LongMagpie: A Self-synthesis Method for Generating
Large-scale Long-context Instructions

Chaochen Gao'?, Xing Wu'; Zijia Lin*, Debing Zhang?, Songlin Hu'->*
'Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences
3Xiaohongshu Inc, *Tsinghua University
{ gaochaochen,wuxing,husonglin} @iie.ac.cn
dengyang @xiaohongshu.com, linzijia@tsinghua.edu.cn

Abstract

High-quality long-context instruction data is essential for aligning long-context
large language models (LLMs). Despite the public release of models like Qwen and
Llama, their long-context instruction data remains proprietary. Human annotation
is costly and challenging, while template-based synthesis methods limit scale,
diversity, and quality. We introduce LongMagpie, a self-synthesis framework that
automatically generates large-scale long-context instruction data. Our key insight
is that aligned long-context LLMs, when presented with a document followed by
special tokens preceding a user turn, auto-regressively generate contextually rele-
vant queries. By harvesting these document-query pairs and the model’s responses,
LongMagpie produces high-quality instructions without human effort. Experiments
on HELMET, RULER, and Longbench v2 demonstrate that LongMagpie achieves
leading performance on long-context tasks while maintaining competitive perfor-
mance on short-context tasks, establishing it as a simple and effective approach for
open, diverse, and scalable long-context instruction data synthesis.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range
of tasks, with recent advancements significantly extending their context lengths [29, [1, [18]. The
ability to process long documents is essential for complex applications such as Longbook QA [7],
document summarization [49], and code planning [S]. However, fine-tuning LLMs to leverage long
contexts requires access to high-quality long-context instruction data [}, 2]. While the model weights
of several open-source LLMs, such as Qwen [54] and Llama [19], have been made publicly available,
the corresponding instruction datasets for long-context training remain proprietary. This closed-data
paradigm poses a substantial barrier to the advancement of open-source long-context models.

Existing methods for creating open-source instruction data face substantial limitations when extended
to long contexts. (1) Human labor costs are prohibitively high for creating diverse, high-quality
long-context instruction data. The annotation difficulty is substantially greater than for short-context
data, requiring individuals to read documents spanning thousands of tokens before formulating
instructions—a demonstrably challenging task. (2) Existing synthetic approaches, often relying on
predefined templates [39] or seed questions [47], do not guarantee the diversity needed for effective
long-context instruction. While existing projects [26, 52} 2] attempt to broaden seed data diversity,
creating large-scale long-context instructions with high quality and diversity remains an expensive
and time-consuming process.
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Figure 1: LongMagpie pipeline overview. Stage one: a document serves as a system prompt, a special
user token triggers query generation, followed by the model response. Stage two: combines the
query-response pair with the source document and sampled documents from the corpus to create
challenging multi-document long-instruction data.

A recently proposed self-synthesis method, Magpie 53], has gained widespread attention for elim-
inating the need for seed instructions and prompt engineering required by previous approaches
[47, 1261 152} 2]]. It creates alignment data by prompting aligned LLMs with only special tokens
preceding a user turn, leveraging their auto-regressive nature. Inspired by Magpie, we introduce
LongMagpie, a self-synthesis method for generating large-scale long-context instruction data without
human annotation or complex prompting. A key observation is that long-context understanding often
involves document-based question answering, such as RAG or long document QA. Thus instruction-
tuned LL.Ms such as Qwen [54]] and Llama [19] internalize patterns of document-query relationships
during their long-context instruction training. Thus, when aligned models are presented with only a
document, followed by the special tokens that typically precede a user query, they auto-regressively
generate contextually relevant queries about that document. By leveraging this behavior, we can
automatically create high-quality instruction-response datasets for long-context training without
explicit prompting or manual intervention.

This approach offers advantages: it scales efficiently to generate diverse, high-quality long-context
instructions without labor costs or complex prompt engineering; produces naturally varied queries
that probe different aspects of documents; and eliminates complex pipeline components required by
previous methods. Furthermore, we extend LongMagpie beyond single documents to multi-document
contexts, creating more challenging scenarios that require distinguishing relevant information such as
RAG [17]. This multi-document extension enhances the model’s ability to handle complex real-world
applications that frequently involve reasoning across multiple information sources while providing a
natural way to increase context length and task difficulty without additional computational overhead.

To further balance the long-context and short-context capabilities, we introduce the p-Mix strategy,
which addresses the performance degradation on short-context tasks when models are predominantly
trained on long-context instructions. This strategy employs a probabilistic mixing approach that
begins by prepending a short-context instruction to each training sequence, followed by a dynamic
sequence constructed through probabilistic sampling. Specifically, with probability P;, a long-
context instruction (generated by LongMagpie) is appended; otherwise, with probability 1 — Py,
another short-context instruction is selected. This process continues iteratively until approaching
the maximum sequence length L,,,,. p-Mix effectively prevents the model from overfitting to
long-context patterns while maintaining strong performance across diverse task scenarios.



Through extensive evaluation on HELMET [55], RULER [22], and Longbench v2 [4] benchmarks, we
demonstrate that models trained on LongMagpie-generated data achieve leading performance. When
incorporated with p-Mix, our approach maintains competitive performance on short-context tasks.
We conduct detailed analytical experiments on the LongMagpie method to explain its effectiveness.
The positive experimental results demonstrate that LongMagpie represents a meaningful step toward
democratizing long-context capabilities for LLMs, making high-quality long-context instruction
accessible to the broader research community.

Our main contributions are:

* We introduce a novel self-synthesis approach for generating high-quality long-context instruction
data that leverages the auto-regressive nature of aligned LLMs, eliminating the need for human
annotation or predefined examples.

* We propose the p-Mix technique, a probabilistic mixing strategy that effectively balances the
model’s performance on both long-context and short-context tasks.

* We conduct extensive evaluations demonstrating that models trained on LongMagpie-generated
data achieve leading results on long-context benchmarks compared to existing methods.

* We provide in-depth analyses revealing the key factors contributing to LongMagpie’s effectiveness,
including query diversity and quality.

2 Method

This section introduces LongMagpie, our method for synthesizing long-context instruction data. We
first describe the key insight of our approach, followed by the detailed pipeline of LongMagpie and
p-Mix strategy for balancing long-context and short-context capabilities.

2.1 Key Insight: Auto-Regressive Document-Query Generation

The foundation of LongMagpie is a key observation about aligned long-context LLMs: when provided
with a document followed by tokens that typically precede a user query (without the query itself),
these models generate contextually relevant queries about that document. This behavior stems
from the fact that long-context understanding often involves document-based question answering
tasks such as RAG and long document QA. During instruction tuning, models like Qwen and
Llama internalize document-query relationship patterns, enabling them to auto-regressively predict
meaningful questions when presented with document-only contexts. This capability allows us to
synthesize diverse, high-quality instruction data without human annotation, predefined templates, or
seed questions.

Formally, for an aligned LLM M with vocabulary V, we define the document-query generation
process as follows: given a document D = {d;,da, ...,d,,} € V" and pre-query template T}, =
{t1,ta,...,t;n} € V™ (containing tokens indicating a user or query role, e.g., <|im_start|>user),
we provide input X = D ®7T),,., where & denotes sequence concatenation. The model then generates
a sequence Q = {q1,q2, ..., qx } € V" representing a query related to document D. This process can
be described as:
k
Pm(Q | D, Towe) = [ [ (@i | D, Tirer 4<i) (1)

=1

This approach differs fundamentally from traditional prompt engineering or instruction-following,
as we are not explicitly instructing the model to generate a query about the document. Instead, we
leverage the model’s learned patterns of document-query relationships that emerge from its instruction
training.

2.2 LongMagpie Pipeline

The LongMagpie pipeline consists of two main steps: (1) query and answer generation, and (2)
extension to a multi-document setting.



2.2.1 Query and Answer Generation

Document Preparation We collect diverse documents from various domains and lengths, primarily
using curated resources like Fineweb. These documents span domains including science, history,
literature, and technical topics, with an average length of approximately 1.6k tokens in our primary
dataset. This provides a range of context lengths while focusing on truly long-context scenarios.

Query Generation For each document D, we construct an input sequence X = D & T, where
T)re contains tokens preceding a user query in the model’s instruction template. For example,
the tokens for Llama-3-Instruct model are <|start_header_id|>user and for Qwen-2.5-Instruct
are <|im_start|>user. We pass X to the aligned LLM and sample a completion @ until an
end-of-template token is generated or a maximum length is reached. This completion represents a
contextually relevant query. By generating multiple queries per document with different sampling

parameters, we create diverse document-query pairs that naturally vary in complexity.

Response Generation For each document-query pair (D, @), we construct a standard instruction
prompt by combining the document, query, and tokens that precede an assistant response (e.g.,
<|leot_id|><|start_header_id|>assistant<|end_header_id|> for Llama-3-Instruct). We
then generate a response R, forming a complete instruction triplet (D, @, R) for long-context training.
If the same model is used for both query and response generation, these steps can be consolidated
without manual intervention.

Query Filtering In query generation, we observed that LLMs occasionally continue the input
document rather than generate queries, particularly when the model size is small. To ensure the
quality of the generated queries, we applied two filtering strategies: (1) Rule-based filtering: we
retain queries that end with a question mark as a simple heuristic to identify interrogative sentences;
(2) Length-based filtering: we discard generated texts longer than 1.5k characters, as they are
typically descriptive passages rather than valid queries.

2.2.2 Multi-Document Extension

To enhance task diversity and real-world applicability, we extend LongMagpie to multi-document
settings. Many tasks require reasoning over several related documents rather than a single one. Our
approach involves:

* Obtaining = documents {Dy, ..., D, } as negative documents via random sampling, where z is
drawn uniformly from O to n (with n = 0 reducing to the standard single-document QA setting). .

» Concatenating documents using a special separator token (e.g., <|doc_sep|>) to form D, 14; =
Dy ®<l|doc_sepl>®--- P D,.

* Generating queries and responses as in the single-document pipeline, producing triples
(Dpmuiti, @, R) requiring cross-document reasoning.

2.3 p-Mix: Balancing Long-Context and Short-Context Capabilities

Fine-tuning predominantly on long-context data degrades performance on short-instruction tasks
[2,52]. To balance these capabilities, we introduce p-Mix, a novel instruction data hybridization
strategy. The core idea is twofold. First, to emulate the typical non-contextual start of general
tasks, we sample a short-context instruction at the beginning of each training sequence. Second,
we append subsequent data segments probabilistically to construct a mixed-context sequence up to
length L,,,,. With probability Py, a long-context instruction (generated by LongMagpie) is chosen;
otherwise, with probability 1 — P, another short-context sample is chosen. This process repeats
until approaching the target sequence length, ensuring each instance starts with a short, context-free
instruction followed by a dynamically mixed sequence of long and short segments. This prepares the
model for diverse real-world scenarios. The procedure is formalized in Algorithm[I]} and we conduct
an ablation study of the parameters related to p-Mix in Appendix



3 Experiments

In this section, we describe our experimental setup, present our main results, and analyze the factors
that contribute to LongMagpie’s performance.

3.1 Experimental Setup

Dataset Generation Using the LongMagpie pipeline described in Section [I} we generate a long-
context instruction dataset using Qwen2.5-70B-Instruct, with documents sampled from FineWeb-Edu
[34]. FineWeb-Edu is a subset of the FineWeb dataset, comprising 1.3 trillion tokens extracted from
educational web content.

Compared Datasets We compare LongMagpie-generated data against several widely used instruc-
tion datasets. These include datasets specifically designed for long contexts and standard short-context
datasets adapted for long-context fine-tuning based on ProLong [16].

* Long Instruction Datasets We compare with two long-context datasets: ChatQA [52]] combines
multiple data sources, including LongAlpacal2k [8] and GPT-4 samples from Open Orca [28]],
containing 1.5 million synthetic instructions. In this work, we refer to ChatQA2 as ChatQA by
default; LongAlign [2] generates questions and answers for long documents by prompting LLMs.

 Short Instruction Datasets Following findings that concatenated short instructions benefit long-
context capabilities [[L6], we include: Tulu [24], an open-source collection based on Llama 3.1;
Magpie [53], a self-synthesis method using template prefixes; and UltraChat [11], comprising
1.5 million multi-turn dialogues. We concatenate samples from these datasets to reach the target
context length during fine-tuning.

3.1.1 Model Training

We select L1ama-3-8B-NExtLong-512K-Base [15] as our base model, which has undergone exten-
sive long-context continued pre-training. The batch size is 4M tokens for 250 steps, a total of 1B
tokens for baseline datasets and LongMagpie. The same training configuration is applied across all
datasets to ensure a fair comparison. Further details are provided in Appendix[A.T]

3.1.2 Evaluation Benchmarks

Long-context Evaluation We evaluate our models on three comprehensive long-context bench-
marks. These benchmarks provide a holistic assessment of models’ abilities to utilize long contexts
effectively across different tasks and complexity levels.

» HELMET [53] evaluates long-context models across diverse application-centered tasks with
context lengths up to 128k tokens, using model-based evaluation that prioritizes complex tasks
for better real-world performance prediction.

* RULER [22] provides fine-grained evaluation of long-context reasoning with synthetic tasks that
offer flexible control over sequence length and complexity to identify performance bottlenecks
beyond simple retrieval.

* LongBench-v2 [4], an upgrade to LongBench [3]], assesses extremely long-context understanding
(8k to 2M words) through 503 expert-validated questions across six categories, revealing a need
for improved ultra-long reasoning capabilities.

Short-context Evaluation To further evaluate the model’s ability to follow short instructions, we
select 7 widely-used short-context datasets: HellaSwag (Hel.) [57], Lambada_OpenAlI (Lam.) [33]],
ARC-Challenge (AR-C.) [9], ARC-Easy (AR-E.), PIQA [6l], WinoGrande (Win.) [38]], and Logiqa
(Log.) [30].

3.2 Main Results

As shown in Table |1} models trained solely on LongMagpie data already set a leading performance
on long-context evaluation, topping HELMET (62.10), RULER (91.17), LongBench-v2 (34.4) and
the LongAVG score (62.56) within the Long Instruction Data group. The performance gains are



Table 1: Main experimental results comparing LongMagpie with other methods on long-context
and short-context benchmarks. Best scores in each column are bolded. LongAVG is the average of
HELMET, RULER, and Longbench v2, ShortAVG is the average of different short-context tasks.

Dataset Long Evaluation Short Evaluation
HELMET RULER Longbench v2 LongAVG ShortAVG

Short Instruction Data

Tulu 61.93 87.92 28.4 59.42 63.90

Magpie 60.18 87.06 314 59.55 63.32

UltraChat 60.55 83.85 30.4 58.27 64.43
Long Instruction Data

ChatQA 60.23 89.82 30.8 60.28 63.58

LongAlign 57.79 86.08 24.5 56.12 60.97

LongMagpie 62.10 91.17 344 62.56 62.37

p-Mix: Long + Short Instruction Data

ChatQA + UltraChat 60.80 87.42 314 59.87 64.38

LongAlign + UltraChat 60.98 89.49 30.6 60.36 64.17

LongMagpie + UltraChat 62.11 89.70 33 61.60 64.10

substantial compared to existing long-context instruction datasets: LongMagpie outperforms ChatQA
by +1.87 on HELMET, +1.35 on RULER, and +3.6 on LongBench-v2, yielding a +2.28 improvement
on LongAVG. The gap is even more pronounced when compared with LongAlign, where LongMagpie
delivers gains of +4.31 on HELMET, +5.09 on RULER, and +9.9 on LongBench-v2, resulting in
a remarkable +6.44 improvement on LongAVG. The strong performance of LongMagpie on long-
context tasks demonstrates the effectiveness of our self-synthesis approach for generating high-quality
long-context instruction data without human annotation or seed examples.

Among the models trained with p-Mix strategy, which mixes LongMagpie with other short-instruction
datasets, LongMagpie + UltraChat achieves the best or tied-best scores on HELMET (62.11),
RULER (89.70) and LongAVG (61.60) among all mixed datasets. It also retains a competitive Short-
AVG accuracy (64.10), only 0.33 below the overall best, confirming that 1) The long-context signals
produced by our self-synthesis method are highly complementary to existing short-instruction data,
and 2) The probabilistic mixing schedule effectively balances these two instruction regimes, yielding
models that are robust across both ultra-long reasoning and everyday short-instruction scenarios.
These results highlight the practical value of p-Mix: it preserves the strength of LongMagpie on
long-context tasks while simultaneously mitigating the typical performance drop on short-context
benchmarks. We provide further analysis to demonstrate the advantages of p-Mix compared to
alternative mixing strategies in Section4.2]

4 Ablation Studies

This section first analyzes the key configurations that influence LongMagpie’s performance, then
evaluates the quality and diversity of its generated queries, and finally assesses the its resource
efficiency.

4.1 Impact of Different Multi-Document Settings

To increase instruction difficulty and further enhance the model’s ability to capture long-range
dependencies, we introduce a multi-document setting. With a certain probability, the document
associated with a generated query-answer pair is mixed with z randomly sampled documents from
the corpus, where z is drawn uniformly from 0 to n (with n = 0 reducing to the standard single-
document QA setting). Table 2] provides the detailed performance scores for different values of n
in the multi-document setting, corresponding to the trends shown in Appendix [A.8] We observe
that the multi-document strategy significantly improves performance on long-context tasks (from
60.19 to 62.56). As the value of n increases, the performance on long-context tasks improves and
degrades, with the best performance observed when n = 10. We hypothesize that this trend is due to



Table 2: Detailed results for the impact of the maximum number of documents (n) in a user prompt.

n  HELMET RULER Longbenchv2 LongAVG ShortAVG

0 60.13 89.04 314 60.19 63.20
5 61.42 89.91 314 60.91 61.98
10 62.10 91.17 34.4 62.56 62.37
20 61.75 91.08 32.8 61.88 62.04
40 62.08 90.77 31.0 61.28 62.37
80 61.15 90.65 31.0 60.93 62.13

Table 3: p-Mix better balances the performance of long-context and short-context than other mixing
strategies.

Strategy HELMET RULER Longbenchv2 LongAVG ShortAVG
No Mix 62.10 91.17 34.4 62.56 62.37
Sequential Mix 61.60 88.85 31.8 60.75 61.89
Simple Mix 61.84 89.65 31.2 60.90 64.04
p-Mix (Ours) 62.11 89.70 33.0 61.60 64.10

an excessive number of documents increasing the task difficulty beyond the model’s learning capacity,
thereby leading to a drop in performance.

4.2 TImpact of Different Mixing Strategy

To investigate the effectiveness of the p-Mix Strategy, we compare p-Mix with three alternative
mixing approaches: (1) No Mix: training solely on LongMagpie data without short-context SFT
datasets; (2) Sequential Mix: first training on short-context data (UltraChat) then fine-tuning on
long-context data (LongMagpie), similar to [L1]; (3) Simple Mix: directly combining and shuffling
long and short data in a single training stage, similar to approaches used with LongAlign [2]; and
(4) p-Mix (Ours): our proposed strategy from Algorithm [1] that pre-pends short instructions and
probabilistically mixes segments. As Table [3|demonstrates, alternative strategies struggle to balance
long-context and short-context performance compared to our p-Mix approach. In contrast, our p-Mix
strategy demonstrates a superior balance: it achieves a competitive LongAVG of 61.60 (notably
better than sequential and simple mixing, and only a slight trade-off compared to no mixing) while
attaining the best ShortAVG score of 64.10. This highlights the efficacy of the p-Mix approach in
maintaining strong long-context reasoning abilities while significantly bolstering performance on
short, non-contextual tasks. More details can be found in Appendix

4.3 Impact of Different Data Size

To investigate the impact of data volume on model performance, we train our models using two
different sizes of LongMagpie-generated data: 190k and 450k samples. As shown in Table ] scaling
up the training data from 190k to 450k samples leads to consistent improvements across all long-
context evaluation benchmarks. Specifically, we observe gains of +0.81 on HELMET, +0.52 on
RULER, and +1.8 on Longbench v2, resulting in a +1.05 improvement in the overall LongAVG
metric. This demonstrates that increasing the volume of high-quality long-context instruction data
significantly enhances the model’s ability to comprehend and reason over extended contexts.

4.4 TImpact of Different Source Model Size

To assess the impact of different models on data synthesis, we use LongMagpie to generate two 450k
long-context instructions respectively by the Qwen-2.5-7B model and the Qwen-2.5-70B model. As
shown in Table[5] using the larger 70B model improves LongAVG performance (59.61 — 62.56),
and shows similar performance on ShortAVG. This superior performance likely stems from larger
models’ enhanced ability to model long-context capabilities [50], which translates to better results
when applied to the LongMagpie method.



Table 4: Increasing the volume of training data improves performance on long-context benchmarks.
Source Model =~ Data Volume HELMET RULER Longbench v2 LongAVG  ShortAVG

Qwen-2.5-70B 190k 61.29 90.65 32.6 61.51 62.30
Qwen-2.5-70B 450k 62.10 91.17 34.4 62.56 62.37

Table 5: Using the larger source model improves performance on long-context benchmarks..
Source Model ~ Data Volume HELMET RULER Longbench v2 LongAVG  ShortAVG

Qwen-2.5-7B 450k 59.28 86.95 326 59.61 62.18
Qwen-2.5-70B 450k 62.10 91.17 344 62.56 62.37
16 BN LongMagpie (ours) 1 B LongMagpie (ours)
14 - ChatQA - ChatQA
W LongAlign 14 W LongAlign

Percentage (%)
5
=
Percentage (%)
5 8

N s o

N & o ®

N

[ c

ﬂ o ﬂ i\i\k D g

OX 2 2N © 5 %252 50O N2V x5 0N 05 O VoD DD D P D

Pt P R S RN
Reward Score Cosine Similarity Value

XA DO QDO D NN DD DG D
e VY e 07 oM o oM 6?66 00O

(a) Reward model scores for different datasets. (b) Query similarities within different datasets.

Figure 2: Analysis of LongMagpie-generated data quality and diversity. (a) higher reward model
scores indicates higher quality. (b) lower pairwise query similarity indicates better diversity.

= m LongMagpie (ours)

ChatQA g
«  LongAlign = LongMagpie ;(ours)
£ H
E 61
ol LongAlign
a p . H
691 ChatoA Hagpie
‘C&; ‘ P
Q59 Tulu
- MR = UltraChat
m  LongMagpie (ours) " S ss @
* E::tgﬁ n i~ 20000 15000 10000 5000 0
9Allg Context Length of input
() (b) ()

Figure 3: Visualizations of LongMagpie characteristics: (a,b) t-SNE visualizations of query embed-
dings from different datasets showing LongMagpie’s dispersed distribution indicating diversity; (c)
Long-context performance vs. token consumption showing LongMagpie’s superior performance.

4.5 Analysis of of LongMagpie Queries

Higher Quality of LongMagpie Queries We use the Reward Model FsfairX-Llama3-RM-v0.1
[12] to score three long-context fine-tuning datasets. As shown in Figure [Zh, the x-axis represents
the scores given by the reward model, and the y-axis represents the proportion of data within each
dataset corresponding to that score. The overall data quality of LongMagpie is significantly higher
than that of ChatQA and LongAlign.

Better Diversity of LongMagpie Queries To investigate the diversity of different datasets, we
sampled 300 queries from each dataset, inferred their embeddings using the jina-embeddings-v3 [42]]
model, and visualized their distribution using t-SNE [43]], as shown in Figure E[ It can be observed
that LongMagpie’s distribution is more dispersed, reflecting its better diversity.

Furthermore, we repeated the following experiment 30 times: sampled queries from each dataset,
calculated the pairwise similarity between the sampled queries within each dataset, and aggregated
the distributions of all similarities, as shown in Figure 2b] It can be seen that LongMagpie queries
generally exhibit lower similarity among themselves, which also reflects their good diversity.



4.6 Sample Efficiency of LongMagpie

We analyze the sample efficiency of various long-context instruction synthesis methods by quantifying
the average token processing requirements during instruction synthesis. As illustrated in Figure 3¢,
LongMagpie exhibits exceptional sample efficiency, achieving superior long-context performance
while processing substantially fewer tokens per instruction (averaging 1.6K tokensﬂ This efficiency
stands in stark contrast to methods like ChatQA and LongAlign, which consume 10-13x more
tokens per instruction during synthesis yet produce inferior performance outcomes. LongMagpie’s
remarkable sample efficiency facilitates greater scalability and diversity.

4.7 Sample-Count-Controlled Comparison

To ensure a sample-count-controlled comparison, we train on 190k samples across different methods.
For ChatQA, we use its original 190k dataset; for LongAlign, we follow its original construction
strategy to generate a 190k version. Results are shown in Table[6]

Table 6: Comparison under equal data size (190k samples).

Method Data Size HELMET RULER LongBenchV2
ChatQA 190k 60.23 89.82 30.8
LongAlign 190k 60.63 87.36 33.0
LongMagpie 190k 61.29 90.65 32.6

We further scale up the LongAlign dataset to 450k samples to compare its scalability. Results are
shown in Table[7l

Table 7: Scalability comparison with increased data size (450k samples).

Method Data Size HELMET RULER LongBenchV2
LongAlign 450k 60.62 88.77 332
LongMagpie 450k 62.10 91.17 34.4

As shown in Table [6] and Table[7] LongMagpie consistently outperforms LongAlign on average,
especially as the data scale increases. We attribute this to its ability to generate more diverse and
higher-quality questions (as illustrated in Figure[2)) through adaptive query generation, rather than
relying on fixed prompt templates or seed questions.

Moreover, prior methods often depend on domain-specific long-context data or long-context-capable
LLMs, which hinders their scalability. For example, ChatQA synthesizes data using NarrativeQA
and needs to be combined with LongAlpacal2k and OpenOrca to reach 190k samples. LongAlign
requires long documents and long-context models for data synthesis, and also needs to be mixed
with short-text instruction data. In contrast, LongMagpie uses only general short-document datasets
(around 1.6k tokens on average, as shown in Figure and a simple, scalable method, enabling
efficient synthesis at scale without external instruction data.

5 Related Work

5.1 Long-Context Data Synthesis

Existing approaches to synthesizing long-context data can be divided into two categories.

Continuation-Oriented Methods Approaches in this category generate long-context data by
concatenating shorter documents. Early methods [37, 8] used random sampling and concatenation,
but failed to maintain meaningful long-range dependencies. Later approaches preserved semantic
coherence through document clustering [20] or nearest-neighbor retrieval [40]. Quest [[14] balances

2Our multi-document extension approach enables arbitrary context length extension without incurring
additional computational overhead.



relevance and diversity using keyword matching. NExtLong [15] decomposes a document into
multiple meta-chunks and extends the context by interleaving hard negative distractors retrieved from
pretraining corpora. However, these methods focus on pre-training rather than instruction tuning. In
contrast, LongMagpie directly generates instruction-following data with the model’s auto-regressive
capabilities.

Instruction-Oriented Methods There exist many approaches to generate long-context instruction
data [591 146, 123| 143]. Representative works include WildLong [26] uses templates and seed questions,
LongAlign [2]] employs Self-Instruct with packing strategies but requires curated examples, ChatQA
[31] blends QA datasets with conversational QA, ChatQA 2 [52] packs documents into 32-128K
token contexts, LOGO [44] adapts self-synthesis for long-context alignment, and GATEAU [41]]
focuses on valuable instruction selection. These methods obtain high-quality data through complex
pipelines. In contrast, LongMagpie eliminates seed questions, and complex pipelines by leveraging
aligned LLMs’ ability to generate contextually relevant queries when provided only with documents.

5.2 Synthesis Methods for Short-Context Instruction Data

Recent studies scale synthesis across various dimensions: Unnatural Instructions [21] yields diverse
instructions through paraphrasing; WizardLM [31]] uses evolutionary strategies for challenging vari-
ants; GLAN [25] eliminates templates by generating tasks from taxonomies; BARE [58]] improves
factual correctness; and Humpback [27]] performs instruction back-translation. Domain-specific
approaches like MetaMath [56] generate specialized content. Magpie [53]] demonstrates aligned
LLMs can autoregressively generate diverse instructions without human annotation or seed examples.
Motivated by Magpie, LongMagpie extends this paradigm to long-context settings by leveraging
document-query relationship patterns from instruction tuning, enabling diverse long-context instruc-
tion data without specialized prompting.

6 Conclusion

This paper introduces LongMagpie, a self-synthesis method that automatically generates large-scale
long-context instruction data without human annotation or seed examples. Extensive experiments on
HELMET, RULER, and Longbench v2 demonstrate that models trained on LongMagpie data achieve
leading performance on long-context tasks while maintaining competitive short-context capabilities
when combined with our proposed p-Mix strategy. This work establishes LongMagpie as an effective
approach for democratizing long-context capabilities.

7 Limitations

First, LongMagpie unavoidably inherits biases from the source instruction-tuned LLMs, which future
work should detect and mitigate. Second, the current implementation of LongMagpie inadequately
covers tasks requiring long-form outputs, as it primarily focuses on document-query relationships
rather than extended reasoning or generation. Future research should expand support for diverse
output formats and complex analytical tasks.
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A Detailed Experimental Results

A.1 Training Config

We employ the AdamW [33]] optimizer with parameters 51 = 0.9 and 52 = 0.95. Following
ProLong [16], we concatenate samples up to 64K sequence length and apply the document mask-
ing technique to prevent interactions between independent sequences. Additionally, we utilize
FlashAttention-2 [[10] and ZeRO [36] to optimize memory usage and accelerate training. The detailed
training config is shown in Table[8]

Table 8: Model Training Configuration.

training setting
Llama-3-8B-NExtLong-512K-Base

Initial Model

rotary-emb-base 128,000,000
B 0.9
B2 0.95

Ir 2¢75
precision bfloat16
gradient-clipping 1.0
weight-decay 0.1
Ir-decay-style cosine
train-iters 250
seq-length 65536
GPU-type H100
GPU-numbers 8
training-time 10h

A.2 Detailed Results of HELMET

We present results across a comprehensive suite of HELMET tasks, including Recall, RAG, ICL,
Re-rank, LongQA, Cite, Summ, and RULER. The complete evaluation results are shown in Table@}
In Section[3] we report the average performance excluding the Cite and Summ tasks, as these two are
newly included and evaluated in the latest version of our experiments.

Table 9: Evaluation results across HELMET tasks.

Method Recall RAG ICL Re-rank LongQA Cite Summ. RULER
ChatQA 9334 66.47 80.36 23.74 37.25 15.18  20.61 89.82
LongAlign 9243  59.05 81.20 27.12 29.14 1793 2432 86.08
LongMagpie  97.53 63.37 85.84 28.60 35.16 19.99  26.36 91.17

A.3 Detailed Results of LongBench v2

We further evaluate our approach on the LongBench V2 benchmark, which measures multi-domain
long-context understanding across a variety of tasks, including multi-document QA (Multi-Doc QA),
long in-context learning (ICL), single-document QA (Single-Doc QA), code repo understanding
(Code), long-dialogue history understanding (Long-dial.), and long structured data understanding
(Long Stru.). The detailed results are shown in Table [[0] Our proposed method (LongMagpie)
consistently outperforms prior approaches across most categories, showing powerful performance on
long dialogue history understanding and multi-document question answering.

Table 10: Evaluation results across LongBench v2 tasks.

Method Multi-Doc QA  ICL  Single-Doc QA Code Long-dial. Long Stru.
ChatQA 25.6 34.57 36.0 24.0 25.64 30.30
LongAlign 20.0 27.16 28.57 24.0 17.95 21.21
LongMagpie 28.8 35.8 37.14 28.0 46.15 33.33
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A.4 Distribution of Generated Query Types
We categorize the generated QA pairs into various task types. As shown in Table our frame-

work already generates a substantial number of instances beyond traditional document-query pairs,
including tasks related to summarization and complex structured extraction.

Table 11: Distribution of generated QA pair types.

Category Count
Precise Retrieval 201,306
Summarization 91,118
Advice Seeking 51,609
Planning or Reasoning (Multi-step Analysis) 38,526
Comparative or Choice-Based Task 25,342
Math or Data Analysis 8,679
Complex Structured Extraction 5,725
Creative Task 3,339
Coding & Debugging 2,999

In addition, the generated task types in LongMagpie often align closely with document content—e.g.,
code documents yield code-related queries, and structured texts lead to extraction tasks. We will
expand to more diverse domains and formats to broaden task coverage, with concrete examples to be
included in the future.

A.5 Effect of Retrieval-Focused Training Data

Based on our experimental results, we find that retrieval-focused training data do not limit the model’s
generalization to other long-context skills. On the contrary, the improved retrieval capability facilitates
performance across various tasks. Intuitively, effective retrieval is a foundational skill for handling
long-context inputs, as models must first identify relevant information before generating accurate
responses. The importance of retrieval in long-context models has also been widely recognized in
prior work [48 [13]].

To investigate this more directly, we conduct additional experiments on the 190k-sample dataset.
Specifically, we vary the proportion of Precise Retrieval data while adjusting the other data distribu-
tions accordingly. One setting reduces the Precise Retrieval portion from 50% to 30%, and the other
increases it to 70%.

Table 12: Performance comparison under different proportions of Precise Retrieval data.
Precise Retrieval (%) Recall RAG ICL Re-rank LongQA Cite Summ. RULER

30% 97.63 62.99  80.92 25.44 34.72 19.30 26.12 90.71
50% 97.29 62.72  85.12 26.26 35.05 20.39 24.32 90.65
70% 98.85 63.38  84.16 26.85 36.26 22.02 24.86 90.93

As shown in Table [T2] increasing the proportion of Precise Retrieval data improves the model’s
Recall performance, which also leads to consistent gains in downstream tasks such as RAG, Re-rank,
LongQA, and Cite, confirming that retrieval-centric training benefits general long-context capabilities.

A.6 Replacing Ultrachat with Magpie

We conduct experiments using the combination of LongMagpie and Magpie. The results were
roughly comparable to the LongMagpie + Ultrachat setting. As shown in Table [I3] we observe
a slight improvement in long-context performance, while the performance on short-context tasks
decreased slightly.

A.7 Safety Analysis

We performed a safety analysis using the Llama-Guard-3-8B [32]] model to classify the generated
content. As shown in Table[T4} the resulting dataset is overwhelmingly safe, with 99.86% of samples
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Table 13: Comparison between LongMagpie + Ultrachat and LongMagpie + Magpie.

Method HELMET RUELR LongBenchV2  LongAVG  ShortAVG  LongAVG + ShortAVG
LongMagpie + Ultrachat 62.11 89.70 33.00 61.60 64.10 62.85
LongMagpie + Magpie 61.95 90.47 33.40 61.94 63.17 62.56

Table 14: Safety classification results of the LongMagpie dataset.

Category Percentage (%)
Safe 99.8603
Specialized Advice 0.1147
Intellectual Property 0.0072
Non-Violent Crimes 0.0063
Hate 0.0033
Indiscriminate Weapons 0.0028
Child Sexual Exploitation 0.0009
Violent Crimes 0.0009
Defamation 0.0009
Elections 0.0002
Sexual Content 0.0007
Code Interpreter Abuse 0.0007
Privacy 0.0005
Sex-Related Crimes 0.0002
Suicide & Self-Harm 0.0002

categorized as safe. This suggests that our pipeline can produce high-quality instructional data with
minimal safety concerns.

A.8 Impact of Multi-Document Setting

Figure[]illustrates the performance variation under different multi-document configurations.

1.0¢ —— HELMET
—— RULER
Longbench v2

—== Short Performance

e
©

e
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°
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Maximum Number of Documents in a User Prompt
Figure 4: Impact of the multi-document setting on model performance. As the number of documents
increases, the performance on long-context tasks improves and then decreases.

A.9 Ablation Study on p-Mix Strategy Parameters

To further understand the behavior of the p-Mix strategy, we conducted an ablation study on its key
parameters: the number of initial short-context samples pre-pended (Ng), and the probability (Pr) of
selecting a long-context sample during the probabilistic mixing phase (see Algorithm[T). The results,
presented in Table[I5] showcase how different configurations impact overall performance on both
long and short tasks evaluation benchmarks. These experiments were conducted with n = 10 for the
multi-document context length parameter.
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Table 15: Detailed ablation results for different parameter settings of the p-Mix strategy. N is the
number of pre-pended short tasks. Py, is the long-context selection probability.

Ng Py, HELMET RULER Longbench LongAVG ShortAVG
0.2 61.38 88.52 29.60 59.83 64.17
0 0.4 61.84 89.65 31.20 60.90 64.04
0.6 61.64 90.51 31.00 61.05 63.92
0.8 61.48 90.54 30.40 60.81 63.41
0.2 61.62 88.05 31.60 60.42 64.39
1 0.4 62.11 89.70 33.00 61.60 64.10
0.6 61.74 90.58 29.80 60.71 63.71
0.8 61.45 90.66 28.80 60.30 63.33
0.2 61.41 88.12 29.80 59.78 64.16
5 0.4 61.70 88.67 31.20 60.52 64.13
0.6 61.90 90.07 30.00 60.66 63.97
0.8 61.34 90.53 31.00 60.96 63.68
0.2 61.17 85.67 31.80 59.55 64.41
30 0.4 60.77 85.30 30.00 58.69 64.25
0.6 60.67 86.09 30.80 59.19 64.39
0.8 60.60 84.42 30.00 58.34 64.21

Algorithm 1 Hybrid SFT Data Construction with short-context Pre-pending and Probabilistic Mixing

1: procedure CONSTRUCTHYBRIDSAMPLE(D s, D1, Pr, Lmax, S€p)
2: Initialize Sconcat <— empty sequence > Dg: set of short-context SFT samples, D, set of long-context SFT samples > Pr:

probability of selecting a long-context sample, L, q4: max sequence length

3 so < RandomSample(Dg)

4 Sconcat — FormatSample(sg)

5: current_length < Length(Sconcat)
6: while current_length < L,,q5 do
7: rand <« RandomReal(0, 1)

8 if rand < P, then

9 lnext < RandomSample(Dy,)

> sep: separator token/sequence between samples

> Select long-context sample with probability Py,

10: formatted_l,cqpr < FormatSample(lpeqt)

11: if current_length + Length(sep) + Length( formatted lnest) < Lymaq then

12: Sconcat ¥ Sconcat ® sep @ formatted_lnext

13: current_length < Length(Sconcat)

14: else

15: break > Next sample exceeds Ly, a0
16: end if

17: else > Select short-context sample with probability 1 — Py,
18: Snezt < RandomSample(Dg)

19: formatted_speqt < FormatSample(speqt)

20: if current_length + Length(sep) + Length(formatted_speqt) < Lmas then

21: Sconcat < Sconcat ® sep @ formatted_snext

22: current_length < Length(Sconcat)

23: else

24: break > Next sample exceeds Ly a0
25: end if

26: end if

27: end while

28: return Sconcat

29: end procedure
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the

paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims match theoretical and experimental results.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made

in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.
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The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section[7]
Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section [3.1.1]and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release our data and model in the future version.
Guidelines:
* The answer NA means that paper does not include experiments requiring code.

 Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3.1.1]and Appendix[A.T
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix [A.T]

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We use only open-source data and models, and our research focuses on
improving long-context model performance.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: We currently do not release any model or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the original papers that we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We currently do not release any model or data.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Our paper describe the usage of LLMs.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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