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Abstract

We present a multi-stage contrastive learning
framework for domain adaptation of sentence
embedding models, incorporating joint domain-
specific masked supervision. Our approach ad-
dresses the challenges of adapting large-scale
general-domain sentence embedding models
to specialized domains. By jointly optimiz-
ing masked language modeling (MLM) and
contrastive objectives within a unified training
pipeline, our method enables effective learn-
ing of domain-relevant representations while
preserving the robust semantic discrimination
properties of the original model. We em-
pirically validate our approach on both high-
resource and low-resource domains, achieving
improvements up to 13.4% in NDCG@10 over
strong general-domain baselines. Comprehen-
sive ablation studies further demonstrate the
effectiveness of each component, highlighting
the importance of balanced joint supervision
and staged adaptation.

1 Introduction

Self-supervised learning has enabled significant
progress in natural language processing, with meth-
ods like MLLM (Devlin et al., 2019; Liu et al., 2020;
Conneau et al., 2020; Sanh et al., 2019) and con-
trastive training (Reimers and Gurevych, 2019; Wu
et al., 2020; Liu et al., 2021; Yan et al., 2021) driv-
ing recent developments. However, these meth-
ods are typically explored separately, as effectively
combining MLM and contrastive learning remains
a significant challenge, since their joint optimiza-
tion often results in conflicting training signals and
suboptimal performance (Gao et al., 2021). Nev-
ertheless, unifying these objectives presents an op-
portunity to leverage the complementary strengths
of token-level (MLM) and sentence-level (con-
trastive) supervision, while also improving the qual-
ity of learned representations by mitigating the
anisotropy problem (a phenomenon that confines

embeddings to a narrow cone-like region in the
vector space, thereby limiting their expressiveness)
(Ethayarajh, 2019; Li et al., 2020; Gao et al., 2021).
While there have been successful attempts to com-
bine MLM and contrastive objectives for training
language models (Meng et al., 2021; Chi et al.,
2021) and sentence embeddings (Gao et al., 2021;
Wu et al., 2022; Giorgi et al., 2021), the majority
of the prior work has focused on general-domain
data.

General-domain sentence embedding models are
now widely available, many trained on vast general-
domain corpora using a two-stage approach: an ini-
tial pre-training phase on massive unlabeled data,
followed by supervised fine-tuning (Wang et al.,
2022b; Li et al., 2023; Nussbaum et al., 2024; Mer-
rick et al., 2024). The data used for pre-training
can exceed half a billion sentence pairs (hundreds
of gigabytes of text), resources that are rarely avail-
able in specific domains. Although these general-
domain models can perform competitively in spe-
cialized areas, their lack of domain-specific knowl-
edge often limits performance. To address this
gap, we propose domain adaptation of pre-trained
embedding models that leverage their ability to dis-
tinguish between similar and dissimilar pairs and
transfer it to a domain-specific embedding model.

Previous research on language model adapta-
tion highlights the importance of domain-specific
vocabulary for improving results on downstream
tasks (Beltagy et al., 2019; Gu et al., 2020). How-
ever, simply adding domain-specific vocabulary
and continuing MLM training degrades the con-
trastive properties of the learned representations,
since the encoder loses its desirable characteris-
tics under the token prediction objective (Wu et al.,
2022). On the other hand, adding new tokens and
continuing only with the contrastive objective pro-
vides insufficient training signals to update new
domain tokens, as the embedding matrix receives
diluted signals due to the pooling functions applied



to generate sentence embeddings.

This dilemma motivates our approach of using
a joint objective to enable both token-level and
sentence-level supervision, thus benefiting from
both worlds and enhancing domain adaptation for
both the encoder and the embedding matrix during
training. Building on a mutual information maxi-
mization perspective (Hjelm et al., 2018; Bachman
et al., 2019; Kong et al., 2019; Chen et al., 2020;
Chi et al., 2021), which demonstrates that these
objectives are aligned rather than contradictory, op-
erating at different levels of language granularity,
we leverage the joint optimization of MLM and
contrastive objectives. Though these objectives are
theoretically aligned, a key challenge in joint train-
ing arises from the dominance of the MLM loss and
more frequent token-level supervision, which can
overwhelm the joint objective and hinder balanced
optimization. This issue can be mitigated by care-
fully controlling the strength of the MLM signal
during joint training, directing it to domain-relevant
signals, without resorting to encoder separation,
which may limit the propagation of informative
token-level signals into sentence-level representa-
tions.

To thoroughly evaluate our method, we apply it
to both high-resource and low-resource domains.
Most domain-adaptation research focuses on high-
resource and medium-resource domains, which is
valuable for benchmarking, comparison with strong
baselines, and conducting ablation studies. Yet this
focus restricts the generalizability of adaptation
methods to truly low-resource domains, which are
common in real-world applications. Such domains
often face acute data scarcity, making robust adap-
tation methods essential for ensuring equitable ac-
cess to state-of-the-art language technologies and
maximizing the real-world impact of embedding
models. To demonstrate the robustness and prac-
tical value of our approach, we validate it in two
domains: the Biomedical domain, which is char-
acterized by high-resource scientific texts, and the
Islamic domain, which represents low-resource but
culturally significant content. This allows us to test
the robustness of our method even when there is
very limited in-domain data.

Our main contributions are as follows: (1) We
propose a novel domain adaptation approach for
pretrained sentence embedding models that jointly
optimizes MLM and contrastive objectives within
a mutual information maximization framework.
(2) We empirically validate our method on both

high-resource (biomedical) and low-resource (Is-
lamic) domains, demonstrating substantial gains
over strong general-domain baselines, with up to a
2.8% average improvement in NDCG@ 10 across
biomedical benchmarks and a 13.3% improvement
in NDCG @10 on the Islamic dataset. (3) We con-
duct comprehensive ablation studies to analyze the
contribution of each component and the dynamics
of joint objective training. (4) We release our code
and pretrained models to support reproducibility
and facilitate future research.

2 Related Work

2.1 Contrastive and MLM Objectives

Contrastive Predictive Coding (CPC) is one of
the earliest works to introduce the InfoNCE loss
(van den Oord et al., 2018). The loss encourages
informative representations to align with a given
anchor while distinguishing them from negative
examples. Though this work is not specific to sen-
tence embeddings, it laid the theoretical ground-
work for contrastive learning. SimCSE targeted
sentence embeddings by proposing a contrastive
learning setup utilizing dropout noise to generate
two distinct views of the same sentence, thereby
optimizing a contrastive loss between them (Gao
et al., 2021). In their appendix, the authors men-
tioned an experiment involving the incorporation
of MLM during training. However, they found
that performance dropped, likely due to a conflict
between MLM’s token-level loss and the sentence-
level contrastive signal. Built on this challenge in
multi-objective training when using a shared en-
coder, the authors of InfoCSE introduced a more
sophisticated framework (Wu et al., 2022). Rather
than combining MLM and contrastive loss on the
same encoder output, InfoCSE uses an auxiliary
lightweight encoder. This architectural separation
prevents MLM gradients from interfering with the
contrastive training of final-layer CLS embeddings.
InfoCSE showed improved performance over Sim-
CSE in STS benchmarks. Conversely, the authors
of DeCLUTR explicitly combine MLLM with con-
trastive training for sentence embeddings (Giorgi
et al., 2021). They construct positive pairs from
contiguous spans of the same document and ap-
ply a standard BERT-style masking on the anchor
span and train jointly through a single encoder.
Evaluation on SentEval benchmarks for classifica-
tion and similarity showed that a unified objective
is a promising approach. COCO-LM integrates
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Figure 1: Multi-stage domain adaptation of sentence embedding models.

contrastive learning into a pretraining pipeline for
transformer language models (Vaswani et al., 2017;
Meng et al., 2021) and replaces BERT’s Next Sen-
tence Prediction (NSP) objective with a more ef-
fective contrastive signal, pairing corrupted and
truncated versions of a sentence. Corruption is per-
formed using an ELECTRA-style generator (Clark
et al., 2020), producing fluent but subtly altered
sequences. The model jointly learns to align these
pairs (via contrastive loss) and to correct the cor-
ruption (through token-level denoising). COCO-
LM demonstrated consistent gains on GLUE tasks
(Wang et al., 2018), showing that contrastive ob-
jectives outperform NSP for general-purpose pre-
training. The authors of InfoXLM reframe masked
language modeling as a contrastive prediction task,
formulating it with the InfoNCE loss (Chi et al.,
2021). When combined with a sentence-level cross-
lingual contrastive objective, this joint training en-
ables InfoXLM to achieve state-of-the-art results
on cross-lingual understanding and retrieval bench-
marks.

2.2 Domain Adaptation

Domain adaptation is most commonly performed
at the language modeling stage, where general-
purpose models undergo continued pre-training
on in-domain corpora (Lee et al., 2019; Alsentzer
et al., 2019). Such approaches typically suffer
from the absence of domain-specific vocabulary,
which often necessitates training from scratch (Belt-
agy et al., 2019; Gu et al., 2020). To avoid these
GPU-heavy methods, recent work has explored
lightweight domain adaptation by introducing new
domain vocabulary to already well-trained mod-
els, thereby expediting the pre-training process
(Poerner et al., 2020; Sachidananda et al., 2021;
Pavlova and Makhlouf, 2023). In contrast to our ap-

proach, these strategies have primarily been applied
to language models prior to downstream task train-
ing. For sentence embedding models that have al-
ready undergone contrastive training, domain adap-
tation efforts have mostly focused on data-driven
approaches such as data augmentation, denoising
objectives, or generative pseudo-labeling (Thakur
et al., 2021; Wang et al., 2021, 2022a). In our work,
we focus on a model-driven approach.

3 Multi-stage Contrastive Learning with
Domain-Specific Masked Supervision

3.1 Augmenting Contrastive Models with
Domain-Specific Vocabulary

To leverage the robust encoder learned during con-
trastive pretraining, we reuse both the encoder and
the original embedding matrix. However, to ac-
commodate a word distribution shift from a general
domain vocabulary to a new domain vocabulary,
we augment the model with new domain-specific
tokens (see Figure 1):

Domain-Specific Tokenizer Training. We be-
gin by training a new tokenizer on a large domain-
specific corpus to identify vocabulary units that
capture relevant terminology.

Domain Vocabulary Augmentation. We then
identify domain-specific tokens that are missing
from the original tokenizer used by the contrastive
model, and incorporate these into the model’s em-
bedding matrix, initializing their embeddings as the
average of their base model subword embeddings.

This design choice is motivated by the fact that
contrastive training mainly shapes the encoder. By
modifying only the input vocabulary, we retain
the original encoder weights from the pretrained
contrastive model, preserving its sentence-level dis-
crimination capabilities.



3.2 Joint Optimization of Contrastive and
MLM Objectives

Jointly optimizing MLM and contrastive objec-
tives can theoretically combine the benefits of
fine-grained token-level supervision from MLM
with sentence-level supervision encouraged by con-
trastive learning. However, in practice, it is difficult
to perform joint optimization on both. Below, we
detail the reasoning behind this challenge and pro-
pose our approach to balance these objectives effec-
tively. To motivate our approach, we start with the
information-theoretic interpretation of both MLM
and contrastive objectives (Chi et al., 2021). Both
objectives can be viewed as maximizing a mutual
information lower bound. Using the InfoNCE for-
mulation from van den Oord et al. (2018), the con-
trastive objective for context pairs ¢ and co can be
expressed as:
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where fj is a scoring function that measures simi-
larity between two contexts c; and ¢y (e.g., via dot
product or cosine similarity) and N represents a
set of negative contexts.

Similarly, MLM can also be interpreted as maxi-
mizing a mutual information lower bound between
the context ¢; and the masked token x; with A/
being the vocabulary:
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The InfoNCE formulation highlights that while
two objectives may be aligned, there is a significant
imbalance between them. The larger vocabulary
size in MLLM results in a substantially larger de-
nominator, leading to very low probabilities for the
correct token. Consequently, this generates higher
loss values and, therefore, larger gradient magni-
tudes, causing MLM to dominate the training pro-
cess. Moreover, MLLM operates at the token level,
often producing many more learning signals per
batch. This imbalance leads to stronger and more
frequent gradients for MLM. As a result, the model
disproportionately optimizes the MLM objective,
leaving the contrastive component under-trained.
To counteract this, we propose restricting MLM
to only a subset of the vocabulary — the domain
vocabulary, which includes only newly introduced

domain-specific tokens. This reduces the size of
the denominator by replacing the full vocabulary
Van with a smaller domain-specific set Vyomain lim-
iting the masking signal to rare, informative tokens.
Rewriting the MLM loss with domain vocabulary
gives:
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In this variant, the set N'p contains only domain-
specific vocabulary tokens. This targeted vocab-
ulary reduction refocuses the MLM objective on
domain-critical tokens, providing clearer and less
overpowering gradient signals, which align more
closely with those of the contrastive objective.

While the InfoNCE form provides theoretical
grounding, in practice both MLM and contrastive
learning are usually implemented using cross-
entropy losses. For the contrastive loss, this takes
the form:

exp (¢(c1) " o(c2))
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where ¢(-) is an encoder that maps the input to
a dense vector, and N includes one positive and
|IN'| — 1 negatives.

Similarly, the domain-focused MLM cross-
entropy loss becomes:
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Here, ¢ is the shared encoder (same as used in the
contrastive loss), e is the embedding lookup table,
and V is the (domain-constrained) candidate token
vocabulary.

Our final joint loss is expressed as:
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)
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where « is a scalar coefficient used to balance the
gradient magnitude. This formulation ensures that
both objectives contribute to optimizing the shared
encoder while mitigating the gradient dominance
of MLM. Ultimately, by limiting the MLM’s vocab-
ulary set and calibrating its contribution to the joint



objective, our approach effectively integrates the
strengths of MLM and contrastive training, result-
ing in robust and domain-adaptive representations.
It is crucial to highlight that in our design, the in-
puts to contrastive objectives are provided with
mask perturbation, which forces the model to dis-
ambiguate which specific tokens distinguish nega-
tive documents from positive (see Figure 1). In this
way, MLM acts as a localized supervision signal
that highlights the differences and similarities be-
tween pairs, particularly in cases where contrastive
loss alone may struggle due to mean pooling or
similar functions, which average over token em-
beddings and blur these distinctions. By applying
MLM-guided masking, the model learns to focus
on the key differentiating features.

3.3 Contrastive-Only Training

For the third stage, we continue training our model
using only the contrastive objective, after the new
domain tokens have been introduced and learned.
This stage serves as a corrective step, allowing
the encoder to recover and reinforce sentence-level
discrimination, which may be diluted during joint
MLM-+contrastive training. By focusing solely on
contrastive learning, the model re-aligns its repre-
sentations to produce robust sentence embeddings.

4 Experiments on a High-Resource
Domain

Training Data. To construct a large-scale biomedi-
cal corpus, we parsed the 2025 PubMed snapshot
and extracted (title, abstract) pairs. When avail-
able, metadata such as journal name and keywords
were appended to the title to enrich the context.
We filtered out non-English entries as well as pairs
where either the title or abstract was too short to
form a meaningful sentence pair. To further en-
sure data quality and minimize false positives, we
applied a consistency-based filtering procedure us-
ing the gte-base model (see Appendix A). This
resulted in approximately 20 million high-quality
sentence pairs for use in stages two and three of
our approach. We evaluate our models in a zero-
shot setting. To avoid any risk of benchmark data
leakage (a common issue with sentence embed-
ding models), we fine-tune on BioASQ Task 9a
(Tsatsaronis et al., 2015). This dataset consists es-
sentially of human-selected PubMed title—abstract
pairs (approximately 16 million), each annotated
with MeSH (Medical Subject Headings) that we

append to titles to form our queries. This data is
used for fine-tuning the final model after the third
stage of our training pipeline.

Evaluation Data and Metrics. We evaluate on
the medical subset of the MTEB (Massive Text Em-
bedding Benchmark) (Muennighoff et al., 2022), a
standardized benchmark for assessing the quality
of text embeddings across a diverse set of tasks,
such as retrieval, classification, clustering, rerank-
ing, semantic textual similarity (STS), and sum-
marization. We use BiorxivClusteringP2P, Medrx-
ivClusteringP2P, and MedrxivClusteringS2S for
clustering (V-measure); MedicalQARetrieval, NF-
Corpus, SciFact, and TRECCOVID for retrieval
(nDCG@10); and BIOSSES for STS (Spearman
correlation). We report results on BIOSSES in Ta-
ble 1, but the analysis on the STS task is performed
as a part of the ablation Section 4.2.

Baselines. For unsupervised baselines, we use
nomic—embed—text—vlumup1 as our primary base-
line representing an unsupervised contrastive em-
bedding model pretrained on general-domain data.
We also train this model on the unsupervised
training data described above and include the
nomic-embed-bio model in the comparison. To
analyze the impact of each stage on domain adap-
tation, we use three models from our pipeline:
Biomedical Initial, which adds new domain-
specific vocabulary to the contrastive model with-
out further pretraining (Stage 1); Biomedical-Joint
MLM+Contrastive (BJMC), trained with both
masked language modeling and contrastive objec-
tives on domain data (Stage 2); and Biomedical
Contrastive Only (BCO), further trained with the
contrastive objective alone (Stage 3). For super-
vised baselines, we select a diverse set of well-
established embedding models that report MTEB
scores on biomedical datasets, as listed on the offi-
cial MTEB leaderboard?.

Implementation Details. We implement the
joint MLM and contrastive training on top of the
Nomic repository>. For the purely contrastive stage,
we reuse the original implementation from the
repository. The model architecture is based on
BERT (Devlin et al., 2019) with several modifica-
tions introduced by the Nomic repo. At the first

"https://huggingface.co/nomic-ai/
nomic-embed-text-v1-unsupervised

2https://huggingface.co/spaces/mteb/
leaderboard

3https://github.com/nomic—ai/contrastors/tree/
main
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Model BIOSSES BiorxivC MedicalQAR MedrxivP2P MedrxivS2S NFCorpus SciFact TRECCOVID
Unsupervised models
nomic-embed-text-vlusup 87.189 38.78 68.307 34.854 32.521 35.684 71.982 62.203
nomic-embed-bio 87.012 36.107 66.173 30.72 28.552 34.235 73.302 62.203
Biomedical Initial 78.946 33.747 63.58 30.261 25.126 26.091 67.246 57.050
BIMC 88.116 38.101 68.677 34.536 29.882 32.217 72.535 60.763
BCO 88.057 39.31 70.233 35.089 30.287 34.137 74.710 61.281
Supervised models
ESpase (Wang et al., 2022b) 85.103 37.49 68.051 34.6347 32.0616 36.589 73.083 79.638
GTEpase (Li et al., 2023) 87.642 40.62 71.455 36.404 34.9025 37.897 76.178 68.783
BGEuse (Xiao et al., 2023) 85.533 - - - - 35.539 73.258 76.447
text-embedding-ada-002 86.351 - - - - 36.972 72.746 68.474
nomic-embed-text-v1 86.471 41.48 66.648 37.0082 34.3009 35.028 70.500 79.923
Bio-embed-model 89.869 42.551 72.378 37.865 32.631 35.571 75.875 63.546

Table 1: Evaluation of unsupervised and supervised models across biomedical benchmarks. Bold indicates the

highest score per column within each group.

stage, we add approximately 9k new biomedical
tokens. We set the masking rate to 0.15, the MLM
loss weighting hyperparameter o = 0.3 through-
out the joint training phase. Details of ablation on
« and masking rate can be found in Section 4.2,
and other hyperparameter settings are provided in
Appendix C. We train stages two and three of the
proposed pipeline using only in-batch negatives,
and additionally include hard-mined negatives dur-
ing fine-tuning.

4.1 Results and Analysis

Our results demonstrate several important trends
regarding domain adaptation for sentence embed-
dings (see Table 1). First, we observe that simply
continuing pretraining a general domain embed-
ding model (nomic-embed-text-v1ynsyp (Nuss-
baum et al., 2024)) on in-domain data can lead
to reduced performance compared to the origi-
nal general-domain baseline across most bench-
marks (as in the nomic-embed-bio model), sug-
gesting that naive in-domain adaptation may dis-
tort learned representations. This issue becomes
even more pronounced when augmenting the vo-
cabulary with domain-specific tokens without any
retraining (Biomedical Initial), resulting in a
substantial performance drop across all datasets,
likely due to embedding mismatch. In con-
trast, our multi-stage approach consistently re-
stores and enhances performance: applying a joint
MLM-contrastive objective (BJMC) recovers and
further improves results, while a final contrastive-
only training stage (BCO) achieves the highest
scores on four benchmarks (BiorxivClusteringP2P,
MedicalQARetrieval, MedrxivClusteringP2P, and
SciFact), resulting in the best average performance
overall and with a 2.8% increase over the general-

domain baseline. These results highlight a clear
progression across adaptation stages, where naive
vocabulary expansion leads to degradation, tar-
geted joint supervision restores model quality, and
a final contrastive stage enables robust domain
adaptation. In the supervised setting, our Bio-
embed-model achieves the highest scores on Biorx-
ivClusteringP2P, MedrxivClusteringP2P, and Med-
icalQARetrieval, outperforming other strong su-
pervised baselines on these key biomedical tasks.
We also observe that the largest improvements
are seen in clustering and STS tasks, indicating
that domain-adapted masked supervision is partic-
ularly beneficial for capturing fine-grained seman-
tic relationships and latent structure in biomedi-
cal texts. Overall, the improvements are robust
across tasks and settings, demonstrating the prac-
tical value of our approach for real-world biomed-
ical and specialized text retrieval scenarios. How-
ever, as shown in Table 1, all of our models lag on
the TRECCOVID dataset (Voorhees et al., 2021).
Inspection of the TRECCOVID queries reveals
that, alongside core biomedical and clinical ques-
tions, a significant fraction focuses on social or pol-
icy aspects of the pandemic (approximately 20%).
Such queries, addressing societal impacts or inter-
ventions like school reopening, may fall outside
the primary scope of biomedical corpora used for
model adaptation. This mismatch in domain cov-
erage could partly explain the observed underper-
formance. Moreover, recent large-scale analyses
of PubMed using embedding-based atlases have
shown that COVID-19 literature forms a uniquely
isolated cluster in embedding space, with strong
internal topical fragmentation, further challenging
biomedical models (Kobak et al., 2024).



Model Score
BIMC 88.116
BIMC (All-Token MLM)  63.995
BJMC (mlm_prob 0.3) 49.871
BIMC (alpha 0.1) 76.032
BJMC (alpha 0.2) 81.336
BJIMC (alpha 0.4) 86.794
BIMC (alpha 0.5) 67.708
BJMC (as the 3d stage) 70.540
Contrastive only 84.428

Table 2: Performance comparison of BJMC and ablated
models on BIOSSES.
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Figure 2: BIOSSES score for various ablation settings
in unified model study.

4.2 Ablation Studies

The primary focus of our ablation study is
the second stage of the proposed method (joint
MLM-tcontrastive training). Accordingly, all abla-
tion experiments are conducted on the Biomedical-
Joint MLM+Contrastive (BJMC) model. For ab-
lation, we use BIOSSES (Sogancioglu et al., 2017),
an STS dataset that requires models to capture fine-
grained semantic relationships between sentences,
beyond what is assessed in standard retrieval or
clustering tasks (Cer et al., 2017); this enables us
to demonstrate the effect of the MLM objective.
Effect of Masking Strategy. To evaluate the ef-
fectiveness of domain-restricted masked language
modeling (MLM), we compared our default ap-
proach, which restricts MLM to domain-specific
tokens, with an alternative that applies MLM to all
vocabulary tokens (All-Tokens MLM). This change
led to a 27% decrease in performance (see Table 2),
highlighting the critical importance of directing the
masking signal towards domain-specific terms.
Masking rate. We further ablate the effect of
the masking rate by increasing the MLM probabil-
ity from the default 0.15 to 0.3 during joint train-
ing. As shown in Table 2, raising the masking
rate leads to a dramatic drop in performance (from
88.1 to 49.9), indicating that excessive masking

can overwhelm the contrastive signal and degrade
the learned representations.

Alpha hyperparameter. We also ablate the ef-
fect of the MLM loss weight (a)), which controls
the relative contribution of the MLM objective dur-
ing joint training. We systematically explore a
range of o values—a hyperparameter whose im-
pact is rarely examined in prior literature, despite
its crucial role in balancing objectives. As shown
in Table 2 and Figure 2, setting o = 0.5 causes
the MLM loss to dominate, resulting in a drastic
performance drop. At the other extreme, oo = 0.1
does not sufficiently promote learning of new do-
main tokens, and oo = 0.2 yields only modest gains.
While oo = 0.4 remains competitive though slightly
suboptimal, the highest performance is achieved at
a = 0.3, indicating it as the most balanced choice
for our joint objective.

Order of Training Stages. Next, we reverse the
order of stages 2 and 3 by first performing only
contrastive training with a large batch, followed
by contrastive training combined with MLM. As
shown in Table 2, this results in a noticeable per-
formance drop from 88.116 to 70.548, a decrease
of 20%. This suggests that applying the joint ob-
jective to an already strong embedding model can
disturb its contrastive capability.

No Joint Objective. Finally, we assess the im-
pact of the joint MLM-+contrastive objective by
removing the second stage entirely and training
solely with the contrastive objective after vocabu-
lary expansion (“Contrastive only”). As shown in
Table 2, omitting the MLLM stage results in a perfor-
mance drop from 88.1 to 84.4, indicating that joint
training with domain-restricted MLM provides a
meaningful boost over contrastive adaptation alone.

As shown in Figure 2, increasing the MLM prob-
ability to 0.3, increasing the a weight to 0.5, or
applying MLM masking to all tokens causes the
most severe performance drops, demonstrating that
excessive MLM signal overwhelms joint training
and degrades representation quality.

5 Experiment on a Low-Resource Domain

Experimental Setup. As noted in Section 1, the
Islamic domain is a low-resource area, especially
for English-language data. In-domain data suit-
able for training sentence embedding models is ex-
tremely scarce. To address this, we constructed an
in-domain training set by extracting semantically
related verse pairs from Tafseer Ibn Kathir and
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Figure 3: Boxplot of per-query NDCG @10 scores for
all models.

Model NDCG@10
Islamic-embed-model 36.809
GTEase 32.924%*
ESpase 32.466*
nomic-embed-text-v1 32.048%**

Table 3: NDCG @10 evaluation results on the Islamic
dataset. * indicates statistical significance at p < 0.1
and ** at p < 0.05 (paired t-test vs. Islamic-embed-
model).

applying consistency filtering with the gte-base
model, resulting in 7,587 high-quality pairs. Fur-
ther details on the data construction process are
provided in Appendix B.

Although the Islamic domain in English is
characterized by an extremely limited amount
of available training data, it is notable for hav-
ing a dedicated evaluation dataset—unlike many
other low-resource domains. Recent efforts by
Malhas and Elsayed (2020) have created a veri-
fied high-quality Qur’anic Reading Comprehen-
sion Dataset (QRCD), which includes questions
frequently asked within the Islamic domain. The
answers provided are exhaustive, meaning all
Qur’anic verses directly responding to the ques-
tions have been thoroughly extracted and anno-
tated. To increase the size of the evaluation set, we
combine the training and development splits, result-
ing in a total of 169 queries for testing. Although
QRCD is originally in Arabic, we employ verified
English translations to enable evaluation in the En-
glish language. For retrieval collections, we use
the Sahih International English translation.* We
compare our final model with three strong general-
domain embedding models using NDCG@10 as
the evaluation metric. The implementation details
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follow those used for the biomedical model, with
the following modifications: we add 3k domain-
specific tokens to the vocabulary.

Results. The Islamic-embed-model achieves
the highest NDCG @10 score (36.8; Table 3). All
models exhibit considerable variation in per-query
scores (Figure 3), reflecting the challenging nature
of the dataset, but our model’s upper quartile and
mean are both higher. Notably, the lower whisker
for the Islamic-embed-model does not reach the
minimum value of 0, whereas the lower whiskers
for the general-domain models extend to 0. This
indicates that our model makes fewer completely
incorrect predictions (i.e., queries with NDCG@10
= (), while the comparison models sometimes fail
to retrieve any relevant results for certain queries.
The upper whiskers are similar across all models,
suggesting comparable best-case performance, but
the reduction in low and zero scores for our model
contributes to its higher overall mean NDCG@10.
This performance gap can be attributed to differ-
ences in pretraining data: while biomedical content
constitutes a measurable minority of large-scale
pretraining corpora (Wang et al., 2022b; Li et al.,
2023; Nussbaum et al., 2024), Islamic domain texts
are almost absent (typically less than 0.01%). This
negligible coverage leaves general-domain mod-
els ill-equipped to capture the linguistic and con-
ceptual nuances of Islamic texts, making domain
adaptation essential for low-resource areas.

6 Conclusion

We present a novel approach for domain adapta-
tion of sentence embedding models by jointly op-
timizing MLM and contrastive objectives. Unlike
standard domain adaptation methods, which are
typically applied at the language modeling stage or
after task-specific training via data augmentation,
our method leverages a model-driven approach for
domain adaptation after contrastive training. We
achieve robust gains in both high-resource (biomed-
ical) and low-resource (Islamic) domains, surpass-
ing general-domain baselines even with limited
in-domain data.

Limitations

Much of the research on domain adaptation focuses
on high-resource domains such as biomedicine,
where data is abundant and benchmarks are well es-
tablished. In this work, we explicitly include a low-
resource domain (Islamic text), recognizing both
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the additional challenges and the importance of ex-
tending language technologies to underrepresented
settings. However, we recognize that each domain,
whether high- or low-resource, can present unique
characteristics and challenges that could affect the
effectiveness of domain adaptation methods. As
such, the generalizability of our approach may vary
depending on domain-specific linguistic features,
data availability, or cultural context. We encourage
further research on adaptation strategies that are
sensitive to the specific requirements and risks of
diverse domains.

Ethical Considerations

Adapting models to specialized domains may am-
plify biases or inaccuracies present in domain-
specific corpora. For example, biomedical texts
may reflect publication biases or outdated medical
practices, while religious texts may encode cultur-
ally specific viewpoints. In our work, we rely exclu-
sively on publicly available and verified resources
for data collection and model training; no private or
proprietary data is used at any stage. Nevertheless,
we acknowledge that these sources may still carry
implicit biases or limitations. We encourage users
of domain-adapted models to consider these factors
carefully, especially when applying the models in
sensitive or high-impact contexts. The models will
be released under the Apache-2.0 license to ensure
transparency, reproducibility, and broad accessibil-
ity. The model nomic-embed-text-v1ynsyp is li-
censed under Apache-2.0. All artifacts used in this
study are open-source and available for research
purposes. We utilized Al assistants for debugging,
optimizing LaTeX formatting, and improving gram-
mar clarity.
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A Consistency-based Filtering Procedure

To further ensure data quality and minimize false
positive pairs, we employed a semantic filtering
procedure using the gte-base model. Specit-
ically, we first sampled up to 1 million candi-
date query—document pairs from the initial dataset.
Each query and document was independently en-
coded into dense vector representations using the
gte-base sentence embedding model.

Next, we constructed a FAISS index from all
document embeddings to enable efficient similarity
search. For each query embedding, we retrieved
the top-k most similar document embeddings from
the index, based on cosine similarity. If the original
paired document d; was not found among the top-k
retrieved documents for its corresponding query ¢;,
we discarded the pair (g;, d;). This filtering step
ensures that only pairs with strong semantic align-
ment—according to the embedding model—are
retained for further training.

The intuition behind this approach is to elimi-
nate weakly related or noisy pairs that may have
been erroneously grouped together in the initial
data extraction. By keeping only those pairs where
the document is highly ranked for its query, we
improve the quality and relevance of training ex-
amples, leading to better domain adaptation during
model training.

B Curating Passages for Training the
Islamic Domain Model

Dense retrieval models often experience perfor-
mance degradation when applied to new domains,
emphasizing the value of training on in-domain
data. The scarcity of such data is typically ad-
dressed through augmentation techniques like syn-
thetic data generation, paraphrasing, pair recombi-
nation, round-trip translation, or denoising autoen-
coders. However, these approaches risk altering
the original semantics, which is especially prob-
lematic for sensitive religious and heritage texts.
To overcome this, we utilize Tafseer Ibn Kathir, a
classical and authoritative Qur’anic exegesis rich in
verse commentary and inter-verse references. This
resource enables natural and semantically mean-
ingful augmentation of training data by explicitly
linking related verses.

Pair Extraction. Let C; denote the collection of
Tafseer texts by Ibn Kathir. We extract all verse
pairs V; = (vq, vp) referenced in Cy, resulting in
approximately 11,000 candidate pairs.
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Score vs Alpha Weight (Contrastive-MLM)
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Figure 4: Effect of alpha weight on the performance in
the 2nd stage of Contrastive+MLM training.
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Figure 5: The impact of each stage on the MTEB
datasets.

Filtering. Not all extracted pairs represent strong
semantic correlations suitable for retrieval training,
due to indirect or implicit relationships. To select
high-quality positive pairs, we score each candidate
(vg, vp) using the gte-base model to obtain simi-
larity scores s = gte-base(vy, vp). Pairs scoring
below a predefined threshold are removed, yielding
a filtered set Vy of 7,587 robust positive pairs for
training.

C Training Hyperparameters

Computing Infrastructure 1x H100 (80 GB)
Hyperparameter Assignment
number of epochs 1-5

batch size 128-49k
sequence length 64-256
maximum learning rate 0.0005
learning rate optimizer Adam
learning rate scheduler ~None or Warmup linear
Weight decay 0.01
Warmup proportion 0.06
learning rate decay linear

Table 4: Hyperparameters for training and finetuning
sentence embedding models.
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