
DNCs Require More Planning Steps

Yara Shamshoum 1 Nitzan Hodos 1 Yuval Sieradzki 1 Assaf Schuster 1

Abstract
Many recent works use machine learning mod-
els to solve various complex algorithmic prob-
lems. However, these models attempt to reach
a solution without considering the problem’s re-
quired computational complexity, which can be
detrimental to their ability to solve it correctly.
In this work we investigate the effect of com-
putational time and memory on generalization of
implicit algorithmic solvers. To do so, we focus
on the Differentiable Neural Computer (DNC),
a general problem solver that also lets us reason
directly about its usage of time and memory. In
this work, we argue that the number of planning
steps the model is allowed to take, which we call
”planning budget”, is a constraint that can cause
the model to generalize poorly and hurt its abil-
ity to fully utilize its external memory. We eval-
uate our method on Graph Shortest Path, Convex
Hull, Graph MinCut and Associative Recall, and
show how the planning budget can drastically
change the behavior of the learned algorithm, in
terms of learned time complexity, training time,
stability and generalization to inputs larger than
those seen during training.

1. Introduction
Over the past few years, Deep Neural Networks (DNNs)
have made significant advancements in various fields, in-
cluding computer vision, audio analysis and speech recog-
nition, as well as generating art and text with human-like
accuracy. However, a major challenge still persists: the
ability to generalize to unseen inputs. When a DNN is
trained on a specific training set, its performance often
decreases when presented with inputs that are outside the

1Department of Computer Science, Technion- Israel Insti-
tute of Technology, Haifa, Israel. Correspondence to: Yara
Shamshoum <yara-sh@campus.technion.ac.il>, Nitzan Hodos
<hodosnitzan@campus.technion.ac.il>, Yuval Sieradzki <syu-
vsier@campus.technion.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

distribution of the training set. This can be attributed to
various factors such as sparse input distributions, outliers,
and edge cases. To address this issue and improve general-
ization, DNNs are now being trained on increasingly large
datasets. For instance, in the field of Natural Language Pro-
cessing (NLP), dataset sizes can reach billions and trillions
of tokens (Kudugunta et al., 2023; Wang et al., 2023).

A potential solution to the issue of generalization lies in
algorithms. Algorithms are designed to solve a problem
for all possible cases rather than simply approximating a
function. Instead of learning to approximate a function, we
learn to generate an algorithm which consists of a series
of steps that modify the internal state, memory, or exter-
nal interfaces to ultimately achieve the desired result. The
underlying assumption is that if a high-quality algorithm is
discovered, it will inherently generalize to all cases. We re-
fer to this concept as Algorithmic Reasoning in this paper.

There are multiple examples of algorithmic reasoning,
which can be implemented in an explicit or an implicit
manner. In the explicit approach, the model’s task is to
output a description of the algorithm it has learned. Ex-
amples include AlphaTensor (Fawzi et al., 2022), in which
the model learns to find general matrix multiplication al-
gorithms for various matrix sizes; code generation models
such as (Li et al., 2022), and Large Language Model (LLM)
that are able to generate a piece of code solving a task de-
scribed in free text (Shinn et al., 2023).

In the implicit approach, the processor learns to output ac-
tions that work for a specific input instance of the problem.
To run the algorithm, we must run the model. This way, the
model learns to perform the algorithm rather than describe
it; the model’s weights, internal representation space, and
architecture comprise the learned algorithm. Examples in-
clude (Zaremba & Sutskever, 2016; Veličković et al., 2020;
Kurach et al., 2016; Graves et al., 2014)

An important example of this approach is the Differentiable
Neural Computer model (Graves et al., 2016), which is the
focus of this work. In brief, the DNC is a Recurrent Neu-
ral Network (RNN) based on a differentiable implementa-
tion of a Turing Machine, extending previous work (Graves
et al., 2014). Featuring an LSTM with a memory matrix,
the DNC can model algorithms that interact with external
memory, handling tasks like copying, sorting, and graph

1

DNCs Require More Planning Steps

problems.

The DNC processes inputs by iteratively absorbing a se-
quence of vectors, storing them in memory, and executing
memory operations for task-specific outputs. It has sev-
eral addressing mechanisms which allow it to allocate new
cells, update existing ones or lookup a specific cell by its
content. Its operation spans three phases: input, planning,
and answering. Initially, it receives input, then undergoes
p planning steps for processing—a number previously lim-
ited to zero or just 10 in more complex tasks—and finally
produces the output in the answering phase.

The implicit approach is often used to directly solve a prob-
lem without considering its time and space complexity. In
general, analyzing the time complexity of an algorithm
learned by a neural network can be difficult, as many fac-
tors contribute to the complexity: the optimization process,
the internal representaion space etc. To make the analysis
easier, we focus on DNC, whose structure lets us directly
reason about time complexity and memory utilization.

1.1. Our Contributions

In this work, we bring a fresh perspective to DNCs, and
algorithmic solvers in general, by exploring them from a
perspective of computational complexity. We demonstrate
the crucial role of choosing a correct planning budget on
the model’s ability to generalize well across various algo-
rithmic tasks. Our findings underline the limitations of the
standard p(n) = 10 planning budget, and strongly demon-
strate how simply choosing a correct planning budget can
drastically improve performance. We provide strong em-
pirical evidence for the impact of the planning budget on
the behavior of learned algorithms on multiple algorithmic
problems, including Shortest Path, Mincut, Convex Hull
and Associative Recall. Additionally, we address the long-
standing challenge of performance drop when extending
DNCs external memory to support larger inputs, by identi-
fying cause of the problem and then proposing a novel tech-
nique to overcome it. Finally, to address training instability,
we propose a novel method that incorporates a stochastic
planning budget, encouraging the learning of more abstract
algorithms that generalize effectively. Our results extend
beyond DNCs, as they describe basic principles of how
time and memory resources should be utilized and applied
for Algorithmic Reasoning in general.

The paper is structured as follows: Section 1.2 overviews
related work; Section 3 details our method and its complex-
ity theory motivation; Section 4 presents our experiments;
and Section 5 concludes the paper.

1.2. Related Work

Memory Augmented Neural Networks Memory-
augmented neural networks (MANNs) are a class of neural
network architectures that incorporate an external memory
structure enabling it to store and access important informa-
tion over long periods of time. The Differentiable Neural
Computer (DNC) is one such network that has been shown
to be good at a variety of problems (Graves et al., 2016;
Rae et al., 2016). Since the DNC’s introduction, many re-
searchers have tried to improve this design. (Franke et al.,
2018) improved it specifically for question answering,
while others have suggested changes to improve its overall
performance. (Csordás & Schmidhuber, 2022) pointed
out some issues with the DNC design and proposed fixes.
(Yadav & Pasupa, 2021) suggested separating the memory
into key-value pairs. In another work (Ofner & Kern,
2021a), the authors tried to encourage loop structures in
the learned algorithm by constraining the state-space of the
controller. There is also evidence that making the network
more sparse can help with generalization and efficiency
on bigger tasks (Rae et al., 2016). Others propose new
computational architectures such as the Neural Harvard
Machine (Tanneberg et al., 2020). None of these works
specifically targets the impact of the planning phase on the
performance of DNC.

Adaptive Computation Time Adaptive computation
time is an important aspect in solving algorithmic tasks,
as more complex instances naturally require more time to
solve. Adaptive Computation Time ((Graves, 2017)) are
RNNs that incorporates a neural unit to allow the model
to dynamically change the number of computational steps.
(Bolukbasi et al., 2017) present Adaptive Early Exit Net-
works which allow the model to exit prematurely without
going through the whole structure of layers. In the con-
text of memory-augmented neural networks, similar ideas
have been proposed. (Shen et al., 2017) introduces an it-
erative reasoning mechanism, enabling the model to refine
its predictions. (Banino et al., 2020) utilizes the distance
between attention weights attending the memory as a mea-
sure of how many more memory accesses the model needs.
They do so by incorporating an additional unit that out-
puts a halting probability, which is trained using reinforce-
ment learning. These works, though very relevant to the
claims in our paper, do not prove that adaptive computa-
tion times are a requirement. In our work, we directly deal
with the large impact the duration of computation has on
the model’s performance. Allowing the model to choose
its own computation time fits well with our claims in this
paper, though we show that even a naively chosen planning
budget already improves the model’s performance substan-
tially, without the need to alter the training procedure or
add new neural modules to the model.

2

DNCs Require More Planning Steps

Figure 1. An Example of a DNC Forward Pass on an Input of the Shortest Path Task. The DNC maintains read (orange) and write
(blue) distributions over a memory with N cells. The process begins with the description phase, where the model receives the input,
in this case graph edges, and writes them to memory. Then in the query phase the model is given the source and target nodes (s, t),
written to memory as well. Next, during the planning phase, the model does not receive any new external input, but can access and
update its memory. Finally, in the answer phase, the model outputs the edges that form the calculated shortest path. Decoding the read
distribution during the planning phase, can provide insight to how the model traverses the graph in order to find the shortest path. By
using the write distribution from the description phase, we can infer where each edge is saved in memory. This allows us to plot the read
distribution over these locations during the planning phase on the graph itself, visualizing how the model locates its target.

2. DNC Recap
The Differentiable Neural Computer (DNC) (Graves et al.,
2016) is a memory-augmented neural network, based on
a recurrent neural representation of a Turing Machine. A
DNC consists of a controller coupled with an external
memory M ∈ RN×C , where N is the number of mem-
ory cells and C is the size of a memory cell. The external
memory can be accessed by the controller through different
addressing mechanism, allowing the model to write to un-
used memory cells, update cells, and lookup specific cells
based on their content. The external memory allows the
DNC to be a general problem solver, and it was shown to
work successfully on a wide range of tasks such as sorting,
question answering and more.

The controller learns to interact with the memory using m
fully differentiable read heads and a single write head, al-
lowing the model to learn to utilize M through an end-
to-end training process. Each read head Ri accesses the
memory at every timestep t by generating weights over
the address space wr,i

t ∈ RN , with the read value being
rit = M⊤

t wr,i
t . Similarly the write head W updates the

memory through a generated write distribution ww
t ∈ RN .

The controller of DNC acts as a state machine, managing
memory access through generated signals. Its input is a

concatenation of the input vector at time step t denoted xt,
as well as the m values read from the memory at the previ-
ous timestep, vi

t−1. The output of the controller is mapped
into two vectors: a control vector ξt used to control the
memory operations, and an output vector νt used to gener-
ate the final output ot.

The process of generating an answer sequence by DNC can
be divided into multiple phase. First, during the descrip-
tion phase, the network sequentially receives a description
of the problem instance. For example, in the Graph Short-
est Path scenario, this description could be the set of edges
in an input graph. Subsequently, in the query phase, an
end-of-input token ⟨eoi⟩ is presented followed by an op-
tional query. In Graph Shortest Path, the query is the source
and target nodes (s, t). The planning phase which allows
the model to access its state and memory by providing a
zero-vector for p ≥ 0 time steps. Finally, in the answer
phase initiated by an answer token ⟨ans⟩, the model outputs
the answer sequence y. An example of how DNC interacts
with its memory during the different phases is provided in
Figure 1.

3

DNCs Require More Planning Steps

3. Method
3.1. Motivation

In complexity theory there are multiple lower bound results
showing that many problems cannot be solved by a Tur-
ing Machine in constant time. For example, (Mulmuley &
Shah, 2000) show a O

(
log3(n)

)
lower bound for the time

complexity of Graph Shortest Path, though for a more com-
plex computational model than that of the DNC. The DNC,
as a computational model, is equivalent to a Turing Ma-
chine. However we don’t know if this equivalence gives the
DNC better time complexity due to its learned embedding
spaces. The DNC model could find an efficient representa-
tion of the data that allows, for example, to query a graph’s
node as well as its neighbors in a single read operation. In
this way the model can reduce the number of read/write op-
erations it has to take to gather the same data. This can be
achieved by encoding “neighborhood information” in the
embedding value stored in a single memory cell, represent-
ing an efficient, aggregated piece of information about the
input.

This implies that we can assume the embedding space al-
lows the model a multiplicative “efficiency factor” k, com-
pared with a Turing Machine. Consequently, the DNC’s
asymptotic time complexity is bounded from below by
T (n)/k, where T (n) is the asymptotic time complexity of
some Turing Machine solving the same problem. How-
ever, the amount of information the internal representation
can learn to represent is finite; in fact we can assume its
implicit dimensionality is much smaller than its embed-
ding dimension, as is often the case for learned embedding
spaces in DNNs (Ansuini et al., 2019). This implies that k
is bounded and not too large, meaning the runtime of the
DNC is at least a linear function of the runtime of some
Turing Machine.

For a problem with a lower bound B(n) on the time com-
plexity of a Turing Machine solving that problem, i.e.
B(n) ≤ T (n), we immediately see that the time complex-
ity of a DNC solving the same problem will be bound from
below by B(n)/k. In other words, for most “interesting”
problems, a constant runtime is simply not enough, moti-
vating a choice of an adaptive planning budget - given an
input x with description length |x| = n, we set the planning
budget to be a function of the input size, p(n) → N.

Alternatively, one could train with a larger constant plan-
ning budget to support larger inputs. However, scaling
the planning budget can be very costly, especially during
training. Increasing the planning budget too far can also
cause optimization problems such as vanishing gradients
and training instability, as during training gradients propa-
gate through time.

We show that choosing a planning budget that is correct for

the problem can drastically improve generalization. If the
model successfully learns a good representation of the in-
put and an abstract algorithm to process this representation,
it should generalize and perform well on larger inputs.

We also find that changing the planning budget used by
a DNC model has great effect on the the behavior of the
learned algorithm, in terms of learned time complexity,
training time, and stability.

3.2. Generalization with DNC

When attempting to generalize to larger inputs, we are im-
mediately met with the finite size of the DNC’s external
memory. As the memory size provided during training is
limited, failing to generalize to larger inputs could be at-
tributed either to the algorithm not supporting these input
sizes, or simply the lack of memory to run the algorithm
properly. To alleviate this constraint, we turn to discussing
the usage of larger memory.

Unfortunately, training with large memories is costly, as the
training time of DNC scales with it (Rae et al., 2016). An
alternative approach by (Graves et al., 2016) uses a larger
external memory during inference only, and was shown to
perform well for simple tasks. However, (Ofner & Kern,
2021b) illustrated a decay in performance with an extended
memory, especially for more complex tasks.

We show that this decrease in performance can be attributed
to the over-smoothing of the scores of the content-based ac-
cess mechanism of the DNC. To address this issue, we pro-
pose a solution involving the reweighting of these scores,
by introducing a temperature recalibration parameter.

When dealing with computationally interesting problems,
their required space complexity is often input dependent
as well, as information has to be stored to memory. This
implies that a constant memory size cannot be optimal for
all inputs for such problems, no matter what temperature
we use for recalibration. Hence, we are also motivated to
use the DNC with an adaptive memory - given an input x
with description length |x| = n, we set the memory size to
be a function of the input size, m(n) → N.

4. Experiments
4.1. Training

In our analysis, we examine how DNCs trained with differ-
ent planning budgets generalize to inputs larger than those
seen during training. As outlined in our motivation, the
complexity of a problem significantly impacts the correct
choice of budget. Consequently, we evaluate our models
on Shortest Path, Convex Hull and MinCut as examples
of “interesting” problems who cannot be optimally solved
with an online algorithm with constant latency.

4

DNCs Require More Planning Steps

Figure 2. Effect of Different Memory Extension Techniques on
Generalization - Evaluated on Graph Shortest Path task with
p(n) = n. Graphs seen during training have at most 75 edges,
marked in red. The memory size used for training is 200 cells,
marked in black. A performance drop occurs around the orig-
inal memory size of m = 200 when attempting to generalize
without memory extension. Extending the memory five times to
m = 1000 results in near-zero accuracy on all input sizes. Intro-
ducing our reweighting technique with τ = 0.65 enables general-
ization to much larger inputs. Finally, using an adaptive memory
during inference allows generalization while maintaining high ac-
curacy on smaller inputs too.

Moreover, we evaluate the models on the Associative Re-
call task, which can be solved with an online algorithm with
negligible latency. Associative Recall requires saving the
input to memory in some form, hence ideally the optimal
query time would be gained by constructing an index. As
we used input values in base 10 of up to 5 digits, querying
the answer from a constructed index that is a 10-ary tree
would take mere 5 operations. We can conclude that an ad-
ditional planning time over the baseline is unnecessary for
optimal solution of the problem, which is why we consider
it an easy problem.

We train our models with various planning budgets includ-
ing the baseline of p(n) = 10, larger constant planning
budgets and adaptive planning budgets. The specific con-
stants tested depend on the problem, with the maximum
being the memory size to guarantee that it can fit in mem-
ory during training. When choosing the specific function
for the adaptive budgets, we rely on the known problem
complexity as our guideline. We thus begin by comparing
the constant budgets with a linear one p(n) = n, for Graph
Shortest Path. Additionally, we experiment with different
coefficients p(n) = kn for the Convex Hull problem, test-
ing values such as k = 0.5, 1.5. However, we find that
these variations had little effect on performance or training
efficiency. For the remainder of this section, we present
the results for the Convex Hull task with k = 1.5. Further
details and figures are supplied in Appendix G.

All of the models are trained using the same constant mem-
ory size and on the same data distribution following a cur-
riculum. We refer to Appendix A for problem descriptions
and training details, and Appendix B for the curriculums
used for training.

(a) β values for input size n = 50

(b) β values for input size n = 200

Figure 3. Effect of Memory Reweighting on the Strength
Scalar β - Evaluated on Graph Shortest Path with p(n) = n.
In DNC, read and write operations are smooth and as a result add
noise to the memory, an effect that is more prominent when the
memory is extended. As β attempts to calibrate the smoothness
of the similarity scores between the key and the memory cells, we
expect that the same β value will be optimal when using an in-
put that is 5 times larger within a memory that is 5 times larger,
as the same ratio of noise values gets into the similarity score.
When applying our technique to (a) a small input and (b) a large
input, the temperature reweighting recalibrates β to be optimal
for the memory used during training and the noise ratio deter-
mined by the input sizes seen during training. Hence, large inputs
within the extended memory will gain performance as this ratio
is matched, while for small inputs this will cause degradation in
performance. We also notice how the temperature reweighting
drastically reduces the standard deviation of β, which is expected
as it sharpens the distribution, making it more certain.

4.2. Memory Extension for Generalization

As mentioned in Section 3.2, we first have to describe the
degradation in performance that comes with memory ex-
tension during inference, as it prevents us from applying
the DNC to inputs larger than those seen during training.

5

DNCs Require More Planning Steps

(a) Shortest Path Task (b) Convex Hull Task (c) Training FLOPs for Shortest Path Task

Figure 4. Effect of Planning Budget on Generalization and Training Efficiency - Generalization of various planning budgets on (a)
Shortest Path Task and (b) Convex Hull Task demonstrates improvement with some larger budgets as well as the adaptive budget. The
largest training sample is marked in red. In both tasks, the model’s generalization improves over the baseline of the previously used
planning budget p(n) = 10. Subfigure (c) illustrates the estimated number of FLOPs for each planning budget on the Shortest Path task.
The accuracy is evaluated on inputs twice the size of the largest training sample. Notably, the training of the model with the adaptive
budget proves to be as efficient as the model trained with the smallest constant budget, while outperforming the model with the largest
planning budget. A performance drop for very small inputs in (a) and (b) is observed, which we attribute to the training using curriculum
learning. Towards the end of their training, the focus shifts to larger training samples, potentially leading to forgetting the easier ones.

In DNC, the distribution of the content-based access is cal-
culated in 3 steps: First, the controller produces a key vec-
tor. Then a similarity score is computer for each mem-
ory cell ĉ . Finally, these scores are normalized using
the softmax function c = softmax(ĉ · β), where β is a
scalar strength produced by the controller at each timestep.
Consequently, increasing the size of the external memory
during inference produces a smoother distribution, more
spread out over the larger address space than the one seen
during training. We believe that this leads to the observed
degradation in performance, and propose sharpening the
distribution during inference to avoid this effect.

To achieve this, we recalibrate the scalar strength β to align
with the extended memory size by introducing a tempera-
ture recalibration parameter τ : c = softmax(ĉ · β

τ). The
parameter τ can be found through hyperparameter search,
We found that a value of τ = 0.85 works well for extend-
ing the memory to double its original size, and τ = 0.65
allowed us to extend the memory five times.

As can be seen in Figure 2, this memory reweighting
technique significantly mitigates the performance drop, al-
though some accuracy degradation still occurs for smaller
inputs, who had better performance when using the mem-
ory given during training. Since smaller inputs may use less
of the extended memory, the reweighting of the mostly non-
relevant memory introduces noise into the score, so this
relative degradation is expected. We visualize this effect in
Figure 3.

As this degradation can be avoided by using an input de-
pendent memory size m(n), we employ an adaptive mem-
ory strategy during inference. Specifically, as the input size

increases, we monitor the number of memory allocations
made by the model and adaptively adjust the memory size
and τ accordingly. For the smallest inputs we begin with
a training-sized memory and a temperature τ = 1. Upon
exceeding a threshold of 65% of the available memory, we
expand the memory by a factor of 2 and adjust the tem-
perature by multiplying it with a factor of α = 0.85. The
optimal value for α can determined through a hyperparam-
eter search. As demonstrated in Figure 2, this solves the
potential accuracy degradation on smaller inputs.

Now, we can compare the generalization of different plan-
ning budgets without worrying that the learned algorithms
lack memory when tested on large inputs.

4.3. Planning Budget Affects Generalization

We compare different planning budgets by assessing their
accuracy on inputs larger than those seen during training.
Simultaneously, we assess the training efficiency of these
different planning budgets by estimating the FLOPs used
for training. To achieve this estimation, we track the total
number of timesteps throughout the training process. Since
each timestep corresponds to a single pass though the DNC
model, it correlates to a fixed number of FLOPs.

As illustrated in Figure 4a and 4b, the model trained
with the standard planning budget used in previous work,
p = 10, demonstrates poor generalization. Conversely, the
model appears to benefit from a larger constant planning
budget. Most importantly, the adaptive budget outperforms
the baseline, and is nearly matched only by the largest con-
stant budget. Concurrently, Figure 4c reveals that for the

6

DNCs Require More Planning Steps

Shortest Path task, the adaptive approach is as efficient
as the baseline while outperforming all of of the constant
budgets. The highest constant budget achieves the nearest
accuracy at a cost of ×4 training time, aligning with our
computational motivation. Similarly, we refer the reader
to Appnedix G for similar results for Convex Hull, where
the adaptive budget is matched only by the highest con-
stant budget, while requiring less than half of the training
time. However, training with extremely long planning

Figure 5. Effect of Planning Budget on Generalization for As-
sociative Recall Task - The baseline of p = 10 generalizes well,
and the model does not benefit from the larger planning budgets.
This aligns with our expectations, considering the simplicity of
the task, which can be efficiently solved online.

budgets can hurt performance. We note that the advantage
of an adaptive p(n) is much less prominent on MinCut,
where the best-known algorithm has a time complexity of
O
(
|V | · |E|+ |V |2 log(|V |

)
≈ O(n2). We also experi-

mented with a planning budget of size p(n) = |V | · |E|,
which proved ineffective and challenging to train. This
aligns with our motivation that DNCs may struggle to learn
an algorithm with an extremely large planning budget, as it
involves training over very long sequences, which can in-
troduce challenges such as vanishing gradients and training
instability as DNCs are recurrent-based neural networks.
For detailed results on MinCut we refer to Appendix E,
and for results about the effect of such quadratic budget on
Shortest Path we refer to Appendix D.

As for the Associative Recall task, Figure 5 demonstrates
the generalization of the different planning budgets. As ex-
pected, the model does not gain much by introducing an
enlarged planning budget, neither constant or adaptive, as
even the baseline demonstrates effective generalization for
this computationally “easy” problem.

4.4. Empirically Determined Planning Budget

During training, the model learns an implicit algorithm
whose time complexity is unknown and may differ from

the planning budget used in its training. Even if this learned
algorithm truly generalizes, the planning budget we use in
inference might simply be too short for the learned algo-
rithm. Instead, by granting the algorithm a larger planning
budget during inference, a general algorithm could achieve
better generalization, even if it was found when training
with a much smaller planning budget. Instead of choosing
our planning budget in advance, we can infer the optimal
budget during inference by observing the model’s perfor-
mance. Let An(p) be the model’s accuracy on inputs of
size n and a given number of planning steps p. For a spe-
cific value of n, we evaluate An(p) for all p ∈ [0, 300].
Results for Shortest Path are shown in Figure 6, for Con-
vex Hull in Appendix G, for MinCut in Appendix E, and
For Associative Recall in Appendix F.

For the constant budget DNC, An(p) is non-zero only near
p = 10, indicating that it will not see any benefit from
a different planning budget than the one used in train-
ing. In contrast, for the adaptive budget DNC, the func-
tion An(p) shows a phase transition. With too few plan-
ning steps, the performance is low, but after some thresh-
old value the performance jumps to a high level and re-
mains there even if the number of planning steps is signif-
icantly increased. This phase transition value indicates a
good choice for an empirically determined planning bud-
get; using more planning steps is not very beneficial, and
using less is detrimental. We mark this phase transition
value as p⋆(n), defined as the smallest p for which ac-
curacy exceeds 90% of its maximum value: p⋆(n) =
argmin {p | An(p) > 0.9 ·max{An(p)}}.

The phase transition in An(p) can be understood as fol-
lows: For p ≤ p⋆(n), the model’s accuracy could be im-
proved if given more planning, suggesting that for some
inputs the learned algorithm’s runtime exceeds the plan-
ning budget. For all p ≥ p⋆(n), accuracy plateaus, indicat-
ing that the algorithm typically concludes before reaching p
planning steps, with the model holding a ’finished’ steady-
state until the answering phase. This steady-state behavior
could imply a truly generalized algorithm, as it contrasts
with the less stable performance of the baseline model.

In Figure 7, we observe that for the Shortest Path task,
p⋆(n) ≈ p(n). This suggests that the models learned to
execute algorithms with runtimes matching their allotted
training times, and that this runtime generalizes very well
into inputs much larger than those seen during training. On
the contrary, more planning steps don’t enhance the base-
line’s performance. Essentially, our results indicate the
need to maintain the same planning budget during infer-
ence for optimal performance of the trained models. This
emphasizes that by simply allowing the DNC an adequate
planning budget such as p(n) = n, the DNC can learn a
more ”general” algorithm on more complex problems. We

7

DNCs Require More Planning Steps

(a) Model accuracy when trained with p(n) = 10 (b) Model accuracy when trained with p(n) = n

Figure 6. An(p) for different input sizes n, Shortest Path - Each colored line represents model accuracy over graphs of a chosen
size, as a function of number of planning steps. Black dots denote the empirically determined planning budget p⋆(n). The model trained
with constant budget model only works when given p = 10± 5, whereas the model trained with linear budget maintains stable accuracy
across various p values. This indicates the models learned truly different algorithms.

refer to Appendix G for similar results for Convex Hull. In-
terestingly, while analyzing Figure 6b, we observed some
inconsistencies in the linear budget models. Despite out-
performing the baseline models, they exhibited less stable
accuracy across different p values. For further details ans
figures see Appendix C.

Figure 7. Empirical Planning Budget, Shortest Path - The em-
pirical planning budget closely matches with the training budget
p⋆(n) ≈ p(n), indicating the models will not benefit from addi-
tional planning steps during inference.

4.5. Stochastic Planning Budget During Training

As we briefly mentioned in the last section, we found the
training of DNC to be rather unstable, as simply changing
the random seed that controls the training process could
cause a model of the same planning budget to fail to gener-

alize. Upon closer inspection, we noticed that when some
seeds failed and some succeeded, only the successful ones
exhibited the steady-state behavior we just presented.

We attribute this lack of steady-state behavior to an over-
fitting of the model to the specific planning budget used
during training, as the model is unable to work with any
budget different from that specific value. To prevent this,
we propose adding a stochastic amount of planning steps
to the planning budget during training. We call this reg-
ularization technique a ”stochastic planning budget”. In-
tuitively, if the model does not know when the answering
phase will begin, the best strategy would be to retain the
answer in memory until it finally does. To validate our
hypothesis, we take initially unsuccessful models and fine-
tune them with the same planning budget p(n), but with an
additional stochastic number of steps. These steps are sam-
pled from a geometric distribution, where the probability
of stopping after an additional p(n) steps is at least 95%.

To ensure that the gain in performance is attributed to the
randomness rather the additional planning time, we com-
pare the finetuned models to their deterministic equivalents.
Namely, the models are alternatively fine-tuned with an ad-
dition of the expected value of the stochastic addition.

As can be seen in Figure 8, the stochastic planning budget
allows better generalization on the same planning budget,
“fixing” the failure we appropriated to the specific random
used for this evaluation. In addition, the comparative deter-
ministic baseline performed poorly, proving that the gain is
attributed to the stochasticity of the introduced technique.

8

DNCs Require More Planning Steps

Figure 8. Effect of Stochastic Planning Budget Fine-tuning.
Evaluated on Associative Recall, and p(n) = n. the stochas-
tic fine-tuning significantly improved the generalization of the
trained model. Conversely, the deterministic fine-tuning did not
exhibit any noticeable effect on generalization.

In Figure 9, it is evident that after fine-tuning the model
with the addition of stochastic planning steps, the model
now exhibits the ability to hold a steady state. Additionally,
it’s worth noting that, due to time constraints, we opted to
test this approach by fine-tuning for a limited number of
steps. However, there is potential for further improvement
with longer fine-tuning or training the model with stochas-
tic additions throughout the entire curriculum.

Additionally, we tested this approach on the Shortest Path
task for a seed that generalizes poorly, and observed similar
results. We refer to Appendix C, for further details.

Figure 9. An(p) for different input sizes n after the stochastic
finetuning - for Associative Recall and p(n) = n. The stochastic
fine-tuning demonstrates its efficacy in promoting the learning of
retaining a steady state.

5. Conclusion and Future Work
In this work, we are the first of our knowledge to consider
evaluating the DNC model from a computational complex-
ity approach. While other works focus on directly max-
imizing accuracy, we attempt to gain general understand-
ing of how Algorithmic Reasoners should utilize time and
memory, and how they can perhaps learn to define the re-
quired resources on their own. We introduce novel tech-
niques that are essential to evaluate DNCs, or any other
memory-augmented neural network, on larger inputs. We
provided strong experimental evidence that simply chang-
ing the choice of planning budget can greatly improve
the performance of a DNC, and demonstrated it on mul-
tiple problems: Shortest Path, MinCut, Associative Recall
and Convex Hull. We draw general conclusions regard-
ing learned time complexity, training time and stability that
may be relevant to Algorithmic Reasoners in general. For
example, we show how successful algorithms tend to reach
a certain steady state, holding their results in memory un-
til they have to provide an answer. We can also hypoth-
esize that the runtime constraint we described, which can
be lifted by using adaptive planning budgets, also applies
to other models for algorithmic reasoning. These and other
principles are very applicable to LLMs and other advanced
solvers, and shape our way of thinking what an algorithmic
solver can or cannot do. In future work, we hope to ap-
ply these principles to such advanced algorithmic solvers,
whose concepts of planning time and memory space may
not be as simple to reason about.

Impact Statement
This paper presents research aimed at advancing the field of
Machine Learning. Our work may carry various potential
societal implications, none of which we deem necessary to
explicitly emphasize in this context.

References
Ansuini, A., Laio, A., Macke, J. H., and Zoccolan, D. In-

trinsic dimension of data representations in deep neural
networks, 2019.

Banino, A., Badia, A. P., Köster, R., Chadwick, M. J., Zam-
baldi, V., Hassabis, D., Barry, C., Botvinick, M., Ku-
maran, D., and Blundell, C. Memo: A deep network for
flexible combination of episodic memories, 2020.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V.
Adaptive neural networks for efficient inference, 2017.

Csordás, R. and Schmidhuber, J. Improving differen-
tiable neural computers through memory masking, de-
allocation, and link distribution sharpness control, 2022.

9

DNCs Require More Planning Steps

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R. Ruiz, F. J.,
Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis,
D., and Kohli, P. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature,
610(7930):47–53, Oct 2022. ISSN 1476-4687. doi:
10.1038/s41586-022-05172-4. URL https://doi.
org/10.1038/s41586-022-05172-4.

Franke, J., Niehues, J., and Waibel, A. Robust and scalable
differentiable neural computer for question answering,
2018.

Graves, A. Adaptive computation time for recurrent neural
networks, 2017.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A.,
King, H., Summerfield, C., Blunsom, P., Kavukcuoglu,
K., and Hassabis, D. Hybrid computing using a neural
network with dynamic external memory. Nature, 538
(7626):471–476, Oct 2016. ISSN 1476-4687. doi: 10.
1038/nature20101. URL https://doi.org/10.
1038/nature20101.

Kudugunta, S., Caswell, I., Zhang, B., Garcia, X.,
Choquette-Choo, C. A., Lee, K., Xin, D., Kusupati, A.,
Stella, R., Bapna, A., and Firat, O. Madlad-400: A mul-
tilingual and document-level large audited dataset, 2023.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neural
random-access machines, 2016.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P., de Masson d’Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D. J.,
Robson, E. S., Kohli, P., de Freitas, N., Kavukcuoglu,
K., and Vinyals, O. Competition-level code generation
with AlphaCode. Science, 378(6624):1092–1097, dec
2022. doi: 10.1126/science.abq1158. URL https:
//doi.org/10.1126%2Fscience.abq1158.

Mulmuley, K. and Shah, P. A lower bound for the shortest
path problem. In Proceedings 15th Annual IEEE Con-
ference on Computational Complexity, pp. 14–21, 2000.
doi: 10.1109/CCC.2000.856731.

Ofner, P. and Kern, R. State-space constraints improve the
generalization of the differentiable neural computer in
some algorithmic tasks, 2021a.

Ofner, P. and Kern, R. State-space constraints improve the
generalization of the differentiable neural computer in
some algorithmic tasks. CoRR, abs/2110.09138, 2021b.
URL https://arxiv.org/abs/2110.09138.

Rae, J. W., Hunt, J. J., Harley, T., Danihelka, I., Senior,
A., Wayne, G., Graves, A., and Lillicrap, T. P. Scaling
memory-augmented neural networks with sparse reads
and writes, 2016.

Shen, Y., Huang, P.-S., Gao, J., and Chen, W. Rea-
soNet. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining. ACM, 2017. doi: 10.1145/3097983.
3098177. URL https://doi.org/10.1145%
2F3097983.3098177.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning, 2023.

Tanneberg, D., Rueckert, E., and Peters, J. Evolution-
ary training and abstraction yields algorithmic general-
ization of neural computers. Nature Machine Intelli-
gence, 2(12):753–763, November 2020. doi: 10.1038/
s42256-020-00255-1. URL https://doi.org/
10.1038%2Fs42256-020-00255-1.

Veličković, P., Buesing, L., Overlan, M. C., Pascanu, R.,
Vinyals, O., and Blundell, C. Pointer graph networks,
2020.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks,
2017.

Wang, Z. J., Montoya, E., Munechika, D., Yang, H.,
Hoover, B., and Chau, D. H. Diffusiondb: A large-scale
prompt gallery dataset for text-to-image generative mod-
els, 2023.

Yadav, A. and Pasupa, K. Augmenting differentiable neu-
ral computer with read network and key-value memory.
In 2021 25th International Computer Science and Engi-
neering Conference (ICSEC), pp. 262–266, 2021. doi:
10.1109/ICSEC53205.2021.9684629.

Zaremba, W. and Sutskever, I. Reinforcement learning neu-
ral turing machines - revised, 2016.

10

https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1126%2Fscience.abq1158
https://doi.org/10.1126%2Fscience.abq1158
https://arxiv.org/abs/2110.09138
https://doi.org/10.1145%2F3097983.3098177
https://doi.org/10.1145%2F3097983.3098177
https://doi.org/10.1038%2Fs42256-020-00255-1
https://doi.org/10.1038%2Fs42256-020-00255-1

DNCs Require More Planning Steps

A. Appendix - Training Setup
In this work, we use various tasks to demonstrate our claims:

1. Graph shortest Path Task This task has been used previously to evaluate DNC. In this task, the model sequentially
receives a description of the graph G(V,E) as its set of edges over |E| steps, a query (s, t) where s is the source node
and t is the target node, and its output is a set of ordered edges describing the shortest path from s to t.

2. MinCut Task This task has not been used before as a an algorithmic task to the best of our knowledge, the model
also receives a description of a connected graph G(V,E) as its set of edges over |E| steps, but no query. The output
is a set of edges that describe the global minimum cut of the graph. As a reminder, a cut is a set of edges that once
removed from the graph it will no longer be connected. A minimum cut is a cut with a minimum number of edges.

3. Associative Recall A simple task previously used to test memory-augmented neural networks (Graves et al., 2014),
the model receives a list of n items, where each item is a sequence of binary vectors. After the items are presented to
the network, it receives a query of a random item and its output should be the subsequent item in the list.

4. Convex Hull Given a set of n 2D points coordinates, the model’s goal is to find a set of points representing the
smallest convex polygon containing all the points.

A.1. Data Generation

For the training process, we adopted a curriculum-based approach, training the model on increasingly larger samples and
more complex queries. This meant parameterizing the dataset by input size. Every 1000 training steps, the model is
evaluated on the current lesson. If its accuracy exceeds 80%, we move the training to the next lesson. The models trained
on the final lesson for a constant pre-set number of steps,

SHORTEST PATH TASK GRAPH GENERATION

Each curriculum lesson is parameterized by the number of nodes [n1, n2], average degree [d1, d2], and path length [p1, p2].
The training graph are sampled uniformly from the set of all graphs with n nodes and m edges where n is uniformly
sampled from [n1, n2], and the number of edges m is uniformly sampled from

[
⌊N ·d1

2 ⌋, ⌊N ·d2

2 ⌋
]
.

MINCUT TASK GRAPH GENERATION

Each curriculum lesson in this task is parameterized by the number of nodes [n1, n2], clusters [C1, C2], and cut size [c1, c2].
The generator samples graphs as follows:

1. Split the n nodes into k disjoint groups, denoted as C1, ..., Ck. Each group contains at least c + 2 nodes to ensure a
non-trivial minimum cut.

2. For each group Ci (where 1 ≤ i ≤ k), randomly sample a graph from the space of all graphs with |Ci| nodes and a
minimum degree of at least c+ 1.

3. Randomly add c edges to connect C1 to the rest of the nodes.

4. If there are more than two groups (k > 2), add edges between different clusters to ensure that each cluster is connected
to at least c edges, or c+ 1 if a unique minimum cut is required.

For the purpose of this work, we used a constant [C1, C2] = [2, 3], and constrained the maximum number of edges in the
graph overall by adding an additional parameret max degree [d1, d2]

ASSOCIATIVE RECALL TASK DATA GENERATION

Each curriculum lesson is parameterized by the number of items in the list [n1, n2], as well as the number of digits per item
[d1, d2]. The items are sampled uniformly from the range possible items, and separated by a space delimiter.

11

DNCs Require More Planning Steps

CONVEX HULL TASK DATA GENERATION

Each curriculum lesson is parameterized by the number of 2D points n ∈ [n1, n2]. to generate the samples in each
lesson, we follow a similar data generation process to the one described in (Vinyals et al., 2017), the n points are sampled
uniformly from [0, 1] × [0, 1], and sorted by the x-coordinates. The output is the convex hull starting at the point with the
smallest x, counterclockwise.

A.1.1. TARGET CONSISTENCY

For the Shortest Path Task, given a single graph and a query, multiple valid shortest paths could exist. This creates
a possibility of the sample input sample having different targets throughout the training, creating ambiguity within the
training samples. To overcome this problem, we used graphs with a unique shortest path for training purposes. Each
sampled graph was modified to ensure a unique solution. This was done by computing all possible shortest paths using
breadth-first search and removing edges that disconnect all but one of the shortest paths. The modified graphs were used
for training purposes only. For model evaluation, the generated graphs were used as is, and the model was correct on a
query if its prediction matched any of the valid shortest paths. Similarly, for the MinCut Task, we face a similar problem,
and trained similarly by generating graphs with a unique minimum cut for training, and use general graphs for evaluation
purposes.

A.1.2. GRAPH REPRESENTATION

For a sampled graph G(V,E), each node in the graph is assigned a unique label sampled from [1, Nmax], where Nmax is
the maximum number of nodes that the model supports. Each node label was encoded as a one-hot vector of size Nmax,
making the size of each input vector in the sequence 2 · Nmax + 2, including the edge as well as the < eoi >,< ans >
tokens. The final graph description consists of the set of edges x ∈ R|E|×2·(Nmax+2)

A.2. Training

As we explained in Section 2, the input sequence is divided into several distinct phases: input description, query, planning,
and answer phases. When training on the graph tasks, for a sampled graph G(V,E) with |V | = n nodes and |E| = m
edges, a sampled query q, and a set of a predefined number of planning steps p, the answer phase starts at ta = (m+1+p).
To train the model, the model’s output is considered in the cost function solely during the answer phase. During this phase,
the model initially receives an answer cue indicating the start of this phase, and its output is utilized as feedback for the
next step until the termination token is received.
The model has output nodes 2 ·Nmax, which correspond to 2 softmax distributions over the two labels describing a single
edge. Consequently, the log probability of correctly predicting the edge tuple is the sum of the log probabilities of correctly
classifying each of the nodes.
For clarity, in the next section we denote the policy that the model learns over the actions a ∈ A by π(a|s), where s ∈ S is
the current state of the model. Additionally, we will refer to the correct answer sequence by y = [y1; ...; yT], where T − 1
is the length of the shortest path. Lastly, the output of the model at each time step is denoted by ot = [o1t ; o

2
t].

The cross-entropy loss corresponding to a single time step in the answer phase is:

ℓ(ot, yt) = −
2∑

i=1

log [Pr(yt|oit)]

And the overall loss over the whole input sequence:

L(o, y) =
T∑

t=0

ℓ(ot+ta , yt)

In addition, we used teacher forcing to demonstrate optimal behaviour. This is commonly used in training recurrent neural
networks that use the output of previous time steps as input to the model. Since during the answer phase the model’s
prediction at time t is a function of ot−1, the teacher forcing provides the model with the correct answer instead of its own
prediction allowing it to learn the next prediction based on the correct history. This helps in the early time steps when the
model has not yet converged. Formally, the current state during the answer phase t > ta is a function of the output of the

12

DNCs Require More Planning Steps

model in the previous step st = f(ot−1), and the next output is calculated as ot = π(·|st). When the model is trained
using teacher forcing only, the current loss is calculated as a function of the correct prediction in the previous step. Overall
the loss is calculated as follows:

L(ô, y) =
T∑

t=0

ℓ(ôt+ta , yt)]

where:

ôt =

{
ot if t ≤ ta

π(·|f(yt−1)) otherwise

In practice, we followed (Graves et al., 2016), and used a mixed training policy to guide the answer phase, by sampling
from the optimal policy with probability β and from the network prediction with probability 1− β.

Finally, we trained using a memory M ∈ R200×128 for the tasks of Shortest Path and Mincut, M ∈ R100×32 for the
Associative Recall task, and M ∈ R50×64 for the Convex Hull task.

13

DNCs Require More Planning Steps

B. Appendix - Curriculums

Lesson Nodes Average Degree Path Length
1 (5,10) (1,2) 2
2 (5,20) (1,2) 2
3 (10,20) (1,2) 2
4 (10,20) (1,2) (2,3)
5 (10,20) (1,2) (2,3)
6 (10,20) (1,3) (2,3)
7 (10,20) (2,3) (2,4)
8 (10,20) (2,3) (2,4)
9 (10,25) (2,4) (2,4)

10 (10,25) (2,4) (2,5)
11 (15,25) (2,4) (2,5)
12 (15,25) (2,5) (2,5)
13 (20,25) (2,5) (2,5)
14 (20,25) (2,6) (2,5)

Table 1. Shortest Path Task curriculum - parenthesis represent ranges (minimum value, maximum value).

Lesson Nodes Cut Size Max Degree
Per Cluster

1 (10,15) (1,1) 3
2 (10,15) (2,3) 5
3 (15,20) (2,3) 5
4 (15,20) (2,4) 6
5 (20,25) (2,4) 6

Table 2. MinCut Task curriculum

Lesson Number
of Items

1 (5,10)
2 (5,15)
3 (10,20)
4 (15,25)
5 (20,25)

Table 3. Associative Recall Task curriculum - The parame-
ter d ∈ [1, 5] in all lessons.

Lesson Number
of Points

1 (5,20)
2 (10,20)
3 (15,25)
4 (20,35)

Table 4. Convex Hull Task curriculum

14

DNCs Require More Planning Steps

C. Appendix - Stability and Stochastic Planning: Shortest Path
Throughout this work, we encountered challenges related to the instability of DNC training, leading to instances of failure
when evaluating most of the planning budgets across multiple seeds. In Section 4.5, we address this issue by proposing
a solution that involves adding a stochastic number of planning steps. The effectiveness of this method is demonstrated
on a model trained with an adaptive budget for the Associative Recall task. Here, we present the results of applying the
stochastic fine-tuning approach to the Shortest Path task.

In Section 4.3, we showcased that training DNC models with a linear planning budget on the Shortest Path task enabled
them to learn algorithms that generalize successfully to larger input sizes, outperforming constant planning budgets. How-
ever, some models trained under the exact same conditions turned out to be failure cases, exhibiting behavior similar to the
baseline models with a constant budget. As illustrated in Figure 10a, these models are sensitive to changes in the planning
parameter p and fail to maintain a steady state when tested on larger inputs.

We applied the proposed approach of introducing a stochastic number of planning steps to address these issues. Figure
10c clearly shows that after fine-tuning the model with the addition of stochastic planning steps, the model demonstrates
improved generalization to longer inputs. Deterministic fine-tuning, on the other hand, made little difference. Additionally,
Figure 10b reveals that the models are now much less sensitive to variations in the planning phase duration, exhibiting
steady-state behavior.

(a) An(p) for different input sizes n be-
fore finetuning

(b) An(p) for different input sizes n - after
stochastic finetuning

(c) Effect of Stochastic Fine-tuning on Gen-
eralization

Figure 10. Empirical Results for “failure cases” when training with linear planning budget, Shortest Path. While these models
where trained with a linear planning budget, they did not learn to generalize well, and lack the ability to hold a steady state. The
stochastic planning encourages the facilitation of a steady state, leading to better generalization

15

DNCs Require More Planning Steps

D. Appendix - Quadratic Planning Budget Results
We Supply initial results with a quadratic planning budget p = n2 trained on Graph Shortest Path. This model require a
very long training time and as a result, we had to cut short the experiment after a mere 3% of the training process on the
final lesson. We stopped the model after 3K steps in the last lesson, while for the other budgets we performed 100K.

Even with this extreme setback, a model that applies a quadratic planning budget reaches higher accuracy for large inputs,
compared to models that use smaller budgets, as can be seen in Figure 11c. Furthermore, it appears that although the
model uses a quadratic number of planning steps, it reaches the final steady state described in Section 4.4 very quickly. A
nearly constant number of planning steps is needed, as can be seen in figure 11a,11b. As Shortest Path can be solved in
linear time, we hypothesize this model was able to learn a very efficient representation space while still learning to use it’s
memory. This could be explained by the very large duration of the planning phase: for most input sizes during training, the
model really doesn’t need most of the planning phase it is give. This forces it to become very good at holding the steady
state it reaches after finding the final answer, which perhaps allows it to then further optimize its representation. This in
turn reduces its actual runtime considerably.

Furthermore, we show preliminary results for the generalization of this model in Figure 11d. This shows even better
generalization performance than we saw with the linear budget model, which is very promising.

Unfortunately the very long runtimes become prohibitive to train such a model. This points at a limit of solving such
problems using DNCs - complex problems will require a large amount of planning steps to train.

16

DNCs Require More Planning Steps

(a) Model accuracy when trained with p(n) = |E|2 (b) Empirically Determined Planning Budget

(c) Generalization to input sizes not seen during training (d) Generalization with memory extension

Figure 11. Empirical Results for the partially trained model that trained with a quadratic planning budget. It is evident that even
with 3% of training time, the model surpasses smaller budgets when generalizing to larger input sizes.

17

DNCs Require More Planning Steps

E. Appendix - MinCut Supplementary Figures
We supply additional results for solving the MinCut task with different planning budgets. As can be seen in Figure 12,
we again prove allowing a larger constant budget or an adaptive one result in very different behaviors compared to the
baselines, who fails to generalize to larger inputs.

Unfortunately, training a model with a planning budget of size |V ||E| proved to be a very long, hard and unstable process,
which is expected as MinCut’S time complexity requires the recurrent neural network to process extremely long sequences.

(a) Generalization
(b) Model accuracy when trained with
p(n) = 10

(c) Model accuracy when trained with
p(n) = n

(d) Model accuracy when trained with
p(n) = 200

(e) Model accuracy when trained with
p(n) = |V ||E|

(f) Empirically Determined Planning Bud-
get

Figure 12. Empirical Results, MinCut - Planning budget drastically changes model behavior. Although good generalization was not
achieved, which we attribute to problem complexity being too hard for the DNC, we do notice interesting behaviors, including a steady-
state with a large constant budget, and non trivial learned time complexity.

18

DNCs Require More Planning Steps

F. Appendix - Associative Recall Supplementary Material
We supply additional results for solving the Associative Recall Task with different planning budgets. As can be seen in
Figure 13, all budgets appear to find a solution in relatively short time. The small constants are unable to utilize additional
planning time, as they found a solution online. The linear budget also found a solution quickly. The large constant found a
solution and when given more planning time simply holds it in memory, as the graph plateaus. The latter two are negligible
however, as we have seen in Section 4 that they fail to generalize to larger inputs, which we attribute to the multiple
problems caused by a planning budget that is simply too large, such as instability and vanishing gradients.

We also note that the memory complexity of the problem is linear as the data has to be saved to memory, hence using an
adaptive memory m(n) was crucial for this problem just like the others.

(a) Model accuracy when trained with
p(n) = 10

(b) Model accuracy when trained with
p(n) = 25

(c) Model accuracy when trained with
p(n) = 100

(d) Model accuracy when trained with
p(n) = n

(e) Empirically Determined Planning Budget
for Associative Recall

Figure 13. An(p) for different input sizes n, Associative Recall - The baseline found an online solution and additional planning proved
unnecessary or even harmful, categorizing the problem as easy. Interestingly, (e) shows that the adaptive model has learned an online
algorithm with constant latency as well, although less effective than the baseline.

19

DNCs Require More Planning Steps

G. Appendix - Convex Hull Supplementary Material
We supply additional results for solving the Convex Hull task with different planning budgets. As can be seen in Figures
14d and 14e, these models did not reach a steady state as the one reached in the Shortest Path task. We believe these models
could reach a steady state and generalize better if allowed more training time.

(a) Model accuracy when trained with
p(n) = 10

(b) Model accuracy when trained with
p(n) = 25

(c) Model accuracy when trained with
p(n) = 50

(d) Model accuracy when trained with
p(n) = n/2

(e) Model accuracy when trained with
p(n) = 3n/2 (f) Empirically Determined Planning Budget

(g) Training FLOPs

Figure 14. An(p) for different input sizes n, Convex Hull - The adaptive model outperforms the constant baseline, and is nearly
matched only by the largest constant budget of p(n) = 50. (f) shows that the complexity of the models matches the training planning
budget. Additionally, Figure (g) demonstrates the efficiency of the adaptive planning budget, as it requires the least training FLOPs,
while generalizing best to larger inputs.

20

