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Abstract001

Traditional evaluation metrics for textual and002
visual question answering, like ROUGE, ME-003
TEOR, and Exact Match (EM), focus heav-004
ily on n-gram based lexical similarity, often005
missing the deeper semantic understanding006
needed for accurate assessment. While mea-007
sures like BERTScore and MoverScore lever-008
age contextual embeddings to address this009
limitation, they lack flexibility in balancing010
sentence-level and keyword-level semantics011
and ignore lexical similarity, which remains im-012
portant. Large Language Model (LLM) based013
evaluators, though powerful, come with draw-014
backs like high costs, bias, inconsistency, and015
hallucinations. To address these issues, we016
introduce SMILE: Semantic Metric Integrat-017
ing Lexical Exactness, a novel approach that018
combines sentence-level semantic understand-019
ing with keyword-level semantic understanding020
and easy keyword matching. This composite021
method balances lexical precision and seman-022
tic relevance, offering a comprehensive evalu-023
ation. Extensive benchmarks across text, im-024
age, and video QA tasks show SMILE is highly025
correlated with human judgments and computa-026
tionally lightweight, bridging the gap between027
lexical and semantic evaluation.028

1 Introduction029

Question answering (QA) is an essential task used030

to measure the progress of language-based models.031

Across text, image, and video domains, the primary032

measure of model performance on QA benchmarks033

is accuracy, which is typically computed via exact034

(or easy) match (EM): A model response is deemed035

correct if the ground-truth answer, typically anno-036

tated by humans, exactly matches (or can be found037

within) the model response. As recent models have038

grown to be more capable language generators,039

model answers have grown more nuanced, mak-040

ing EM overly stringent (Wang et al., 2023a). A041

reasonable attempt to mitigate these issues is to042

employ N-gram based metrics typically used for 043

text generation evaluation, such as ROUGE (Lin, 044

2004) or METEOR (Banerjee and Lavie, 2005), or 045

embedding-based metrics like BERTScore (Zhang 046

et al., 2019), to assess similarity between the pre- 047

dicted response and the ground-truth (Rajpurkar 048

et al., 2016; Bajaj et al., 2016; Dunn et al., 2017; 049

Kočiskỳ et al., 2018; Yang et al., 2018a). While 050

such metrics capture high-level similarity between 051

the model response and ground-truth, they may 052

miss fine-grained details crucial to answer correct- 053

ness (e.g., “The cat is on a chair” vs. “The cat is 054

under a chair”) that result in lower correlation with 055

human judgments (Mañas et al., 2024). 056

Concurrently, due to their strong language com- 057

prehension abilities, large language models (LLMs) 058

have been deployed as automatic evaluators for 059

text generation. This approach, broadly known 060

as LLM-as-judge, functions by either prompting 061

more capable LLMs, like GPT-4o, or finetuning 062

smaller LLMs specifically for evaluation. LLM-as- 063

judge is appealing as LLMs can adapt to different 064

evaluation criteria and generate explanations. Con- 065

sequently, recent methods and benchmarks (Jacovi 066

et al., 2025; Wang et al., 2024a) now employ judges 067

as evaluators in QA settings. 068

However, using judge models for evaluation in- 069

creases costs. For practitioners and developers with 070

limited resources, repeatedly querying pay-per-use 071

API models to evaluate large datasets (5K+ sam- 072

ples) or dedicating limited compute to hosting an 073

evaluation server can be impractical for rapid de- 074

velopment, which may drive them to use lesser but 075

faster metrics. Beyond resource demands, genera- 076

tive evaluators also exhibit relatively high latency 077

(see Figure 1) and are susceptible to hallucinations, 078

as we qualitatively show in Section 3. 079

This work revisits embedding-based approaches 080

for automatic QA evaluation and introduces Seman- 081

tic Metric Integrating Lexical Exactness (SMILE), 082

a lightweight yet high-performing framework for 083
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Figure 1: SMILE offers high-performance, low-
latency QA evaluation, breaking the trade-off between
cost and performance. Performance is averaged across
human-annotated samples from benchmarks for natural
language (×), image (△), and video (◦) domains.

grading QA tasks. SMILE aims to retain the effi-084

ciency of embedding-based evaluators while ad-085

dressing their limitations, such as lack of fine-086

grained response understanding. To do so, SMILE087

comprises two subscores: A semantic subscore to088

assess overall response content, and a keyword089

subscore to reward lexical exactness. Overall,090

SMILE offers a best-of-both-worlds evaluation so-091

lution: As Figure 1 shows, it correlates with human092

annotators as strongly as GPT-4o. Additionally,093

SMILE core components can be precomputed for094

fast lookup, resulting in a 9x speedup compared095

to API queries. SMILE’s lightweight design al-096

lows it to run on CPU during evaluation, requiring097

minimal GPU VRAM to perform a one time eval-098

uation dataset preprocessing step. Additionally,099

SMILE offers interpretability through its compos-100

ite structure with two subscores. While SMILE can101

be applied in many settings, our study focuses on102

factoid QA tasks. Our contributions are:103

(1) We revisit the promise of embedding-based au-104

tomatic evaluation metrics for QA tasks and pro-105

pose SMILE, which utilizes both sentence and key-106

word level similarity scores to evaluate based on107

holistic and fine-grained content.108

(2) We construct a 225-sample human annotated109

test set from nine (text, image, video) QA datasets,110

labeled by 4 domain experts. This set is used to111

benchmark SMILE and other metrics based on their112

correlation with human judgments.113

(3) We demonstrate that SMILE can serve as a114

lightweight drop-in replacement for more powerful115

LLM-as-judge models across modalities.116

(4) Extensive ablation studies demonstrate the ne- 117

cessity of each of SMILE’s components. 118

In all, our experiments demonstrate that SMILE 119

is a lightweight yet high-performing automatic eval- 120

uation metric for QA settings. 121

2 Background and related work 122

This work addresses three QA modalities: Natu- 123

ral language QA (NLQA), visual QA (VQA), and 124

video QA (VidQA). Across these, a model f re- 125

ceives an input (q, c) and generates a textual an- 126

swer y = f(q; c). The input consists of a question 127

q and context c, where c is text for NLQA, an im- 128

age for VQA, and a video for VidQA. The task of 129

the model is to produce a natural language answer 130

y to the question q based on the given context c. 131

For model evaluation, we adopt a reference- 132

based protocol, assuming a human-annotated 133

ground-truth answer y⋆ is available for each in- 134

put (q, c) . Given a model response y, the goal is to 135

determine its correctness. Specifically, we aim to 136

design an evaluator j that produces an evaluation 137

score s = j(y, y⋆) based on y and y⋆. This source- 138

free setup, where evaluation occurs without access 139

to (q, c), aligns with the original exact match (EM) 140

evaluation setup. Source-free evaluation may rep- 141

resent an easier evaluation setting, as prior work 142

indicates LLM-based evaluators struggle when con- 143

text c is included (Xu et al., 2025). 144

For practitioners prioritizing accuracy, the evalu- 145

ation score s can be a binary correct/incorrect label. 146

For detailed failure analysis, a finer-grained score 147

(e.g. 0-5 scale) may be preferred. Regardless of the 148

format, the score should be convertible to a binary 149

label, typically via a straightforward threshold (e.g., 150

scores ≤ 3 as incorrect, scores ≥ 4 as correct for a 151

0-5 scale) (Maaz et al., 2024; Wang et al., 2024a). 152

We now review existing metrics and evaluators. 153

Text generation metrics. QA benchmarks have 154

typically used EM or ROUGE (Lin, 2004) to as- 155

sess model outputs, e.g., (Yang et al., 2018b; Ra- 156

jpurkar et al., 2016; Dunn et al., 2017; Fan et al., 157

2019). As model responses grew more nuanced, n- 158

gram metrics such as BLEU (Papineni et al., 2002) 159

and METEOR (Banerjee and Lavie, 2005) were 160

adopted in QA settings (Bajaj et al., 2016). Despite 161

better correlation with human annotations than EM, 162

n-gram metrics have been shown to be insufficient 163

for modern QA tasks (Chen et al., 2019). 164

Embedding-based metrics. Embedding mod- 165

els, like BERT (Devlin et al., 2019) and finetuned 166
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variants, e.g., (Reimers and Gurevych, 2019; Gao167

et al., 2021), are trained to measure semantic simi-168

larity. As such, embedding-based metrics are a nat-169

ural step in overcoming the limitations of EM and170

n-gram-based metrics (Chen et al., 2019), with no-171

table methods like BERTScore (Zhang et al., 2019),172

BARTScore (Yuan et al., 2021), BLEURT (Sellam173

et al., 2020) being used as evaluators in bench-174

marks (Ao et al., 2024). Recent work (Bulian et al.,175

2022; Risch et al., 2021; Lee et al., 2020) developed176

metrics specifically for the QA setting.177

LLM-as-judge evaluators. The LLM-as-judge178

paradigm initially utilized frontier LLMs for au-179

tomatic evaluation (Wang et al., 2023b; Liu et al.,180

2023c; Fu et al., 2024; Chiang and Lee, 2023).181

However, biases in prompted evaluators hold were182

soon identified (Panickssery et al., 2024; Wang183

et al., 2023c; Park et al., 2024), leading to the184

finetuning of smaller models for evaluation (Kim185

et al., 2024; Li et al., 2023a; Zheng et al., 2024;186

Wang et al., 2023d; Shiwen et al., 2024). Recent187

efforts focus on training for diverse evaluation pro-188

tocols (Vu et al., 2024; Wang et al., 2024b), such189

as pairwise, single rating, and binary classification.190

Applying LLM-as-judges specifically to QA grad-191

ing is a recent development (Mañas et al., 2024),192

with many benchmarks (Krishna et al., 2024; Ja-193

covi et al., 2025) and studies (Maaz et al., 2024;194

Liu et al., 2023b) employing API models.195

3 When do existing evaluation methods196

and metrics fail?197

Before introducing SMILE, we present a quali-198

tative case study highlighting the failure modes199

of LLM-as-judge and embedding-based metrics200

in QA evaluation. Our analysis of 225 human-201

evaluated model responses reveal a common failure202

point: verbose or generic model outputs, consistent203

with Mañas et al. (2024); Luo et al. (2021).204

Surprisingly, we also find that using a power-205

ful LLM like GPT-4o does not guarantee accurate206

evaluations. We highlight two representative fail-207

ure modes in Figure 2 (columns 1-2). GPT-4o was208

prompted to generate a binary accuracy label, as209

well a 1-5 score (see Appendix A for prompt). For210

ease of comparison, we convert SMILE scores to211

a binary accuracy indicator. A primary concern212

with using LLMs as judges is hallucinations. Fig-213

ure 2 (column 1) shows that even for relatively214

simple samples, GPT-4o may hallucinate an incor-215

rect label. Figure 2 (column 2) is an example of216

concreteness bias, a known judge model bias (Park 217

et al., 2024). Here, GPT-4o is tricked by a response 218

that includes concrete artifacts, like the table the 219

model generated, even if it incorrect response. 220

Seeking an efficient evaluator, we also analyzed 221

failure modes of embedding-based approaches. Se- 222

mantic similarity metrics like BERTScore exhib- 223

ited well-known limitations (Zhang et al., 2019). 224

Figure 2 (columns 3-4) highlights two key exam- 225

ples: column 3 shows how overly verbose model 226

responses can easily misled semantic similarity 227

metrics, as much of the output is irrelevant to the 228

simple “yes” response. This can be viewed this as 229

distributional misalignment (Agrawal et al., 2022): 230

increasingly high-quality model outputs are often 231

lengthier, contrasting with the typical short answers 232

in factoid QA benchmarks. Conversely, when 233

model responses are short but semantically rele- 234

vant, these metrics are prone to false positives, as 235

illustrated in Figure 2 (column 4). The limitations 236

of embedding-based and LLM-as-judge methods 237

motivated SMILE-a hallucination-free evaluation 238

metric presented next. 239

4 The SMILE metric 240

Our analysis in Section 3 pinpointed two critical 241

limitations of embedding-based approaches: (1) 242

a distributional gap between verbose model re- 243

sponses and concise ground-truth answers, and (2) 244

a lack of fine-grained understanding due to their 245

semantic focus. SMILE directly addresses these 246

issues with two key innovations: (1) Synthetic an- 247

swer generation to bridge the stylistic distribution 248

gap, and (2) targeted sub-scores capturing both 249

semantic and lexical similarity between model re- 250

sponses and ground-truth. 251

Bridging the stylistic distribution gap. As 252

shown in Section 3, assessing directly based on the 253

ground truth y⋆, which is typically short for short- 254

form (factoid) QA (e.g., a single word or short 255

phrase), may be sub-optimal, as model responses 256

tend to be more verbose. Motivated by past work 257

that have used LLMs to perform other kinds of 258

zero-shot distribution alignment (Gao et al., 2023; 259

Xu et al., 2024), we utilize an LLM to generate 260

a synthetic model response from the ground-truth. 261

Our key insight is that for short-form QA tasks, 262

a lightweight model (e.g., 3B parameter) can be 263

deployed as a synthetic answer generator g. Specif- 264

ically, the generator g takes as input the original 265

question q and ground truth answer y⋆ and out- 266
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TGIF TextVQADocVQA HotpotQA
[...] Uphill in the narrow vale are the Bridgewater 
monument and the Ashridge estate. It is noted for 
its picturesque setting and has been referred to as 
a "chocolate-box" village due to its traditional 
appearance. [...]
Ivinghoe Beacon is a prominent hill and landmark 
in the Chiltern Hills, standing 233 m (757 ft) above 
sea level. It is situated close to the village of 
Ivinghoe in Buckinghamshire, the Ashridge Estate, 
and the villages of Aldbury and Little Gaddesden in 
Hertfordshire and is managed and owned by the 
National Trust. [...]

Question: Is this a grocery store?
Answer: yes
Model output:  Yes, the image shows a 
grocery store with customers and a variety 
of products, including bottles and fresh 
produce. This indicates that the store 
provides a range of food and household 
items for customers to purchase. The 
presence of a customer suggests that [...]

Question: what goes of the track while 
attempting to take a corner at speed ?
Answer: truck
Model output: The truck in the video is 
attempting to take a corner at high speed 
and loses control, causing it to spin out of 
the track and crash into the dirt. This results 
in a dramatic scene with dust and [...]

Question: What was the name of the 
hill that was the seat of an estate uphill 
Aldbury?
Answer: Chiltern Hills
Model output: Bridgewater monument

Question: What is the "Conversion 
Rate" for "Event"?
Answer: 8
Model output:
| Column | Min | Max | Average |
| --- | --- | --- | --- |
| Conversion Rate | 0.00 | 100.00 | 33.18 |
The "Conversion Rate" for "Event" is 
33.18%. This is based on the cal- [...]

Human: 1 GPT-4o: 0 ❌ SMILE: 1 ✅ Human: 0 GPT-4o: 1 ❌ SMILE: 0 ✅ Human: 1 sBERT: 0 ❌ SMILE: 1 ✅ Human: 0 sBERT: 1 ❌ SMILE: 0 ✅

Embedding-based metrics miss 
short responses in long outputs

Judge models may hallucinate even 
on a simple example.

Judge models may hallucinate when 
output is verbose

Embedding metrics often overrate 
relevant but wrong answers

Figure 2: Example failure cases for existing methods. Columns 1-2 illustrate LLM-as-judge failures: hallucination
even on simple verification (column 1), and incorrect yet concrete responses (column 2). Columns 3-4 illustrate
embedding-based model failures with lengthy (column 3) and relevant but incorrect (column 4) responses. SMILE
scores are converted to a 0/1 scale for comparison. [...] denotes omitted content to fit space.

puts a synthetic answer ỹ = g(y⋆, q), which aligns267

stylistically with model responses, but reflects the268

ground-truth answer content. As a concrete ex-269

ample from our evaluation setup, for input ques-270

tion “What is the Conversion Rate for Event?” and271

ground-truth “8”, a generated synthetic answer is272

“The conversion rate of an event is 8”. We empha-273

size that synthetic answer generation is indepen-274

dent of the model being evaluated and is performed275

only once, prior to test-time, per evaluation set. As276

a result, synthetic answers may be stored and used277

for any subsequent evaluations.278

Integrating semantic and lexical similarity.279

The core idea of SMILE is to measure both se-280

mantic and lexical similarity between the model281

response and the ground-truth using an embedding282

model e. We calculate a semantic similarity score,283

which we denote ss, as284

ss(y, ỹ; e) = sim(e(y), e(ỹ)), (1)285

where, sim(x, y) = (1 + ⟨x, y⟩/∥x∥2∥y∥2)/2,286
which is a linearly transformed cosine similarity287
that lies within an interpretable interval of [0, 1].288
As we show in Section 5.2, generating synthetic289
answers bridges the stylistic distribution gap be-290
tween ground-truth answers and model responses291
enough to make semantic similarity meaningful.292
However, Section 3 shows that this semantic simi-293
larity score alone is insufficient to capture the nu-294
ances of evaluation. As a result, we additionally295
compute a lexical similarity score, which we denote296
sℓ ∈ [0, 1], as297

sℓ(y, y
⋆; e) =

1

2
(EM(y, y⋆)+298

max
i

{sim (e(Ni[y]), e(y
⋆))}) (2)299

where EM(y, y⋆) ∈ {0, 1} score between the pre- 300

diction y and ground-truth y⋆ and Ni[y] denotes 301

the i-th n-gram of response y. In computing sℓ, 302

we take advantage of the fact that y⋆ is typically a 303

short phrase to compute two complementary scores. 304

The easy match sub-score EM serves as a prelim- 305

inary check for lexical answer correctness. How- 306

ever, as noted in prior work (Wang et al., 2023a; 307

Luo et al., 2021), string matching may be too strin- 308

gent for synonym-like answers (e.g., “cat” vs. “kit- 309

ten”). As a result, we loosen the necessity for string 310

matches via the maximum n-gram embedding sim- 311

ilarity score, which serves as a continuous-valued 312

measure of lexical exactness. 313

Evaluation with SMILE. With our semantic 314

and lexical scores computed, we can now compute 315

the SMILE score, denoted sSMILE ∈ [0, 1]: 316

sSMILE(y, y
⋆; e, w) =

1

2
(w · ss(y, ỹ; e)+ 317

(1− w) · sℓ(y, y⋆; e)), (3) 318

where w ∈ (0, 1) is some user-specified weight to 319

balance the two subscores. This weighting mech- 320

anism allows practitioners to express their prefer- 321

ences: Those who are more inclined towards exact 322

match may place higher weight on sℓ, whereas 323

those who value higher responses whose meaning 324

is closest with the ground-truth may place a higher 325

weight on ss. 326

4.1 Optimizations for test-time speed-up 327

SMILE offers significant speed advantage over 328

LLM-as-judge methods, as extracting represen- 329
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It says on   the jet body  friendly low fares

Semantic 
score (0.96)

Embedding 
KW score (1)

SMILE

Friendly low fares 

The advertisement on the jet 
says “Friendly low fares”

(1) Preprocessing: Distributional 
alignment with SLM (2) Evaluation: Computing SMILE with semantic + keyword scores

What does this jet 
advertise as having?

The advertisement on the jet 
says “Friendly low fares”

Friendly low fares 
Exact match 
KW score (1)

Keyword 
score (1)

Cosine 
similarity 

Embedding 
model

Gold
answer

Synthetic 
answer

SLM

Evaluated 
model

Synthetic 
answer 
generator

SLM

(0.98)

Figure 3: Overview of SMILE. SMILE evaluates QA outputs in two steps using a synthetic answer generator and
an embedding model. (1) One-time preprocessing generates stylistically aligned synthetic answers using a small
language model (SLM). (2) SMILE computes two sub-scores: a semantic score based on the synthetic answer, and a
keyword subscore that combines exact match with embedding comparisons of model response N-grams to the gold
answer. This subscoring balances semantic and lexical evaluation.

tations from lightweight embedding models like330

BERT (Devlin et al., 2019) is far faster than gener-331

ating natural language outputs. This speed advan-332

tage can be further enhanced by pre-computing and333

storing representations for synthetic answers e(ỹ)334

and keyword representations e(y⋆) before evalua-335

tion. By storing e(ỹ) and e(y⋆), only the model336

response representations e(y) and e(Ni[y]) need to337

be calculated during test time.338

4.2 Interpretability of SMILE scores339

SMILE’s semantic and lexical subscores provide340

practitioners with more interpretable and action-341

able feedback than other metrics. These subscores342

enable monitoring of model performance along two343

complementary axes: semantic content, a holistic344

measure of response relevance, and lexical exact-345

ness, a finer-grained measure of response quality.346

Importantly, SMILE allows evaluation not only at347

the instance-level but also at the population-level.348

Aggregating ss and sℓ across all test samples re-349

veals a model’s general strengths and weaknesses.350

This contrasts with LLM-as-judge methods, which351

offer more specific instance-level natural language352

feedback, making it hard to extract overall insights.353

See examples in Appendix E.354

5 Experiments and results355

Benchmarks and generator models. We assessed356

SMILE on established benchmarks across three357

domains: NLQA, VQA, and VidQA. To ensure di-358

verse evaluation, we included three benchmarks359

per domain: MRQA (Fisch et al., 2019), Hot-360

potQA (Yang et al., 2018b), and MuSiQue (Trivedi361

et al., 2022) for NLQA, TextVQA (Singh et al., 362

2019), DocVQA (Mathew et al., 2020), and 363

POPE (Li et al., 2023b) for VQA, and TGIF (Jang 364

et al., 2017), MSVD (Xu et al., 2017), and 365

MSRVTT (Xu et al., 2016) for VidQA. For Hot- 366

potQA and MuSiQue, we used the standardized 367

setup from ContextualBench (Nguyen et al., 2024). 368

We generated responses using the following mod- 369

els for each domain: GPT-4o (Hurst et al., 2024) 370

for NLQA, LLaVA-1.5 for VQA 7B (Liu et al., 371

2023a,b) , and Qwen2.5-VL 3B Instruct (Bai et al., 372

2025) for VidQA. These models were selected for 373

their strong capabilities in producing high-quality 374

textual responses, forming the basis of our analysis. 375

We also evaluate on QA-Eval (Wang et al., 2023a), 376

a large-scale NLQA dataset (∼10k samples) based 377

on Natural Question (NQ) and TriviaQA (TQ), with 378

responses from GPT-3.5 and GPT-4o. This setup 379

enables robust comparison of SMILE against LLM 380

judges at scale. 381

Data annotation efforts. To evaluate QA met- 382

rics, we assessed their alignment with human judg- 383

ments using a golden evaluation set. We con- 384

structed this set by sampling model outputs from 385

the nine benchmarks (three per domain), randomly 386

selecting 25 input-output pairs per dataset for an- 387

notation. Four annotators (authors of the paper 388

with native level English) evaluated the generated 389

outputs based on a predefined rubric, considering 390

correctness, relevance, and clarity. Given potential 391

ambiguity, annotators used a 3 point scale: clearly 392

incorrect, unclear, clearly correct. To check an- 393

notation quality, we calculated Krippendorff’s al- 394

pha (Krippendorff, 2011), achieving a score of 0.71, 395
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indicating substantial inter-annotator agreement.396

This high agreement confirms the reliability of our397

annotations, so we proceed with it as the basis of398

our evaluation.399

Baselines and metrics. We compared SMILE400

with established metrics, including traditional NLP401

measures: ROUGE-L, METEOR and Exact and402

Easy Match; alongside embedding-based similar-403

ity metrics: BERTScore (with Roberta-large) and404

sBERT cosine similarity1. Following (Maaz et al.,405

2024), we also employed GPT-4o and GPT-3.5-406

Turbo as judge models, prompting them for a 0-5407

score and a binary yes/no prediction. For all base-408

lines, we provide detailed implementation details409

in Appendix A, including judge model prompts.410

SMILE implementation. We choose Llama-411

3.2-3B-Instruct as our synthetic answer generator412

g and ember-V12 as our embedding model e. This413

combination is computationally lightweight: the414

335M parameter ember-v1 can run inference on a415

CPU, and generating responses with the 3B Llama416

model requires < 10GB of VRAM. Furthermore,417

our ablation study (Section 5.2) shows that larger418

models offer only marginal performance improve-419

ments, highlighting SMILE’s inherent lightweight420

nature. SMILE scores, similar to GPT-4o, are dis-421

cretized into six bins (0–5), with scores ≥ 4 con-422

sidered correct. The N-gram value is dynamically423

set based on ground truth answer length, and the424

parameter w fixed to 0.3.425

5.1 Main experimental results426

Using our golden evaluation set, we compare427

SMILE against existing baseline metrics. To holisti-428

cally assess evaluators-human agreement, we com-429

puted Pearson correlation, Kendall’s Tau-b, and De-430

viation from Human Accuracy. Pearson correlation431

and Kendall’s Tau measure agreement with human432

annotations on the instance level, ranging from –1433

(perfect disagreement) to +1 (perfect agreement).434

Kendall’s Tau-b, focuses on ranking consistency435

and accounts for ties in the data. Deviation from436

Human Accuracy quantifies the difference between437

QA accuracy derived from evaluator scores and438

human annotations.439

Pearson correlation results are presented in Ta-440

ble 1. SMILE consistently outperforms other eval-441

uation metrics across tasks, achieving the highest442

overall correlation with human evaluations. No-443

1https://huggingface.co/sentence-transformers/all-
roberta-large-v1

2https://huggingface.co/llmrails/ember-v1

tably, SMILE significantly surpasses GPT-4o and 444

GPT-3.5, despite their prominence as LLM-as- 445

judge evaluators. Across all tasks, SMILE’s pos- 446

itive correlation scores are significantly closer to 447

1 than most competitors, indicating strong agree- 448

ment with human evaluations and validating the 449

robustness of our approach. 450

Kendall’s Tau-b results, presented in Table 2, 451

establish SMILE’s superior correlation with hu- 452

man rankings. Quantitatively, SMILE outperforms 453

all competing metrics, further validating its effec- 454

tiveness. SMILE surpasses GPT-4o and GPT-3.5, 455

underscoring its exceptional ability to rank gener- 456

ated responses in a way that closely mirrors human 457

annotated rankings. 458

Table 3 shows SMILE’s evaluated accuracy 459

aligns closely with human judgments across all 460

tasks. Unlike metrics like ROUGE-L, METEOR 461

and sBERT, which suffers from inflated or deflated 462

scores(especially with short ground-truths and ver- 463

bose model outputs), SMILE remains robust even 464

after binarization. This reinforces it’s reliability 465

and makes it a practical and consistent alternative 466

to costly human evaluation. 467

Finally, we evaluate SMILE and GPT-3.5/4o 468

as evaluators on QA-Eval, using two prompting 469

variants: (1) original prompt (based on (Maaz 470

et al., 2024)), and (2) extract-style prompt (asks 471

LLM to extract short answer first). As shown in 472

Table 4, SMILE consistently outperforms GPT- 473

3.5 and closely matches GPT-4o. Notably, LLMs 474

degrade under the extract prompt, highlighting 475

SMILE’s robustness and prompt independence. 476

5.2 Ablations 477

This section presents an ablation study of SMILE 478

centered on three key perspectives: (1) Component 479

analysis, systematically removing steps (synthetic 480

answer generation, semantic similarity score, key- 481

word score) to demonstrate their individual impor- 482

tance, (2) Model scaling, examining the impact of 483

using larger models for both synthetic answer gen- 484

eration and embedding, (3) Hyperparameter tun- 485

ing, analyzing the effect of the weight w in SMILE. 486

Results are detailed in Table 5 and Figure 5. 487

Component analysis. SMILE comprises three 488

key components: (1) semantic similarity, (2) lex- 489

ical exactness, and (3) distribution alignment via 490

a lightweight language model. Table 5 (top) sum- 491

marizes the contribution of these components to 492

SMILE’s robust performance. Experiments demon- 493

strate that both keyword and sentence similarity 494
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Metrics Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-4o
TGIF MSVD MSRVTT TextVQA DocVQA POPE MRQA HotpotQA MUSIQUE Overall

Exact Match nan nan nan nan nan 0.099 nan 0.109 0.143 0.117
Easy Match 0.793 0.481 0.237 0.795 0.375 0.451 0.676 0.657 0.890 0.595
ROUGE-L 0.603 0.477 0.313 0.531 0.661 0.001 0.368 0.603 0.438 0.444
METEOR 0.663 0.527 0.311 0.636 0.706 0.086 0.454 0.664 0.599 0.516
BERTScore 0.421 0.357 0.099 0.358 0.633 0.164 0.272 0.620 0.421 0.372
sBERT 0.472 0.506 0.380 0.602 0.852 0.164 0.352 0.664 0.358 0.483
GPT-3.5 0.825 0.666 0.318 0.626 0.828 0.422 0.746 0.668 0.566 0.629
GPT-4o 0.778 0.790 0.606 0.829 0.790 0.699 0.760 0.678 0.814 0.693

SMILE 0.824 0.663 0.435 0.787 0.908 0.716 0.872 0.943 0.977 0.792

Table 1: Pearson correlation with human judgments (↑) across Video, Visual, and Language QA. SMILE
consistently outperforms traditional metrics and LLM-based judges across all modalities, achieving the highest
overall correlation.

Metrics Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-4o
TGIF MSVD MSRVTT TextVQA DocVQA POPE MRQA HotpotQA MuSiQue Overall

Exact Match nan nan nan nan nan 0.100 nan 0.109 0.145 0.118
Easy Match 0.765 0.500 0.253 0.773 0.361 0.420 0.676 0.657 0.890 0.588
ROUGE-L 0.598 0.542 0.357 0.543 0.673 0.162 0.350 0.496 0.555 0.475
METEOR 0.592 0.544 0.346 0.607 0.672 0.161 0.276 0.458 0.589 0.472
BERTScore 0.347 0.272 0.088 0.244 0.496 0.125 0.210 0.455 0.454 0.299
sBERT 0.393 0.411 0.297 0.435 0.662 0.102 0.289 0.455 0.386 0.381
GPT-3.5 0.738 0.555 0.294 0.589 0.709 0.441 0.490 0.439 0.588 0.538
GPT-4o 0.686 0.717 0.561 0.746 0.686 0.676 0.193 0.488 0.784 0.615

SMILE 0.753 0.637 0.432 0.714 0.805 0.607 0.805 0.782 1.000 0.726

Table 2: Kendall’s Tau-b with human judgments (↑) across Video, Visual, and Language QA. SMILE consistently
outperforms traditional metrics and LLM-based judges across all modalities, achieving the highest overall ranking
agreement. nan indicates Exact Match (EM) found no exact matches.

scores are essential. Removing keyword scores sig-495

nificantly reduces Pearson correlation, underscor-496

ing the critical role of lexical exactness in QA evalu-497

ation. Conversely, relying solely on keyword scores498

neglects global structure, degrading performance499

notably in VidQA and VQA. Synthetic answers are500

also crucial, particularly for verbose model predic-501

tions in VidQA and VQA. Figure 4 illustrates the502

effect of synthetic answer generation, which effec-503

tively maps extremely short gold answers to longer504

model outputs. Combining sentence scores, key-505

word scores, and synthetic answers yields robust506

and accurate evaluation across domains.507

Model scaling. A key advantage of SMILE508

is that it offers the ability to efficiently run eval-509

uation. Our model choices in Section 5 demon-510

strate this: SMILE at inference time requires only511

a 355M parameter embedding model, and pre-512

generating synthetic answers requires only a 3B513

generative model. Table 5 (bottom) further es-514

tablishes SMILE’s lightweight nature: increasing515

model capacity yields minimal performance gains,516

if at all. Our model ablation focused on the syn-517

thetic answer generation model and the embedding518

0 100 200 300 400 500
Length of responses

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y Gold answers
Model outputs
Synthetic answers

Figure 4: Length of gold answers, model outputs, and
synthetic answers, across all domains and benchmarks
in characters. Synthetic answers more align better with
model outputs in terms of output length, enabling better
semantic evaluation.

model. Using GPT-3.5-Turbo instead of Llama-3.2- 519

3B-Instruct for synthetic answers yielded compara- 520

ble correlation with human judgments, indicating 521

that effective synthetic answer generation is achiev- 522

able with smaller lightweight models. Replacing 523

ember-v1 with the substantially larger GTE-7B (Li 524

et al., 2023c) embedding model resulted in only 525

a marginal performance gain of less than 2%, de- 526

spite a 20× increase in model size. This indicates 527

that SMILE remains effective even with lightweight 528
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Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-4o
TGIF MSVD MSRVTT TextVQA DocVQA POPE MRQA HotpotQA MuSiQue Overall

Human 0.64 0.48 0.56 0.40 0.24 0.80 0.92 0.88 0.80 0.64

Exact Match -0.64 -0.48 -0.56 -0.40 -0.24 -0.76 -0.92 -0.80 -0.72 0.53
Easy Match 0.04 -0.12 -0.20 -0.04 0.00 0.16 -0.08 -0.12 -0.04 0.09
ROUGE-L -0.64 -0.48 -0.56 -0.40 -0.24 -0.72 -0.76 -0.40 -0.64 0.54
METEOR -0.64 -0.48 -0.56 -0.40 -0.20 -0.80 -0.68 -0.28 -0.52 0.51
BERTScore 0.36 0.52 0.44 0.60 0.76 0.20 0.08 0.12 0.20 0.36
sBERT -0.64 -0.48 -0.56 -0.4 -0.24 -0.76 -0.92 -0.08 -0.72 0.52
GPT-3.5 -0.12 -0.08 0.00 0.00 -0.08 -0.12 0.04 0.00 0.04 0.05
GPT-4o -0.04 -0.12 -0.04 0.00 -0.12 -0.08 0.00 -0.04 0.04 0.05

SMILE -0.04 0.16 0.20 -0.04 0.04 -0.12 -0.04 0.00 0.00 0.07

Table 3: Deviation from human-evaluated accuracy across Video, Visual, and Language QA tasks. SMILE
closely aligns with human judgment.

GPT 3.5 GPT-4o
NQ TQ NQ TQ Overall

GPT-3.5, original prompt 0.756 0.849 0.713 0.706 0.756
GPT-4o, original prompt 0.865 0.913 0.815 0.806 0.850
GPT-3.5, extract prompt 0.478 0.572 0.413 0.440 0.476
GPT-4o, extract prompt 0.831 0.898 0.783 0.774 0.821

SMILE 0.829 0.889 0.786 0.760 0.816

Table 4: Pearson Correlation with human judgment
on QAEval. SMILE shows strong agreement with hu-
man annotations, outperforming GPT-3.5 and roughly
matching GPT-4o.

Video QA Visual QA Language QA Overall

SMILE 0.641 0.804 0.931 0.792
w/o keyword scores 0.383 0.533 0.249 0.388
w/o sentence scores 0.682 0.764 0.883 0.776

C
om

po
ne

nt
A

bl
at

io
n

w/o synthetic answers 0.638 0.764 0.883 0.776

SMILE 0.641 0.804 0.931 0.792
Embedding: GTE7B 0.647 0.824 0.947 0.806

M
od

el
A

bl
at

io
n

Syn. answer: GPT-3.5-Turbo 0.636 0.802 0.930 0.790

Table 5: Component and model ablations. Perfor-
mance is assessed by Pearson correlation. Keyword
scores are the primary contributor, highlighting the im-
portance of lexical exactness. Embedding model scaling
yields marginal (< 2%) gains.

embedding models.529

Hyperparameter tuning. SMILE’s lone hy-530

perparameter w allows practitioners to precisely531

decide the impact of the semantic and keyword532

subscores. Specifically, as w increases, more im-533

portance is given to the semantic subscore. As we534

show in Figure 5, overall performance is relatively535

stable for w ≤ 0.5 before smoothly decreasing.536

This aligns with results from our component abla-537

tion study in Table 5: The keyword subscores alone538

exhibited relatively strong performance, while the539

semantic subscore fared worse. However, SMILE540

hyperparameter choice is relatively forgiving, with541

0.2 0.4 0.6 0.8
Weight w

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n 

co
rre

la
tio

n

NLQA
VQA

VidQA
Overall

Figure 5: Sweep of w, which trades off lexical exactness
for semantic similarity as w increases. SMILE exhibits
relatively stable aggregate performance for w ≤ 0.5.

any choice of w that slightly upweights the key- 542

word subscore likely to perform well. 543

6 Conclusion 544

We introduce SMILE, a novel, lightweight QA eval- 545

uation metric that overcomes limitations of exist- 546

ing methods by integrating semantic and lexical 547

analysis. Its efficiency addresses the high cost, bi- 548

ases, and inconsistencies of LLM-based evaluators. 549

Benchmarking across text, image, and video QA 550

demonstrates SMILE’s strong correlation with hu- 551

man judgment, surpassing traditional metrics and 552

LLM judges like GPT-4o. Its design also offers in- 553

terpretability, and ablation studies validate the im- 554

portance of its components. In summary, SMILE 555

provides a robust, efficient, and interpretable so- 556

lution for QA evaluation across modalities, effec- 557

tively balancing lexical precision and semantic rel- 558

evance as a promising alternative to costly LLM 559

evaluations. 560
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Limitations561

Although SMILE offers a lightweight, inter-562

pretable, and scalable alternative to LLM-based563

evaluators, it comes with certain limitations. (1)564

SMILE is designed for source-free evaluation and565

does not access the context. Although efficient,566

this may cause it to miss context-dependent er-567

rors. (2) The metric relies on synthetic answers568

to align ground-truths with model outputs. The569

quality of these synthetic answers can affect the the570

scoring, especially in long-form or open-ended re-571

sponses. (3) Our evaluation is limited to factoid QA572

tasks. SMILE’s effectiveness on complex reason-573

ing, multi-hop, or conversational QA remains unex-574

plored. (4) SMILE includes a weighting parameter575

to balance lexical and semantic components, which576

may require tuning for specific tasks or domains.577
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A Additional SMILE and baseline863

implementation details864

A.1 Prompt templates865

As described in Section 4, we prompt the synthetic866

answer generator with the original question and867

ground-truth answer and task it with generating868

a synthetic answer. We provide the full prompt869

below.870

### Synthetic answer generation prompts
## System prompt:
You are an intelligent chatbot designed for generating
answer as a sentence from question-answer pairs.
Your task is to generate a single sentence answer
using the question and the answer already provided.
Here's how you can accomplish the task:
------
##INSTRUCTIONS:
- Look at the provided answer.
- Generate a short single sentence response using the
question and the answer.
- Response SHOULD ALWAYS USE THE WORDS FROM ANSWER
provided.
- DO NOT USE THE QUESTION AS IT IS IN THE RESPONSE.
- Return only the response and nothing else.

## User prompt
Please phrase a short single sentence answer using
question-answer pair only:
Question: {<question>}
Answer: {<answer>}
DO NOT PROVIDE ANY OTHER OUTPUT APART FROM A SINGLE
SHORT SENTENCE.

871

To prompt GPT-4o and GPT-3.5 as judge mod-872

els, we utilize prompts adopted from (Maaz et al.,873

2024), as described in Section 5. We provide full874

prompts below.875

### Original prompt: GPT-4o/GPT-3.5-Turbo judge prompts
## System prompts
You are an intelligent chatbot designed for evaluating
the correctness of generative outputs for
question-answer pairs.
Your task is to compare the predicted answer with the
correct answer and determine if they match
meaningfully. Here's how you can accomplish the task:
------
##INSTRUCTIONS:
- Focus on the meaningful match between the predicted
answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared
to the answer.

## User prompt
Please evaluate the following video-based
question-answer pair:
Question: {<question>}
Correct Answer: {<answer>}
Predicted Answer: {<model_output>}
Provide your evaluation only as a yes/no and score
where the score is an integer value between 0 and 5,
with 5 indicating the highest meaningful match.
Please generate the response in the form of a Python
dictionary string with keys 'pred' and 'score', where
value of 'pred' is a string of 'yes' or 'no' and
value of 'score' is in INTEGER, not STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string.
For example, your response should look like this:
{{'pred': 'yes', 'score': 4}}.

876

### Extract prompt: GPT-4o/GPT-3.5-Turbo judge prompts
## System prompts
You are an expert evaluator for video-based question
answering systems. Your task is to judge the factual
accuracy of a predicted answer by comparing it to a
correct answer. You will follow a structured
evaluation approach to ensure consistency:
------
## INSTRUCTIONS:
Step 1: Extract the key facts from the Correct Answer.
Step 2: In case the Correct Answer is a list, choose
the best answer that matches the Predicted Answer.
Step 3: Extract the key facts from the Predicted
Answer.
Step 4: Compare the two sets of facts and determine
how consistent they are.
- Consider paraphrasing, synonyms, and partial

overlaps.
- Ignore grammatical errors.
- Penalize hallucinated or contradicted information.

Step 4: Based on the comparison, assign a factual
accuracy score between 0 and 5 (INTEGER only), where:
5 = Fully accurate and aligned
4 = Mostly accurate, minor omissions or paraphrasing
3 = Partially correct but with notable missing or

incorrect info
2 = Limited accuracy, mostly incorrect or unrelated
1 = Completely inaccurate
0 = No relation or total hallucination

Respond strictly in the following format:
{'score': X, 'pred':Y} where X is an integer between 0
and 5 and Y is a either 'yes'(X>3) or 'no'(X<=3). Do
not include any explanation or extra text.}

## User prompt
Evaluate the following video-based QA pair:
Question: {<question>}
Correct Answer: {<answer>}
Predicted Answer: {<model_output>}
Return your evaluation following the instructions
above.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string.

877

A.2 SMILE text processing 878

As a part of text pre-processing, we perform stan- 879

dard text normalization on words present in ground 880

truth answers and predictions. We first convert each 881

string to lower case and remove all punctuation. 882

Then, each word is lemmatized using POS-aware 883

lemmatization to capture accurate base forms. If 884

the resulting processed word is empty after these 885

steps, the original lower-case word is retained. 886

A.3 Metrics conversion to accuracy 887

For all evaluated baselines and metrics, we must 888

convert from scores to binary correct or incorrect 889

accuracy labels. ROUGE, METEOR, BERTScore, 890

sBERT, and SMILE all output continuous-valued 891

scores between 0 and 1. We apply a threshold of 892

0.67, considering anything above the threshold to 893

be correct and anything below to be incorrect. The 894

choice of 0.67 is the same as considering anything 895

with a score of 4 or above to be correct after convert- 896

ing the continuous [0,1] score to a 0-5 scale with 897

uniform binning. For GPT-3.5-Turbo and GPT-4o, 898
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the model is prompted to output a yes/no label for899

correctness, which we use directly.900

B Data annotation details901

B.1 Annotation instructions902

Annotators were given with detailed instructions903

on how to annotate responses. We adopted a 3904

point scale: clearly incorrect, unclear, and905

clearly correct. We defined each of these cate-906

gories as follows:907

Clearly incorrect: The model definitively pro-908

duces a response that is incorrect.909

Unclear: The model response cannot be con-910

firmed correct from the ground-truth answer.911

Clearly correct: The model response can be912

explicitly verified as correct using the ground-truth913

answer.914

We also defined edge case behavior:915

Extraneous information: If the model response916

correctly answers the question, but includes other917

information that may or may not be factual, we918

consider the response clearly correct. As a919

concrete example, for question “What brand of920

soda is in this picture” with ground-truth “Coca-921

Cola”, we consider the model response “Coca-Cola922

is in this picture. It is the most popular soda in the923

world by unit sales and has over 60 different flavors”924

to be correct, even though it contains extraneous925

factually verifiable information.926

Synonyms or ambiguous subjects: We con-927

sider a model response that answers the question928

using an ambiguous subject to be unclear. As a929

concrete example, for question “who describes a930

video game??” with ground-truth “man”, we con-931

sider the model response “person” to be unclear, as932

it does not describe in sufficient detail the person.933

B.2 Annotation aggregation and conversion to934

accuracy labels935

We collected responses from four annotators. To936

aggregate individual annotations into a single la-937

bel, we utilized majority vote, employing random938

tie-breaking as needed. To form final accuracy939

labels, we consider clearly correct responses940

to be accurate and consider unclear and clearly941

incorrect responses to be inaccurate.942

C Cost effective Model selection with943

SMILE944

Selecting optimal checkpoints during ML model945

training is crucial for maximizing performance on946

Metrics Checkpoint 1 Checkpoint 2
Rank Cost($) Rank Cost($)

GPT-4o 1 12 2 11.99
GPT-3.5-turbo 1 12 2 12.00
METEOR 1 - 2 -
sBERT 2 - 1 -

SMILE 1 - 2 -

Table 6: Checkpoint selection on TGIF video QA
(Video model): Rank (1=best) and approximate evalua-
tion cost (USD) per metric. SMILE ranks checkpoints
similarly to GPT metrics, but without inference costs.
"-" denotes methods without API inference cost.

downstream tasks. Traditionally, this selection pro- 947

cess relies on not-so reliable metrics like METEOR 948

and ROUGE, or expensive metrics such as LLM- 949

based judge evaluations. In this experiment, we use 950

SMILE to identify the best checkpoint. Specifically, 951

we select two intermediate checkpoints(with simi- 952

lar performance) from the Video model and evalu- 953

ate their performance on the TGIF benchmark. The 954

evaluation is conducted using five metrics: GPT-4o, 955

GPT-3.5-turbo, METEOR, sBERT and SMILE. 956

As per Table 6, our findings demonstrate that 957

SMILE selects the same optimal checkpoint (i.e. 958

checkpoint 1) as GPT-4o and GPT-3.5-turbo. This 959

alignment highlights SMILE’s effectiveness, em- 960

phasizing its capability to provide reliable check- 961

point selection without incurring additional evalua- 962

tion cost. 963

An advantage of SMILE is its substantial reduc- 964

tion in evaluation costs compared to GPT-based 965

models. GPT-4o and GPT-3.5 cost’s around $12 966

for each checkpoint evaluation on TGIF, and the 967

cost increases as more checkpoints and evaluation 968

benchmarks are added. In contrast, SMILE has 969

almost no extra cost. Therefore, adopting SMILE 970

not only maintains performance accuracy but also 971

significantly lowers monetary overhead, making it 972

a highly efficient and scalable solution for check- 973

point selection. 974

D SMILE as a drop-in replacement for 975

GPT-4o 976

Building on SMILE’s alignment with human judg- 977

ment, we now demonstrate its capability to sup- 978

plant GPT-4o as an evaluation metric. To do so, 979

we compare model accuracy derived from SMILE 980

scores against that from GPT-4o-based evaluation 981

each benchmark’s complete test-set. We find that 982

SMILE exhibits the lowest overall deviation among 983
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all tested methods, as summarized in Table 7. This984

compelling result strongly suggests SMILE is a985

reliable and direct alternative to resource-intensive986

LLM-as-judge approaches like GPT-4o.987

E SMILE Interpretability Examples988

As discussed in Section 4.2, we provide detailed989

SMILE subscores in Figure 6 for the examples990

from Figure 2. In the TGIF example from Figure 6,991

the model output shows a high semantic score ss992

(Equation (1)), reflecting strong relevance to the993

synthetic answer. The lexical relevance score sl994

(Equation (2)) is also high, indicating a perfect995

overlap with the ground truth. To clarify which996

word contributes most to the keyword score, we997

also return the word(s) with the maximum similar-998

ity (“max sim words”). These components together999

offer actionable insights into model strengths and1000

weaknesses, helping guide targeted improvements.1001

F Supplement ablation results1002

In this section, we present additional plots to sup-1003

plement our Model Ablation described in Sec-1004

tion 5.2. Specifically, we include scatter plots and1005

distribution plots to further illustrate the perfor-1006

mance difference when varying model choices for1007

synthetic answer generation and embedding.1008

F.1 Synthetic answer generation ablation1009

Referring to Figure 7, we see a very strong lin-1010

ear correlation between the two sets of generated1011

synthetic answers and thus backs our claim that1012

generating synthetic answers is a fairly simple task1013

as mentioned in Section 5.2. Figure 8, further bol-1014

ster our claim, and highlights that the ’avg score’1015

distribution remains very similar, hence we see a1016

marginal difference in the performance as reported1017

in table 5.1018

F.2 Embedding model ablation1019

Figure 9 and Figure 10 provides insight into the1020

performance variation observed in Table 5, high-1021

lighting that keyword scores exhibit greater sensi-1022

tivity to the choice of embedding model compared1023

to sentence scores.1024
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Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-4o
TGIF MSVD MSRVTT TextVQA DocVQA POPE MRQA HotpotQA MuSiQue Overall

GPT-4o 0.705 0.657 0.503 0.436 0.191 0.783 0.920 0.909 0.700 0.645

Exact Match -0.705 -0.657 -0.503 -0.424 -0.187 -0.782 -0.877 -0.884 -0.681 0.633
Easy Match -0.025 -0.217 -0.106 -0.056 -0.044 -0.021 -0.083 -0.152 -0.135 0.093
ROUGE-L -0.705 -0.657 -0.503 -0.413 -0.179 -0.773 -0.648 -0.493 -0.553 0.547
METEOR -0.705 -0.657 -0.503 -0.405 -0.166 -0.783 -0.592 -0.509 -0.454 0.530
BERTScore 0.294 0.340 0.497 0.562 0.805 0.216 0.008 0.091 0.300 0.354
sBERT -0.705 -0.657 -0.503 -0.379 -0.145 -0.780 -0.566 -0.399 -0.504 0.515

SMILE -0.032 -0.241 0.132 0.021 0.104 -0.041 -0.008 -0.016 0.005 0.067

Table 7: Deviation from GPT-4o accuracy across Video, Visual, and Language QA tasks, using complete test sets;
Accuracy may deviate human annotated test-set results in Table 3. SMILE exhibits the smallest deviation among
evaluators, closely aligning with GPT-4o.

TGIF TextVQADocVQA HotpotQA
[...] Uphill in the narrow vale are the Bridgewater 
monument and the Ashridge estate. It is noted for 
its picturesque setting and has been referred to as 
a "chocolate-box" village due to its traditional 
appearance. [...]
Ivinghoe Beacon is a prominent hill and landmark 
in the Chiltern Hills, standing 233 m (757 ft) above 
sea level. It is situated close to the village of 
Ivinghoe in Buckinghamshire, the Ashridge Estate, 
and the villages of Aldbury and Little Gaddesden in 
Hertfordshire and is managed and owned by the 
National Trust. [...]

Question: Is this a grocery store?
Answer: yes
Synthetic Answer: It is indeed a 
grocery store.
Model output:  Yes, the image shows a 
grocery store with customers and a variety 
of products, including bottles and fresh 
produce. This indicates that the store 
provides a range of food and household 
items for customers to purchase. The 
presence of a customer suggests that [...]

Question: what goes of the track while 
attempting to take a corner at speed ?
Answer: truck
Synthetic Answer: The truck tends to 
go off the track while attempting to 
take a corner at speed.
Model output: The truck in the video is 
attempting to take a corner at high speed 
and loses control, causing it to spin out of 
the track and crash into the dirt. This results 
in a dramatic scene with dust and [...]

Question: What is the "Conversion 
Rate" for "Event"?
Answer: 8
Synthetic Answer: The conversion rate 
for an event is 8.
Model output:
| Column | Min | Max | Average |
| --- | --- | --- | --- |
| Conversion Rate | 0.00 | 100.00 | 33.18 |
The "Conversion Rate" for "Event" is 
33.18%. This is based on the cal- [...]

Question: What was the name of the 
hill that was the seat of an estate uphill 
Aldbury?
Synthetic Answer: The Chiltern Hills 
served as the seat of an estate uphill in 
Aldbury.
Answer: Chiltern Hills
Model output: Bridgewater monument

Human: 1 GPT-4o: 0 ❌ SMILE: 1 ✅ Human: 0 GPT-4o: 1 ❌ SMILE: 0 ✅ Human: 1 sBERT: 0 ❌ SMILE: 1 ✅ Human: 0 sBERT: 1 ❌ SMILE: 0 ✅

SMILE subscores:
Semantic subscore ss : 0.678
Keyword subscore sl : 0.333
SMILE score sSMILE : 0.506
SMILE binned score: 2
Max sim words: 3318

SMILE subscores:
Semantic subscore ss : 0.721
Keyword subscore sl : 1.000
SMILE score sSMILE  : 0.860
SMILE binned score: 5
Max sim words: yes

SMILE subscores:
Semantic subscore ss : 0.336
Keyword subscore sl : 0.193
SMILE score sSMILE : 0.265
SMILE binned score: 1
Max sim words: bridgewater monument

SMILE subscores:
Semantic subscore ss: 0.810
Keyword subscore sl: 1.000
SMILE score sSMILE : 0.905
SMILE binned score: 5
Max sim words:   truck

Figure 6: Example failure cases of existing methods with detailed SMILE scores.
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Figure 7: Distribution analysis of SMILE sentence em-
bedding scores across different synthetic answer sets. A
strong linear relationship is observed between the two
synthetic answer sets, indicating that synthetic answers
can reliably be generated using any state-of-the-art gen-
eration model.

Figure 8: Distribution analysis of ’SMILE avg scores’
across different synthetic answer sets. We see a very
similar score distribution, highlighting the fact the per-
formance remains very similar.

Figure 9: Analyzing Sentence score distributions us-
ing different embedding models. Sentence scores show
stronger linear correlation, indicating that it is robust to
change in embedding model.

Figure 10: Analyzing Keyword score distributions using
different embedding models. Keyword scores show a
linear correlation, but has some added noise, indicating
that it is more sensitive to changes in embedding models.
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