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Abstract

We present a multi-stage contrastive learning001
framework for domain adaptation of sentence002
embedding models, incorporating joint domain-003
specific masked supervision. Our approach ad-004
dresses the challenges of adapting large-scale005
general-domain sentence embedding models006
to specialized domains. By jointly optimiz-007
ing masked language modeling (MLM) and008
contrastive objectives within a unified training009
pipeline, our method enables effective learn-010
ing of domain-relevant representations while011
preserving the robust semantic discrimination012
properties of the original model. We em-013
pirically validate our approach on both high-014
resource and low-resource domains, achieving015
improvements up to 13.4% in NDCG@10 over016
strong general-domain baselines. Comprehen-017
sive ablation studies further demonstrate the018
effectiveness of each component, highlighting019
the importance of balanced joint supervision020
and staged adaptation.021

1 Introduction022

Self-supervised learning has enabled significant023

progress in natural language processing, with meth-024

ods like MLM (Devlin et al., 2019; Liu et al., 2020;025

Conneau et al., 2020; Sanh et al., 2019) and con-026

trastive training (Reimers and Gurevych, 2019; Wu027

et al., 2020; Liu et al., 2021; Yan et al., 2021) driv-028

ing recent developments. However, these meth-029

ods are typically explored separately, as effectively030

combining MLM and contrastive learning remains031

a significant challenge, since their joint optimiza-032

tion often results in conflicting training signals and033

suboptimal performance (Gao et al., 2021). Nev-034

ertheless, unifying these objectives presents an op-035

portunity to leverage the complementary strengths036

of token-level (MLM) and sentence-level (con-037

trastive) supervision, while also improving the qual-038

ity of learned representations by mitigating the039

anisotropy problem (a phenomenon that confines040

embeddings to a narrow cone-like region in the 041

vector space, thereby limiting their expressiveness) 042

(Ethayarajh, 2019; Li et al., 2020; Gao et al., 2021). 043

While there have been successful attempts to com- 044

bine MLM and contrastive objectives for training 045

language models (Meng et al., 2021; Chi et al., 046

2021) and sentence embeddings (Gao et al., 2021; 047

Wu et al., 2022; Giorgi et al., 2021), the majority 048

of the prior work has focused on general-domain 049

data. 050

General-domain sentence embedding models are 051

now widely available, many trained on vast general- 052

domain corpora using a two-stage approach: an ini- 053

tial pre-training phase on massive unlabeled data, 054

followed by supervised fine-tuning (Wang et al., 055

2022b; Li et al., 2023; Nussbaum et al., 2024; Mer- 056

rick et al., 2024). The data used for pre-training 057

can exceed half a billion sentence pairs (hundreds 058

of gigabytes of text), resources that are rarely avail- 059

able in specific domains. Although these general- 060

domain models can perform competitively in spe- 061

cialized areas, their lack of domain-specific knowl- 062

edge often limits performance. To address this 063

gap, we propose domain adaptation of pre-trained 064

embedding models that leverage their ability to dis- 065

tinguish between similar and dissimilar pairs and 066

transfer it to a domain-specific embedding model. 067

Previous research on language model adapta- 068

tion highlights the importance of domain-specific 069

vocabulary for improving results on downstream 070

tasks (Beltagy et al., 2019; Gu et al., 2020). How- 071

ever, simply adding domain-specific vocabulary 072

and continuing MLM training degrades the con- 073

trastive properties of the learned representations, 074

since the encoder loses its desirable characteris- 075

tics under the token prediction objective (Wu et al., 076

2022). On the other hand, adding new tokens and 077

continuing only with the contrastive objective pro- 078

vides insufficient training signals to update new 079

domain tokens, as the embedding matrix receives 080

diluted signals due to the pooling functions applied 081
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to generate sentence embeddings.082

This dilemma motivates our approach of using083

a joint objective to enable both token-level and084

sentence-level supervision, thus benefiting from085

both worlds and enhancing domain adaptation for086

both the encoder and the embedding matrix during087

training. Building on a mutual information maxi-088

mization perspective (Hjelm et al., 2018; Bachman089

et al., 2019; Kong et al., 2019; Chen et al., 2020;090

Chi et al., 2021), which demonstrates that these091

objectives are aligned rather than contradictory, op-092

erating at different levels of language granularity,093

we leverage the joint optimization of MLM and094

contrastive objectives. Though these objectives are095

theoretically aligned, a key challenge in joint train-096

ing arises from the dominance of the MLM loss and097

more frequent token-level supervision, which can098

overwhelm the joint objective and hinder balanced099

optimization. This issue can be mitigated by care-100

fully controlling the strength of the MLM signal101

during joint training, directing it to domain-relevant102

signals, without resorting to encoder separation,103

which may limit the propagation of informative104

token-level signals into sentence-level representa-105

tions.106

To thoroughly evaluate our method, we apply it107

to both high-resource and low-resource domains.108

Most domain-adaptation research focuses on high-109

resource and medium-resource domains, which is110

valuable for benchmarking, comparison with strong111

baselines, and conducting ablation studies. Yet this112

focus restricts the generalizability of adaptation113

methods to truly low-resource domains, which are114

common in real-world applications. Such domains115

often face acute data scarcity, making robust adap-116

tation methods essential for ensuring equitable ac-117

cess to state-of-the-art language technologies and118

maximizing the real-world impact of embedding119

models. To demonstrate the robustness and prac-120

tical value of our approach, we validate it in two121

domains: the Biomedical domain, which is char-122

acterized by high-resource scientific texts, and the123

Islamic domain, which represents low-resource but124

culturally significant content. This allows us to test125

the robustness of our method even when there is126

very limited in-domain data.127

Our main contributions are as follows: (1) We128

propose a novel domain adaptation approach for129

pretrained sentence embedding models that jointly130

optimizes MLM and contrastive objectives within131

a mutual information maximization framework.132

(2) We empirically validate our method on both133

high-resource (biomedical) and low-resource (Is- 134

lamic) domains, demonstrating substantial gains 135

over strong general-domain baselines, with up to a 136

2.8% average improvement in NDCG@10 across 137

biomedical benchmarks and a 13.3% improvement 138

in NDCG@10 on the Islamic dataset. (3) We con- 139

duct comprehensive ablation studies to analyze the 140

contribution of each component and the dynamics 141

of joint objective training. (4) We release our code 142

and pretrained models to support reproducibility 143

and facilitate future research. 144

2 Related Work 145

2.1 Contrastive and MLM Objectives 146

Contrastive Predictive Coding (CPC) is one of 147

the earliest works to introduce the InfoNCE loss 148

(van den Oord et al., 2018). The loss encourages 149

informative representations to align with a given 150

anchor while distinguishing them from negative 151

examples. Though this work is not specific to sen- 152

tence embeddings, it laid the theoretical ground- 153

work for contrastive learning. SimCSE targeted 154

sentence embeddings by proposing a contrastive 155

learning setup utilizing dropout noise to generate 156

two distinct views of the same sentence, thereby 157

optimizing a contrastive loss between them (Gao 158

et al., 2021). In their appendix, the authors men- 159

tioned an experiment involving the incorporation 160

of MLM during training. However, they found 161

that performance dropped, likely due to a conflict 162

between MLM’s token-level loss and the sentence- 163

level contrastive signal. Built on this challenge in 164

multi-objective training when using a shared en- 165

coder, the authors of InfoCSE introduced a more 166

sophisticated framework (Wu et al., 2022). Rather 167

than combining MLM and contrastive loss on the 168

same encoder output, InfoCSE uses an auxiliary 169

lightweight encoder. This architectural separation 170

prevents MLM gradients from interfering with the 171

contrastive training of final-layer CLS embeddings. 172

InfoCSE showed improved performance over Sim- 173

CSE in STS benchmarks. Conversely, the authors 174

of DeCLUTR explicitly combine MLM with con- 175

trastive training for sentence embeddings (Giorgi 176

et al., 2021). They construct positive pairs from 177

contiguous spans of the same document and ap- 178

ply a standard BERT-style masking on the anchor 179

span and train jointly through a single encoder. 180

Evaluation on SentEval benchmarks for classifica- 181

tion and similarity showed that a unified objective 182

is a promising approach. COCO-LM integrates 183
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Figure 1: Multi-stage domain adaptation of sentence embedding models.

contrastive learning into a pretraining pipeline for184

transformer language models (Vaswani et al., 2017;185

Meng et al., 2021) and replaces BERT’s Next Sen-186

tence Prediction (NSP) objective with a more ef-187

fective contrastive signal, pairing corrupted and188

truncated versions of a sentence. Corruption is per-189

formed using an ELECTRA-style generator (Clark190

et al., 2020), producing fluent but subtly altered191

sequences. The model jointly learns to align these192

pairs (via contrastive loss) and to correct the cor-193

ruption (through token-level denoising). COCO-194

LM demonstrated consistent gains on GLUE tasks195

(Wang et al., 2018), showing that contrastive ob-196

jectives outperform NSP for general-purpose pre-197

training. The authors of InfoXLM reframe masked198

language modeling as a contrastive prediction task,199

formulating it with the InfoNCE loss (Chi et al.,200

2021). When combined with a sentence-level cross-201

lingual contrastive objective, this joint training en-202

ables InfoXLM to achieve state-of-the-art results203

on cross-lingual understanding and retrieval bench-204

marks.205

2.2 Domain Adaptation206

Domain adaptation is most commonly performed207

at the language modeling stage, where general-208

purpose models undergo continued pre-training209

on in-domain corpora (Lee et al., 2019; Alsentzer210

et al., 2019). Such approaches typically suffer211

from the absence of domain-specific vocabulary,212

which often necessitates training from scratch (Belt-213

agy et al., 2019; Gu et al., 2020). To avoid these214

GPU-heavy methods, recent work has explored215

lightweight domain adaptation by introducing new216

domain vocabulary to already well-trained mod-217

els, thereby expediting the pre-training process218

(Poerner et al., 2020; Sachidananda et al., 2021;219

Pavlova and Makhlouf, 2023). In contrast to our ap-220

proach, these strategies have primarily been applied 221

to language models prior to downstream task train- 222

ing. For sentence embedding models that have al- 223

ready undergone contrastive training, domain adap- 224

tation efforts have mostly focused on data-driven 225

approaches such as data augmentation, denoising 226

objectives, or generative pseudo-labeling (Thakur 227

et al., 2021; Wang et al., 2021, 2022a). In our work, 228

we focus on a model-driven approach. 229

3 Multi-stage Contrastive Learning with 230

Domain-Specific Masked Supervision 231

3.1 Augmenting Contrastive Models with 232

Domain-Specific Vocabulary 233

To leverage the robust encoder learned during con- 234

trastive pretraining, we reuse both the encoder and 235

the original embedding matrix. However, to ac- 236

commodate a word distribution shift from a general 237

domain vocabulary to a new domain vocabulary, 238

we augment the model with new domain-specific 239

tokens (see Figure 1): 240

Domain-Specific Tokenizer Training. We be- 241

gin by training a new tokenizer on a large domain- 242

specific corpus to identify vocabulary units that 243

capture relevant terminology. 244

Domain Vocabulary Augmentation. We then 245

identify domain-specific tokens that are missing 246

from the original tokenizer used by the contrastive 247

model, and incorporate these into the model’s em- 248

bedding matrix, initializing their embeddings as the 249

average of their base model subword embeddings. 250

This design choice is motivated by the fact that 251

contrastive training mainly shapes the encoder. By 252

modifying only the input vocabulary, we retain 253

the original encoder weights from the pretrained 254

contrastive model, preserving its sentence-level dis- 255

crimination capabilities. 256
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3.2 Joint Optimization of Contrastive and257

MLM Objectives258

Jointly optimizing MLM and contrastive objec-259

tives can theoretically combine the benefits of260

fine-grained token-level supervision from MLM261

with sentence-level supervision encouraged by con-262

trastive learning. However, in practice, it is difficult263

to perform joint optimization on both. Below, we264

detail the reasoning behind this challenge and pro-265

pose our approach to balance these objectives effec-266

tively. To motivate our approach, we start with the267

information-theoretic interpretation of both MLM268

and contrastive objectives (Chi et al., 2021). Both269

objectives can be viewed as maximizing a mutual270

information lower bound. Using the InfoNCE for-271

mulation from van den Oord et al. (2018), the con-272

trastive objective for context pairs c1 and c2 can be273

expressed as:274

I(c1; c2) ≥ E
q(N )

[
log

fθ(c1, c2)∑
c′∈N fθ(c1, c′)

]
+log |N |

(1)275

where fθ is a scoring function that measures simi-276

larity between two contexts c1 and c2 (e.g., via dot277

product or cosine similarity) and N represents a278

set of negative contexts.279

Similarly, MLM can also be interpreted as maxi-280

mizing a mutual information lower bound between281

the context c1 and the masked token x1 with N282

being the vocabulary:283

I(c1;x1) ≥ E
q(N )

[
log

fθ(c1, x1)∑
x′∈N fθ(c1, x′)

]
+log |N |

(2)284

The InfoNCE formulation highlights that while285

two objectives may be aligned, there is a significant286

imbalance between them. The larger vocabulary287

size in MLM results in a substantially larger de-288

nominator, leading to very low probabilities for the289

correct token. Consequently, this generates higher290

loss values and, therefore, larger gradient magni-291

tudes, causing MLM to dominate the training pro-292

cess. Moreover, MLM operates at the token level,293

often producing many more learning signals per294

batch. This imbalance leads to stronger and more295

frequent gradients for MLM. As a result, the model296

disproportionately optimizes the MLM objective,297

leaving the contrastive component under-trained.298

To counteract this, we propose restricting MLM299

to only a subset of the vocabulary — the domain300

vocabulary, which includes only newly introduced301

domain-specific tokens. This reduces the size of 302

the denominator by replacing the full vocabulary 303

Vall with a smaller domain-specific set Vdomain lim- 304

iting the masking signal to rare, informative tokens. 305

Rewriting the MLM loss with domain vocabulary 306

gives: 307

I(c1;x1) 308

≥ E
q(ND)

[
log

fθ(c1, x1)∑
x′∈ND

fθ(c1, x′)

]
+ log |ND|

(3)

309

In this variant, the set ND contains only domain- 310

specific vocabulary tokens. This targeted vocab- 311

ulary reduction refocuses the MLM objective on 312

domain-critical tokens, providing clearer and less 313

overpowering gradient signals, which align more 314

closely with those of the contrastive objective. 315

While the InfoNCE form provides theoretical 316

grounding, in practice both MLM and contrastive 317

learning are usually implemented using cross- 318

entropy losses. For the contrastive loss, this takes 319

the form: 320

LCL = − log
exp

(
ϕ(c1)

⊤ϕ(c2)
)∑

c′∈N exp (ϕ(c1)⊤ϕ(c′))
(4) 321

where ϕ(·) is an encoder that maps the input to 322

a dense vector, and N includes one positive and 323

|N | − 1 negatives. 324

Similarly, the domain-focused MLM cross- 325

entropy loss becomes: 326

Ldomain
MLM = − log

exp
(
ϕ(c1)

⊤e(x1)
)∑

x′∈V exp (ϕ(c1)⊤e(x′))
(5) 327

Here, ϕ is the shared encoder (same as used in the 328

contrastive loss), e is the embedding lookup table, 329

and V is the (domain-constrained) candidate token 330

vocabulary. 331

Our final joint loss is expressed as: 332

L = α · Ldomain
MLM + LCL (6) 333

where α is a scalar coefficient used to balance the 334

gradient magnitude. This formulation ensures that 335

both objectives contribute to optimizing the shared 336

encoder while mitigating the gradient dominance 337

of MLM. Ultimately, by limiting the MLM’s vocab- 338

ulary set and calibrating its contribution to the joint 339
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objective, our approach effectively integrates the340

strengths of MLM and contrastive training, result-341

ing in robust and domain-adaptive representations.342

It is crucial to highlight that in our design, the in-343

puts to contrastive objectives are provided with344

mask perturbation, which forces the model to dis-345

ambiguate which specific tokens distinguish nega-346

tive documents from positive (see Figure 1). In this347

way, MLM acts as a localized supervision signal348

that highlights the differences and similarities be-349

tween pairs, particularly in cases where contrastive350

loss alone may struggle due to mean pooling or351

similar functions, which average over token em-352

beddings and blur these distinctions. By applying353

MLM-guided masking, the model learns to focus354

on the key differentiating features.355

3.3 Contrastive-Only Training356

For the third stage, we continue training our model357

using only the contrastive objective, after the new358

domain tokens have been introduced and learned.359

This stage serves as a corrective step, allowing360

the encoder to recover and reinforce sentence-level361

discrimination, which may be diluted during joint362

MLM+contrastive training. By focusing solely on363

contrastive learning, the model re-aligns its repre-364

sentations to produce robust sentence embeddings.365

4 Experiments on a High-Resource366

Domain367

Training Data. To construct a large-scale biomedi-368

cal corpus, we parsed the 2025 PubMed snapshot369

and extracted (title, abstract) pairs. When avail-370

able, metadata such as journal name and keywords371

were appended to the title to enrich the context.372

We filtered out non-English entries as well as pairs373

where either the title or abstract was too short to374

form a meaningful sentence pair. To further en-375

sure data quality and minimize false positives, we376

applied a consistency-based filtering procedure us-377

ing the gte-base model (see Appendix A). This378

resulted in approximately 20 million high-quality379

sentence pairs for use in stages two and three of380

our approach. We evaluate our models in a zero-381

shot setting. To avoid any risk of benchmark data382

leakage (a common issue with sentence embed-383

ding models), we fine-tune on BioASQ Task 9a384

(Tsatsaronis et al., 2015). This dataset consists es-385

sentially of human-selected PubMed title–abstract386

pairs (approximately 16 million), each annotated387

with MeSH (Medical Subject Headings) that we388

append to titles to form our queries. This data is 389

used for fine-tuning the final model after the third 390

stage of our training pipeline. 391

Evaluation Data and Metrics. We evaluate on 392

the medical subset of the MTEB (Massive Text Em- 393

bedding Benchmark) (Muennighoff et al., 2022), a 394

standardized benchmark for assessing the quality 395

of text embeddings across a diverse set of tasks, 396

such as retrieval, classification, clustering, rerank- 397

ing, semantic textual similarity (STS), and sum- 398

marization. We use BiorxivClusteringP2P, Medrx- 399

ivClusteringP2P, and MedrxivClusteringS2S for 400

clustering (V-measure); MedicalQARetrieval, NF- 401

Corpus, SciFact, and TRECCOVID for retrieval 402

(nDCG@10); and BIOSSES for STS (Spearman 403

correlation). We report results on BIOSSES in Ta- 404

ble 1, but the analysis on the STS task is performed 405

as a part of the ablation Section 4.2. 406

Baselines. For unsupervised baselines, we use 407

nomic-embed-text-v1unsup
1 as our primary base- 408

line representing an unsupervised contrastive em- 409

bedding model pretrained on general-domain data. 410

We also train this model on the unsupervised 411

training data described above and include the 412

nomic-embed-bio model in the comparison. To 413

analyze the impact of each stage on domain adap- 414

tation, we use three models from our pipeline: 415

Biomedical Initial, which adds new domain- 416

specific vocabulary to the contrastive model with- 417

out further pretraining (Stage 1); Biomedical-Joint 418

MLM+Contrastive (BJMC), trained with both 419

masked language modeling and contrastive objec- 420

tives on domain data (Stage 2); and Biomedical 421

Contrastive Only (BCO), further trained with the 422

contrastive objective alone (Stage 3). For super- 423

vised baselines, we select a diverse set of well- 424

established embedding models that report MTEB 425

scores on biomedical datasets, as listed on the offi- 426

cial MTEB leaderboard2. 427

Implementation Details. We implement the 428

joint MLM and contrastive training on top of the 429

Nomic repository3. For the purely contrastive stage, 430

we reuse the original implementation from the 431

repository. The model architecture is based on 432

BERT (Devlin et al., 2019) with several modifica- 433

tions introduced by the Nomic repo. At the first 434

1https://huggingface.co/nomic-ai/
nomic-embed-text-v1-unsupervised

2https://huggingface.co/spaces/mteb/
leaderboard

3https://github.com/nomic-ai/contrastors/tree/
main
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Model BIOSSES BiorxivC MedicalQAR MedrxivP2P MedrxivS2S NFCorpus SciFact TRECCOVID

Unsupervised models

nomic-embed-text-v1unsup 87.189 38.78 68.307 34.854 32.521 35.684 71.982 62.203
nomic-embed-bio 87.012 36.107 66.173 30.72 28.552 34.235 73.302 62.203
Biomedical Initial 78.946 33.747 63.58 30.261 25.126 26.091 67.246 57.050
BJMC 88.116 38.101 68.677 34.536 29.882 32.217 72.535 60.763
BCO 88.057 39.31 70.233 35.089 30.287 34.137 74.710 61.281

Supervised models

E5base (Wang et al., 2022b) 85.103 37.49 68.051 34.6347 32.0616 36.589 73.083 79.638
GTEbase (Li et al., 2023) 87.642 40.62 71.455 36.404 34.9025 37.897 76.178 68.783
BGEbase (Xiao et al., 2023) 85.533 - - - - 35.539 73.258 76.447
text-embedding-ada-002 86.351 - - - - 36.972 72.746 68.474
nomic-embed-text-v1 86.471 41.48 66.648 37.0082 34.3009 35.028 70.500 79.923
Bio-embed-model 89.869 42.551 72.378 37.865 32.631 35.571 75.875 63.546

Table 1: Evaluation of unsupervised and supervised models across biomedical benchmarks. Bold indicates the
highest score per column within each group.

stage, we add approximately 9k new biomedical435

tokens. We set the masking rate to 0.15, the MLM436

loss weighting hyperparameter α = 0.3 through-437

out the joint training phase. Details of ablation on438

α and masking rate can be found in Section 4.2,439

and other hyperparameter settings are provided in440

Appendix C. We train stages two and three of the441

proposed pipeline using only in-batch negatives,442

and additionally include hard-mined negatives dur-443

ing fine-tuning.444

4.1 Results and Analysis445

Our results demonstrate several important trends446

regarding domain adaptation for sentence embed-447

dings (see Table 1). First, we observe that simply448

continuing pretraining a general domain embed-449

ding model (nomic-embed-text-v1unsup (Nuss-450

baum et al., 2024)) on in-domain data can lead451

to reduced performance compared to the origi-452

nal general-domain baseline across most bench-453

marks (as in the nomic-embed-bio model), sug-454

gesting that naive in-domain adaptation may dis-455

tort learned representations. This issue becomes456

even more pronounced when augmenting the vo-457

cabulary with domain-specific tokens without any458

retraining (Biomedical Initial), resulting in a459

substantial performance drop across all datasets,460

likely due to embedding mismatch. In con-461

trast, our multi-stage approach consistently re-462

stores and enhances performance: applying a joint463

MLM+contrastive objective (BJMC) recovers and464

further improves results, while a final contrastive-465

only training stage (BCO) achieves the highest466

scores on four benchmarks (BiorxivClusteringP2P,467

MedicalQARetrieval, MedrxivClusteringP2P, and468

SciFact), resulting in the best average performance469

overall and with a 2.8% increase over the general-470

domain baseline. These results highlight a clear 471

progression across adaptation stages, where naive 472

vocabulary expansion leads to degradation, tar- 473

geted joint supervision restores model quality, and 474

a final contrastive stage enables robust domain 475

adaptation. In the supervised setting, our Bio- 476

embed-model achieves the highest scores on Biorx- 477

ivClusteringP2P, MedrxivClusteringP2P, and Med- 478

icalQARetrieval, outperforming other strong su- 479

pervised baselines on these key biomedical tasks. 480

We also observe that the largest improvements 481

are seen in clustering and STS tasks, indicating 482

that domain-adapted masked supervision is partic- 483

ularly beneficial for capturing fine-grained seman- 484

tic relationships and latent structure in biomedi- 485

cal texts. Overall, the improvements are robust 486

across tasks and settings, demonstrating the prac- 487

tical value of our approach for real-world biomed- 488

ical and specialized text retrieval scenarios. How- 489

ever, as shown in Table 1, all of our models lag on 490

the TRECCOVID dataset (Voorhees et al., 2021). 491

Inspection of the TRECCOVID queries reveals 492

that, alongside core biomedical and clinical ques- 493

tions, a significant fraction focuses on social or pol- 494

icy aspects of the pandemic (approximately 20%). 495

Such queries, addressing societal impacts or inter- 496

ventions like school reopening, may fall outside 497

the primary scope of biomedical corpora used for 498

model adaptation. This mismatch in domain cov- 499

erage could partly explain the observed underper- 500

formance. Moreover, recent large-scale analyses 501

of PubMed using embedding-based atlases have 502

shown that COVID-19 literature forms a uniquely 503

isolated cluster in embedding space, with strong 504

internal topical fragmentation, further challenging 505

biomedical models (Kobak et al., 2024). 506
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Model Score
BJMC 88.116
BJMC (All-Token MLM) 63.995
BJMC (mlm_prob 0.3) 49.871
BJMC (alpha 0.1) 76.032
BJMC (alpha 0.2) 81.336
BJMC (alpha 0.4) 86.794
BJMC (alpha 0.5) 67.708
BJMC (as the 3d stage) 70.540
Contrastive only 84.428

Table 2: Performance comparison of BJMC and ablated
models on BIOSSES.

Figure 2: BIOSSES score for various ablation settings
in unified model study.

4.2 Ablation Studies507

The primary focus of our ablation study is508

the second stage of the proposed method (joint509

MLM+contrastive training). Accordingly, all abla-510

tion experiments are conducted on the Biomedical-511

Joint MLM+Contrastive (BJMC) model. For ab-512

lation, we use BIOSSES (Sogancioglu et al., 2017),513

an STS dataset that requires models to capture fine-514

grained semantic relationships between sentences,515

beyond what is assessed in standard retrieval or516

clustering tasks (Cer et al., 2017); this enables us517

to demonstrate the effect of the MLM objective.518

Effect of Masking Strategy. To evaluate the ef-519

fectiveness of domain-restricted masked language520

modeling (MLM), we compared our default ap-521

proach, which restricts MLM to domain-specific522

tokens, with an alternative that applies MLM to all523

vocabulary tokens (All-Tokens MLM). This change524

led to a 27% decrease in performance (see Table 2),525

highlighting the critical importance of directing the526

masking signal towards domain-specific terms.527

Masking rate. We further ablate the effect of528

the masking rate by increasing the MLM probabil-529

ity from the default 0.15 to 0.3 during joint train-530

ing. As shown in Table 2, raising the masking531

rate leads to a dramatic drop in performance (from532

88.1 to 49.9), indicating that excessive masking533

can overwhelm the contrastive signal and degrade 534

the learned representations. 535

Alpha hyperparameter. We also ablate the ef- 536

fect of the MLM loss weight (α), which controls 537

the relative contribution of the MLM objective dur- 538

ing joint training. We systematically explore a 539

range of α values—a hyperparameter whose im- 540

pact is rarely examined in prior literature, despite 541

its crucial role in balancing objectives. As shown 542

in Table 2 and Figure 2, setting α = 0.5 causes 543

the MLM loss to dominate, resulting in a drastic 544

performance drop. At the other extreme, α = 0.1 545

does not sufficiently promote learning of new do- 546

main tokens, and α = 0.2 yields only modest gains. 547

While α = 0.4 remains competitive though slightly 548

suboptimal, the highest performance is achieved at 549

α = 0.3, indicating it as the most balanced choice 550

for our joint objective. 551

Order of Training Stages. Next, we reverse the 552

order of stages 2 and 3 by first performing only 553

contrastive training with a large batch, followed 554

by contrastive training combined with MLM. As 555

shown in Table 2, this results in a noticeable per- 556

formance drop from 88.116 to 70.548, a decrease 557

of 20%. This suggests that applying the joint ob- 558

jective to an already strong embedding model can 559

disturb its contrastive capability. 560

No Joint Objective. Finally, we assess the im- 561

pact of the joint MLM+contrastive objective by 562

removing the second stage entirely and training 563

solely with the contrastive objective after vocabu- 564

lary expansion (“Contrastive only”). As shown in 565

Table 2, omitting the MLM stage results in a perfor- 566

mance drop from 88.1 to 84.4, indicating that joint 567

training with domain-restricted MLM provides a 568

meaningful boost over contrastive adaptation alone. 569

As shown in Figure 2, increasing the MLM prob- 570

ability to 0.3, increasing the α weight to 0.5, or 571

applying MLM masking to all tokens causes the 572

most severe performance drops, demonstrating that 573

excessive MLM signal overwhelms joint training 574

and degrades representation quality. 575

5 Experiment on a Low-Resource Domain 576

Experimental Setup. As noted in Section 1, the 577

Islamic domain is a low-resource area, especially 578

for English-language data. In-domain data suit- 579

able for training sentence embedding models is ex- 580

tremely scarce. To address this, we constructed an 581

in-domain training set by extracting semantically 582

related verse pairs from Tafseer Ibn Kathir and 583
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Figure 3: Boxplot of per-query NDCG@10 scores for
all models.

Model NDCG@10
Islamic-embed-model 36.809
GTEbase 32.924*
E5base 32.466*
nomic-embed-text-v1 32.048**

Table 3: NDCG@10 evaluation results on the Islamic
dataset. * indicates statistical significance at p < 0.1
and ** at p < 0.05 (paired t-test vs. Islamic-embed-
model).

applying consistency filtering with the gte-base584

model, resulting in 7,587 high-quality pairs. Fur-585

ther details on the data construction process are586

provided in Appendix B.587

Although the Islamic domain in English is588

characterized by an extremely limited amount589

of available training data, it is notable for hav-590

ing a dedicated evaluation dataset—unlike many591

other low-resource domains. Recent efforts by592

Malhas and Elsayed (2020) have created a veri-593

fied high-quality Qur’anic Reading Comprehen-594

sion Dataset (QRCD), which includes questions595

frequently asked within the Islamic domain. The596

answers provided are exhaustive, meaning all597

Qur’anic verses directly responding to the ques-598

tions have been thoroughly extracted and anno-599

tated. To increase the size of the evaluation set, we600

combine the training and development splits, result-601

ing in a total of 169 queries for testing. Although602

QRCD is originally in Arabic, we employ verified603

English translations to enable evaluation in the En-604

glish language. For retrieval collections, we use605

the Sahih International English translation.4 We606

compare our final model with three strong general-607

domain embedding models using NDCG@10 as608

the evaluation metric. The implementation details609

4https://tanzil.net/trans/

follow those used for the biomedical model, with 610

the following modifications: we add 3k domain- 611

specific tokens to the vocabulary. 612

Results. The Islamic-embed-model achieves 613

the highest NDCG@10 score (36.8; Table 3). All 614

models exhibit considerable variation in per-query 615

scores (Figure 3), reflecting the challenging nature 616

of the dataset, but our model’s upper quartile and 617

mean are both higher. Notably, the lower whisker 618

for the Islamic-embed-model does not reach the 619

minimum value of 0, whereas the lower whiskers 620

for the general-domain models extend to 0. This 621

indicates that our model makes fewer completely 622

incorrect predictions (i.e., queries with NDCG@10 623

= 0), while the comparison models sometimes fail 624

to retrieve any relevant results for certain queries. 625

The upper whiskers are similar across all models, 626

suggesting comparable best-case performance, but 627

the reduction in low and zero scores for our model 628

contributes to its higher overall mean NDCG@10. 629

This performance gap can be attributed to differ- 630

ences in pretraining data: while biomedical content 631

constitutes a measurable minority of large-scale 632

pretraining corpora (Wang et al., 2022b; Li et al., 633

2023; Nussbaum et al., 2024), Islamic domain texts 634

are almost absent (typically less than 0.01%). This 635

negligible coverage leaves general-domain mod- 636

els ill-equipped to capture the linguistic and con- 637

ceptual nuances of Islamic texts, making domain 638

adaptation essential for low-resource areas. 639

6 Conclusion 640

We present a novel approach for domain adapta- 641

tion of sentence embedding models by jointly op- 642

timizing MLM and contrastive objectives. Unlike 643

standard domain adaptation methods, which are 644

typically applied at the language modeling stage or 645

after task-specific training via data augmentation, 646

our method leverages a model-driven approach for 647

domain adaptation after contrastive training. We 648

achieve robust gains in both high-resource (biomed- 649

ical) and low-resource (Islamic) domains, surpass- 650

ing general-domain baselines even with limited 651

in-domain data. 652

Limitations 653

Much of the research on domain adaptation focuses 654

on high-resource domains such as biomedicine, 655

where data is abundant and benchmarks are well es- 656

tablished. In this work, we explicitly include a low- 657

resource domain (Islamic text), recognizing both 658
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the additional challenges and the importance of ex-659

tending language technologies to underrepresented660

settings. However, we recognize that each domain,661

whether high- or low-resource, can present unique662

characteristics and challenges that could affect the663

effectiveness of domain adaptation methods. As664

such, the generalizability of our approach may vary665

depending on domain-specific linguistic features,666

data availability, or cultural context. We encourage667

further research on adaptation strategies that are668

sensitive to the specific requirements and risks of669

diverse domains.670

Ethical Considerations671

Adapting models to specialized domains may am-672

plify biases or inaccuracies present in domain-673

specific corpora. For example, biomedical texts674

may reflect publication biases or outdated medical675

practices, while religious texts may encode cultur-676

ally specific viewpoints. In our work, we rely exclu-677

sively on publicly available and verified resources678

for data collection and model training; no private or679

proprietary data is used at any stage. Nevertheless,680

we acknowledge that these sources may still carry681

implicit biases or limitations. We encourage users682

of domain-adapted models to consider these factors683

carefully, especially when applying the models in684

sensitive or high-impact contexts. The models will685

be released under the Apache-2.0 license to ensure686

transparency, reproducibility, and broad accessibil-687

ity. The model nomic-embed-text-v1unsup is li-688

censed under Apache-2.0. All artifacts used in this689

study are open-source and available for research690

purposes. We utilized AI assistants for debugging,691

optimizing LaTeX formatting, and improving gram-692

mar clarity.693
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A Consistency-based Filtering Procedure973

To further ensure data quality and minimize false974

positive pairs, we employed a semantic filtering975

procedure using the gte-base model. Specif-976

ically, we first sampled up to 1 million candi-977

date query–document pairs from the initial dataset.978

Each query and document was independently en-979

coded into dense vector representations using the980

gte-base sentence embedding model.981

Next, we constructed a FAISS index from all982

document embeddings to enable efficient similarity983

search. For each query embedding, we retrieved984

the top-k most similar document embeddings from985

the index, based on cosine similarity. If the original986

paired document di was not found among the top-k987

retrieved documents for its corresponding query qi,988

we discarded the pair (qi, di). This filtering step989

ensures that only pairs with strong semantic align-990

ment—according to the embedding model—are991

retained for further training.992

The intuition behind this approach is to elimi-993

nate weakly related or noisy pairs that may have994

been erroneously grouped together in the initial995

data extraction. By keeping only those pairs where996

the document is highly ranked for its query, we997

improve the quality and relevance of training ex-998

amples, leading to better domain adaptation during999

model training.1000

B Curating Passages for Training the1001

Islamic Domain Model1002

Dense retrieval models often experience perfor-1003

mance degradation when applied to new domains,1004

emphasizing the value of training on in-domain1005

data. The scarcity of such data is typically ad-1006

dressed through augmentation techniques like syn-1007

thetic data generation, paraphrasing, pair recombi-1008

nation, round-trip translation, or denoising autoen-1009

coders. However, these approaches risk altering1010

the original semantics, which is especially prob-1011

lematic for sensitive religious and heritage texts.1012

To overcome this, we utilize Tafseer Ibn Kathir, a1013

classical and authoritative Qur’anic exegesis rich in1014

verse commentary and inter-verse references. This1015

resource enables natural and semantically mean-1016

ingful augmentation of training data by explicitly1017

linking related verses.1018

Pair Extraction. Let Ct denote the collection of1019

Tafseer texts by Ibn Kathir. We extract all verse1020

pairs Vt = (vq, vp) referenced in Ct, resulting in1021

approximately 11,000 candidate pairs.1022

Figure 4: Effect of alpha weight on the performance in
the 2nd stage of Contrastive+MLM training.

Figure 5: The impact of each stage on the MTEB
datasets.

Filtering. Not all extracted pairs represent strong 1023

semantic correlations suitable for retrieval training, 1024

due to indirect or implicit relationships. To select 1025

high-quality positive pairs, we score each candidate 1026

(vq, vp) using the gte-base model to obtain simi- 1027

larity scores s = gte-base(vq, vp). Pairs scoring 1028

below a predefined threshold are removed, yielding 1029

a filtered set Vf of 7,587 robust positive pairs for 1030

training. 1031

C Training Hyperparameters 1032

Computing Infrastructure 1x H100 (80 GB)
Hyperparameter Assignment
number of epochs 1-5

batch size 128-49k
sequence length 64-256

maximum learning rate 0.0005
learning rate optimizer Adam
learning rate scheduler None or Warmup linear

Weight decay 0.01
Warmup proportion 0.06
learning rate decay linear

Table 4: Hyperparameters for training and finetuning
sentence embedding models.

12


	Introduction
	Related Work
	Contrastive and MLM Objectives
	Domain Adaptation

	Multi-stage Contrastive Learning with Domain-Specific Masked Supervision
	Augmenting Contrastive Models with Domain-Specific Vocabulary
	Joint Optimization of Contrastive and MLM Objectives
	Contrastive-Only Training

	Experiments on a High-Resource Domain
	Results and Analysis
	Ablation Studies

	Experiment on a Low-Resource Domain
	Conclusion
	Consistency-based Filtering Procedure
	Curating Passages for Training the Islamic Domain Model
	Training Hyperparameters

