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Abstract

Traditional evaluation metrics for textual and
visual question answering, like ROUGE, ME-
TEOR, and Exact Match (EM), focus heav-
ily on n-gram based lexical similarity, often
missing the deeper semantic understanding
needed for accurate assessment. While mea-
sures like BERTScore and MoverScore lever-
age contextual embeddings to address this
limitation, they lack flexibility in balancing
sentence-level and keyword-level semantics
and ignore lexical similarity, which remains im-
portant. Large Language Model (LLM) based
evaluators, though powerful, come with draw-
backs like high costs, bias, inconsistency, and
hallucinations. To address these issues, we
introduce SMILE: Semantic Metric Integrat-
ing Lexical Exactness, a novel approach that
combines sentence-level semantic understand-
ing with keyword-level semantic understanding
and easy keyword matching. This composite
method balances lexical precision and seman-
tic relevance, offering a comprehensive evalu-
ation. Extensive benchmarks across text, im-
age, and video QA tasks show SMILE is highly
correlated with human judgments and computa-
tionally lightweight, bridging the gap between
lexical and semantic evaluation.

1 Introduction

Question answering (QA) is an essential task used
to measure the progress of language-based models.
Across text, image, and video domains, the primary
measure of model performance on QA benchmarks
is accuracy, which is typically computed via exact
(or easy) match (EM): A model response is deemed
correct if the ground-truth answer, typically anno-
tated by humans, exactly matches (or can be found
within) the model response. As recent models have
grown to be more capable language generators,
model answers have grown more nuanced, mak-
ing EM overly stringent (Wang et al., 2023a). A
reasonable attempt to mitigate these issues is to

employ N-gram based metrics typically used for
text generation evaluation, such as ROUGE (Lin,
2004) or METEOR (Banerjee and Lavie, 2005), or
embedding-based metrics like BERTScore (Zhang
et al., 2019), to assess similarity between the pre-
dicted response and the ground-truth (Rajpurkar
et al., 2016; Bajaj et al., 2016; Dunn et al., 2017;
Kocisky et al., 2018; Yang et al., 2018a). While
such metrics capture high-level similarity between
the model response and ground-truth, they may
miss fine-grained details crucial to answer correct-
ness (e.g., “The cat is on a chair” vs. “The cat is
under a chair”) that result in lower correlation with
human judgments (Madas et al., 2024).

Concurrently, due to their strong language com-
prehension abilities, large language models (LLMs)
have been deployed as automatic evaluators for
text generation. This approach, broadly known
as LLM-as-judge, functions by either prompting
more capable LLMs, like GPT-40, or finetuning
smaller LLMs specifically for evaluation. LLM-as-
judge is appealing as LLLMs can adapt to different
evaluation criteria and generate explanations. Con-
sequently, recent methods and benchmarks (Jacovi
et al., 2025; Wang et al., 2024a) now employ judges
as evaluators in QA settings.

However, using judge models for evaluation in-
creases costs. For practitioners and developers with
limited resources, repeatedly querying pay-per-use
API models to evaluate large datasets (SK+ sam-
ples) or dedicating limited compute to hosting an
evaluation server can be impractical for rapid de-
velopment, which may drive them to use lesser but
faster metrics. Beyond resource demands, genera-
tive evaluators also exhibit relatively high latency
(see Figure 1) and are susceptible to hallucinations,
as we qualitatively show in Section 3.

This work revisits embedding-based approaches
for automatic QA evaluation and introduces Seman-
tic Metric Integrating Lexical Exactness (SMILE),
a lightweight yet high-performing framework for
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Figure 1: SMILE offers high-performance, low-
latency QA evaluation, breaking the trade-off between
cost and performance. Performance is averaged across
human-annotated samples from benchmarks for natural
language (x), image (A), and video (o) domains.

grading QA tasks. SMILE aims to retain the effi-
ciency of embedding-based evaluators while ad-
dressing their limitations, such as lack of fine-
grained response understanding. To do so, SMILE
comprises two subscores: A semantic subscore to
assess overall response content, and a keyword
subscore to reward lexical exactness. Overall,
SMILE ofters a best-of-both-worlds evaluation so-
lution: As Figure 1 shows, it correlates with human
annotators as strongly as GPT-40. Additionally,
SMILE core components can be precomputed for
fast lookup, resulting in a 9x speedup compared
to API queries. SMILE’s lightweight design al-
lows it to run on CPU during evaluation, requiring
minimal GPU VRAM to perform a one time eval-
uation dataset preprocessing step. Additionally,
SMILE offers interpretability through its compos-
ite structure with two subscores. While SMILE can
be applied in many settings, our study focuses on
factoid QA tasks. Our contributions are:

(1) We revisit the promise of embedding-based au-
tomatic evaluation metrics for QA tasks and pro-
pose SMILE, which utilizes both sentence and key-
word level similarity scores to evaluate based on
holistic and fine-grained content.

(2) We construct a 225-sample human annotated
test set from nine (text, image, video) QA datasets,
labeled by 4 domain experts. This set is used to
benchmark SMILE and other metrics based on their
correlation with human judgments.

(3) We demonstrate that SMILE can serve as a
lightweight drop-in replacement for more powerful
LLM-as-judge models across modalities.

(4) Extensive ablation studies demonstrate the ne-
cessity of each of SMILE’s components.

In all, our experiments demonstrate that SMILE
is a lightweight yet high-performing automatic eval-
uation metric for QA settings.

2 Background and related work

This work addresses three QA modalities: Natu-
ral language QA (NLQA), visual QA (VQA), and
video QA (VidQA). Across these, a model f re-
ceives an input (¢, c) and generates a textual an-
swer y = f(g; c). The input consists of a question
q and context ¢, where c is text for NLQA, an im-
age for VQA, and a video for VidQA. The task of
the model is to produce a natural language answer
vy to the question ¢ based on the given context c.

For model evaluation, we adopt a reference-
based protocol, assuming a human-annotated
ground-truth answer y* is available for each in-
put (g, ¢) . Given a model response y, the goal is to
determine its correctness. Specifically, we aim to
design an evaluator j that produces an evaluation
score s = j(y,y*) based on y and y*. This source-
free setup, where evaluation occurs without access
to (g, ¢), aligns with the original exact match (EM)
evaluation setup. Source-free evaluation may rep-
resent an easier evaluation setting, as prior work
indicates LLM-based evaluators struggle when con-
text ¢ is included (Xu et al., 2025).

For practitioners prioritizing accuracy, the evalu-
ation score s can be a binary correct/incorrect label.
For detailed failure analysis, a finer-grained score
(e.g. 0-5 scale) may be preferred. Regardless of the
format, the score should be convertible to a binary
label, typically via a straightforward threshold (e.g.,
scores < 3 as incorrect, scores > 4 as correct for a
0-5 scale) (Maaz et al., 2024; Wang et al., 2024a).
We now review existing metrics and evaluators.

Text generation metrics. QA benchmarks have
typically used EM or ROUGE (Lin, 2004) to as-
sess model outputs, e.g., (Yang et al., 2018b; Ra-
jpurkar et al., 2016; Dunn et al., 2017; Fan et al.,
2019). As model responses grew more nuanced, n-
gram metrics such as BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) were
adopted in QA settings (Bajaj et al., 2016). Despite
better correlation with human annotations than EM,
n-gram metrics have been shown to be insufficient
for modern QA tasks (Chen et al., 2019).

Embedding-based metrics. Embedding mod-
els, like BERT (Devlin et al., 2019) and finetuned



variants, e.g., (Reimers and Gurevych, 2019; Gao
et al., 2021), are trained to measure semantic simi-
larity. As such, embedding-based metrics are a nat-
ural step in overcoming the limitations of EM and
n-gram-based metrics (Chen et al., 2019), with no-
table methods like BERTScore (Zhang et al., 2019),
BARTScore (Yuan et al., 2021), BLEURT (Sellam
et al., 2020) being used as evaluators in bench-
marks (Ao et al., 2024). Recent work (Bulian et al.,
2022; Risch et al., 2021; Lee et al., 2020) developed
metrics specifically for the QA setting.

LLM-as-judge evaluators. The LL.M-as-judge
paradigm initially utilized frontier LLMs for au-
tomatic evaluation (Wang et al., 2023b; Liu et al.,
2023c; Fu et al., 2024; Chiang and Lee, 2023).
However, biases in prompted evaluators hold were
soon identified (Panickssery et al., 2024; Wang
et al., 2023c; Park et al., 2024), leading to the
finetuning of smaller models for evaluation (Kim
et al., 2024; Li et al., 2023a; Zheng et al., 2024;
Wang et al., 2023d; Shiwen et al., 2024). Recent
efforts focus on training for diverse evaluation pro-
tocols (Vu et al., 2024; Wang et al., 2024b), such
as pairwise, single rating, and binary classification.
Applying LL.M-as-judges specifically to QA grad-
ing is a recent development (Maiias et al., 2024),
with many benchmarks (Krishna et al., 2024; Ja-
covi et al., 2025) and studies (Maaz et al., 2024,
Liu et al., 2023b) employing API models.

3 When do existing evaluation methods
and metrics fail?

Before introducing SMILE, we present a quali-
tative case study highlighting the failure modes
of LLM-as-judge and embedding-based metrics
in QA evaluation. Our analysis of 225 human-
evaluated model responses reveal a common failure
point: verbose or generic model outputs, consistent
with Maiias et al. (2024); Luo et al. (2021).
Surprisingly, we also find that using a power-
ful LLM like GPT-40 does not guarantee accurate
evaluations. We highlight two representative fail-
ure modes in Figure 2 (columns 1-2). GPT-40 was
prompted to generate a binary accuracy label, as
well a 1-5 score (see Appendix A for prompt). For
ease of comparison, we convert SMILE scores to
a binary accuracy indicator. A primary concern
with using LLMs as judges is hallucinations. Fig-
ure 2 (column 1) shows that even for relatively
simple samples, GPT-40 may hallucinate an incor-
rect label. Figure 2 (column 2) is an example of

concreteness bias, a known judge model bias (Park
et al., 2024). Here, GPT-4o is tricked by a response
that includes concrete artifacts, like the table the
model generated, even if it incorrect response.

Seeking an efficient evaluator, we also analyzed
failure modes of embedding-based approaches. Se-
mantic similarity metrics like BERTScore exhib-
ited well-known limitations (Zhang et al., 2019).
Figure 2 (columns 3-4) highlights two key exam-
ples: column 3 shows how overly verbose model
responses can easily misled semantic similarity
metrics, as much of the output is irrelevant to the
simple “yes” response. This can be viewed this as
distributional misalignment (Agrawal et al., 2022):
increasingly high-quality model outputs are often
lengthier, contrasting with the typical short answers
in factoid QA benchmarks. Conversely, when
model responses are short but semantically rele-
vant, these metrics are prone to false positives, as
illustrated in Figure 2 (column 4). The limitations
of embedding-based and LLM-as-judge methods
motivated SMILE-a hallucination-free evaluation
metric presented next.

4 The SMILE metric

Our analysis in Section 3 pinpointed two critical
limitations of embedding-based approaches: (1)
a distributional gap between verbose model re-
sponses and concise ground-truth answers, and (2)
a lack of fine-grained understanding due to their
semantic focus. SMILE directly addresses these
issues with two key innovations: (1) Synthetic an-
swer generation to bridge the stylistic distribution
gap, and (2) targeted sub-scores capturing both
semantic and lexical similarity between model re-
sponses and ground-truth.

Bridging the stylistic distribution gap. As
shown in Section 3, assessing directly based on the
ground truth y*, which is typically short for short-
form (factoid) QA (e.g., a single word or short
phrase), may be sub-optimal, as model responses
tend to be more verbose. Motivated by past work
that have used LLMs to perform other kinds of
zero-shot distribution alignment (Gao et al., 2023;
Xu et al., 2024), we utilize an LLM to generate
a synthetic model response from the ground-truth.
Our key insight is that for short-form QA tasks,
a lightweight model (e.g., 3B parameter) can be
deployed as a synthetic answer generator g. Specif-
ically, the generator g takes as input the original
question ¢ and ground truth answer y* and out-
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Figure 2: Example failure cases for existing methods. Columns I-2 illustrate LLM-as-judge failures: hallucination
even on simple verification (column 1), and incorrect yet concrete responses (column 2). Columns 3-4 illustrate
embedding-based model failures with lengthy (column 3) and relevant but incorrect (column 4) responses. SMILE
scores are converted to a 0/1 scale for comparison. [...] denotes omitted content to fit space.

puts a synthetic answer § = g(y*, ¢), which aligns
stylistically with model responses, but reflects the
ground-truth answer content. As a concrete ex-
ample from our evaluation setup, for input ques-
tion “What is the Conversion Rate for Event?” and
ground-truth “8”, a generated synthetic answer is
“The conversion rate of an event is 8”. We empha-
size that synthetic answer generation is indepen-
dent of the model being evaluated and is performed
only once, prior to test-time, per evaluation set. As
a result, synthetic answers may be stored and used
for any subsequent evaluations.

Integrating semantic and lexical similarity.
The core idea of SMILE is to measure both se-
mantic and lexical similarity between the model
response and the ground-truth using an embedding
model e. We calculate a semantic similarity score,
which we denote s, as

ss(y, U ) = sim(e(y), e(9)), ¢))

where, sim(z,y) = (1 + (z,9)/|zl}2[lyll2)/2,
which is a linearly transformed cosine similarity
that lies within an interpretable interval of [0, 1].
As we show in Section 5.2, generating synthetic
answers bridges the stylistic distribution gap be-
tween ground-truth answers and model responses
enough to make semantic similarity meaningful.
However, Section 3 shows that this semantic simi-
larity score alone is insufficient to capture the nu-
ances of evaluation. As a result, we additionally
compute a lexical similarity score, which we denote

sg € [0,1], as

se(y,y*se) = %(EM(y,y*H
max {sim (e(N:[y]),e(y"))}) ()

where EM (y,y*) € {0, 1} score between the pre-
diction y and ground-truth y* and N;[y] denotes
the ¢-th n-gram of response y. In computing sy,
we take advantage of the fact that y* is typically a
short phrase to compute two complementary scores.
The easy match sub-score EM serves as a prelim-
inary check for lexical answer correctness. How-
ever, as noted in prior work (Wang et al., 2023a;
Luo et al., 2021), string matching may be too strin-
gent for synonym-like answers (e.g., “cat” vs. “kit-
ten”). As aresult, we loosen the necessity for string
matches via the maximum n-gram embedding sim-
ilarity score, which serves as a continuous-valued
measure of lexical exactness.

Evaluation with SMILE. With our semantic
and lexical scores computed, we can now compute
the SMILE score, denoted sswr e € [0, 1]:

1 -
SSMILE(y, y*se, w) Zi(w : 85(97 Y; 6)"‘

(1 —w)-se(y,y%5¢€), (3)

where w € (0, 1) is some user-specified weight to
balance the two subscores. This weighting mech-
anism allows practitioners to express their prefer-
ences: Those who are more inclined towards exact
match may place higher weight on sy, whereas
those who value higher responses whose meaning
is closest with the ground-truth may place a higher
weight on s;.

4.1 Optimizations for test-time speed-up

SMILE offers significant speed advantage over
LLM-as-judge methods, as extracting represen-
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Figure 3: Overview of SMILE. SMILE evaluates QA outputs in two steps using a synthetic answer generator and
an embedding model. (1) One-time preprocessing generates stylistically aligned synthetic answers using a small
language model (SLM). (2) SMILE computes two sub-scores: a semantic score based on the synthetic answer, and a
keyword subscore that combines exact match with embedding comparisons of model response N-grams to the gold
answer. This subscoring balances semantic and lexical evaluation.

tations from lightweight embedding models like
BERT (Devlin et al., 2019) is far faster than gener-
ating natural language outputs. This speed advan-
tage can be further enhanced by pre-computing and
storing representations for synthetic answers e(7)
and keyword representations e(y*) before evalua-
tion. By storing e(y) and e(y*), only the model
response representations e(y) and e(N;[y]) need to
be calculated during test time.

4.2 Interpretability of SMILE scores

SMILE’s semantic and lexical subscores provide
practitioners with more interpretable and action-
able feedback than other metrics. These subscores
enable monitoring of model performance along two
complementary axes: semantic content, a holistic
measure of response relevance, and lexical exact-
ness, a finer-grained measure of response quality.
Importantly, SMILE allows evaluation not only at
the instance-level but also at the population-level.
Aggregating s and sy across all test samples re-
veals a model’s general strengths and weaknesses.
This contrasts with LLM-as-judge methods, which
offer more specific instance-level natural language
feedback, making it hard to extract overall insights.
See examples in Appendix E.

S Experiments and results

Benchmarks and generator models. We assessed
SMILE on established benchmarks across three
domains: NLQA, VQA, and VidQA. To ensure di-
verse evaluation, we included three benchmarks
per domain: MRQA (Fisch et al., 2019), Hot-
potQA (Yang et al., 2018b), and MuSiQue (Trivedi

et al., 2022) for NLQA, TextVQA (Singh et al.,
2019), DocVQA (Mathew et al., 2020), and
POPE (Li et al., 2023b) for VQA, and TGIF (Jang
et al.,, 2017), MSVD (Xu et al., 2017), and
MSRVTT (Xu et al., 2016) for VidQA. For Hot-
potQA and MuSiQue, we used the standardized
setup from ContextualBench (Nguyen et al., 2024).
We generated responses using the following mod-
els for each domain: GPT-40 (Hurst et al., 2024)
for NLQA, LLaVA-1.5 for VQA 7B (Liu et al.,
2023a,b) , and Qwen2.5-VL 3B Instruct (Bai et al.,
2025) for VidQA. These models were selected for
their strong capabilities in producing high-quality
textual responses, forming the basis of our analysis.
We also evaluate on QA-Eval (Wang et al., 2023a),
a large-scale NLQA dataset (~10k samples) based
on Natural Question (NQ) and TriviaQA (TQ), with
responses from GPT-3.5 and GPT-40. This setup
enables robust comparison of SMILE against LLM
judges at scale.

Data annotation efforts. To evaluate QA met-
rics, we assessed their alignment with human judg-
ments using a golden evaluation set. We con-
structed this set by sampling model outputs from
the nine benchmarks (three per domain), randomly
selecting 25 input-output pairs per dataset for an-
notation. Four annotators (authors of the paper
with native level English) evaluated the generated
outputs based on a predefined rubric, considering
correctness, relevance, and clarity. Given potential
ambiguity, annotators used a 3 point scale: clearly
incorrect, unclear, clearly correct. To check an-
notation quality, we calculated Krippendorft’s al-
pha (Krippendorff, 2011), achieving a score of 0.71,



indicating substantial inter-annotator agreement.
This high agreement confirms the reliability of our
annotations, so we proceed with it as the basis of
our evaluation.

Baselines and metrics. We compared SMILE
with established metrics, including traditional NLP
measures: ROUGE-L, METEOR and Exact and
Easy Match; alongside embedding-based similar-
ity metrics: BERTScore (with Roberta-large) and
sBERT cosine similarity'. Following (Maaz et al.,
2024), we also employed GPT-40 and GPT-3.5-
Turbo as judge models, prompting them for a 0-5
score and a binary yes/no prediction. For all base-
lines, we provide detailed implementation details
in Appendix A, including judge model prompts.

SMILE implementation. We choose Llama-
3.2-3B-Instruct as our synthetic answer generator
g and ember-V1? as our embedding model e. This
combination is computationally lightweight: the
335M parameter ember-v1 can run inference on a
CPU, and generating responses with the 3B Llama
model requires < 10GB of VRAM. Furthermore,
our ablation study (Section 5.2) shows that larger
models offer only marginal performance improve-
ments, highlighting SMILE’s inherent lightweight
nature. SMILE scores, similar to GPT-4o, are dis-
cretized into six bins (0-5), with scores > 4 con-
sidered correct. The N-gram value is dynamically
set based on ground truth answer length, and the
parameter w fixed to 0.3.

5.1 Main experimental results

Using our golden evaluation set, we compare
SMILE against existing baseline metrics. To holisti-
cally assess evaluators-human agreement, we com-
puted Pearson correlation, Kendall’s Tau-b, and De-
viation from Human Accuracy. Pearson correlation
and Kendall’s Tau measure agreement with human
annotations on the instance level, ranging from —1
(perfect disagreement) to +1 (perfect agreement).
Kendall’s Tau-b, focuses on ranking consistency
and accounts for ties in the data. Deviation from
Human Accuracy quantifies the difference between
QA accuracy derived from evaluator scores and
human annotations.

Pearson correlation results are presented in Ta-
ble 1. SMILE consistently outperforms other eval-
uation metrics across tasks, achieving the highest
overall correlation with human evaluations. No-

"https://huggingface.co/sentence-transformers/all-

roberta-large-v1
Zhttps://huggingface.co/llmrails/ember-v 1

tably, SMILE significantly surpasses GPT-40 and
GPT-3.5, despite their prominence as LLM-as-
judge evaluators. Across all tasks, SMILE’s pos-
itive correlation scores are significantly closer to
1 than most competitors, indicating strong agree-
ment with human evaluations and validating the
robustness of our approach.

Kendall’s Tau-b results, presented in Table 2,
establish SMILE’s superior correlation with hu-
man rankings. Quantitatively, SMILE outperforms
all competing metrics, further validating its effec-
tiveness. SMILE surpasses GPT-40 and GPT-3.5,
underscoring its exceptional ability to rank gener-
ated responses in a way that closely mirrors human
annotated rankings.

Table 3 shows SMILE’s evaluated accuracy
aligns closely with human judgments across all
tasks. Unlike metrics like ROUGE-L, METEOR
and sBERT, which suffers from inflated or deflated
scores(especially with short ground-truths and ver-
bose model outputs), SMILE remains robust even
after binarization. This reinforces it’s reliability
and makes it a practical and consistent alternative
to costly human evaluation.

Finally, we evaluate SMILE and GPT-3.5/40
as evaluators on QA-Eval, using two prompting
variants: (1) original prompt (based on (Maaz
et al., 2024)), and (2) extract-style prompt (asks
LLM to extract short answer first). As shown in
Table 4, SMILE consistently outperforms GPT-
3.5 and closely matches GPT-40. Notably, LLMs
degrade under the extract prompt, highlighting
SMILE’s robustness and prompt independence.

5.2 Ablations

This section presents an ablation study of SMILE
centered on three key perspectives: (1) Component
analysis, systematically removing steps (synthetic
answer generation, semantic similarity score, key-
word score) to demonstrate their individual impor-
tance, (2) Model scaling, examining the impact of
using larger models for both synthetic answer gen-
eration and embedding, (3) Hyperparameter tun-
ing, analyzing the effect of the weight w in SMILE.
Results are detailed in Table 5 and Figure 5.
Component analysis. SMILE comprises three
key components: (1) semantic similarity, (2) lex-
ical exactness, and (3) distribution alignment via
a lightweight language model. Table 5 (top) sum-
marizes the contribution of these components to
SMILE’s robust performance. Experiments demon-
strate that both keyword and sentence similarity



Metrics Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-40
TGIF MSVD  MSRVTT | TextVQA DocVQA  POPE | MRQA  HotpotQA  MUSIQUE | Overall

Exact Match nan nan nan nan nan 0.099 nan 0.109 0.143 0.117
Easy Match 0.793 0.481 0.237 0.795 0.375 0.451 | 0.676 0.657 0.890 0.595
ROUGE-L 0.603 0.477 0.313 0.531 0.661 0.001 | 0.368 0.603 0.438 0.444
METEOR 0.663  0.527 0.311 0.636 0.706  0.086 | 0.454 0.664 0.599 0.516
BERTScore | 0.421 0.357 0.099 0.358 0.633 0.164 | 0.272 0.620 0.421 0.372
sBERT 0.472  0.506 0.380 0.602 0.852  0.164 | 0.352 0.664 0.358 0.483
GPT-3.5 0.825 0.666 0.318 0.626 0.828 0.422 | 0.746 0.668 0.566 0.629
GPT-40 0.778  0.790 0.606 0.829 0.790  0.699 | 0.760 0.678 0.814 0.693
SMILE \ 0.824  0.663 0.435 \ 0.787 0908 0.716 \ 0.872 0.943 0.977 \ 0.792

Table 1: Pearson correlation with human judgments (1) across Video, Visual, and Language QA. SMILE
consistently outperforms traditional metrics and LL.M-based judges across all modalities, achieving the highest

overall correlation.

Metrics Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-40

TGIF MSVD  MSRVTT | TextVQA DocVQA  POPE | MRQA  HotpotQA  MuSiQue | Overall
Exact Match nan nan nan nan nan 0.100 nan 0.109 0.145 0.118
Easy Match 0.765 0.500 0.253 0.773 0.361 0.420 | 0.676 0.657 0.890 0.588
ROUGE-L 0.598 0.542 0.357 0.543 0.673 0.162 | 0.350 0.496 0.555 0.475
METEOR 0.592 0.544 0.346 0.607 0.672  0.161 | 0.276 0.458 0.589 0.472
BERTScore | 0.347 0.272 0.088 0.244 0.496  0.125 | 0.210 0.455 0.454 0.299
SBERT 0.393 0411 0.297 0.435 0.662  0.102 | 0.289 0.455 0.386 0.381
GPT-3.5 0.738 0.555 0.294 0.589 0.709 0.441 | 0.490 0.439 0.588 0.538
GPT-40 0.686  0.717 0.561 0.746 0.686  0.676 | 0.193 0.488 0.784 0.615
SMILE \ 0.753 0.637 0.432 \ 0.714 0.805  0.607 \ 0.805 0.782 1.000 \ 0.726

Table 2: Kendall’s Tau-b with human judgments (1) across Video, Visual, and Language QA. SMILE consistently
outperforms traditional metrics and LLM-based judges across all modalities, achieving the highest overall ranking
agreement. nan indicates Exact Match (EM) found no exact matches.

scores are essential. Removing keyword scores sig-
nificantly reduces Pearson correlation, underscor-
ing the critical role of lexical exactness in QA evalu-
ation. Conversely, relying solely on keyword scores
neglects global structure, degrading performance
notably in VidQA and VQA. Synthetic answers are
also crucial, particularly for verbose model predic-
tions in VidQA and VQA. Figure 4 illustrates the
effect of synthetic answer generation, which effec-
tively maps extremely short gold answers to longer
model outputs. Combining sentence scores, key-
word scores, and synthetic answers yields robust
and accurate evaluation across domains.

Model scaling. A key advantage of SMILE
is that it offers the ability to efficiently run eval-
uation. Our model choices in Section 5 demon-
strate this: SMILE at inference time requires only
a 355M parameter embedding model, and pre-
generating synthetic answers requires only a 3B
generative model. Table 5 (bottom) further es-
tablishes SMILE’s lightweight nature: increasing
model capacity yields minimal performance gains,
if at all. Our model ablation focused on the syn-
thetic answer generation model and the embedding
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Figure 4: Length of gold answers, model outputs, and
synthetic answers, across all domains and benchmarks
in characters. Synthetic answers more align better with
model outputs in terms of output length, enabling better
semantic evaluation.

model. Using GPT-3.5-Turbo instead of Llama-3.2-
3B-Instruct for synthetic answers yielded compara-
ble correlation with human judgments, indicating
that effective synthetic answer generation is achiev-
able with smaller lightweight models. Replacing
ember-v1 with the substantially larger GTE-7B (Li
et al., 2023¢c) embedding model resulted in only
a marginal performance gain of less than 2%, de-
spite a 20x increase in model size. This indicates
that SMILE remains effective even with lightweight



Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-40
TGIF  MSVD  MSRVTT | TextVQA DocVQA  POPE | MRQA  HotpotQA  MuSiQue | Overall
Human \ 0.64 0.48 0.56 \ 0.40 0.24 0.80 \ 0.92 0.88 0.80 \ 0.64
Exact Match | -0.64 -0.48 -0.56 -0.40 -0.24 -0.76 | -0.92 -0.80 -0.72 0.53
Easy Match 0.04 -0.12 -0.20 -0.04 0.00 0.16 | -0.08 -0.12 -0.04 0.09
ROUGE-L -0.64 -048 -0.56 -0.40 -0.24 -0.72 | -0.76 -0.40 -0.64 0.54
METEOR -0.64 -048 -0.56 -0.40 -0.20 -0.80 | -0.68 -0.28 -0.52 0.51
BERTScore 0.36 0.52 0.44 0.60 0.76 0.20 0.08 0.12 0.20 0.36
SBERT -0.64 -0.48 -0.56 -04 -0.24 -0.76 | -0.92 -0.08 -0.72 0.52
GPT-3.5 -0.12  -0.08 0.00 0.00 -0.08 -0.12 | 0.04 0.00 0.04 0.05
GPT-40 -0.04 -0.12 -0.04 0.00 -0.12 -0.08 | 0.00 -0.04 0.04 0.05
SMILE \ -0.04 0.16 0.20 \ -0.04 0.04 -0.12 \ -0.04 0.00 0.00 \ 0.07

Table 3: Deviation from human-evaluated accuracy across Video, Visual, and Language QA tasks. SMILE

closely aligns with human judgment.

GPT 3.5 GPT-40
NQ TQ | NQ TQ

‘ Overall

GPT-3.5, original prompt |0.756 0.849|0.713 0.706
GPT-4o0, original prompt |0.865 0.913]0.815 0.806
GPT-3.5, extract prompt [0.478 0.572|0.413 0.440| 0.476
GPT-4o0, extract prompt |0.831 0.898|0.783 0.774| 0.821

0.756
0.850

SMILE |0.829 0.889]0.786 0.760| 0.816

Table 4: Pearson Correlation with human judgment
on QAEval. SMILE shows strong agreement with hu-
man annotations, outperforming GPT-3.5 and roughly
matching GPT-4o.

|Video QA |Visual QA |[Language QA |Overall

£ = SMILE 0.641 0.804 0.931 0.792
£ .2 w/o keyword scores 0.383 0.533 0.249 0.388
E‘ % w/o sentence scores 0.682 0.764 0.883 0.776
3 <€ w/o synthetic answers 0.638 0.764 0.883 0.776
= § SMILE 0.641 0.804 0.931 0.792
2 S Embedding: GTE7 5 0.647 0.824 0.947 0.806
= 2 Syn. answer: GPT-3.5-Turbo| 0.636 0.802 0.930 0.790

Table 5: Component and model ablations. Perfor-
mance is assessed by Pearson correlation. Keyword
scores are the primary contributor, highlighting the im-
portance of lexical exactness. Embedding model scaling
yields marginal (< 2%) gains.

embedding models.

Hyperparameter tuning. SMILE’s lone hy-
perparameter w allows practitioners to precisely
decide the impact of the semantic and keyword
subscores. Specifically, as w increases, more im-
portance is given to the semantic subscore. As we
show in Figure 5, overall performance is relatively
stable for w < 0.5 before smoothly decreasing.
This aligns with results from our component abla-
tion study in Table 5: The keyword subscores alone
exhibited relatively strong performance, while the
semantic subscore fared worse. However, SMILE
hyperparameter choice is relatively forgiving, with
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Figure 5: Sweep of w, which trades off lexical exactness
for semantic similarity as w increases. SMILE exhibits
relatively stable aggregate performance for w < 0.5.

any choice of w that slightly upweights the key-
word subscore likely to perform well.

6 Conclusion

We introduce SMILE, a novel, lightweight QA eval-
uation metric that overcomes limitations of exist-
ing methods by integrating semantic and lexical
analysis. Its efficiency addresses the high cost, bi-
ases, and inconsistencies of LLM-based evaluators.
Benchmarking across text, image, and video QA
demonstrates SMILE’s strong correlation with hu-
man judgment, surpassing traditional metrics and
LLM judges like GPT-4o0. Its design also offers in-
terpretability, and ablation studies validate the im-
portance of its components. In summary, SMILE
provides a robust, efficient, and interpretable so-
lution for QA evaluation across modalities, effec-
tively balancing lexical precision and semantic rel-
evance as a promising alternative to costly LLM
evaluations.



Limitations

Although SMILE offers a lightweight, inter-
pretable, and scalable alternative to LLM-based
evaluators, it comes with certain limitations. (1)
SMILE is designed for source-free evaluation and
does not access the context. Although efficient,
this may cause it to miss context-dependent er-
rors. (2) The metric relies on synthetic answers
to align ground-truths with model outputs. The
quality of these synthetic answers can affect the the
scoring, especially in long-form or open-ended re-
sponses. (3) Our evaluation is limited to factoid QA
tasks. SMILE’s effectiveness on complex reason-
ing, multi-hop, or conversational QA remains unex-
plored. (4) SMILE includes a weighting parameter
to balance lexical and semantic components, which
may require tuning for specific tasks or domains.
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A Additional SMILE and baseline
implementation details

A.1 Prompt templates

As described in Section 4, we prompt the synthetic
answer generator with the original question and
ground-truth answer and task it with generating
a synthetic answer. We provide the full prompt
below.

### Synthetic answer generation prompts

## System prompt:

You are an intelligent chatbot designed for generating
answer as a sentence from question-answer pairs.

Your task is to generate a single sentence answer
using the question and the answer already provided.
Here's how you can accomplish the task:
##INSTRUCTIONS:

- Look at the provided answer.

- Generate a short single sentence response using the
question and the answer.

- Response SHOULD ALWAYS USE THE WORDS FROM ANSWER
provided.

- DO NOT USE THE QUESTION AS IT IS IN THE RESPONSE.

- Return only the response and nothing else.

## User prompt

Please phrase a short single sentence answer using
question-answer pair only:

Question: {<question>}

Answer: {<answer>}

DO NOT PROVIDE ANY OTHER OUTPUT APART FROM A SINGLE
SHORT SENTENCE.

To prompt GPT-40 and GPT-3.5 as judge mod-
els, we utilize prompts adopted from (Maaz et al.,
2024), as described in Section 5. We provide full
prompts below.

### Original prompt: GPT-40/GPT-3.5-Turbo judge prompts
## System prompts

You are an intelligent chatbot designed for evaluating
the correctness of generative outputs for
question-answer pairs.

Your task is to compare the predicted answer with the
correct answer and determine if they match
meaningfully. Here's how you can accomplish the task:
##INSTRUCTIONS:

- Focus on the meaningful match between the predicted
answer and the correct answer.

- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared
to the answer.

## User prompt

Please evaluate the following video-based
question-answer pair

Question: {<question>}

Correct Answer: {<answer>}

Predicted Answer: {<model_output>}

Provide your evaluation only as a yes/no and score
where the score is an integer value between @ and 5,
with 5 indicating the highest meaningful match.
Please generate the response in the form of a Python
dictionary string with keys 'pred' and 'score', where
value of 'pred' is a string of 'yes' or 'no' and
value of 'score' is in INTEGER, not STRING.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string.

For example, your response should look like this:
{{'pred': 'yes', 'score': 4}}.

12

### Extract prompt: GPT-40/GPT-3.5-Turbo judge prompts
## System prompts
You are an expert evaluator for video-based question
answering systems. Your task is to judge the factual
accuracy of a predicted answer by comparing it to a
correct answer. You will follow a structured
evaluation approach to ensure consistency:
## INSTRUCTIONS:
Step 1: Extract the key facts from the Correct Answer.
Step 2: In case the Correct Answer is a list, choose
the best answer that matches the Predicted Answer.
Step 3: Extract the key facts from the Predicted
Answer.
Step 4: Compare the two sets of facts and determine
how consistent they are.

- Consider paraphrasing, synonyms, and partial
overlaps.

- Ignore grammatical errors.

- Penalize hallucinated or contradicted information.
Step 4: Based on the comparison, assign a factual
accuracy score between @ and 5 (INTEGER only), where:

5 = Fully accurate and aligned
4 = Mostly accurate, minor omissions or paraphrasing
3 = Partially correct but with notable missing or

incorrect info

2 = Limited accuracy, mostly incorrect or unrelated
1 = Completely inaccurate
@ = No relation or total hallucination

Respond strictly in the following format:

{'score': X, 'pred':Y} where X is an integer between 0@
and 5 and Y is a either 'yes'(X>3) or 'no'(X<=3). Do
not include any explanation or extra text.}

## User prompt

Evaluate the following video-based QA pair:
Question: {<question>}

Correct Answer: {<answer>}

Predicted Answer: {<model_output>}

Return your evaluation following the instructions
above.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string.

A.2 SMILE text processing

As a part of text pre-processing, we perform stan-
dard text normalization on words present in ground
truth answers and predictions. We first convert each
string to lower case and remove all punctuation.
Then, each word is lemmatized using POS-aware
lemmatization to capture accurate base forms. If
the resulting processed word is empty after these
steps, the original lower-case word is retained.

A.3 Metrics conversion to accuracy

For all evaluated baselines and metrics, we must
convert from scores to binary correct or incorrect
accuracy labels. ROUGE, METEOR, BERTScore,
sBERT, and SMILE all output continuous-valued
scores between 0 and 1. We apply a threshold of
0.67, considering anything above the threshold to
be correct and anything below to be incorrect. The
choice of 0.67 is the same as considering anything
with a score of 4 or above to be correct after convert-
ing the continuous [0,1] score to a 0-5 scale with
uniform binning. For GPT-3.5-Turbo and GPT-4o,



the model is prompted to output a yes/no label for
correctness, which we use directly.

B Data annotation details

B.1 Annotation instructions

Annotators were given with detailed instructions
on how to annotate responses. We adopted a 3
point scale: clearly incorrect, unclear, and
clearly correct. We defined each of these cate-
gories as follows:

Clearly incorrect: The model definitively pro-
duces a response that is incorrect.

Unclear: The model response cannot be con-
firmed correct from the ground-truth answer.

Clearly correct: The model response can be
explicitly verified as correct using the ground-truth
answer.

We also defined edge case behavior:

Extraneous information: If the model response
correctly answers the question, but includes other
information that may or may not be factual, we
consider the response clearly correct. As a
concrete example, for question “What brand of
soda is in this picture” with ground-truth “Coca-
Cola”, we consider the model response “Coca-Cola
is in this picture. It is the most popular soda in the
world by unit sales and has over 60 different flavors’
to be correct, even though it contains extraneous
factually verifiable information.

Synonyms or ambiguous subjects: We con-
sider a model response that answers the question
using an ambiguous subject to be unclear. As a
concrete example, for question “who describes a
video game??” with ground-truth “man”, we con-
sider the model response “person” to be unclear, as
it does not describe in sufficient detail the person.

’

B.2 Annotation aggregation and conversion to
accuracy labels

We collected responses from four annotators. To
aggregate individual annotations into a single la-
bel, we utilized majority vote, employing random
tie-breaking as needed. To form final accuracy
labels, we consider clearly correct responses
to be accurate and consider unclear and clearly
incorrect responses to be inaccurate.

C Cost effective Model selection with
SMILE

Selecting optimal checkpoints during ML model
training is crucial for maximizing performance on
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Metrics Checkpoint 1~ Checkpoint 2
Rank Cost($) | Rank Cost($)
GPT-40 1 12 2 11.99
GPT-3.5-turbo | 1 12 2 12.00
METEOR 1 - 2 -
sBERT 2 - 1 -
SMILE |1 -] 2 -

Table 6: Checkpoint selection on TGIF video QA
(Video model): Rank (1=best) and approximate evalua-
tion cost (USD) per metric. SMILE ranks checkpoints
similarly to GPT metrics, but without inference costs.
"-" denotes methods without API inference cost.

downstream tasks. Traditionally, this selection pro-
cess relies on not-so reliable metrics like METEOR
and ROUGE, or expensive metrics such as LLM-
based judge evaluations. In this experiment, we use
SMILE to identify the best checkpoint. Specifically,
we select two intermediate checkpoints(with simi-
lar performance) from the Video model and evalu-
ate their performance on the TGIF benchmark. The
evaluation is conducted using five metrics: GPT-4o,
GPT-3.5-turbo, METEOR, sBERT and SMILE.

As per Table 6, our findings demonstrate that
SMILE selects the same optimal checkpoint (i.e.
checkpoint 1) as GPT-40 and GPT-3.5-turbo. This
alignment highlights SMILE’s effectiveness, em-
phasizing its capability to provide reliable check-
point selection without incurring additional evalua-
tion cost.

An advantage of SMILE is its substantial reduc-
tion in evaluation costs compared to GPT-based
models. GPT-40 and GPT-3.5 cost’s around $12
for each checkpoint evaluation on TGIF, and the
cost increases as more checkpoints and evaluation
benchmarks are added. In contrast, SMILE has
almost no extra cost. Therefore, adopting SMILE
not only maintains performance accuracy but also
significantly lowers monetary overhead, making it
a highly efficient and scalable solution for check-
point selection.

D SMILE as a drop-in replacement for

GPT-40

Building on SMILE’s alignment with human judg-
ment, we now demonstrate its capability to sup-
plant GPT-40 as an evaluation metric. To do so,
we compare model accuracy derived from SMILE
scores against that from GPT-40-based evaluation
each benchmark’s complete test-set. We find that
SMILE exhibits the lowest overall deviation among



all tested methods, as summarized in Table 7. This
compelling result strongly suggests SMILE is a
reliable and direct alternative to resource-intensive
LLM-as-judge approaches like GPT-40.

E SMILE Interpretability Examples

As discussed in Section 4.2, we provide detailed
SMILE subscores in Figure 6 for the examples
from Figure 2. In the TGIF example from Figure 6,
the model output shows a high semantic score s
(Equation (1)), reflecting strong relevance to the
synthetic answer. The lexical relevance score s;
(Equation (2)) is also high, indicating a perfect
overlap with the ground truth. To clarify which
word contributes most to the keyword score, we
also return the word(s) with the maximum similar-
ity (“max sim words”). These components together
offer actionable insights into model strengths and
weaknesses, helping guide targeted improvements.

F Supplement ablation results

In this section, we present additional plots to sup-
plement our Model Ablation described in Sec-
tion 5.2. Specifically, we include scatter plots and
distribution plots to further illustrate the perfor-
mance difference when varying model choices for
synthetic answer generation and embedding.

F.1 Synthetic answer generation ablation

Referring to Figure 7, we see a very strong lin-
ear correlation between the two sets of generated
synthetic answers and thus backs our claim that
generating synthetic answers is a fairly simple task
as mentioned in Section 5.2. Figure 8, further bol-
ster our claim, and highlights that the *avg score’
distribution remains very similar, hence we see a
marginal difference in the performance as reported
in table 5.

F.2 Embedding model ablation

Figure 9 and Figure 10 provides insight into the
performance variation observed in Table 5, high-
lighting that keyword scores exhibit greater sensi-
tivity to the choice of embedding model compared
to sentence scores.

14



Video QA: Qwen2.5 Visual QA: llava 1.5 7B Language QA: GPT-40
TGIF MSVD  MSRVTT | TextVQA  DocVQA POPE MRQA  HotpotQA  MuSiQue | Overall
GPT-40 \ 0.705 0.657 0.503 \ 0.436 0.191 0.783 \ 0.920 0.909 0.700 \ 0.645
Exact Match | -0.705 -0.657 -0.503 -0.424 -0.187  -0.782 | -0.877 -0.884 -0.681 0.633
Easy Match -0.025  -0.217  -0.106 -0.056 -0.044  -0.021 | -0.083 -0.152 -0.135 0.093
ROUGE-L -0.705 -0.657 -0.503 -0.413 -0.179  -0.773 | -0.648 -0.493 -0.553 0.547
METEOR -0.705 -0.657  -0.503 -0.405 -0.166  -0.783 | -0.592 -0.509 -0.454 0.530
BERTScore 0.294 0.340 0.497 0.562 0.805 0.216 0.008 0.091 0.300 0.354
sBERT -0.705 -0.657  -0.503 -0.379 -0.145  -0.780 | -0.566 -0.399 -0.504 0.515
SMILE \ -0.032  -0.241 0.132 \ 0.021 0.104 -0.041 \ -0.008 -0.016 0.005 \ 0.067

Table 7: Deviation from GPT-40 accuracy across Video, Visual, and Language QA tasks, using complete test sets;
Accuracy may deviate human annotated test-set results in Table 3. SMILE exhibits the smallest deviation among
evaluators, closely aligning with GPT-4o.

Question: what goes of the track while
attempting to take a corner at speed ?
Answer: truck

Synthetic Answer: The truck tends to
go off the track while attempting to
take a corner at speed.

Model output: The truck in the video is
attempting to take a corner at high speed
and loses control, causing it to spin out of
the track and crash into the dirt. This results
in a dramatic scene with dust and [...]

Human: 1 GPT-40: 0 ) SMILE: 1

SMILE subscores:

Semantic subscore s : 0.810
Keyword subscore s;: 1.000
SMILE score sg, .* 0.905

SMILE binned score: 5
Max sim words: truck

DocVQA
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Question: What is the "Conversion
Rate" for "Event"?

Answer: 8

Synthetic Answer: The conversion rate
foran event is 8.

Model output:

| Column | Min | Max | Average |

} Co‘nvel!siorll Rale | 0.001100.0033.18 |
The "Conversion Rate" for "Event" is
33.18%. This is based on the cal- [...]

Human:0 GPT-40:1 ) SMILE: 0

SMILE subscores:

Semantic subscore s : 0.678
Keyword subscore s, : 0.333
SMILE score sg . © 0.506
SMILE binned score: 2

Max sim words: 3318

Question: Is this a grocery store?
Answer: yes

Synthetic Answer: It is indeed a
grocery store.

Model output: Yes, the image shows a
grocery store with customers and a variety
of products, including bottles and fresh
produce. This indicates that the store
provides a range of food and household
items for customers to purchase. The
presence of a customer suggests that [...]

SMILE :
SMILE binned score: 5

Max sim words: ves

Human: 1 sBERT:0 ) SMILE: 1
SMILE subscores:
Semantic subscore s : 0.721
Keyword subscore s, : 1.000
SMILE score s 0.860

HotpotQA

[...]1 Uphill in the narrow vale are the Bridgewater
monument and the Ashridge estate. It is noted for
its picturesque setting and has been referred to as
a "chocolate-box" village due to its traditional
appearance. [...]

Ivinghoe Beacon is a prominent hill and landmark
in the Chiltern Hills, standing 233 m (757 ft) above
sea level. It is situated close to the village of
Ivinghoe in Buckinghamshire, the Ashridge Estate,
and the villages of Aldbury and Little Gaddesden in
Hertfordshire and is managed and owned by the
National Trust. [...]

Question: What was the name of the
hill that was the seat of an estate uphill
Aldbury?

Synthetic Answer: The Chiltern Hills
served as the seat of an estate uphill in
Aldbury.

Answer: Chiltern Hills

Model output: Bridgewater monument

Human: 0 sBERT:1){  SMILE: 0
SMILE subscores:

Semantic subscore s, : 0.336
Keyword subscore s, : 0.193

SMILE score s 0.265

SMILE *
SMILE binned score: 1
Max sim words: brideewater monument

Figure 6: Example failure cases of existing methods with detailed SMILE scores.
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Figure 7: Distribution analysis of SMILE sentence em-
bedding scores across different synthetic answer sets. A
strong linear relationship is observed between the two
synthetic answer sets, indicating that synthetic answers
can reliably be generated using any state-of-the-art gen-
eration model.
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Figure 8: Distribution analysis of ’SMILE avg scores’
across different synthetic answer sets. We see a very
similar score distribution, highlighting the fact the per-
formance remains very similar.
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Figure 9: Analyzing Sentence score distributions us-
ing different embedding models. Sentence scores show
stronger linear correlation, indicating that it is robust to
change in embedding model.
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Figure 10: Analyzing Keyword score distributions using
different embedding models. Keyword scores show a
linear correlation, but has some added noise, indicating
that it is more sensitive to changes in embedding models.
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