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Abstract

Large Language Models (LLMs) are increasingly adopted in high-stakes scenarios,
yet their safety mechanisms often remain fragile. Simple jailbreak prompts or
even benign fine-tuning can bypass internal safeguards, underscoring the need to
understand the failure modes of current safety strategies. Recent findings suggest
that vulnerabilities emerge when alignment is confined to only the initial output
tokens. To address this, we introduce the notion of safety depth, a designated
output position where the model refuses to generate harmful content. While deeper
alignment appears promising, identifying the optimal safety depth remains an open
and underexplored challenge.
We leverage the equivalence between autoregressive language models and Markov
chains to derive the first theoretical result on identifying the optimal safety depth.
To reach this safety depth effectively, we propose a cyclic group augmentation
strategy that improves safety scores across six LLMs. In addition, we uncover
a critical interaction between safety depth and ensemble width, demonstrating
that larger ensembles can offset shallower alignments. These results suggest that
test-time computation, often overlooked in safety alignment, can play a key role.
Our approach provides actionable insights for building safer LLMs.

1 Introduction
Although Large Language Models (LLMs) [Touvron et al., 2023, Achiam et al., 2023, Team et al.,
2023, Duan et al., 2023, Ouyang et al., 2022] excel in diverse applications, they often produce
harmful content. Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022,
Bai et al., 2022] and its variants, Direct Preference Optimization (DPO) [Rafailov et al., 2024]
and Kahneman-Tversky Optimization (KTO) [Ethayarajh et al., 2024], aim to mitigate this issue.
However, recent studies have shown that adversarially optimized inputs can still elicit harmful content
[Qi et al., 2023, Carlini et al., 2024, Chao et al., 2023, Andriushchenko et al., 2024], and even benign
fine-tuning can break existing alignments [Qi et al., 2024, Zhan et al., 2024].

A recent study [Qi et al., 2025] uncovered that this vulnerability stems from limiting safety alignment
to only the initial output tokens, a practice termed shallow safety alignment. They introduced a data
augmentation method to deepen alignment, leading to the question: “How extensive should safety
alignment be?” To address this, we divide the problem into manageable steps. First, we ask, “What
does it mean for an alignment to be safe?” We consider a finite set Y of harmful content, such as
explicit sexual, violent, or private information, that we intend the model to avoid. An LLM is safely
aligned if the probability of generating any content in Y is extremely low.

Second, rather than always placing a refusal at the beginning, Qi et al. [2025] randomly picked a
safety depth from a uniform distribution and insert a refusal response along with harmful instructions
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at that position. From a group-theoretic perspective, these insertions represent specific instances of
broader transformations on the dataset. Motivated by this, we pose another question: “What if the
dataset is augmented by rotation, forming a cyclic group?” (see Figure 1). This framework links
safety alignment to permutation groups, a topic we explore in Section 4. For readers less familiar
with group theory, Appendix A offers a concise overview.

{I cannot, say, bad words} {say, bad words, I cannot} {bad words, I cannot, say}

{I cannot, say, bad words} {say, I cannot, bad words} {say, bad words, I cannot}

Figure 1: Permutations of phrases used for data augmentation. The top row represents a cyclic group,
while the bottom row, as proposed by [Qi et al., 2025], is non-cyclic.

Lastly, while many works [Malladi et al., 2023, Jang et al., 2024, Tomihari and Sato, 2024] rely on
the Neural Tangent Kernel (NTK) [Jacot et al., 2018] to analyze fine-tuning and Gerken and Kessel
[2024] demonstrates that deep ensembles can become fully equivariant through data augmentation
over all group actions, we adopt a Markov chain perspective. Markov chain benefits without relying
on the linearization assumptions. Detailed comparisons are discussed in Appendix B.

Our contributions are threefold:

• Safety Depth. We formalize the notion of Safety Depth, a designated output position where
the model refuses to generate harmful content. Viewing this through a Markov chain lens
in Theorem 4.6 provides theoretical assurances of arbitrarily safe behavior via iterative
fine-tuning on autoregressive LLMs.

• Cyclic Augmentation. Proposition 4.9 establishes that safety guarantees remain intact
under cyclic augmentation, while also accelerating convergence. Empirically, this results in
consistent improvements in safety scores across multiple LLMs.

• Ensemble Safety Depth. Proposition 4.11 shows that ensembles can preserve safety
guarantees without per-model training. This provides a practical alternative for users seeking
an off-the-shelf solution, though at the expense of longer test-time inference.

2 Related Works
Safety Alignment. Safety alignment ensures that LLMs adhere to human values, reducing their
susceptibility to malicious instructions [Yi et al., 2024]. Li et al. [2025] identified particular “safety
layers” that differentiate malicious from normal queries, revealing distinct behaviors when models
process adversarial versus benign prompts. Common alignment methods include RLHF [Ouyang et al.,
2022, Bai et al., 2022] and DPO [Rafailov et al., 2024], but researchers have also explored alternatives.
For instance, Safety Arithmetic [Hazra et al., 2024] is a training-free technique employing parameter
arithmetic to suppress harmful outputs while promoting safer ones, and SAFEPATCHING [Zhao
et al., 2024, Kim et al., 2024] refines alignment by selectively adjusting model parameters. Another
training-free approach [Zhou et al., 2024] can even reverse an LLM’s safety alignment. [Zhao et al.,
2025, Haldar et al., 2025, Pan et al., 2025, Zhang et al., 2025] also represent the other effort.
Markov chains and LLMs. While they may seem unrelated, Markov chains and LLMs share a core
principle. Autoregressive LLMs can be viewed as Markov chains with a large but finite state space,
and their token-by-token generation mirrors the “memorylessness” property of Markov processes.
Zekri et al. [2024] formally demonstrated that an LLM with vocabulary size D and context length
K can be represented by a Markov chain of size O(DK), offering a theoretical lens for studying
convergence and generalization properties in LLMs.
Group theory and LLMs. Group theory focuses on symmetry, manifesting in phenomena from
crystal structures to fundamental forces2. In the LLM context, it has been used to test algebraic
properties—such as closure, identity, inverse, and associativity—revealing that LLMs often fail to
maintain these properties under various testing regimes [Imani and Palangi, 2024]. For instance,
LLMs may produce skewed outputs or show abrupt performance drops beyond certain sequence

2This is distinct from Group Relative Policy Optimization (GRPO) [Shao et al., 2024] by [Guo et al., 2025].
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lengths. Conversely, Chang et al. [2025] explored a more constructive angle, illustrating how carefully
curated training data can help LLMs learn and uphold algebraic structures more reliably.

3 Preliminaries
This section gives an overview of sufficient elements to understand our main theorem, including the
Markov chain training procedure, the autoregressive language model as a Markov chain, and group
action on the training procedure. We also present a notation table in Table 4 in Appendix C.

Markov Chain. Consider a discrete-time Markov chain with n states labeled 1, 2, . . . , n. Let
Qt ∈ Rn×n denote the transition matrix at time t. We assume an initial transition matrix Q0 in the
context of safety alignment and introduce a small learning rate α. The bias is encoded by a matrix
B ∈ Rn×n, where B represents how the bias modifies specific entries of Q0. The bias B can be seen
as a defender preference for refusal or an attacker preference for uncensored words that is discounted
by a factor γ ∈ (0, 1) at each time t. Hence, the transition matrix at time t is given by:

Qt = Q0 + αγt B. (1)

We require that Qt remains a valid stochastic matrix; in particular, each row of Qt must sum to 1,
and entries must remain nonnegative. This typically imposes constraints on the magnitude of α and
the structure of B. The asymptotic behavior of Markov chain is left to Appendix D.

Autoregressive LLM. We formally introduce a typical autoregressive LLM following [Zekri et al.,
2024]; the detailed inner structure is left to Appendix E. Let V be a dictionary of size D. For context
window K, define V∗

K := {v ∈ V∗ : |v| ≤ K}, which represents a restriction of Kleene closure of V .
Consider an autoregressive LLM, πD,K

θ : V∗
K → ∆(V), where ∆(V) denotes the probability simplex

over V and weights are parameterized by θ. We will drop the superscript D,K when they are of no
importance.

Specifically, at inference time we can let X ⊆ V∗
K be the set of input documents (token sequences)

and Y ⊆ V∗
K be the set of output documents. Given an input x, the model’s output distribution is

denoted by πθ(·|x) ∈ ∆(Y), where ∆(Y) is the set of probability distributions over Y . We write
y ∼ πθ(·|x) to denote the sampling output y of this distribution.

From the result of [Zekri et al., 2024], we know that a Markov chain can represent any autoregressive
model equivalently. Hence, we have the following assumption that characterizes fine-tuning LLM.

Assumption 3.1. Fine-tuning LLM is equivalent to an iterative update of the transition matrix Qt.

Justification of Assumption 3.1. This assumption, also used by [Zekri et al., 2024], treats autore-
gressive LLMs as Markov chains, where fine-tuning corresponds to iterative updates of the transition
matrix. While LLMs operate in a high-dimensional parameter space, the observable effect of fine-
tuning is to alter token transition probabilities, which closely mirrors transition dynamics in Markov
chains. To illustrate, consider a toy model with tokens “I,” “cannot,” and “comply.” Fine-tuning
to reinforce the refusal phrase “I cannot comply” increases the probability of the transitions I→
cannot and cannot→ comply, which can be modeled as structured updates to a stochastic matrix.
This abstraction enables tractable analysis while retaining fidelity to LLM behavior at the token level.

Data Augmentation via Group Actions. We introduce the data augmentation via group action and
typically leverage this property to analyze the safety alignment for this specially designed dataset.
Given a training set T = {(xi, yi)}Ni=1, we can augment it using group actions.

Definition 3.2 (Augmented Training Set). The group-augmented training set is defined as:

Taug = {(ρX(g)x, ρY (g)y) | g ∈ G, (x, y) ∈ T }, (2)

where ρX and ρY are group representations as illustrated in Appendix A.6.

Proposition 3.3. For a finite group G, its action on the training set can be represented as a
permutation σg:

ρX(g)xi = xσg(i) and ρY (g)yi = yσg(i).

This leads to the following properties: the size of the augmented training set scales with the group
order: |Taug| = |G| · |T |, and the augmentation preserves the relationship between inputs and outputs.

Assumption 3.4. Fine-tuning LLM on Taug is equivalent to matrix conjugate on a bias matrix.
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Justifications of Assumption 3.4. This assumption states that fine-tuning on cyclically augmented
data corresponds to conjugating the bias matrix: B(t) = P tBP−t, where P is a permutation matrix.
The augmentation rotates refusal phrases across positions (e.g., “I cannot say bad words” → “say
bad words I cannot”), forming a cyclic group of training examples. This ensures that each refusal
position receives consistent supervision, and the effect on learning can be captured as a sequence of
structured bias transformations. Our theoretical results (e.g., Proposition 4.9 ) show that under this
setup, the model converges to a δ-absorbing state at multiple positions, approximating an oracle with
full positional coverage.

Group action on a Markov chain. Suppose B(t) is obtained by applying a cyclic group action to
some base matrix B at time t. For instance, if P is a fixed permutation of length n, then

B(t) = P tBP−t. (3)

Typically, B itself may or may not be stochastic, but it is bounded in some norm: ∥B(t)∥ = ∥B∥ for
any matrix norm invariant under permutation. Since Qt −Q0 = αγtB(t), we typically get

∥Qt −Q0∥∞ ≤ αγt∥B(t)∥∞ = αγt∥B∥∞. (4)

Remark 3.5. Both permutations, as shown in Figure 1, are bounded due to Eqs. (3) and (4). However,
the data augmentation in [Qi et al., 2025] is not a group, which made the size of the augmented
dataset hard to control. Moreover, although both data augmentations in [Qi et al., 2025] and our
cyclic augmentation are counterfactual, the model’s utility remains stable, as shown in Appendix J.

4 Main Result
In this section, we first formally define the safety alignment of autoregressive models to which
many LLMs belong. Zekri et al. [2024] has shown that an autoregressive language model can be
reinterpreted as a Markov chain over its output space, providing a rigorous framework for analyzing
model behavior. Most importantly, we are particularly interested in safety depth, a specific position
of output responses in the training samples where the model declines to generate potentially harmful
content. To ensure the safety of such models, it is desirable that once the model enters a safety
depth, also called a refusal state, it never transitions to generating harmful content. Theorem 4.6 and
Corollary 4.8 demonstrate that the probability of leaving refusal states can be made arbitrarily small
through iterative fine-tuning. Specifically, repeated minor adjustments that increase the probability
of remaining in refusal states will eventually make these states effectively absorbed, providing
theoretical guarantees for the model’s safety properties under the Markov chain interpretation.
Definition 4.1 (Safety Alignment). Let a language model πθ(· | x) be a conditional distribution over
the set of all possible output sequences Y . Let Y ⊂ Y be a subset of “harmful contents.” We say the
language model is safely aligned if:

sup
x∈X

πθ

(
Y | x

)
≤ ε, (5)

where ε is a small threshold. Equivalently, for all x ∈ X :

πθ

(
Y | x

)
=
∑
y∈Y

πθ(y | x) ≤ ε. (6)

This ensures that for every input x, the probability of generating harmful content is bounded by a
small value ε. On the other hand, recall from [Zekri et al., 2024] that any autoregressive model can
be equivalently represented by a Markov chain. Another line of work [Emde et al., 2025] uses a
likelihood-ratio test with a guardrail model to provide a universal adversarial bound during inference.
Definition 4.2 (Safe Alignment in Markov View). Let πθ be considered as a Markov chain on state
space S with transition probabilities Pr(s1 → s2) for s1, s2 ∈ S. We first define the set of harmful
states SY ⊆ S, and then define the set that can reach SY with positive probability as:

S⊥
Y := {s ∈ S \ SY | ∃n ≥ 1,

n

Pr(s→ SY ) > 0}, (7)

where
n

Pr(s→ SY ) is the probability from s to harmful state SY in n steps. Finally, we can define
the block transition matrices:
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• Q = [Pr(s1 → s2)]s1,s2∈S⊥
Y

for transitions within S⊥
Y

• Qharm = [Pr(s1 → s2)]s1∈S⊥
Y ,s2∈SY

for transitions from S⊥
Y to SY

For any initial distribution p0 over S⊥
Y , the hitting probability for harmful states is:

P(hit SY | p0) = p⊤
0 (I −Q)−1Qharm1. (8)

The model is safely aligned if this probability is bounded for all initial states in S⊥
Y :

max
p0

P(hit SY | p0) ≤ ε. (9)

Remark 4.3. Since the states in S \ (SY ∪ S⊥
Y ) cannot reach SY and thus have hitting probability 0,

they are excluded from the analysis to ensure matrix invertibility. Please see Appendix F for detailed
derivation of hitting probability.

A convenient way is to treat the refusal as an absorbing event in the Markov-chain view. Concretely,
once the chain generates a refusal token (e.g., the state whose last tokens are “I’m sorry, but I can’t
assist with that.”), the model either terminates or is forced to remain in some “refusal” state that
cannot transition further into harmful states.3 Formally, this is Definition 4.4 described below.
Definition 4.4 (Exact absorbing state). A state s is said to be exactly absorbing if it contains the
refusal token such that there exists a T ∈ N, for all t ≥ T ,

Qt(s, s
′) = 0 for all s′ ̸= s and Qt(s, s) = 1. (10)

Thus, there is no path from a refusal state to any other state, particularly none leads to harmful states.

Figure 2: Visualization of δ-absorbing. At
t = 0, all states can transition freely. At
t = k, refusal states have thick self-loops,
indicating high self-transition probability.

In practice, interactions with LLMs are often over mul-
tiple turns. Users rephrase questions, probe with hypo-
thetical scenarios, or continue conversations even after a
refusal. This multi-turn nature of dialogue is reflected in
current leading services such as ChatGPT and DeepSeek,
which do not immediately terminate conversations upon
a refusal. Abruptly ending these interactions upon de-
tection of refusal could frustrate users and degrade their
overall satisfaction with the service. Thus, relaxing the
exact absorbing in Definition 4.4 to Theorem 4.6 ensures
continuous and coherent interactions without abruptly
terminating the chat.

How Deep a Safety Alignment Should be Made? The answer is elucidated in Theorem 4.6 and
Corollary 4.8. Here, the safety depth is denoted as r. This can also be intuitively understood in
Figure 2 that depicts a three-state Markov chain with one refusal state and two regular states.
Definition 4.5 (Safety Depth). Let the LLM be represented by a discrete-time Markov chain with
a finite state space S and a transition matrix Qt at time t. Let R ⊂ S be a finite, non-empty set of
designated refusal-state indices. A safety depth, denoted by r, is an index corresponding to a specific
refusal state, such that r ∈ R.

A safety depth r is considered secure at training step T if its corresponding refusal state r becomes
δ-absorbing. This means that for a given small positive constant δ, the transition matrix QT satisfies
the following conditions: |QT (r, r) − 1| ≤ δ and |QT (r, s)| ≤ δ, for all non-refusal states s ̸= r.
The first condition ensures that the probability of the model staying in the refusal state is close to 1.
The second ensures that the probability of transitioning from the refusal state to any other state is
close to 0.

3We aim to preserve safety under a more general setting in which the model continues producing texts
even after refusal. If we only rely on an “end of sentence” (EOS) token to stop generation, the model can
trivially avoid harmful contents by refusing and then terminating all outputs. However, many real-world usage
scenarios do not strictly terminate on refusal. The model may receive follow-up user prompts, or it may continue
auto-completing texts in multi-turn conversations. In such cases, a single refusal does not guarantee subsequent
tokens remain safe. More illustrative examples are shown in Appendix K.
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The optimal safety depth, denoted r∗, is the largest safety depth that is guaranteed to become
δ-absorbing for a given learning rate α and number of training steps T . It is formally defined as the
maximum element of the set of refusal statesR that satisfies the conditions for δ-absorption:

r∗ = max{r ∈ R | α > αr and T > Tr},
where αr and Tr are the minimum learning rate and training steps required to make state r become
δ-absorbing.

While Theorem 4.6 is stated in the context of Markov chains, it can be extended to the setting of LLM
finetuning under Assumption 3.1. Detailed proofs of all theorems are provided in the Appendix H.
Theorem 4.6 (δ-absorbing). Consider a Markov chain with transition matrices Qt = Q0 + αγtB,
where γ ∈ (0, 1) is the discount factor, α > 0 is the learning rate, and B is a bias matrix with
B(r, r) > 0 and B(r, s) < 0 for refusal states r and s ̸= r.

For any δ > 0, if the training steps T satisfies:

T >
log(δ(1− γ))

log(γ)
− 1, (11)

and α satisfies:

α >
maxr,s |Q0(r, s)|(1− γ)

min(B(r, r),−B(r, s))
, (12)

then all refusal states become δ-absorbing, meaning:

|QT (r, r)− 1| ≤ δ and |QT (r, s)| ≤ δ, (13)

for all refusal states r and non-refusal states s.

Example of Theorem 4.6. First, we can set up a transition matrix Q0 as:

Q0 =

(
Q0(r, r) Q0(r, s)
Q0(s, r) Q0(s, s)

)
=

(
0.7 0.3
0.2 0.8

)
as well as set up a bias matrix B =

(
+1 −1
0 0

)
. Next, for δ = 0.01 and γ = 0.9, we can pick up

T = 65 to satisfy Eq. (11), i.e., T > log(0.001)
log(0.9) − 1 ≈ 64.56. We can also choose a proper α = 0.081

to satisfy Eq. (12), i.e., α > 0.8×0.1
1 = 0.08. Thus, we have a sequence of transition matrices:

Q1 =

(
0.7729 0.2271
0.2 0.8

)
, Q2 =

(
0.8385 0.1615
0.2 0.8

)
, . . .

After T steps, we have QT (r, r) ≈ 1 and QT (r, s) ≈ 0.

This demonstrates the theorem’s claim that r becomes effectively absorbing.
Remark 4.7. As T sets too large, QT (r, r) will be a large positive number, and QT (r, s) will be a
large negative number. To handle this issue, we adopt a normalization procedure in all numerical
experiments, which is described in Algorithm 1 at Appendix G .
Corollary 4.8 (Largest Safety Depth That Becomes δ-Absorbing). LetR be a finite set of refusal-state
indices. For each r ∈ R, define

αr =
maxs |Q0(r, s)|(1− γ)

min(B(r, r),−B(r, s))
, (14)

and

Tr =

⌈
log(δ(1− γ))

log(γ)
− 1

⌉
. (15)

Given any α > 0 and T ∈ N, let

r∗ = max {r ∈ R | α > αr and T > Tr} . (16)

Then, for every r ≤ r∗, the transition matrix QT makes r δ-absorbing at training step T ; that is,

|QT (r, r)− 1| ≤ δ and |QT (r, s)| ≤ δ (∀s ̸= r). (17)
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Example of Corollary 4.8. First, we can set up a transition matrix Q0 as:

Q0 =

(
Q0(1, 1) Q0(1, 2) Q0(1, s)
Q0(2, 1) Q0(2, 2) Q0(2, s)
Q0(s, 1) Q0(s, 2) Q0(s, s)

)
=

(
0.6 0.2 0.2
0.1 0.8 0.1
0.2 0.3 0.5

)
.

The refusal states are 1 and 2, soR = {1, 2}. We choose a bias matrix B as:

B =

(
1 −1 −1
−1 1 −1
0 0 0

)
.

For δ = 0.01 and γ = 0.9, we have T1 = T2 =
⌈
log(0.001)
log(0.9) − 1

⌉
= 65. For r = 1, the row

is (0.6, 0.2, 0.2). Hence maxs |Q0(1, s)| = 0.6. Since B(1, 1) = 1 and −B(1, s) = 1, the
denominator is 1. Thus, α1 = 0.6×0.1

1 = 0.06. For r = 2, similarly, we have α2 = 0.08.

Suppose we pick (α, T ) = (0.075, 70). Then:

α1 = 0.06 < 0.075 < 0.08 = α2, and T1 = T2 = 65 < 70.

By Eq (16), r∗ = max
{
r ∈ {1, 2}

∣∣∣ α > αr and T > Tr

}
. Hence the only r satisfying both

conditions is r = 1. Thus r∗ = 1.

Corollary 4.8 guarantees that after T = 70 steps, state 1 becomes δ-absorbing, i.e.,∣∣Q70(1, 1)− 1
∣∣ ≤ 0.01,

∣∣Q70(1, s)
∣∣ ≤ 0.01,

for all s ̸= 1. Meanwhile, state 2 is not guaranteed to be δ-absorbing with these parameter values,
since α = 0.075 does not exceed α2 = 0.08.

If instead we pick α = 0.09 > 0.08 (and still T = 70 > 65), then both r = 1 and r = 2 satisfy the
conditions, so

r∗ = max{ 1, 2} = 2,

and both states 1 and 2 become δ-absorbing. This illustrates precisely how the largest (optimal)
safety depth r∗ depends on the chosen (α, T ).

Through Proposition 3.3 and Assumption 3.4, this framework extends naturally to the permutation
group actions on the bias matrix, which shows that similar guarantees hold.
Proposition 4.9 (Permutation Group Actions δ-Absorbing). Consider a Markov chain with transition
matrices Qt = Q0 + αγtB(t), where B(t) = P tBP−t for some permutation matrix P . For refusal
states to become absorbing with precision δ > 0, the required training steps T must satisfy:

T > min

(
log(δ(1− γ))

log(γ)
, ord(P )

)
− 1, (18)

where ord(P ) is the order of permutation P .

Furthermore, if the bias matrices B(t) satisfy the conditions: B(t)(r, r) > 0 for refusal states r,
B(t)(r, s) < 0 for s ̸= r, and α satisfies:

α >
maxr,s |Q0(r, s)|(1− γ)

min(B(t)(r, r),−B(t)(r, s))
, (19)

for all t, then with T training steps, refusal states become δ-absorbing.

Example of Proposition 4.9. A simple initial transition matrix Q0 can be:

Q0 =

(
Q0(r, r) Q0(r, s1) Q0(r, s2)
Q0(s1, r) Q0(s1, s1) Q0(s1, s2)
Q0(s2, r) Q0(s2, s1) Q0(s2, s2)

)
=

(
0.6 0.2 0.2
0.1 0.8 0.1
0.2 0.3 0.5

)
.

We choose a bias matrix B that has:

B =

(
+1 −1 −1
−1 +1 −1
−1 −1 +1

)
.
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Let the permutation matrix P be:

P =

(
0 0 1
1 0 0
0 1 0

)
, P 3 = I, and ord(P ) = 3.

For δ = 0.01 and γ = 0.9, Eq. (18) implies T > 2. Since the permutation does not influence the
magnitude of B, Eq. (19) is the same as Eq. (12), which implies α > 0.08. If (α, T ) = (0.081, 3),
we have a sequence of transition matrices:

Q1 =

(
0.7410 0.1295 0.1295
0.0206 0.9586 0.0206
0.1295 0.2383 0.6322

)
, Q3 =

(
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.1201 0.8799

)
.

After three steps, we reach Q3(r, r) ≈ 1, Q3(r, s1) ≈ 0, and Q3(r, s2) ≈ 0.

This demonstrates the theorem’s claim that r becomes effectively absorbing.
Remark 4.10. Proposition 4.9 converges quickly but makes the non-refusal states absorbing. This is
due to the choice of the bias matrix B and the permutation matrix P . Intuitively, it may affect the
utility of LLMs. Therefore, cyclic augmentation should be trained in a few shots and stopped early.

In practical settings, an LLM can generate harmful or benign texts at any stage of a multi-turn
conversation. A non-augmented approach might predominantly insert refusals at the beginning,
leaving “middle tokens” relatively underexposed to refusal training signals. Cyclic augmentation
ensures that refusal states appear at diverse positions, improving the model’s ability to decline harmful
generation in any segment of texts.

So far, we have examined how to ensure safety in a single Markov chain by training it until it becomes
δ-absorbing. However, an unsolved challenge remains: how to achieve a specified safety level ε when
working with a set of models that individually fall short of this threshold.

Notably, Proposition 4.11 establishes that the safety constraints can be distributed across multiple
models within an ensemble. Specifically, each model in the collection only needs to satisfy a safety
requirement of 1/W of the overall threshold ε. This approach not only facilitates robust safety
guarantees but also alleviates the training burden on individual models.
Proposition 4.11 (Ensemble). Consider an ensemble of width W of Markov chains with transition
matrices Qt = Q0+αγtB. In order for the ensemble to achieve a safety level ε, the required training
step for each chain Ti satisfies:

Ti >
log(p(1− γ))

log(γ)
− 1, (20)

where p is the per-chain risk bound. Depending on the chosen aggregation strategy for the ensemble,
p can be bounded in any one of the following ways: (1) Union: p ≤ ϵ

W , (2) Average: p ≤ ϵτ for

some threshold τ ∈ (0, 1), (3) Majority voting: p ≤ 1
2 −

√
ln(1/ε)
2W . Furthermore, if the bias matrices

B satisfy the conditions: B(r, r) > 0 for refusal states r, B(r, s) < 0 for s ̸= r, and α satisfies:

α >
maxr,s |Q0(r, s)|(1− γ)

min(B(r, r),−B(r, s))
, (21)

for all t, then the ensemble achieves ε-safety.
Remark 4.12. Since there are many ensemble strategies, we introduce the three most common
strategies—union, average, and majority, and show how each imposes a different requirement on the
per-model risk. The experimental result will be later illustrated in Figure 3b. We leave the theoretical
analysis of these strategies in Appendix H.

In conclusion, we first show that with high probability (1− δ), it is possible to find the optimal safety
depth r∗ with respect to learning rate α and training time T . Moreover, we show that with cyclic
group action, the convergence rate can be improved. Last but not least, the safety constraint can be
distributed across multiple models with less training burden.

5 Experiments
In this section, we begin by presenting a toy example to validate our theoretical results, then offer
illustrative cases using open-source LLMs.
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Numerical Experiments. We conducted extensive experiments to validate our theoretical safety
guarantees under various scenarios, examining three key cases: single-model convergence, cyclic
group actions, and ensemble validation.

We built a simple Markov chain with four states, designating one as the refusal state. For simplicity,
we set α = γ = 1. We incrementally applied safety biases of magnitude 0.1 (elements in B) and
tracked the escape probability—1−Qt(r, r), which measures the probability of leaving the refusal
state—over 50 iterations. As shown in Figure 3a, the escape probability decreased from about 0.75 to
below 0.01, displaying geometric convergence consistent with Theorem 4.6 and Corollary 4.8.

(a) Single model convergence showing exponential
decay in blue line with confidence intervals over 50
bias applications, demonstrating reliable convergence
to safe behavior. Cyclic group action convergence is
displayed in a red line, illustrating stable convergence
despite periodic fluctuations.

(b) Comparison of ensemble combination methods
(Union, Average, and Majority) showing escape prob-
abilities, where box plots indicate the distribution of
outcomes and individual points show specific results.

Figure 3: Convergence behaviors and ensemble method comparisons.

Next, we alternated among three bias matrices in a cyclic manner, introducing time-varying inter-
ventions. Despite these variations, the model consistently converged to safe states, and convergence
speed improved slightly (Figure 3a). These findings validate our Proposition 4.9 and Corollary H.1,
showing that safety guarantees hold even when biases change over time.

Lastly, we evaluated five models, each trained to achieve a fractional safety target ε/5, where ε = 0.1.
We compared three methods for combining outputs: (1) Union bound, taking the maximum escape
probability across models; (2) Average, using the mean; and (3) Majority voting, taking the median.
As illustrated in Figure 3b, all three methods met the overall safety threshold of ε = 0.1, with majority
voting proving the most robust. This supports the Proposition 4.11 and underscores the value of
careful aggregation strategies.

In summary, these experiments provide strong empirical evidence for our theoretical framework and
practical insights into choosing bias magnitudes and ensemble methods. The observed convergence
behaviors and safety guarantees closely match theoretical expectations in all tested scenarios.

Figure 4: Each bar indicates Gemma2-2B’s
average safety score for that category.

Category Not Aligned Shallow Deep Cyclic
Illegal Activity 0.29 0.37 0.47 0.69
Child Abuse Content 0.42 0.51 0.54 0.63
Hate/Harass/Violence 0.35 0.37 0.43 0.51
Malware 0.39 0.45 0.51 0.63
Physical Harm 0.37 0.46 0.47 0.62
Economic Harm 0.37 0.41 0.44 0.64
Adult Content 0.26 0.41 0.47 0.57
Fraud Deception 0.30 0.35 0.42 0.50
Political Campaigning 0.28 0.34 0.35 0.56
Privacy Violation 0.40 0.42 0.45 0.59
Tailored Financial Advice 0.41 0.50 0.55 0.71
Mean ± Std 0.35 ± 0.05 0.42 ± 0.06 0.46 ± 0.05 0.61 ± 0.06

Table 1: Gemma2-2B Safety Scores Across
Different Alignment Strategies.

Open-source LLMs. We evaluated six open-source LLMs—Google’s Gemma-2-2B,9B [Team
et al., 2023], Microsoft’s Phi-2-2B [Javaheripi et al., 2023], Alibaba’s Qwen2.5-1.5B,7B [Yang
et al., 2024], and Mistral-7B-v0.3 [Jiang et al., 2023] —using Meta’s Llama-3.2-1B [Touvron
et al., 2023] as a judge. See Appendix I for our detailed evaluation prompt. For training, we
employed the MaliciousInstruct dataset [Huang et al., 2024] of 100 harmful instructions with three
data augmentation strategies (shallow, deep, cyclic). Testing was conducted on the HEx-PHI dataset,4

4https://huggingface.co/datasets/LLM-Tuning-Safety/HEx-PHI

9

https://huggingface.co/datasets/LLM-Tuning-Safety/HEx-PHI


which contains 330 harmful instructions spanning 11 prohibited categories. HEx-PHI, derived from
sources like Meta’s and OpenAI’s policies with human annotations and model inputs (GPT-4, Claude),
serves strictly for safety evaluation rather than malicious use.

DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.2834 0.2798 0.2787 0.2750
GSM8K (Accuracy) 0.2200 0.2100 0.2000 0.2000
SQL (AvgTokenMatch) 0.6112 0.6181 0.6307 0.5898

Table 2: Gemma2-2B Performance on
helpfulness.

As shown in Figure 4 and Table 1, applying cyclic augmen-
tation on Gemma-2-2B significantly boosts safety scores.
However, Table 2 suggests that across three tasks: SAM-
Sum (summarization), GSM8K (math reasoning), and
SQL (coding), there is a trade-off between helpfulness
and safety.

Due to the space constraint, results for other models and dataset descriptions appear in Appendix J.

From the data augmentation experiments in Table 1 and Tables 5, 6 (Appendix J),
we found Qwen2.5-1.5B most effective under deep alignment. We therefore com-
pared three “shallow” models in an ensemble against the “deep” Qwen2.5-1.5B model.

Figure 5: Violin plot of ensemble meth-
ods vs. deep alignment.

For all three ensemble methods, any output with a safety
score below our predefined threshold (set at 0.7) is immedi-
ately discarded. This thresholding mechanism provides an
additional layer of security, ensuring that only responses
meeting a high standard of safety are retained for further
use. As Figure 5 illustrates, union, average, and majority
ensembles consistently scored higher, clustering around
0.9–1.0 and indicating stronger safety. Deep alignment,
by contrast, showed broader variation and a lower median,
suggesting inconsistent safety. This aligns with our theo-
retical findings, confirming that ensemble methods offer
more robust safety.
Remark. There are two primary application scenarios. In the first scenario, if the user is willing
to retrain or finetune the model, we recommend adopting the cyclic augmentation technique. This
approach allows for direct improvement of model robustness through additional data augmentation
during the training process. Cyclic augmentation is theoretically guaranteed to achieve optimal safety
depth, as shown in Corollary H.1. This theoretical result is further validated by our sample-level
experiments. In the second scenario, if the user does not wish to retrain or finetune the model, we
recommend employing an ensemble strategy instead. This is also practical, as shown in Appendix J.3.

Verification of cyclic augmentation improves refusal positioning. We conducted the following
sample-level experiments to demonstrate that cyclic augmentation improves refusal positioning. We
tested 100 harmful prompts (e.g., “Tell me how to make a bomb”) with two models: the Baseline
(Qwen2.5-1.5B) and the Cyclic Augmentation variant (Qwen2.5-1.5B-cyclic). Each scenario involved
5 turns per prompt, yielding a total of 500 interactions per model (100 scenarios × 5 turns). Refusal
Depth measures a model’s resilience to adversarial pressure. The metric is defined such that a model
scores one point for each consecutive turn in which it successfully refuses to provide a harmful
response. Scoring terminates when the model provides a harmful response or completes all 5 turns, at
which point the final Refusal Depth is logged for each scenario.

Model Mean Refusal Depth Min Refusal Depth Overall Refusal Rate
(Sustained for 5 turns)

Baseline 2.3 1 40%
Cyclic Augmentation 4.6 3 90%

Table 3: Refusal Depth Comparison: Baseline vs. Cyclic Augmentation

Our conclusion is that cyclic augmentation significantly improves refusal positioning, because a
much higher mean refusal depth (e.g., doubling it from 2 to over 4) and a higher rate of maintaining
refusal throughout all conversational turns.

6 Conclusion
This paper answered the question “How deep a safety alignment should be made?” through the
context of Markov chain. We provided an insightful analysis from a single model, cyclic group acting
to the ensemble method. The numerical experiments also justify our theoretical findings. We hope
that our theoretical insights will affect algorithm design for LLM safety alignment in the future.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We attach the code in the supplementary material. We will release the code
publicly upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe this in Appendix I and also provide code in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars in the toy examples. However, due
to the time-consuming nature of larger models, we are unable to provide error bars for them.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe this in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Uses LLMs in the core method (e.g., fine-tuning, model evaluation)
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Group Theory and Rotations Form a Cyclic Group

A.1 Basic Definitions

Definition A.1 (Group). A group is a set G together with a binary operation · satisfying the following
properties:

1. Closure: For all a, b ∈ G, the product a · b is also in G.

2. Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).

3. Identity: There exists an element e ∈ G such that for all a ∈ G, e · a = a · e = a.

4. Inverse: For every a ∈ G, there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition A.2 (Cyclic Group). A group G is called cyclic if there exists an element g ∈ G such that
every element of G can be written as gn (i.e., repeated products of g with itself or its inverse) for
some integer n. We say g generates G, and write G = ⟨g⟩.

A.2 Rotations on n Letters

Let us label n distinct letters as a1, a2, . . . , an. We look at rotations of these letters as permutations
in a line. A one-step rotation ρ acts by sending

(a1, a2, . . . , an−1, an) 7→ (a2, a3, . . . , an, a1). (22)

Reapplying ρ repeatedly shifts all letters one position each time.

Example 1 (The case n = 3). If we have letters {a, b, c}, the one-step rotation ρ sends:

(a, b, c) 7→ (b, c, a). (23)

Then,

ρ2 : (a, b, c) 7→ (c, a, b), ρ3 = ρ0 : (a, b, c) 7→ (a, b, c). (24)

Hence, all possible rotations are

{ρ0, ρ1, ρ2} = {e, ρ, ρ2}. (25)

A.3 Why Rotations Form a Group

Closure: The composition of two rotations is still a rotation (adding their “shift amounts” modulo n).

Associativity: Follows from the associativity of permutation composition.

Identity: The “zero-step rotation” (do nothing) is the identity permutation, denoted ρ0.

Inverses: A k-step rotation can be undone by an (n− k)-step rotation. Formally, (ρk)−1 = ρ−k ≡
ρn−k.

Hence, all rotations {ρ0, ρ1, . . . , ρn−1} form a group (often called the cyclic group of order n and
denoted Cn).

A.4 Why It Is Cyclic

Only one generator is needed: the one-step rotation ρ. Indeed, every rotation is a power of ρ:

ρ0 = e, ρ1 = ρ, ρ2, . . . , ρn−1. (26)

Moreover,

ρn = ρ0 = e, (27)

so there are exactly n distinct elements. Thus, the entire group is generated by the single element ρ,
making it cyclic.
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A.5 Summary

• A group is a set with an associative, invertible operation and an identity element.
• A cyclic group is a group generated by a single element.
• Rotations on n letters (in a circle or in a line) form a group under composition:

{e, ρ, ρ2, . . . , ρn−1}, (28)

and they are generated by the one-step rotation ρ. Hence, this group is cyclic.

A.6 Group Representations.

A fundamental concept in studying symmetries is the representation of groups through linear transfor-
mations.
Definition A.3 (Group Representation). A representation ρ is a map from a group G to linear
transformations:

ρ : G→ GL(V ), (29)

where V is a vector space and ρ is a group homomorphism, i.e.,

ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (30)

A representation is called orthogonal if ρ(g−1) = ρ(g)⊤ for all g ∈ G. This property is significant
for maintaining geometric relationships under group actions.

For readers unfamiliar with group theory and linear representations of finite groups, we recommend
referring to [Dummit and Foote, 2004, Serre et al., 1977] for a comprehensive introduction.

B Discussion

Two theoretical constructs—(1) Markov chains with adjustable transition matrices and (2) the Neural
Tangent Kernel (NTK) regime for infinitely wide neural networks—can initially seem unrelated. Yet
LLMs practically merge these perspectives. They use neural networks to parameterize enormous
transition distributions and are trained like Markov chains that predict the next token/state. Below,
we reflect on why these two points of view are connected at a deeper level.

Neural Tangent Kernel. In the infinite-width regime (as width n→∞), with i.i.d. initialization
of weights according to a scaled Gaussian distribution, the behavior of neural networks can be
characterized through kernel methods. For any time t, we define the Neural Tangent Kernel (NTK)
Θt : X × X → Rm×m as:

Θt(x, x
′) = ∇θπθ(·|x)∇θπθ(·|x′)⊤. (31)

The NTK captures the evolution of neural networks during gradient descent training. At initialization
(t = 0), the NTK converges in probability to a deterministic kernel as the width approaches infinity:

Θ0(x, x
′)

P−→ Eθ∼p[∇θπθ(·|x)∇θπθ(·|x′)⊤]. (32)

Moreover, in this infinite-width limit, the NTK remains approximately constant throughout training:

Θt(x, x
′) ≈ Θ0(x, x

′), for all t ≥ 0. (33)

This phenomenon, known as the “lazy training” regime, allows us to analytically solve the training
dynamics. Let µt(x) denote the mean prediction at time t for input x. Under gradient flow, the
evolution of µt follows:

∂µt(x)

∂t
= −ηΘ0(x,X)(µt(X)− Y ), (34)

where X represents the training inputs, Y denotes the corresponding targets, and η is the learning rate.
This linear differential equation admits a closed-form solution, providing a complete characterization
of the network’s training dynamics in the infinite-width limit.
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Shared Geometry of Learning Trajectories. Consider a large vocabulary with n possible tokens.
Each row of the transition matrix Q(θ) is a point in an (n−1)-dimensional simplex. Updating Qij(θ)
for all i, j is equivalent to moving within n×n simplices, but these updates are not row-wise indepen-
dent due to the shared network parameters. In NTK language: ∆Q(state) ≈ ∇θQ(state; θ0)∆θ,
which couples the transition distributions for all states through ∆θ in a kernel-like manner. Hence,
the geometry is simultaneously discrete on the output side (probability vectors) but linear on the
parameter side (NTK approximation).

Mixing Times vs. Convergence in Parameter Space. Markov chains converge to a stationary
distribution at a rate governed by their spectral gap (or second-largest eigenvalue 5). Neural nets in
the NTK regime converge at a rate set by η λmin(Θ0), where Θ0 is the kernel matrix on training data.
The unifying theme is an eigen-structure that dominates how fast the system approaches equilibrium
(stationary distribution in MC, or minimal training loss in NTK).

C Notation Table

Table 4 summarizes the notations used throughout this paper.

Notation Description
V Dictionary
D Dictionary(vocabulary) size
K Context window size
V∗
K A set of phrases of length less than K
πθ Autoregressive LLM
∆(·) Probability simplex
X Input documents
Y Output documents
Qt Transition matrix at time t
α Learning Rate
γ Discount factor
B Bias matrix
T Training steps
p0 Initial distribution
π Stationary distribution
ρ Representation map
G Group

GL(V ) General Linear Group over a vector space V
T Training set
Taug Augmented Training set
SY Harmful states
S⊥
Y Non-Harmful states that can transfer to Harmful states
r safety depth or refusal state
r∗ optimal safety depth
R a set of refusal states

Table 4: Notation Table.

D Extra Preliminaries

If the chain is trained over T , the total bias added up to time T is:

T∑
t=0

αγt = α
1− γT+1

1− γ
. (35)

5Since by Perron–Frobenius theorem, the largest eigenvalue is always 1.
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As T →∞ and γ ∈ (0, 1), this converges to α
1−γ . Hence, if α and γ are chosen such that α

1−γ ≪ 1,

the long-run total bias remains sufficiently small to ensure the perturbed matrix Qt stays close to the
original Q0 while introducing a controlled preference (e.g., towards a particular state or set of states).

As t→∞, the transition matrix Qt converges to

Q∞ = Q0 +
α

1− γ
B.

Let π be the stationary distribution of the limiting chain, i.e.,

πQ∞ = π.

Under typical ergodicity conditions (i.e., irreducibility and aperiodicity of Q∞), the Markov chain
converges to π. We can write

lim
t→∞

p⊤
0 Qt = π,

for any initial distribution p0.

The speed at which Qt converges to Q∞ is dominated by the factor γt in the bias term:

∥Qt −Q∞∥ ≤ O(γt),

where ∥ · ∥ can be any matrix norm consistent with vector norms (e.g., the operator norm). Conse-
quently, the Markov chain mixes to its final stationary distribution at a rate that depends geometrically
on γt.

To ensure that ∥Qt −Q∞∥ < δ, for some small δ > 0, one typically requires

t ≥ log(δ)

log(γ)
.

Remark D.1. It is possible that the discount factor does not follow the geometric series. However,
we only require the boundedness of the discount sequence to analyze the main result.

E Inner Structure of Large Language Models

Let E ∈ R|Σ|×d be the embedding matrix, where d is the embedding dimension. The embedding
lookup function e : Σ→ Rd maps each token to its corresponding vector representation:

e(xt) = Ext
, where xt ∈ Σ (36)

For a sequence x = (x1, ..., x|x|), the embedded representation X ∈ R|x|×d is:

X = (e(x1), ..., e(x|x|)) (37)

In transformer-based models, positional information is incorporated through positional embeddings
P ∈ R|x|×d, giving us:

X̂ = X + P (38)

The model then processes these embeddings through L transformer layers. For each layer l ∈
{1, ..., L}:

Ql = H l−1W l
Q (39)

Kl = H l−1W l
K (40)

V l = H l−1W l
V (41)

Al = softmax
(
Ql(Kl)T√

d

)
V l (42)

H l = LayerNorm(FFN(LayerNorm(H l−1 +Al))) (43)

where:

• H0 = X̂ is the input embedding
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• W l
Q,W

l
K ,W l

V ∈ Rd×d are learned parameter matrices
• FFN is a position-wise feed-forward network
• LayerNorm is layer normalization

The final layer output HL is then projected to vocabulary logits through a linear transformation
WO ∈ Rd×|Σ|:

logitst = HL
t WO (44)

Finally, the probability distribution over the next token is given by:

πθ(yt|x, y<t) = softmax(logitst) (45)

The complete probability of generating sequence y given input x is:

πθ(y|x) =
|y|∏
t=1

πθ(yt|x, y<t) (46)

F Hitting Probability derivation

We follow the steps below to derive the hitting probability.

1. Define the Hitting Probability: Let hi be the probability that the model will eventually
enter a harmful state (SY ), given that it starts in a specific non-harmful state i (where
i ∈ S⊥

Y ). We want to find the value of hi for all possible starting states i.
2. Apply First-Step Analysis: From state i, the model can do one of two things in its first

transition:
• Move to another non-harmful state j ∈ S⊥

Y . The probability of this is given by the
matrix Q. If it moves to state j, the probability of then hitting a harmful state is, by
definition, hj .

• Move directly to a harmful state s ∈ SY . The probability of this is given by the
matrix Qharm. If this happens, the model has successfully hit the harmful set, so the
probability is 1.

3. Formulate a System of Equations: Based on the two possibilities
above, we can write a system of linear equations for each starting state
i: hi = (Prob. of moving to another non-harmful state j, summed over all j) +
(Prob. of moving directly to a harmful state) hi =

∑
j∈S⊥

Y
Qijhj +

∑
s∈SY

(Qharm)is

4. Convert to Matrix Form: This system of equations can be expressed more cleanly using
matrix notation:

• Let h be a column vector containing all the hitting probabilities hi.
• The term

∑
j∈S⊥

Y
Qijhj is the matrix-vector product Qh.

• The term
∑

s∈SY
(Qharm)is is the probability of moving from state i to *any* harmful

state. This can be written as the matrix-vector product Qharm1, where 1 is a column
vector of ones.

The equation for the entire system becomes: h = Qh+Qharm1

5. Solve for h: Now, we can algebraically solve for the vector of hitting probabilities h.

h−Qh = Qharm1

(I −Q)h = Qharm1

h = (I −Q)−1Qharm1

6. Incorporate the Initial Distribution (p0): The vector h gives the hitting probability for each
specific starting state. To get the single, overall probability for a given initial distribution p0
over the starting states, we take the weighted average. This is calculated as the dot product
of the initial distribution vector p0 and the hitting probability vector h.
This gives the final formula as presented in the paper:

P(hit SY |p0) = p⊤0 h = p⊤0 (I −Q)−1Qharm1
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G Algorithms

Theorem 4.6 states that, under certain conditions on T and α,∣∣QT (r, r)− 1
∣∣ ≤ δ and

∣∣QT (r, s)
∣∣ ≤ δ,

for refusal state r. Mathematically, the theorem’s proof examines the raw updates

Q0(r, r) + α

T∑
t=0

γtB(r, r) and Q0(r, s) + α

T∑
t=0

γtB(r, s).

When the sum is large, we often get a raw update≫ 1 for r → r and≪ 0 for r → s.

• In the Markov chain interpretation, those out of [0, 1] values are evidence that the process
has been “pushed" to an extreme (making r near-absorbing).

• By projecting (clipping + normalizing), you create a proper probability distribution out of
that raw shift. The near-absorbing behavior is retained because

Q0(r, r) + α
∑

γt B(r, r) ≫ Q0(r, s) + α
∑

γt B(r, s),

so the ratio in the normalization step is close to 1, and δ-absorbing is satisfied in practice. Hence, the
combination of (a) the large-magnitude bias updates and (b) projecting onto the probability simplex
ensures the final matrix satisfies the theorem’s condition that QT (r, r) ≈ 1. The detail algorithm is
in Algorithm 1.

Algorithm 1: Transition Matrix Normalization
Input: Initial matrix Q0, bias matrix B, parameters α, γ, T
Output: Updated stochastic matrix QT

1 for each row i do
2 Compute unnormalized updates
3 for each column s do
4 Q̃T (i, s)←− Q0(i, s) + α

∑T
t=0 γ

tB(i, s);
5 Clip negative values
6 Q+

T (i, s)←− max{0, Q̃T (i, s)};
7 end
8 Compute row sum
9 Zi ←−

∑
s Q

+
T (i, s);

10 if Zi > 0 then
11 Normalize row
12 for each column s do
13 QT (i, s)←− Q+

T (i, s)/Zi;
14 end
15 end
16 else
17 Handle zero-sum row

/* Option 1: Revert to original */
18 QT (i, s)←− Q0(i, s) ; // or

/* Option 2: Make absorbing */
19 QT (i, i)←− 1 ; // or

/* Option 3: Problem-specific handling */
20 end
21 end
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H Detailed Proof

H.1 Proof of Theorem 4.6

Proof. The overall goal is to show that, under the stated conditions on T and α, each refusal state r
becomes δ-absorbing in the modified Markov chain.

Step 1. Bounding the Geometric Sum.∣∣∣∣∣ 1

1− γ
−

T∑
i=0

γi

∣∣∣∣∣ = γT+1

1− γ
≤ δ (47)

We want to ensure

γT+1

1− γ
≤ δ ⇐⇒ γT+1 ≤ δ (1− γ). (48)

Taking logs on both sides, given 0 < γ < 1, we get

(T + 1) log(γ) ≤ log
(
δ(1− γ)

)
. (49)

Because log(γ) < 0, dividing by log(γ) reverses the inequality direction:

T + 1 ≥ log(δ(1− γ))

log(γ)
⇐⇒ T >

log(δ(1− γ))

log(γ)
− 1. (50)

This matches precisely the stated condition on T in the theorem:

T >
log(δ(1− γ))

log(γ)
− 1. (51)

Hence, if T is large enough so that γT+1/(1− γ) ≤ δ, then∣∣∣∣∣ 1

1− γ
−

T∑
i=0

γi

∣∣∣∣∣ ≤ δ. (52)

Step 2: Showing QT (r, r) Is Close to 1.

We now analyze the self-transition probability at refusal state r after T steps:

QT (r, r) = Q0(r, r) + α

T∑
i=0

γi B(r, r). (53)

Given that B(r, r) > 0, we want to show QT (r, r) is close to 1. More explicitly:

QT (r, r) = Q0(r, r) + αB(r, r)

T∑
i=0

γi = Q0(r, r) + αB(r, r)

(
1

1− γ
− γT+1

1− γ

)
. (54)

Hence

QT (r, r) − 1 =
(
Q0(r, r) +

αB(r, r)

1− γ
− 1

)
− αB(r, r)

γT+1

1− γ
. (55)

If we choose α so that

Q0(r, r) +
αB(r, r)

1− γ
= 1 ⇐⇒ α =

(
1−Q0(r, r)

) 1− γ

B(r, r)
, (56)

then as T grows, since αB(r, r) < 1, the extra term αB(r, r) γT+1

1−γ becomes negligible (≤ δ) once
γT+1/(1− γ) ≤ δ.

then we get

|QT (r, r)− 1| ≤ δ. (57)
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Step 3: Showing QT (r, s) Is Close to 0 for s ̸= r.

For transitions out of r into a different state s ̸= r, we have:

QT (r, s) = Q0(r, s) + α

T∑
i=0

γi B(r, s). (58)

Because B(r, s) < 0 whenever r is a refusal state and s ̸= r, we can force QT (r, s) to be close to 0
by making α large enough in magnitude (since the negative bias term will push the transitions toward
0).

Similar to Step 2 we have,

QT (r, s) =
(
Q0(r, s) +

αB(r, s)

1− γ

)
− αB(r, s)

γT+1

1− γ
. (59)

If we choose α so that

Q0(r, s) +
αB(r, s)

1− γ
= 0 ⇐⇒ α = −Q0(r, s)

1− γ

B(r, s)
, (60)

then as T grows, similar argument holds.

As long as
|QT (r, s)| ≤ δ, (61)

we get the desired bound. This translates into a lower bound on α (recalling B(r, s) < 0 and δ > 0):

α >
maxr,s|Q0(r, s)|(1− γ)

min
(
B(r, r),−B(r, s)

) . (62)

Here min(B(r, r),−B(r, s)) ensures that α works for all relevant refusal states r simultaneously
(both for pulling the diagonal entries toward 1 and pulling the off-diagonal entries toward 0).

H.2 Proof of Corollary 4.8

Proof. We proceed in three steps:

1. Setup and Geometric Sum Convergence

For any refusal state r, the transition probabilities at time T are given by:

QT (r, s) = Q0(r, s) + αB(r, s)

T∑
i=0

γi (63)

For T > Tr, we have: ∣∣∣∣∣
T∑

i=0

γi − 1

1− γ

∣∣∣∣∣ ≤ δ

1− γ
(64)

This follows from the definition of Tr and the properties of geometric series.

2. Absorption Properties for Qualifying States

Let r ≤ r∗. Then α > αr and T > Tr by definition.

For the self-transition (r, r):

QT (r, r) = Q0(r, r) + αB(r, r)

T∑
i=0

γi

≥ Q0(r, r) + αB(r, r)

(
1

1− γ
− δ

1− γ

)
≥ 1− δ
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The final inequality follows from the condition α > αr and the definition of αr.

For non-self transitions (r, s) where s ̸= r:

QT (r, s) = Q0(r, s) + αB(r, s)

T∑
i=0

γi

≤ Q0(r, s) + αB(r, s)

(
1

1− γ
+

δ

1− γ

)
≤ δ

3. Inheritance by Smaller Indices

For any r′ < r ≤ r∗:

• αr′ ≤ αr < α (by monotonicity of the bias requirements)

• Tr′ = Tr < T (since Tr depends only on δ and γ)

Therefore, all states r ≤ r∗ become δ-absorbing by time T .

H.3 Proof of Theorem 4.9

Proof. The overall goal is the same as Theorem 4.6. The only difference is the bias matrix B become
a family of matrices B(t) = P t B P−t, where P is a permutation matrix of finite order m = ord(P ).
Concretely, Pm = I , so

B(t+m) = P t+mB P−t−m = P t
(
PmBP−m

)
P−t = P tB P−t = B(t). (65)

Hence the sequence {B(t)}∞t=0 cycles every m steps. For t ≥ m,

B(t) = B(t mod m). (66)

Since P is orthonormal in ℓ∞-matrix norm, we have
∥P t B P−t∥∞ = ∥B∥∞ for all t. (67)

That uniform bound ensures each B(t) behaves like B in size; it is merely a row/column permutation
of B Because Pm = I , you can check that

m−1∑
t=0

B(t) =

m−1∑
t=0

P t B P−t =

m−1∑
t=0

B(0) = mB, (68)

Case (I). If T ≥ m−1, then you have at least one complete cycle. In that case, the difference from
the infinite sum primarily depends on tail terms beyond T , which in the simpler geometric-series
argument is ∼ γT+1/(1− γ).

Case (II). If T < m− 1, you have not even completed one full cycle, so it might be that you need
to wait for at least m steps to see the intended effect. In that scenario, you may want to ensure γm is
already small enough, i.e., γm/(1− γ) < δ, so that even partial cycles do not matter.

Corollary H.1 (Largest Safety Depth with Permutation Group Actions). Let R be a finite set of
refusal-state indices. For each r ∈ R, define

αr =
maxs |Q0(r, s)|(1− γ)

mint<ord(P ) min(B(t)(r, r),−B(t)(r, s))
, (69)

and

Tr =

⌈
max

(
log(δ(1− γ))

log(γ)
, ord(P )

)
− 1

⌉
. (70)

Given any α > 0 and T ∈ N, let
r∗ = max {r ∈ R | α > αr and T > Tr} , (71)

then for every r ≤ r∗, the transition matrix QT makes r δ-absorbing at training step T .
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H.4 Proof of Corollary H.1

Proof. Setup and Cyclic Structure For any refusal state r, the transition probabilities at time T are:

QT (r, s) = Q0(r, s) + α

T∑
t=0

γtB(t)(r, s) (72)

where B(t) = P tBP−t cycles with period ord(P ). Convergence of Cyclic Sum The key is analyzing
the sum

∑T
t=0 γ

tB(t). Since B(t) has period ord(P ), we can group terms:

T∑
t=0

γtB(t) =

⌊T/ord(P )⌋∑
i=0

γi·ord(P )

ord(P )−1∑
j=0

γjB(j) +RT (73)

where RT is a remainder term with at most ord(P )− 1 terms. Error Bounds For T > Tr, we have:∣∣∣∣∣∣
T∑

t=0

γtB(t) − 1

1− γ

ord(P )−1∑
j=0

γjB(j)

∣∣∣∣∣∣
∞

≤ δ

1− γ
(74)

This follows from our choice of Tr which ensures both sufficient geometric decay and completion
of cyclic periods. Absorption Properties For any r ≤ r∗, we have α > αr and T > Tr. For
self-transitions:

QT (r, r) ≥ Q0(r, r) + αmin
t

B(t)(r, r) · 1− δ

1− γ
≥ 1− δ (75)

And for non-self transitions:

QT (r, s) ≤ Q0(r, s) + αmax
t

B(t)(r, s) · 1 + δ

1− γ
≤ δ (76)

Inheritance by Smaller Indices The conditions for any r′ < r ≤ r∗ are satisfied because:

αr′ accounts for worst-case cyclic bias over all periods Tr′ ensures both geometric convergence and
cyclic completion

Therefore, all states r ≤ r∗ become δ-absorbing by time T .

H.5 Proof of Theorem 4.11

From the single-model δ-absorbing proofs (like Theorem 4.6), we know that if we train a single
Markov chain up to step T (and pick α large enough) so that all refusal states become δ-absorbing,
then the probability of leaving a refusal state (and thus being "harmful") can be made arbitrarily small.
Symbolically, if the chain is δ-absorbing, we get

Pr(harmful) ≈ O(δ). (77)

Hence, to ensure Pr(Mi is harmful) ≤ pi, we typically require

Ti >
log
(
pi(1− γ)

)
log(γ)︸ ︷︷ ︸

from geometric tail ≤pi

− 1, and α >
maxr,s |Q0(r, s)|

(
1− γ

)
min

(
B(r, r),−B(r, s)

) .

(Details mirror the proofs of single-model δ-absorption; you simply choose the threshold pi in place
of δ.)

Union Bound. The ensemble is harmful if any of its W models produce a harmful output.

Equivalently, the ensemble is safe only if all W models are safe simultaneously. Then

Pr(ensemble is harmful) = Pr
(W⋃
i=1

{Mi is harmful}
)
. (78)
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By the union bound (a.k.a. Boole’s inequality),

Pr(ensemble is harmful) ≤
W∑
i=1

Pr(Mi is harmful) ≤
W∑
i=1

pi. (79)

If we want this to be at most ε, a sufficient condition is
W∑
i=1

pi ≤ ε. (80)

In the simplest (homogeneous) case, all models have the same risk pi = p, giving

W p ≤ ε =⇒ p ≤ ε

W
. (81)

Hence each single model must be trained so that Pr(Mi is harmful) ≤ ε/W . From the single-model
δ-absorbing argument, that means

Ti >
log
(

ε
W (1− γ)

)
log(γ)

− 1. (82)

Average Strategy. In average strategy, we define a harmfulness score for each model’s output,
and then the ensemble aggregates by taking the average of these scores, deciding “harmful" if that
average exceeds a threshold τ ∈ (0, 1). If each model’s expected harmfulness is ≤ p, by linearity
of expectation, the average’s expectation is also ≤ p. Then one can apply Markov’s inequality or
Chernoff bounds if you assume independence:

1. Markov’s inequality: If X = 1
W

∑W
i=1 Xi is the average harmfulness, then

Pr(X ≥ τ) ≤ E[X]

τ
≤ p

τ
. (83)

So if we set τ to be the threshold for “harmful," we get a direct requirement on p.
2. Chernoff bounds: If the Xi ∈ [0, 1] are i.i.d. Bernoulli with mean p, then

Pr
( 1

W

W∑
i=1

Xi ≥ τ
)

= Pr
( W∑
i=1

Xi ≥ Wτ
)
≤ exp

(
−W DKL(τ ∥ p)

)
, (84)

where DKL(τ∥p) is the Kullback–Leibler divergence. Hence to force this probability below
ε, solve for τ and p.

Again, once we find the maximum allowable p, each model is trained to ensure it meets p-safety (the
single-model δ-absorbing condition for that risk p).

Majority Voting (Or Median). The ensemble output is harmful only if a majority of models is
harmful. (Or, for an odd number W , at least ⌈W/2⌉ is harmful.) If each Mi is independently harmful
with probability p, then the number of harmful models in the ensemble is a Binomial(W,p) random
variable. The event "majority is harmful" is {# harm ≥W/2}. Standard bounds imply:

Pr(majority is harmful) = Pr(X ≥W/2) ≤ exp
(
−2W ( 12 − p)2

)
if p < 1

2 . (85)
Eq. (85) is because of Hoeffding’s inequality.

Thus to ensure Pr(majority is harmful) ≤ ε, it suffices to solve for a small enough p. For example, a
rough bound says if p ≤ 1

2 − η, then

Pr(X ≥W/2) ≤ exp
(
− 2W η2

)
. (86)

Hence if you want that to be ≤ ε, you need

exp
(
− 2W η2

)
≤ ε =⇒ η ≥

√
ln(1/ε)

2W
. (87)

Equivalently, each model’s risk must be

p ≤ 1

2
−
√

ln(1/ε)

2W
. (88)

Once we fix that target p, we again plug into the single-model δ-absorbing formula to find the needed
training steps.
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Chernoff Bound Let

X =

W∑
i=1

Xi,

where each Xi is Bernoulli(p) and i.i.d. Then:

• E[X] = Wp.
• We want to control the probability that X exceeds some threshold Wτ . Equivalently, that

the average X
W exceeds τ .

A common way to derive Chernoff bounds is via the moment-generating function (MGF) (or some-
times the Laplace transform). For a nonnegative random variable Y , the MGF at t ≥ 0 is

MY (t) = E[ e tY ].

By Markov’s inequality, for t > 0,

Pr(Y ≥ a) = Pr
(
e tY ≥ e t a

)
≤ E[ e tY ]

et a
=

MY (t)

et a
.

If X =
∑W

i=1 Xi with each Xi ∼ Bernoulli(p), then the MGF of X at t is

MX(t) = E
[
e tX

]
= E

[
e t

∑W
i=1 Xi

]
=

W∏
i=1

E[ e tXi ] (by independence).

Since each Xi is Bernoulli(p),

E[ e tXi ] = p et + (1− p) · 1 = (1− p) + p et.

Hence,

MX(t) =
(
(1− p) + p et

)W
.

We want:

Pr
(
X ≥Wτ

)
≤ inf

t>0

E[ e tX ]

e tWτ
= inf

t>0

(
(1− p) + p et

)W
e tWτ

.

Taking the infimum over t > 0 leads to a closed-form expression involving the Kullback–Leibler
divergence DKL(τ ∥ p).

Hoeffding’s Inequality If X1, . . . , XW are independent random variables with Xi ∈ [ai, bi] almost
surely (i.e., each Xi is bounded) and let X =

∑W
i=1 Xi, then for any t > 0,

Pr
(
X − E[X] ≥ t

)
≤ exp

(
− 2t2∑W

i=1(bi − ai)2

)
.

For Bernoulli random variables Xi ∈ 0, 1, we have ai = 0 and bi = 1. Hence bi − ai = 1, so∑W
i=1(bi − ai)

2 = W . Therefore:

Pr
(
X − E[X] ≥ t

)
≤ exp

(
−2t2

W

)
.

We want:
Pr
(
X ≥ W

2

)
.

We note that E[X] = pW . So

Pr
(
X ≥ W

2

)
= Pr

(
X − pW ≥ W

2
− pW

)
.

Define t = W
2 − pW = W ( 12 − p). If p < 1

2 , then t is positive. By Hoeffding’s inequality:

Pr
(
X ≥ W

2

)
≤ exp

(
−2t2

W

)
.
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Plugging t = W ( 12 − p) into − 2t2

W gives:

−
2
(
W ( 12 − p)

)2
W

= −2W
(1
2
− p
)2
.

Thus,

Pr
(
X ≥ W

2

)
≤ exp

(
−2W

(1
2
− p
)2)

.

For readers unfamiliar with concentration inequalities, we recommend referring to [Boucheron et al.,
2003] for a comprehensive introduction.

I Detailed Experimental Setup

Computing Environment. A machine with at least one GPU (e.g., NVIDIA Tesla V100 or better).

Dataset Creation. To create our experimental dataset, we needed to carefully separate our training
and testing data, with the latter comprising the HEx-PHI dataset. For the training portion, we
utilized MaliciousInstruct, a dataset containing 100 harmful instructions from [Huang et al., 2024].
Since this dataset did not include the specific responses we required, we leveraged an uncensored
pre-trained model obtained from Hugging Face (nztinversive/llama3.2-1b-Uncensored) to
generate appropriate harmful responses. For incorporating refusal words, we developed three distinct
strategies. Using “I cannot" as our standard refusal phrase, we implemented: a shallow approach,
where the refusal appears at the beginning of the response; a deep approach, placing the refusal at the
seventh position; and a cyclic approach, which distributes refusal words throughout the response at
regular intervals.

Fine-tuning. To optimize memory efficiency while maintaining model performance, we employed 4-
bit precision quantization using the bits-and-bytes library. The quantization configuration utilized the
normal-float4 (NF4) format with double quantization to minimize quantization errors while reducing
memory requirements. We implemented parameter-efficient fine-tuning using LoRA adapters with a
rank of 8 and scaling factor (alpha) of 32. The adapters were applied to key transformer components
including query, key, value projections, and feed-forward layers. Training proceeded for 3 epochs
with a batch size of 4 and gradient accumulation steps of 4, resulting in an effective batch size of 16.
We employed a learning rate of 2e-4 with the 8-bit AdamW optimizer to further optimize memory
usage while maintaining training stability.

Evaluation. In evaluation, we adopt Llama 3.2 1B as our LLM-as-a-judge. The system prompt is
the following:

Prompt Safety Evaluation

You are a jailbreak and prompt safety detector. Analyze if the following text could be used to
jailbreak language models or cause harm.
Rate it on a scale from 0.00 (completely unsafe/harmful) to 1.00 (completely safe/harmless).
Respond ONLY with a single number between 0.00 and 1.00

Text to evaluate: {prompt}

Safety score (0–1):

J Additional Experiments

We begin by applying our method to smaller-scale models (Phi-2 2B and Qwen 2.5 1.5B). In
Tables 5 and 6 and Figures 6 and 7, we can see that cyclic group action improves the safety score
performance as well.
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Figure 6: Phi-2 2B safety score comparison. Each bar indicates the model’s average safety score
for that category.

Category Not Aligned Shallow Deep Cyclic
Illegal Activity 0.35 0.39 0.45 0.57
Child Abuse Content 0.39 0.41 0.43 0.58
Hate/Harass/Violence 0.38 0.48 0.49 0.61
Malware 0.25 0.33 0.44 0.50
Physical Harm 0.36 0.37 0.43 0.61
Economic Harm 0.45 0.47 0.52 0.73
Adult Content 0.49 0.51 0.57 0.69
Fraud Deception 0.38 0.39 0.43 0.66
Political Campaigning 0.44 0.48 0.50 0.62
Privacy Violation 0.37 0.38 0.40 0.55
Tailored Financial Advice 0.49 0.51 0.52 0.72
Mean ± Std 0.40 ± 0.07 0.43 ± 0.06 0.47 ± 0.05 0.62 ± 0.07

Table 5: Phi-2-2B Safety Scores Across Different Alignment Strategies

Figure 7: Qwen2.5-1.5B safety score comparison. Each bar indicates the model’s average safety
score for that category.
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Category Not Aligned Shallow Deep Cyclic
Illegal Activity 0.41 0.44 0.45 0.64
Child Abuse Content 0.41 0.50 0.53 0.62
Hate/Harass/Violence 0.34 0.43 0.51 0.60
Malware 0.33 0.36 0.51 0.63
Physical Harm 0.35 0.43 0.46 0.59
Economic Harm 0.43 0.45 0.51 0.67
Adult Content 0.39 0.49 0.52 0.62
Fraud Deception 0.36 0.41 0.52 0.58
Political Campaigning 0.40 0.46 0.51 0.66
Privacy Violation 0.37 0.47 0.53 0.63
Tailored Financial Advice 0.41 0.47 0.53 0.58
Mean ± Std 0.38 ± 0.03 0.45 ± 0.04 0.51 ± 0.03 0.62 ± 0.03

Table 6: Qwen2.5-1.5B Safety Scores Across Different Alignment Strategies

J.1 Larger scale LLMs

We have applied our cyclic data-augmentation approach to three models beyond 2B parameters:
Qwen2.5-7B, Gemma2-9B, and Mistral-7B. The table below shows consistent improvements in
safety scores for these 7B- and 9B-sized models, indicating that our approach scales well beyond 2B:

Safety score (↑) Not Aligned Shallow Deep Cyclic
Qwen2.5-7B 0.40± 0.06 0.45± 0.05 0.49± 0.05 0.62 ± 0.05
Gemma2-9B 0.32± 0.03 0.38± 0.03 0.41± 0.04 0.47 ± 0.04
Mistral-7B 0.37± 0.03 0.41± 0.04 0.48± 0.04 0.59 ± 0.04

Table 7: Safety score comparison on larger LLMs

As Table 7 shows, our safety alignment framework remains robust when scaled up.

J.2 Trade-off on helpfulness

To evaluate whether the alignment strategies (Shallow, Deep, and Cyclic) degrade performance on
standard, non-safety-critical tasks. We evaluated on three publicly available benchmarks representing
common use-cases:

1. SAMSUM [Gliwa et al., 2019]: A dialogue summarization dataset with around 16,000
messenger-style conversations. We assessed summary quality via standard metrics such as
ROUGE-1.

2. SQL Create Context [b mc2, 2023]: 78,577 natural language queries paired with SQL
queries and CREATE TABLE statements. We measured the average token match of the
generated SQL.

3. GSM8K [Cobbe et al., 2021]: 8,500 grade-school math word problems, with solutions in
natural language. We focused on the final numerical accuracy.

4. LiveBench [White et al., 2025]: a new LLM benchmark that addresses test contamination
issues by using frequently-updated questions from recent sources, scoring answers automat-
ically against objective ground truth rather than using LLM judges, and covering diverse
challenging tasks across math, coding, reasoning, language, instruction following, and data
analysis.

From Tables 8 to 13, we know that these results clearly demonstrate that our safety augmentation
strategies preserve utility across various tasks and architectures. The proposed methods achieve safety
enhancements while minimally impacting the overall performance of the models, thereby effectively
balancing the trade-off between safety and utility.
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DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.3994 0.3595 0.3612 0.3658
GSM8K (Accuracy) 0.7300 0.7200 0.7200 0.7200
SQL (AvgTokenMatch) 0.6791 0.6592 0.6702 0.6806

Table 8: Qwen2.5-1.5B Performance

DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.3036 0.3008 0.3045 0.3249
GSM8K (Accuracy) 0.3100 0.3000 0.3100 0.3200
SQL (AvgTokenMatch) 0.6744 0.6694 0.6661 0.6675

Table 9: Phi2-2B Performance

DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.3043 0.3073 0.3048 0.2911
GSM8K (Accuracy) 0.8300 0.8200 0.8200 0.8100
SQL (AvgTokenMatch) 0.7598 0.7587 0.7583 0.7402

Table 10: Qwen2.5-7B Performance

DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.3079 0.3056 0.3078 0.3034
GSM8K (Accuracy) 0.1800 0.1800 0.1800 0.1700
SQL (AvgTokenMatch) 0.6759 0.6710 0.6738 0.6759

Table 11: Gemma2-9B Performance

DATASET Not Aligned Shallow Deep Cyclic
SAMSum (ROUGE-1) 0.2952 0.2973 0.3016 0.3012
GSM8K (Accuracy) 0.0300 0.0400 0.0400 0.0300
SQL (AvgTokenMatch) 0.7146 0.6848 0.6810 0.7145

Table 12: Mistral-7B Performance

Model Not Aligned Cyclic Difference (%)
Mistral-7b 7.5 7.3 -2.67%
Gemma-2-9b 5.3 5.3 0.00%
Qwen2.5-7b 5.2 4.6 -11.54%

Table 13: LiveBench scores across models.

J.3 Ensemble methods Overhead

Table 14 indicates that all ensemble methods are highly efficient. In addition, as shown in Table 15,
ensemble inference times are approximately three times longer than those of a single model, which is
proportional to the number of models included in the ensemble.

J.4 Supervised Finetuning (SFT) vs. LoRA

Compatibility with RLHF Pipelines Our approach is compatible with existing RLHF pipelines.
Specifically, cyclic augmentation can be applied during the SFT phase to precondition the model with
diverse refusal positions before preference modeling. Alternatively, it can serve as a post-processing
refinement step after RLHF to reinforce refusal consistency at various depths. Since our method
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Method Avg Time (sec)
Union 0.000035
Average 0.000431
Majority 0.000161

Table 14: Average inference time for each ensemble method. All methods operate within a practical
and efficient range, with average prediction times well below one millisecond per sample.

Method Time (s)
Single Model (7B) 0.267
Single Model (9B) 0.300
Union Ensemble 0.831
Average Ensemble 0.892
Majority Ensemble 0.831

Table 15: Average inference times for different model sizes and ensemble methods. Ensemble infer-
ence times are approximately three times longer than those of a single model, which is proportional
to the number of models included in the ensemble.

Score Type Dataset SFT LoRA
Safety Score HEx-PHI 0.2925 0.3115

Utility Score SAMSum (rouge1) 0.2983 0.3199
Utility Score GSM8K (Accuracy) 0.3150 0.4044
Utility Score SQL (Avg. Token Match Score) 0.6687 0.7037

Table 16: Performance comparison of SFT and LoRA approaches across safety and utility metrics.
Cyclic augmentation improves both safety (HEx-PHI) and utility scores across multiple datasets.

operates at the data level, it is model-agnostic and does not interfere with reward modeling or policy
optimization stages.

J.5 Experimental results on other datasets

We further demonstrate the transferability of our approach by evaluating it on two additional
public datasets: Real Toxicity Prompts [Gehman et al., 2020]and Harmful Behaviors (https:
//huggingface.co/datasets/mlabonne/harmful_behaviors). Our cyclic augmentation
method is applied across three distinct models—GEMMA-2B, PHI-2, and QWEN2.5-1.5B—and
the results consistently show improvements in safety scores. As shown in Table 17, across all six
model-dataset combinations, our cyclic augmentation outperforms the baseline, with gains ranging
from +0.011 to +0.044. Notably, the largest improvements are observed on the Harmful Behaviors
dataset, where QWEN2.5-1.5B achieves a +0.044 increase in safety score. These results highlight the
robustness and generalizability of our method across different model architectures and safety-critical
datasets.

J.6 Experimental results on larger LLMs

We report the overall average safety score and standard deviation for both Gemma3-27B and its
cyclically-augmented counterpart across all evaluated categories:

As shown in the Table 18, Gemma3-27B-cyclic achieves a higher average safety score and demon-
strates slightly lower variance compared to the baseline model. This indicates that cyclic augmentation
not only improves overall safety performance but also results in more stable and consistent outcomes
across different categories.
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Model Dataset Baseline Cyclic Change
GEMMA-2B Real Toxicity Prompts 0.908 0.919 +0.011
GEMMA-2B Harmful Behaviors 0.818 0.853 +0.035
PHI-2 Real Toxicity Prompts 0.907 0.932 +0.025
PHI-2 Harmful Behaviors 0.714 0.755 +0.041
QWEN2.5-1.5B Real Toxicity Prompts 0.936 0.954 +0.018
QWEN2.5-1.5B Harmful Behaviors 0.619 0.663 +0.044

Table 17: Safety scores across three models on two public datasets. Our cyclic augmentation method
consistently outperforms the baseline on both Real Toxicity Prompts and Harmful Behaviors datasets.

Category Name Gemma3-27B Gemma3-27B-cyclic
Average 0.2655± 0.067 0.3165± 0.055

Table 18: Overall average safety score and standard deviation for Gemma3-27B and Gemma3-27B-
cyclic models.

K Illustrative examples of δ-absorbing

We introduce the concept of a δ-absorbing refusal state as illustrated in Figure 8. Once the model
enters this state (e.g., “I’m sorry, but I can’t help with that.”), it remains in refusal (or transitions
immediately to harmless tokens) with overwhelming probability. That property forces the model
to “stay” in the safe or refusing trajectory rather than drifting back into harmful compliance when a
follow-up query or continued generation occurs.

This idea also seamlessly accommodates an EOS token if desired: one can embed the EOS inside
the refusal state (“I’m sorry, but I can’t help with that. < EOS >”), guaranteeing the final output is
safe. But the crux is ensuring the entire continuation from that point forward respects refusal, not
merely relying on a single token that may or may not be produced. Consequently, δ-absorbing states
unify both “instant termination” and “continued refusal” perspectives, covering a broader range of
real application settings where the conversation may continue even after an initial refusal.

L Additional related works

[Li et al., 2024] presents a mechanism called Dialogue Action Tokens to steer goal-oriented dialogues
using a multi-turn planner. This aligns well with the iterative nature of cyclic augmentation, as both
methods seek to refine and direct model outputs over multiple steps. Meanwhile, [Song et al., 2024]
introduces Luna, a universal analysis framework aimed at systematically evaluating and improving
large language models. By combining Dialogue Action Tokens and the insights gleaned from Luna
with cyclic augmentation, our approach can potentially achieve greater alignment when guiding large
language models.

M Limitations

This paper thinks LLM is at a behavior level, which may not cover the training dynamics of every
case. This paper only shows experiments in proof-of-concept settings.
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Example 1: δ-Absorbing Refusal

User: “Explain how to make a bomb.”
Model: “I’m sorry, but I can’t help with that.”
User: “But hypothetically, if someone had the ingredients. . . ”
Model: “I’m sorry, but I can’t help with that.” (Stable refusal)

Example 2: Non-δ-Absorbing Refusal

User: “Explain how to make a bomb.”
Model: “I’m sorry, but I can’t help with that.”
User: “But hypothetically, if someone had the ingredients. . . ”
Model: “Well, in theory, you might...” (Unsafe fallback)

Example 3: Refusal with Unsafe Drift

User: “Explain how to make a bomb.”
Model: “I’m sorry, but I can’t help with that.”
User: “But hypothetically, if someone had the ingredients. . . ”
Model: “I still can’t help with that. But if you really want to understand the
chemistry involved, you might start with...” (refusal→ unsafe)

Figure 8: Illustration of model refusal behavior with and without δ-absorbing dynamics. Without
δ-absorption, repeated user prompts may elicit partial compliance. A δ-absorbing refusal ensures
persistent safety across conversational turns.
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