]. Early studies formulate it as reasoning on the first-order logic formulae
that describes actions’ preconditions and post-effects [16, 17]. This symbolic formalism is later paired
with domain-specific language and algorithms to become mainstays in robotics planning [18, 19]. In
computer vision, similar attempts have been made to link visual observations with world states and
actions [20–22]. Various methods treated actions as transformations on images to solve action-state
recognition [23–27] and video prediction [28–30]. With the emerging interest in language-grounded
understanding, Zellers et al. [31] proposed PIGLeT to study the binding between images, world states,
and action descriptions. Padmakumar et al. [32] further studies the problem of language understanding
and task execution by designing an intelligent embodied agent that can chat during task execution.
However, these works are mostly limited to atomic actions, missing the important action dependency
in task execution. To tackle this problem, instructional videos [33–36] are studied with its goal-
oriented multi-step activities. In these videos, external knowledge [37, 38] can be used as guidance
for advanced tasks like temporal dynamics learning [39] and visually grounded planning [40, 41].
Unfortunately, these videos highlight the instructions and include no task-level noise, which is
much simpler than the partially observable, highly paralleled, multi-agent environment that humans
learn from and as presented in our benchmark. These complexities make the goal-oriented action
understanding a challenging task remaining to be solved.

Egocentric Vision Egocentric vision offers a unique perspective for actively engaging with the
world. Aside from traditional video understanding tasks like video summarization [60, 61], ac-
tivity recognition [62–64] and future anticipation [65–69], egocentric videos provide fine-grained
information for tasks like human-object interaction understanding [70–76] and gaze/attention pre-
diction [77, 10]. With its natural reflectance of partial observability, egocentric videos are also used
for social understanding tasks such as joint attention modeling [78, 79], perspective taking [80, 81]
and communicative modeling [82, 7]. However, with various egocentric datasets curated over the
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last decade [8, 60, 9], data and detailed annotations for human tasks are still largely missing. Large-
scale daily lifelog datasets like EPIC-KITCHENS [12] and Ego4D [13] cover certain aspects of
action-dependencies, effects, and social scenarios in their recordings, but are unsuitable for detailed
annotation due to their size. The other stream of datasets collects activities by providing coarse task
instructions to both single actor [83] and multiple agent collaborations [11]. They annotate tasks
and compositional actions to reveal agents’ execution and collaboration process for multi-step goal-
directed tasks. Despite all the preferred characteristics of these goal-oriented activity videos, none of
them successfully addressed action-dependencies and effects, nor multi-agent belief modeling.

Video Question-Answering Benchmarks Visual question-answering can be designed to evaluate a
wide spectrum of model capabilities, spanning from visual concept recognition and spatial relationship
reasoning [84–87], abstract reasoning [88–93], to common sense reasoning [94, 95]. In the temporal
domain, synthetic environments are used for questions that involve simple action-effect reasoning [42,
43]. Crowdsourced videos [53, 52, 48, 55] are used for collecting questions on basic spatial-temporal
reasoning capabilities like event counting [53], grounding [49], and episodic memory [13]. Recent
advances in video question-answering aim for more profound reasoning capabilities. Gao et al.
[45] leverages an indoor synthetic environment to generate questions on spatial relationships and
simple action-effect reasoning from an egocentric perspective. Xiao et al. [57] designs NExT-QA
containing questions about knowledge of the past, present, and future on both temporal and causal
domains. Grunde-McLaughlin et al. [56] programmatically generates questions for compositional
spatial-temporal reasoning and generalization. Wu et al. [58] focus on short atomic action clips for
situated reasoning. Yi et al. [44] generates synthetic videos for studying counterfactual predictions
on collisions. Zadeh et al. [47] collects questions for social intelligence evaluation. Nevertheless,
none of these benchmarks addressed the aforementioned critical dimensions of goal-oriented activity
understanding from a real-world egocentric perspective.

3 The EgoTaskQA Benchmark

The EgoTaskQA benchmark contains 40K balanced question-answer pairs selected from 368K
programmatically generated questions generated over 2K egocentric videos. We target the crucial
dimensions for understanding goal-oriented human tasks, including action effects and dependencies,
intent and goals, and multi-agent belief modeling. We further evaluate models’ capabilities to
describe, explain, anticipate, and make counterfactual predictions about goal-oriented events. A
detailed comparison between EgoTaskQA and existing benchmarks is shown in Tab. 1.

3.1 Data Collection

We select egocentric videos from the LEMMA dataset [11] as base video sources. Compared to
similar egocentric datasets, human activities in LEMMA are highly goal-oriented and multi-tasked.
These activities contain rich human-object interactions and action dependencies in both single-agent
and two-agent collaboration scenarios. We take advantage of these desired characteristics and
augment LEMMA with ground truths of object states, relationships, and agents’ beliefs about others.
More specifically, we augment LEMMA on the following aspects:

World States We focus on world states consisting of object states, object-object relationships, and
human-object relationships. First, we build the vocabulary of relationships and state attributes from
activity knowledge defined in previous works [37, 96]. We manually filter irrelevant relationships and
attributes by removing dataset-specific (e.g., under the car) and detailed numerical (e.g., cut in three)
relationships. Next, we gather similar relationships to obtain 48 relationships and 14 object attributes.
This vocabulary covers spatial relationships (e.g., on top of), object affordances (e.g., openable),
and time-varying attributes (e.g., shape). We build on top of action annotations from LEMMA and
use Amazon Mechanical Turk (AMT) to annotate this information before and after the changing
action for all time-varying objects. With these annotations, we reconstruct the transition chain for
each interacted object and obtain their temporal status. We provide the complete list of relationships
and object attributes in the supplementary.

Multi-agent Relationships To capture how two agents (actor and helper) collaborate over the
same task, we annotate basic information about objects’ visibility and the actor’s awareness of the
helper. For each object that the actor operates on, we annotate its visibility to the helper by providing
synchronized videos from both agents’ views to AMT workers. For the actor’s awareness of others,
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Figure 2: We use two actions A1:“get cup from microwave” and A2:“put cup to the other person” from Person
1’s video in Fig. 1 as an example to visualize annotations in EgoTaskQA. We annotate states and relationships for
objects changed by actions as well as human-object and multi-agent relationships. After obtaining the “before”
and “after” annotations, we examine which attributes of objects were changed by the action and what are the
preconditions and post-effects. We determine the causal dependency between actions by checking if there exists
an object that the post-effect of one action over this object fulfills the preconditions of another. In this case, the
state change of “cup” determines that A1 and A2 are causally dependent (best viewed in color).

we instruct AMT workers to first go through the egocentric view video of both agents to get familiar
with actions performed by the actor and the helper. Next, we ask AMT workers to replay the video of
the actor and annotate, during each action segment, whether the actor can see the helper or whether
the actor is aware of the helper’s action if the helper is not in sight. As this annotation is usually
subjective, we take the majority vote of three workers as ground truth.

Causal Trace Based on the annotated transition chain of objects, we generate causal traces for
each action with rules. By checking whether the post-effect of one action fulfills the preconditions of
another, we define the causal relationship between two actions into unrelated, related, and causally
dependent; see Fig. 2 for an illustration and refer to supplementary for detailed explanations. Given
a video, we run this dependency check for each pair of actions. Next, we generate a video-level
dependency tree by recursively checking sequential depending relationships and use it as the ground
truth dependency structure for subsequent explanatory and counterfactual question generation.

In total, we augment LEMMA with 30K annotated before states, after states, and person annotation
blocks as shown in Fig. 2. We then segment the videos in LEMMA into clips with lengths of
around 25 seconds for question generation. This design helps generate interesting clips with partially
observed environmental constraints (e.g., the cup is already washed when the person pours juice), and
visual hints for future actions (e.g., cutting watermelon into dice instead of pieces for making juice
rather than eating it directly). Meanwhile, we keep our videos reasonably long, with an average of 5
actions per clip to cover sufficient information for action dependency inference and future prediction.
We provide more details about data collection and annotation statistics in supplementary.

3.2 Question-Answer Generation

We use machine-generated questions to evaluate models’ task understanding capabilities. We focus
on the transition chain of each interacted object, especially what actions caused changes on objects
and how these changes contribute together to a multi-step task; see examples in Fig. 1.

Question Design We design questions that pinpoint scopes, including (1) action preconditions,
post-effects, and their dependencies, (2) agents’ intents and goals, and (3) agents’ beliefs about others.
Similar to [44], we categorize our questions over these three scopes into four types to systematically
test models’ capabilities over spatial, temporal, and causal domains of task understanding:
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(a) (b) If the person did not wash something,  will he/she be able to change the shape of apple?
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What did the other person change on kettle while the person cut something?
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(c)

Figure 3: Generation and statistics of the question-answer pairs. (a) Question distribution according to question
scope (top), question type (middle), and targeting semantics (bottom). (b) Examples of natural language questions
and their corresponding executable programs. Operators and parameters of the program are represented by
black and blue contour rectangles, respectively. (c) Answer distribution for the top 20 reasoning types and top
15 answers for each type before (left) and after (right) balancing, the reasoning types are abbreviated with the
concatenation of their initial letters (e.g., DWAQ for descriptive, world, action, and query).

• Descriptive questions evaluate the understanding of detailed spatial-temporal information. We
provide spatial-temporal references in the questions to identify a unique interval for answering
queries on objects and actions. These properties include object states and changes, relationships,
human actions, and multi-agent-related information. We generate this type of question by randomly
sampling an interval in the video clip and then gathering all related annotations for question
generation. Answers in this category are generated based on the interval annotation and contain
both open-ended queries and statement verifications.

• Predictive questions aim at understanding intents and task planning. Given a video clip, we ask
about possible future object states and actions for both the actor and the helper. These predictions
include both direct predictions on actions and objects, as well as more challenging task-dependent
predictions such as the executability of actions and the desired states of objects. Questions and
answers for predictive questions are generated by gathering the future action/object annotations in
a fixed window size after the truncated interval (i.e. unseen future video) in the long original video.
Answers in this category are open-ended action, object, and state queries.

• Counterfactual questions aim at understanding action preconditions and post-effects. Based on
the causal trace of actions, we generate counterfactual questions with hypothetical conditions that
certain actions in the sequence were not executed. Under this condition, we query both the affected
and unaffected actions about their executability and whether the corresponding changes of object
states associated with these actions will occur. We generate counterfactual questions by adding or
removing actions in the causal trace and adjusting the depending actions’ executability recursively.
Answers in this category contain action executability verifications and object state queries.

• Explanatory questions evaluate the understanding of task-related object changes as well as action
preconditions and post-effects. Given the object state annotations and the causal trace, we query the
cause of state changes, the leading factor that satisfies the preconditions of specific actions, as well
as why would the post-effect of certain actions affects other actions in the video clip. We generate
explanatory questions by querying both the annotations as well as the causal trace. Answers for
explanatory questions contain both open-ended and verification queries.

Answer Generation In EgoTaskQA, we consider both open-answer queries and binary statement
verifications. To generate question-answer pairs for these questions, we design both text templates
and the corresponding functional program templates as shown in Fig. 3 (b). Each program consists
of a sequence of modules for querying the answer from the annotations and the causal trace. We
exhaustively execute all possible program instantiations on videos to obtain answers by substituting
arguments with instances in the available sample space. As all questions take action grounding as a
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prerequisite, we add indirect references (e.g., the first..., the action before...) to actions and objects
when making substitutions to reflect this challenge; see details in supplementary. After this initial
process, we obtain 368K question-answer pairs over 2K videos as the full question set.

Answer Distribution Balancing We balance our answer distribution to avoid shortcuts from
exploiting imbalances. Following the scheme introduced in [56], we tag each question template
with its scope, type, and the targeting semantic category (e.g., actions, objects, states) and use the
composition of all tags as the unique reasoning type for each question. We balance binary verification
questions to have an equal proportion of each answer within each reasoning type. For open-answer
questions, we use rejection sampling to ensure that the top 20% frequent answers for each reasoning
type do not appear as answers for more than 33.3% of questions in the same type. After balancing by
reasoning types, we proportionally sample questions to obtain a 40K diverse and balanced question
set with a 1:2 ratio of binary and open-answer questions. We visualize the statistics of questions and
answers and the effect of answer balancing in Fig. 3. More details are provided in supplementary.

Benchmark Splits We provide two benchmarking splits normal and indirect for video question-
answering on EgoTaskQA. For the normal split, we randomly sample questions according to their
answer distribution and reasoning types to have a 3:1:1 split over training, validation, and test sets.
The indirect split is motivated by the fact that during task execution, actions, objects, and their changes
are often strongly correlated. It leaves the chance for the model to perform well by simply over-fitting
these strong correlations without thorough task understanding; see Sec. 4.2 for a more in-depth
discussion. We leverage the indirect references in our question to inspect the models’ capability to
use the learned knowledge for multi-step reasoning and generalize them to indirect references without
over-fitting. More specifically, we filter questions without indirect references and simple indirect
reference questions without multiple reasoning steps (e.g., what is the first action this person did?
what did the person do before action “putting something”?) from all question-answer pairs to form
the training set, and split all indirect reference questions with multiple reasoning steps as validation
and test sets. Under this setting, the indirect split has a portion of 2:1:1 for training, validation, and
test sets, respectively. We leave the remaining discussion of the indirect split to Sec. 4.3.

4 Experiments

In this section, we evaluate and analyze the performance of video question-answering models on
EgoTaskQA. We report how well models perform on different question scopes, types as well as
targeting semantics on both normal and indirect splits. We also provide diagnostic experiments on
the language modality to show the necessity of the indirect split.

Baselines In our experiments, we evaluate six state-of-the-art video question-answering models: Vi-
sualBERT [97], PSAC [98], HME [99], HGA [100], HCRN [101], and ClipBERT [102]. VisualBERT
is a VL-BERT model designed for vision-language tasks. PSAC uses positional self-attention and
co-attention network blocks to fuse visual and language features. HME uses external memory blocks
for both visual inputs and questions on top of an LSTM-based encoder-decoder structure. HGA for-
mulates video question-answering by constructing graphs for both videos and questions and aligning
them. HCRN adopts a hierarchical framework by stacking relational modules over motion, question,
and visual features. ClipBERT leverages sparsely sampled video clips and grid features [103] in
a transformer architecture and achieves state-of-the-art results on video question-answering. We
formulate question-answering in EgoTaskQA as a classification problem over all answer vocabulary
and use models’ accuracy as the evaluation metric under different settings. We provide details on
model implementation, hyperparameter selection, and the training process in supplementary.

4.1 Comparative Analysis

We provide experimental results of baseline models on the EgoTaskQA normal split in Tab. 2.
Model performances are evaluated on question scopes, types, targeting semantics, and overall answer
categories. To quantify the naturalness and correctness of questions and answers in the EgoTaskQA
benchmark, we provide human evaluation following the consistency check introduced in [87, 56].
More specifically, we randomly sample 50 questions for each category and instruct AMT workers to
evaluate the quality of the generated answer. Additionally, we compare all baseline models with a
simple frequency-based baseline, namely "Most Likely" in Tab. 2, where we select the most likely
answer for each category to answer all questions in that category.
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Table 2: Model performance on the EgoTaskQA normal split.
Category Most Likely VisualBERT [97] PSAC [98] HME [99] HGA [100] HCRN [101] ClipBERT [102] Human

Sc
op

e world 18.62 39.73 40.76 41.91 38.82 44.27 42.15 74
intent 2.54 44.51 46.19 48.92 42.12 49.77 40.94 82

multi-agent 10.92 26.29 30.59 27.98 23.43 31.36 27.63 76
Ty

pe

descriptive 18.64 41.99 40.63 41.45 38.04 43.48 38.45 88
predictive 1.57 30.37 31.98 35.88 25.57 36.56 31.50 88

counterfactual 23.62 41.99 41.89 44.13 41.94 48.00 46.75 80
explanatory 7.97 37.42 37.99 38.85 35.97 40.60 42.39 74

Se
m

an
tic action 10.05 15.02 14.75 14.99 15.08 14.92 22.91 70

object 2.07 23.26 36.53 36.05 19.09 45.31 21.80 82
state 6.05 59.20 61.89 63.44 55.65 68.28 54.36 80

change 41.97 68.27 65.05 68.87 68.38 67.38 66.58 82

O
ve

ra
ll open 0.70 24.62 26.97 27.66 22.75 30.23 27.70 82

binary 50.46 68.08 65.95 68.6 68.53 69.42 67.52 76
all 15.4 37.93 38.90 40.16 36.77 42.20 39.87 80

As shown in Tab. 2, the low performance of the most likely answer proves that our answer distribution
is correctly balanced. For certain categories (e.g., change), the most likely answer has relatively
high accuracy (41.97%) as it covers both open-answer and binary questions. Next, we observe
relative low human performance in certain categories (e.g., action and explanatory). This indicates
that identifying causal dependency between actions and conducting multi-step reasoning is not a
trivial task for humans as also discovered in [56]. However, we still observe a large gap between
state-of-the-art models and human performance. Among all models, we find HME, HCRN, and
ClipBERT to perform the best. This result is reasonable since they leverage different ways to provide
better visual representations and interactions between video and language. Among all question scopes,
we recognize a relatively low accuracy on multi-agent-related questions among all question scopes. It
implies that understanding other agents’ actions during task execution is still difficult without explicit
modeling. It is significant in egocentric vision as a person’s view changes dramatically, and only
glances can be taken to acquire others’ information. Meanwhile, we notice that these models perform
relatively well for questions on states and changing attributes. We conjecture that this is attributed to
the task knowledge embedded in textual descriptions of questions since actions, objects, and state
changes are strongly correlated, as mentioned in Sec. 3.2.

4.2 The Effectiveness of Language

Object information We found the object information in the texts to be highly beneficial for question-
answering on task-related knowledge during initial experiments. Compared to the original LEMMA
action annotation (e.g., drinking [cereal] with [cup]), we use verbs to refer to actions in EgoTaskQA
and obfuscate object information at different levels (e.g., drink something with cup, drink something
with something) as similarly done in [56, 58]. While both types of action references localize to the
same action interval, it contains different levels of knowledge in the language modality. Intuitively,
the combination of action verbs (e.g., cut) and targeting objects (e.g., watermelon) provide object
state information (e.g., diced) under certain scenarios. Therefore, we compare models’ performance
at different levels of object information obfuscation. As shown in Fig. 4, we recognize a significant
performance gain for all models by gradually removing object information obfuscation in text, i.e.,
substituting “something” with the original object. This result supports the hypothesis that with
fine-grained action annotations, we can learn task-related knowledge reasonably well by simply
exploiting texts. It shares the same conclusion with recent works on leveraging text-based knowledge
for helping instructional video understanding [104]. To further investigate the effectiveness of the
language modality, we conduct ablative experiments on the EgoTaskQA normal split.

Language-Only Language has been shown to provide knowledge that helps visual question-
answering [105]. To study the role of language in EgoTaskQA, we design a text-only setting for
VisualBERT and HCRN, testing BERT [106] and HCRN without vision against their vision-language
counterparts. As shown in Tab. 3, the performance for most question categories dropped significantly.
For the task of video question-answering, we should expect that dropping the vision branch will
significantly affect the models’ performance. As shown in Tab. 3, we observe the general performance
for the two models decreased as we expected. Among all categories, the models’ performance for the
objects decreased the most, which is consistent with the fact that the object queries highly depend on
the situation provided in the videos (e.g., which object changed its status in the video?). However, we
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Figure 4: Ablative study on model performance with dif-
ferent levels of object information obfuscation on the Ego-
TaskQA normal split.

Table 3: Language-only question-answering results
on the EgoTaskQA normal split.

Category BERT [106] HCRN (w/o vision)

Acc. Change Acc. Change

world 36.28 -8.7% 35.22 -20.4%
intent 35.02 -21.3% 34.93 -29.8%

multi-agent 20.58 -21.7% 19.17 -38.9%

descriptive 34.55 -17.7% 33.58 -22.8%
predictive 24.75 -18.5% 24.3 -33.5%

counterfactual 41.3 -1.6% 40.4 -15.8%
explanatory 31.78 -15.1% 30.57 -24.7%

action 15.72 +4.6% 15.64 -1.7%
object 7.43 -68% 6.33 -86.0%
state 45.03 -23.9% 42.51 -37.7%

change 69.87 +2.3% 68.77 +2.1%

all 33.92 -10.6% 32.51 -23.0%

Table 4: Model performance on the EgoTaskQA indirect split.
Category BERT HCRN (w/o vision) VisualBERT PSAC HME HGA HCRN ClipBERT

Sc
op

e world 34.96 33.61 40.00 44.74 35.91 31.29 44.04 26.51
intent 23.56 23.98 36.02 48.38 31.73 20.42 47.02 14.66

multi-agent 19.70 19.25 26.02 35.37 25.07 17.74 30.11 20.09

Ty
pe

descriptive 33.09 30.73 38.9 43.36 34.48 29.01 42.02 24.35
predictive 15.58 13.68 31.37 29.11 27.79 15.16 46.32 10.32

counterfactual 34.59 34.75 37.63 39.94 35.07 33.01 43.64 26.29
explanatory 27.38 28.11 32.75 42.53 29.16 24.00 39.69 22.46

Se
m

an
tic action 26.91 28.18 27.49 30.06 25.12 26.15 29.61 25.25

object 2.808 4.13 22.63 30.97 19.08 7.02 32.20 10.49
state 21.96 21.24 32.02 43.29 31.60 17.67 41.81 15.29

change 55.28 50.71 55.59 57.20 47.65 47.22 56.27 35.26

O
ve

ra
ll open 11.22 11.38 21.05 28.23 18.27 8.66 27.82 11.17

binary 58.24 55.52 57.61 60.30 52.55 53.72 59.29 40.71
all 31.78 30.76 37.01 42.25 33.06 28.36 41.56 24.08

Performance Change -6.4% -5.4% -2.4% +4.9% -17.7% -22.9% -1.5% -39.6%

observe a slight performance gain on object state change questions. This further suggests that the
knowledge of world state change, i.e. which object attribute could change under actions, is embedded
within question texts. Models could exploit question texts to learn simple associations between
attribute types and action verbs (e.g., cleanliness and wash, emptiness and pour, shape and cut, etc.).

4.3 Generalizing to indirect references

On the EgoTaskQA indirect split, we evaluate models’ capability to leverage learned task knowledge
for solving more complicated indirect reference tasks. With the normal split allowing for shortcuts
on action-state associations, the indirect split forbids such exploitation by differentiating references
during training and testing. As shown in Tab. 4, we observe more significant performance drops
in language-only models compared to their vision-language counterparts. More specifically, the
performance of BERT and language-only HCRN dropped 20.8% and 26.3% on the “change” category,
where we observed potential exploitation on question texts in Sec. 4.2. This serves as a shred of
evidence that the indirect split helps reduce the possibility of exploiting simple associations in texts.
As for baseline models, we recognize a common performance decrease shared by most models on the
indirect split. Among them, we notice a significant performance drop for ClipBERT, which conflicts
with the dominating role of large-scale pretrained vision-language models on various reasoning tasks.
We suspect that this degeneration might originate from two lines of problems: (1) the model design
on sampling fewer videos and aligning visual/text graphs directly, which conflicts with the intuition
that detailed spatial-temporal information and reasoning is indispensable for grounding indirect
references; and (2) adopting large-scale pre-trained models directly to a specific domain is non-trivial,
especially with challenges in grounding knowledge to visual signals. Overall, our experiments on the
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EgoTaskQA indirect split further reveals the demand for better spatial-temporal reasoning modules
that solve the problem of compositional goal-oriented reasoning with indirect references.

5 Conclusions

We introduce the EgoTaskQA benchmark to systematically evaluate models’ understanding of goal-
oriented activities from an egocentric perspective. We annotate object states, relationships, and
agents’ beliefs on the LEMMA dataset. We generate diverse questions covering different reasoning
capabilities and target the crucial dimensions of task understanding: action dependencies and effects,
agents’ intents and goals, and belief modeling. We evaluate state-of-the-art video question-answering
models and show their gaps compared with the human on two challenging splits, normal and indirect,
to promote future study on indirect reference understanding and goal-oriented reasoning.

Ethics The EgoTaskQA benchmark is built upon LEMMA and contains different subjects. As noted
in LEMMA, the authors obtain consent from subjects by signing an agreement form with potential
impacts adequately informed before recording. We mainly annotated objective world status and multi-
agent information using multiple-choice selection and asked annotators to annotate the awareness of
other subjects’ actions with binary options for subjective annotations. For the annotation process,
the workers’ agreements are obtained by the publicly available annotation service platform AMT we
adopted. In summary, we forbid subjective comments with no personally identifiable information
revealed, and all participants’ agreements are well addressed.

Limitations Our work is primarily limited to two aspects. (i) Constrained by the data and annotation
complexity, the scope of our activities is limited to indoor goal-oriented tasks. We believe that adding
more diverse activities to EgoTaskQA will further increase its value as a general benchmark. (ii)
Although EgoTaskQA supports many more additional supervisions, we currently limit our discussions
to the six state-of-the-art models to have a fair comparison. With the current result showing insights
into problems and challenges in EgoTaskQA, we leave the exploration of model design to future
work and briefly discuss the potential solutions as follows. Meanwhile, we will continue this data
curation for a broader range of human activities.

Future work We plan to investigate the following two branches in the future, (i) explicit spatial-
temporal grounding for modularized video QA models and (ii) prompting large-scale pre-trained
models (both visual and language) for the domain-specific video QA challenges. Firstly, egocentric
data can provide finer information and ease the challenge of grounding in modularized neuro-symbolic
models. This could complement existing video reasoning methods and test the potential of neuro-
symbolic models on complex reasoning tasks from a real-world, multi-agent, and causal perspective.
Next, with increasing efforts in adapting large-scale pre-trained models for reasoning, our experiments
suggest that adopting such models directly to a specific domain is non-trivial. Compared to their
capabilities in commonsense reasoning, how to enable pre-trained models with the ability to fastly
adapt to complex reasoning tasks still remains an interesting problem to be solved.

Broader impact With most existing intelligent robots depending on the understanding of world
states to act and plan, we hope that the augmented LEMMA dataset can bridge the study of world-
model learning in simulated environments and real-world complex event understanding. Additionally,
we believe the EgoTaskQA benchmark proposes challenges on goal-oriented reasoning and hope
such efforts can foster research in broader video understanding directions, including video-language
understanding, spatial-temporal grounding, task learning, future anticipation. We also see its potential
in imitation learning and knowledge acquisition, which will further drive the study of intelligent
assistive robots that can perform tasks coordinately with humans.

Public access We host our videos, annotations, metadata, and question-answering pairs on our
website. We provide videos in .mp4 format, metadata, annotations in JSON and pandas DataFrames,
and question-answer pairs with their corresponding metadata in JSON format. We make our data
publicly available under the CC BY-NC-SA license, which allows reusers to distribute, remix, adapt
and build upon the material for noncommercial purposes only and only so long as attribution is given
to the creator. We bear all responsibility in case of violation of rights.
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