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Abstract

Large language models (LLMs) have shown001
remarkable performance on code generation002
tasks. A recent application of LLMs for code003
generation is iterative code repair, where a004
model fixes an incorrect program by rational-005
izing about errors and generating a new pro-006
gram. However, code repair is primarily stud-007
ied on high-resource languages like Python,008
and the framework’s efficacy is under-explored009
on low-resource languages. To apply code re-010
pair for low-resource languages, we propose011
Distilling Low-Resource Repairs (DistiLRR),012
an approach that transfers the reasoning and013
code generation ability from a teacher model014
to a student model. Our results show that Dis-015
tiLRR consistently outperforms baselines on016
low-resource languages, but has similar per-017
formance on high-resource languages. To in-018
vestigate this behavior, we perform a further019
analysis and find that the correlation between020
rationale quality and code correctness is weaker021
than previously perceived. We hypothesize this022
weakness is magnified in low-resource settings023
where base models lack deep knowledge of a024
programming language, leading to wavering025
benefits of code repair between high-resource026
and low-resource languages.027

1 Introduction028

Recent advancements in large language models029

(LLMs) have displayed remarkable capacity in030

generating human-aligned code (Wang and Chen,031

2023). While many models like GPT-4 (OpenAI,032

2024) and CodeLlama (Rozière et al., 2024) have033

high performance on benchmarks like HumanEval034

(Chen et al., 2021), LLMs are primarily eval-035

uated on high-resource programming languages036

(HRPLs), such as Python. Meanwhile, their perfor-037

mance lags behind for low-resource programming038

languages (LRPLs), such as Perl (Athiwaratkun039

et al., 2023). One reason for this gap is that LRPLs040

lack representation in pretraining data because they041

are rarer to find in a natural setting. For example, 042

a modern code LLM DeepSeek-Coder (Guo et al., 043

2024) uses a training dataset scraped from public 044

Github repositories, containing high-resource lan- 045

guages like Python and Java at rates of 15.12% an 046

18.63%, while low-resource languages like Perl and 047

Golang are at rates of 0.1% and 0.32%. Thus, cre- 048

ating an efficient framework that improves LRPL 049

code generation without the need of more human- 050

written code is essential. 051

To address this problem, we begin by adopting 052

the framework of code repair. Code repair appears 053

especially useful in a low-resource setting because 054

it augments inference with automatic feedback and 055

reasoning, without needing extra human written 056

code. The framework draws inspiration from the 057

editing process of human programmers: erroneous 058

feedback is automatically provided through exe- 059

cuting tests, while programmers rationalize about 060

those errors to modify the code. Our work models 061

this, demonstrated in Figure 1. 062

Although seemingly effective, recent works con- 063

clude that self-repair is bottlenecked by the repair 064

model’s ability to rationalize about errors (Olaus- 065

son et al., 2024), leading to lower improvements 066

on weaker models. To further improve repairs 067

for smaller LLMs, we propose Distilling Low- 068

Resource Repairs (DistiLRR), where the ability 069

to repair code is taught by a larger model. At the 070

same time, distillation addresses the lack of human 071

written LRPL code by creating synthetic data. 072

Our primary goal is to investigate the efficacy 073

of distilling code repair for LRPLs. Along with 074

evaluating the performance of DistiLRR, we also 075

conduct a novel analysis on the wavering bene- 076

fits of code repair between high-resource and low- 077

resource languages. We hypothesize there exists 078

another bottleneck beyond rationale quality: even if 079

repair models are given high quality rationales, they 080

often fail to fix incorrect code because they lack 081

knowledge on how to convert a suggested plan into 082
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Figure 1: Our code repair framework. In (1) and (2), a code LLM is given a question and generates a solution. In
(3), test cases are executed and an error message is extracted. In (4), a repair LLM is given the question, incorrect
solution, and error message, and generates a repair. A repair contains a rationale explaining why the old code was
incorrect and how to fix it, followed by new code. If the new code is still incorrect, we iteratively generate new
repairs using the code from previous repairs. In (5), we stop when all tests pass or after a fixed number of iterations.

specific code modifications. This effect is magni-083

fied in a low-resource setting because base models084

are less knowledgeable on the syntax and semantics085

of a LRPL.086

To demonstrate this, we conduct a comprehen-087

sive suite of experiments spanning three HRPLs,088

three LRPLs, three models, and two benchmarks.089

Since popular benchmarks like MBPP (Austin090

et al., 2021) and HumanEval (Chen et al., 2021)091

are originally in Python, we use variations that092

have been transcompiled to other programming093

languages (Athiwaratkun et al., 2023), namely094

MBXP and MultiLingual HumanEval (HumanEval095

for brevity). We present our main research ques-096

tions and findings below.097

• How effective is DistiLRR? Using DistiLRR098

models for repair leads to higher pass rates.099

We see a relative increase in the average100

pass@1 of CodeLlama-7b-Instruct by 99.5%101

for Perl, 112.8% for Golang, and 144.5%102

for Swift after four rounds of repair on Hu-103

manEval. We also see a relative increase in the104

average pass@1 by 69.0% for Python, 44.7%105

for Javascript, and 49.3% for Java.106

• How effective is transferring code repair107

for LRPLs compared to HRPLs? DistiLRR108

outperforms other distilled code repair base-109

lines on LRPLs, but has similar performance110

on HRPLs. Compared to supplementing GPT111

rationales in-context, we see a relative in-112

crease in the average pass@1 of CodeLlama-113

7b-Instruct by 21.9% for Perl, 11.0% for114

Golang, and 16.3% for Swift on HumanEval.115

• Why are there wavering benefits of code 116

repair between high and low resource lan- 117

guages? The correlation between rationale 118

quality and code correctness is weaker than 119

previously perceived. The rate at which a re- 120

pair model provides a good rationale but still 121

produces incorrect code is notably higher than 122

all other outcomes. This occurs in HRPLs 123

with an average rate of 69.9% and LRPLs with 124

an average rate of 76.4%. DistiLRR mitigates 125

this effect, increasing the rate of converting a 126

good rationale into correct code by 31% rela- 127

tive to baselines. 128

2 Related Work 129

2.1 Repairing Code with LLMs 130

Using LLMs to iteratively repair their own re- 131

sponses with the aid of feedback has been a widely 132

applicable area of research, as surveyed in (Pan 133

et al., 2023) and (Fernandes et al., 2023). The 134

efficacy of self correction approaches is also sur- 135

veyed in (Kamoi et al., 2024). For repairing code 136

generation in specific, frameworks like Self-Edit 137

(Zhang et al., 2023), Self-Debugging (Chen et al., 138

2023), Self-Repair (Olausson et al., 2024), and Re- 139

flexion (Shinn et al., 2023) have shown promising 140

increases in pass rates. Improving upon using an 141

LLM out of the box for repair, ILF (Chen et al., 142

2024a) upgrades their repair model by fine-tuning 143

on human annotated feedback. 144

2.2 Distillation for Code Repair 145

Distillation is the process of transferring knowl- 146

edge from high capacity models, such as GPT-4 147
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(OpenAI, 2024), to lower capacity models, such148

as open-source LLMs with 7B parameters or less.149

Previous works have shown distillation can effec-150

tively transfer the ability to generate code and in-151

dependent reasoning (Sun et al., 2024; Wei et al.,152

2023b; Xu et al., 2023; Luo et al., 2023; Li et al.,153

2022a), but transferring the ability to iteratively154

repair code remains less explored. Recent meth-155

ods like PERsD (Chen et al., 2024b) distills re-156

paired code to construct a personalized fine-tuning157

dataset. The aforementioned Self-Repair (Olaus-158

son et al., 2024) also conducts an experiment where159

they transfer rationales from GPT-4 to CodeLlama-160

13b-Instruct in-context, but still use the base model161

for code generation. However, neither of these ap-162

proaches investigates the efficacy of distilling code163

repair for low-resource languages.164

2.3 Low-Resource Programming Languages165

Code repair experiments are usually evaluated on166

high-resource languages like Python, but our work167

investigates the efficacy of code repair for differ-168

ent languages. For evaluation, many works (Athi-169

waratkun et al., 2023; Orlanski et al., 2023; Zheng170

et al., 2023) have created datasets to benchmark171

code generation in a multilingual setting. Since172

finding human written low-resource code is diffi-173

cult, other approaches use capable LLMs to syn-174

thetically create low-resource code. Works like175

MultiPL-T (Cassano et al., 2024) and MultiPL-E176

(Cassano et al., 2022) translate popular pre-training177

datasets and monolingual benchmarks into a wide178

variety of different programming languages. Other179

works also study the relationship and transferabil-180

ity of coding ability between different languages181

(Baltaji et al., 2024; Gong et al., 2022).182

3 Methodology183

DistiLRR augments the normal code repair work-184

flow by replacing the base model with a distilled185

repair model (DistiLRR model). We first provide186

an overview of a standard code repair framework,187

and follow with our process of transferring knowl-188

edge between teacher and student.189

3.1 Code Repair Framework190

We adopt code repair as the base of our framework191

to improve LRPL code generation. The main com-192

ponents in Figure 1 are the initial code generation,193

test execution, and iterative repair. We provide a194

formal explanation for each component.195

First, we define Minit as the model generating 196

initial answers. For a question q, we obtain n ≥ 10 197

initial samples, because it allows us to compute 198

pass@10, along with lower variance pass@1 and 199

pass@5 estimates. We define ct,i as the i-th code 200

sample generated on repair round t, where t = 0 201

denotes the initial generation. Obtaining the initial 202

code generations is formalized in expression 1. 203

Minit(q) → {c0,i}ni=1 (1) 204

Next, we define E as the code executor. Given a 205

set of code samples, we execute the test cases asso- 206

ciated with q on each sample. This produces a set 207

of error messages, where et,i is the error message 208

resulting from ct,i. If ct,i passes all test cases, et,i 209

is null. Obtaining the error messages is formalized 210

in expression 2. 211

E(q, {ct,i}ni=1) → {et,i}ni=1 (2) 212

Finally, we define Mrepair as the model gener- 213

ating repairs. Mrepair has the same underlying 214

model architecture as Minit. A repair is composed 215

of a chain-of-thought (Wei et al., 2023a) rationale 216

rt,i, and the associated code ct,i. Obtaining a re- 217

pair on an incorrect code sample is formalized in 218

expression 3. 219

Mrepair(q, ct,i, et,i) → (rt+1,i, ct+1,i) (3) 220

For one of our baselines, we transfer knowl- 221

edge in-context by replacing the rationale rt,i from 222

Mrepair with one from a larger model Mteacher. In 223

this case, obtaining the teacher’s rationale is for- 224

malized in expression 4, and obtaining the code 225

from the base model is formalized in expression 5. 226

Mteacher(q, ct,i, et,i) → rt+1,i (4) 227

228
Mrepair(q, ct,i, et,i, rt+1,i) → ct+1,i (5) 229

3.2 Dataset Construction 230

To strengthen code repair, we transfer the ability 231

to repair from a teacher model to a student model, 232

resulting in a fine-tuned DistiLRR model. Our 233

teacher model is GPT-3.5-Turbo (Ouyang et al., 234

2022; OpenAI, 2022), while our student models 235

are CodeLlama-7b-Instruct (Rozière et al., 2024), 236

CodeLlama-7b (Rozière et al., 2024), and Mistral- 237

7b (Jiang et al., 2023). The fine-tuning datasets 238

are constructed from MBXP (Athiwaratkun et al., 239

2023), which consists of multiple language specific 240
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Fine-tuning Dataset

 1. Question (Q)
Given a list 
of integers, 
return the 
maximum value.

 2. Student Answer (A)
def solve(nums):

return min(nums)

 3. Test Execution (E)
 Test 1 failed.
 Input: [3,1,4,1,5]
 Expected 5, found 1 

 4. Teacher Repair (R)

 

The code fails because it finds
the min instead of the max. To fix 
this, replace min() with max().

def solve(nums):
return max(nums)

 0. Instruction (I)
Use the following 
to create a repair.

Figure 2: Our dataset construction pipeline. Examples in the fine-tuning dataset contain an instruction, the original
question, the student’s incorrect answer, the execution feedback, and the teacher’s correct repair.

benchmarks, each containing around 960 questions241

with corresponding test cases. An artificial train-242

test split is created by taking 800 random examples243

as potential training data and reserving the rest for244

testing. We process potential training examples245

into a finalized dataset, visualized in Figure 2. Our246

dataset is formally composed of five-tuples in the247

form (I,Q,A,E,R), which we further explain.248

Instruction and Question. Each five-tuple be-249

gins with a constant instruction I , informing the250

model to perform code repair. Next is a question251

Q, containing a problem description and function252

declaration. We collect Q by directly using the253

prompts provided in MBXP.254

Answer and Error. The student’s incorrect an-255

swer is represented with A, which is collected by256

prompting a student model with Q. To ensure A is257

incorrect, we allow the student to continually gener-258

ate i.i.d samples, which are then immediately tested.259

Once a sample fails the given test cases, we select260

that sample as A. Then, we collect the associated261

error message E from the execution feedback.262

Repair. Lastly, we finish with R, the teacher263

model’s repair. We collect R by prompting264

the teacher model to generate a repair given265

(I,Q,A,E). Following our definition of a repair266

from Section 3.1, R carries two main components.267

First, it contains a rationale explaining why the268

error occurred and a plan to fix it. Second, it con-269

tains repaired code based on A, denoted with A′.270

To ensure A′ is correct, we allow the teacher to271

continually generate i.i.d repairs, which are then272

immediately tested. Once A′ passes the given test273

cases, we select the associated repair as R.274

Quantity of Examples. Although the original275

train split starts with 800 examples, our construc-276

tion pipeline results in fine-tuning datasets with277

around 400 examples. Referencing Figure 2, this is278

because we may fail to obtain a usable A in step (2) 279

or a usable R in step (4). In step (2), student models 280

may consistently generate correct code. We allow 281

a maximum of 10 samples before discarding the 282

current example. Conversely, in step (4), teacher 283

models may consistently generate incorrect code. 284

We allow a maximum of 20 samples before dis- 285

carding the current example. When prompting the 286

teacher model, we use few-shot prompting (Brown 287

et al., 2020) with three examples as an attempt 288

to generate better repairs. The exact dataset sizes 289

are listed in Appendix A, and an example of our 290

prompt format can be examined in Appendix D. 291

4 Experiment 292

Our goal is to understand the transferability of 293

LLM code repair for HRPLs and LRPLs, so we 294

conduct a comprehensive experiment with three 295

high-resource languages and three low-resource 296

languages. We identify Python, Javascript, and 297

Java as high-resource, and identify Perl, Golang, 298

and Swift as low-resource. These languages are 299

picked based on having the highest three and low- 300

est three pass rates observed in the original MBXP 301

evaluations (Athiwaratkun et al., 2023), as well 302

as cross referencing DeepSeek-Coder’s pretrain- 303

ing dataset (Guo et al., 2024), since it loosely re- 304

flects the distribution of programming languages 305

found on Github. For each language, we perform 306

our dataset construction and fine-tune a DistiLRR 307

model. Then, we generate an initial round of output 308

and perform four rounds of code repair. 309

4.1 Experimental Setup 310

Models. To show DistiLRR generalizes to non- 311

instruction-tuned, non-code-specific, and differ- 312

ent model families, we run our experiments on 313

CodeLlama-7b-Instruct (Rozière et al., 2024), 314

CodeLlama-7b (Rozière et al., 2024), and Mistral- 315

7b (Jiang et al., 2023). These models are used for 316
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the initial generation, and then a fine-tuned version317

of the same architecture is used as the DistiLRR318

model.319

Benchmarks. Since we already have a train-test320

split on MBXP (Athiwaratkun et al., 2023) from321

Section 3.2, we evaluate on the test split, which322

contains around 160 programming problems. Addi-323

tionally, we evaluate on MultiLingual HumanEval324

(Athiwaratkun et al., 2023), a variation of Hu-325

manEval (Chen et al., 2021) transcompiled to differ-326

ent languages, which also contains around 160 pro-327

gramming problems. Our evaluation on MultiLin-328

gual HumanEval (HumanEval for brevity) shows329

that DistiLRR models generalize to other datasets.330

Metrics. We evaluate all generations using331

pass@k (Chen et al., 2021), a standard performance332

metric for code generation tasks. Since pass@k is333

prone to high variance, we use the unbiased esti-334

mator for pass@k, which estimates the probability335

that at least one out of k samples is correct. Given336

n ≥ k code samples where c are correct, we com-337

pute pass@k using Equation 6.338

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

) ]
(6)339

Training and Inference Details. During training,340

we perform a 90/10 train-dev split on the dataset341

resulting from Section 3.2, and train via LoRA fine-342

tuning (Hu et al., 2022). During the initial genera-343

tion, we sample 10 answers for each question and344

compute pass@k using n=10, allowing us to mea-345

sure certain baselines. However, we only perform346

code repair on the first 5 samples for later repair347

rounds and compute pass@1 using n=5, because348

we only care about the pass@1 for repairs. To en-349

courage diversity between samples, we use nucleus350

sampling with a threshold of 0.95 and sampling351

temperature of 0.2. Further training and inference352

hyperparameters can also be found in Appendix B.353

For baselines that use a non-fine-tuned model for354

repair, we use one-shot prompting, whose format355

is shown in Appendix D.356

4.2 Baselines357

We compare the pass@1 of the DistiLRR model to358

five different baselines. These baselines help us in-359

vestigate how other iterative repair approaches per-360

form on HRPLs vs LRPLs, allowing us to analyze361

trade-offs and scenarios where DistiLRR works362

best.363

Non-repair i.i.d. Sampling. We compare the ef- 364

ficiency of code repair with i.i.d sampling to see 365

if DistiLRR achieves higher pass rates with fewer 366

inference calls. Our experiment conducts 1 initial 367

generation and 4 repair rounds for a total of 5 in- 368

ference calls, so we compare the final pass@1 with 369

the pass@5 and pass@10 of the initial generations. 370

Basic Iterative Repair. DistiLRR augments the 371

preexisting idea of iterative repair with distillation, 372

so we measure how impactful distillation is, along 373

with how well iterative repair with a base model 374

performs on LRPLs. We use the same code repair 375

framework, but replace the DistiLRR model with 376

its non-fine-tuned counterpart. 377

In-Context Teacher Rationales. We compare 378

DistiLRR to an adjacent idea from Self-Repair 379

(Olausson et al., 2024). First, a teacher model 380

is prompted to generate the rationale portion of 381

a repair. Then, a non-fine-tuned student model is 382

prompted to generate the code portion of a repair, 383

with the teacher’s rationale appended in-context. 384

For brevity, we refer to this approach as ICL (in- 385

context learning). We use the same teacher and 386

student models as Section 4.1, and our prompt to 387

extract the teacher’s rationale is in Appendix C. 388

Teacher Repair. For demonstrating the limita- 389

tions of our method, we use the same code repair 390

framework, but replace the DistiLRR model with 391

the teacher model used during dataset construction. 392

This acts as a rough upper bound for the student 393

model, and illustrates potential room for improve- 394

ment. 395

4.3 Results 396

Our experiments provide empirical results demon- 397

strating the pass@1 improvements of our DistiLRR 398

model, along with a wavering benefits of code re- 399

pair between HRPLs and LRPLs. We report our 400

results on CodeLlama-7b-Instruct in Figure 3, and 401

similar results on CodeLlama-7b and Mistral-7b 402

can be found in Appendix E and F. 403

DistiLRR vs i.i.d Sampling. We find that across 404

all languages and both benchmarks, four rounds of 405

code repair with DistiLRR outperforms the initial 406

pass@5. Furthermore, DistiLRR outperforms the 407

initial pass@10, with the exception of HRPLs on 408

HumanEval. Thus, when limited to a small amount 409

of inference calls, DistiLRR can be a more efficient 410

alternative than i.i.d sampling for increasing pass 411

rates. 412
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Figure 3: Average pass@1 versus repair round for CodeLlama-7b-Instruct. Round 0 denotes the initial generation.
DistiLRR outperforms ICL on low-resource languages, but performs around the same on high-resource languages.

Impact of Distillation. Both DistiLRR and ICL413

consistently outperform repair using the base414

model. One possible reason for this is that both415

methods produce higher quality rationales, and the416

correctness of generated code is strongly influenced417

by the repair model’s reasoning. Thus, weaker base418

models may not benefit as much from frameworks419

like code repair which rely on diagnosing and ra-420

tionalizing about mistakes.421

Beyond Rationale Quality. Although it is likely422

intuitive that better rationales result in better code423

repairs, we show there is more to boosting re-424

pair beyond increasing feedback quality. We ob-425

serve the teacher pass@1 greatly outperforms ICL426

pass@1, even though the rationales are both gen-427

erated by GPT-3.5-Turbo. Furthermore, the Dis- 428

tiLRR pass@1 surpasses ICL on LRPLs, despite 429

presumably producing worse rationales than GPT- 430

3.5-Turbo. In other words, higher quality rationales 431

may still lead to incorrect code more often than 432

lower quality rationales. This wavering benefit of 433

rationale quality spurs us to investigate a model’s 434

ability to connect rationale suggestions with code 435

modifications. 436

5 Analysis 437

After observing varying efficacy of code repair be- 438

tween LRPLs and HRPLs, we want an explanation 439

on why DistiLRR consistently outperforms ICL 440

on low-resource languages, but struggles to outper- 441

form on high-resource languages. Table 1 shows 442
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HumanEval Pass@1
Language Initial ICL Repair DistiLRR
Perl 0.220 0.360 ↑63.6% 0.439 ↑99.5%

Golang 0.203 0.389 ↑91.6% 0.432 ↑112.8%

Swift 0.175 0.368 ↑110.2% 0.428 ↑144.5%

Python 0.343 0.560 ↑63.2% 0.580 ↑69.0%

Javascript 0.342 0.499 ↑45.9% 0.495 ↑44.7%

Java 0.306 0.464 ↑51.6% 0.457 ↑49.3%

MBXP Pass@1
Perl 0.353 0.468 ↑32.5% 0.608 ↑77.2%

Golang 0.364 0.592 ↑62.6% 0.614 ↑68.6%

Swift 0.338 0.559 ↑65.3% 0.633 ↑87.2%

Python 0.483 0.677 ↑40.1% 0.671 ↑38.9%

Javascript 0.524 0.663 ↑26.5% 0.685 ↑30.7%

Java 0.451 0.625 ↑38.5% 0.657 ↑45.6%

Table 1: Pass@1 of initial generations vs pass@1 after
code repair using DistiLRR and ICL. DistiLRR consis-
tently outperforms ICL on LRPLs, but performs around
the same or slightly worse on HRPLs. Weak gains are
in orange, moderate gains are in light green, and strong
gains are in dark green.

quantitative results of this. In the following, we per-443

form two analyses, measuring both the quality of444

rationales and a model’s knowledge of a language.445

Previous works like Self-Repair (Olausson et al.,446

2024) hypothesize that code repair is bottlenecked447

by the model’s underlying ability to create a high448

quality rationale, which our results support. How-449

ever, there remains a lacking explanation of why450

repair models still generate incorrect code, even451

when given a sufficient rationale.452

We hypothesize there exists a second bottleneck:453

even if repair models are given high quality ratio-454

nales, they fail to fix incorrect code because they455

lack the knowledge to convert suggestions into spe-456

cific code modifications. This effect is magnified457

in a low-resource setting because base models are458

less knowledgeable about the nuances of a LRPL,459

explaining why fine-tuned DistiLRR models out-460

perform ICL.461

5.1 Correlation between Rationale and Code462

To support our hypothesis that a bottleneck exists in463

a model’s ability to convert suggestions to code, we464

analyze the relationship between rationale quality465

and code correctness in Table 2. We quantitatively466

show that repair models are often exposed to suf-467

ficient rationales, yet still generate incorrect code,468

exposing a weaker correlation between the two than469

what was previously perceived.470

To judge whether a rationale is sufficient or in-471

sufficient, we query GPT-4. Although human evalu-472

ation would be preferred, finding participants well- 473

versed in languages like Perl and Swift and capable 474

of solving programming problems found in Hu- 475

manEval is challenging. We selected GPT-4 for 476

our evaluations because the ICL rationales were 477

generated using GPT-3.5-Turbo, and we aimed to 478

use a more advanced model for better assessments. 479

To obtain judgements, we present a program- 480

ming question, incorrect code, error message, and 481

rationale to GPT-4, and instruct it to produce a ver- 482

dict. A rationale is considered good if it contains 483

accurate information and mentions sufficient detail 484

to repair the given code, and bad otherwise. Our 485

judgement prompt can be found in Appendix I. We 486

obtain a verdict for all HumanEval rationales ex- 487

tracted between the initial generation and the first 488

repair round. 489

From Table 2, we find that the rate of a good ra- 490

tionale leading to incorrect code is notably higher 491

than all other outcomes. We also observe the rate 492

of a good rationale leading to correct code is higher 493

in DistiLRR than in ICL. This suggests that fine- 494

tuning on both rationales and code teaches Dis- 495

tiLRR models to connect feedback with specific 496

code modifications, improving their responsive- 497

ness to suggestions. Meanwhile, ICL is performed 498

on frozen LLMs, so although the rationale is aug- 499

mented, the underlying ability to connect that feed- 500

back to specific code modifications is not. We dis- 501

play various examples of this in Appendix L. Thus, 502

this provides a possible explanation for why Dis- 503

tiLRR can outperform ICL, despite having lower 504

quality rationales. 505

5.2 Knowledge of LRPLs 506

Finally, we analyze why DistiLRR sees the best 507

improvements on LRPLs. To support the idea that 508

a model’s inability to convert suggestions into code 509

modifications is magnified in a low-resource set- 510

ting, we show that DistiLRR models have deeper 511

understanding of LRPLs, while other baselines do 512

not. We use the frequency of syntax errors as a 513

proxy for knowledge, since generating code with 514

syntax errors is a blatant sign that a model lacks 515

comprehension of a language. 516

To measure this, we first extract the set of syntax 517

errors from a particular code repair run. Syntax 518

errors are those occurring before execution and 519

caught during compilation or interpretation time. 520

We can conveniently filter out syntax errors by pars- 521

ing the execution feedback. Next, we compute the 522

average amount of errors within the final repair 523
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DistiLRR ICL
Code Fails Code Passes Total Code Fails Code Passes Total

LRPLS

Bad Rationale 12.4% 1.0% 13.4% 8.4% 0.5% 8.9%
Good Rationale 71.2% 15.4% 86.6% 81.6% 9.5% 91.1%

Total 83.6% 16.4% 90.0% 10.0%
HRPLS

Bad Rationale 19.7% 2.3% 22.0% 9.3% 0.7% 10.0%
Good Rationale 63.9% 14.1% 78.0% 75.9% 14.1% 90.0%

Total 83.6% 16.4% 85.2% 14.8%

Table 2: Empirical relationship between rationale quality and code correctness from repair round 1. The rate of a
good rationale leading to failing code is notably higher than all other outcomes. Furthermore, the total percent of
good rationales produced by DistiLRR is lower than ICL, yet the total percent of passing code is higher.

HumanEval Average Syntax Errors
Initial Base ICL DistiLRR

Language Errors Repair Repair Repair
Perl 14.5 15.4 ↑0.9 17.8 ↑3.3 9.20 ↓5.3

Golang 44.7 70.4 ↑25.7 48.7 ↑4.0 26.6 ↓18.1

Swift 81.0 58.0 ↓23.0 50.4 ↓30.6 37.4 ↓43.6

Python 12.1 15.6 ↑3.5 18.2 ↑6.1 14.2 ↑2.1

Javascript 9.10 9.80 ↑0.7 27.6 ↑18.5 9.00 ↓0.1

Java 39.6 41.2 ↑1.6 37.0 ↓2.6 41.2 ↑1.6

MBXP Average Syntax Errors
Perl 12.1 9.50 ↓2.6 13.7 ↑1.6 2.70 ↓9.4

Golang 33.2 29.2 ↓4.0 26.8 ↓6.4 14.6 ↓18.6

Swift 60.4 36.0 ↓24.0 27.8 ↓32.6 11.0 ↓49.4

Python 1.80 5.20 ↑3.4 5.10 ↑3.3 3.60 ↑1.8

Javascript 4.60 4.20 ↓0.4 11.8 ↑7.6 3.60 ↓1.0

Java 29.2 26.4 ↓2.8 21.4 ↓5.0 20.4 ↓8.8

Table 3: Average number of syntax errors after code
repair for each baseline. We also provide the deltas
between the initial and final amount of errors. On LR-
PLs, DistiLRR has a higher decline in syntax errors. On
HRPLs, DistiLRR performs closer to baselines.

round, along with their absolute differences from524

the initial generation. Note that non-syntax errors525

can transform into syntax errors when repair mod-526

els attempt to update code, leading to occasional527

increases. The average number of syntax errors for528

CodeLlama-7b-Instruct can be seen in Table 3, and529

similar results on CodeLlama-7b and Mistral-7b530

can be seen in Appendix J and K.531

For LRPLs, the decrease in syntax errors with532

DistiLRR is higher than the other baselines. Av-533

eraging over the 3 LRPLs, DistiLRR has a delta534

of -24.0, ICL has -10.1, and base repair has -4.5.535

Since DistiLRR models are generating syntacti-536

cally correct code at a notably higher rate, this537

suggests that fine-tuned models have better knowl-538

edge than base models. Thus, boosting rationale 539

quality alone is not enough for encouraging a base 540

model to generate a working repair, and applying 541

DistiLRR can help transfer knowledge of a pro- 542

gramming language. 543

For HRPLs, the decrease in syntax errors are 544

much smaller or even non-existent, and the amount 545

of errors between DistiLRR, ICL, and base repair 546

are relatively close. Averaged over the 3 HRPLs, 547

DistiLRR has a delta of -0.73, ICL has +4.5, and 548

base repair has +1.0. Since DistiLRR is generating 549

syntactically correct code at a marginally higher 550

rate, this suggests that base models already have 551

sufficient knowledge on HRPLs. Thus, this pro- 552

vides a potential explanation for why DistiLRR 553

outperforms ICL on LRPLs, but performs similarly 554

on HRPLs. 555

6 Conclusion 556

We transferred the ability to repair code and demon- 557

strated that DistiLRR achieves better pass rates and 558

knowledge on low-resource languages. We also 559

exposed that the correlation between rationale qual- 560

ity and code correctness is lower than previously 561

perceived. DistiLRR mitigates this weakness by im- 562

proving a model’s understanding of a programming 563

language, resulting in better responsiveness to feed- 564

back. Further research in distillation is important 565

because it allows smaller models to gain fluency 566

without costly human labeling, creating efficient 567

and high-performing LLMs suitable for consumer- 568

grade devices. Such advancements would democra- 569

tize the benefits of closed source research, making 570

better code generation accessible for a wider range 571

of languages, applications, and users. 572
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Limitations573

A natural limitation is the lack of instruction tun-574

ing datasets for LRPLs. Our constructed fine-575

tuning datasets only contain around 400 examples,576

which may be limiting the generalizability of fine-577

tuned models. Hypothetically, training models578

with larger datasets could lead to new observations579

on the efficacy of DistiLRR and derive a better580

understanding on the scalability of our approach.581

Nonetheless, we already show noteworthy improve-582

ments even with just 400 examples.583

One limitation within our evaluation is the lack584

of more challenging multilingual datasets. Other585

popular benchmarks like APPS (Hendrycks et al.,586

2021) and CodeContests (Li et al., 2022b) pro-587

vide harder problems, which may demand stronger588

reasoning, but are only available in high-resource589

languages. Studying the efficacy of DistiLRR on590

more reasoning heavy questions in low-resource591

languages would be a good future evaluation.592

Another limitation in our evaluation are the593

stochastic processes within training and inference.594

To the best of our ability, we mitigate variance595

in our evaluation by seeding our training and in-596

ference, and by using the unbiased estimator of597

pass@k. However, since we use nucleus sampling598

for decoding, we observe there can be slight varia-599

tions in our results.600

Lastly, an underlying limitation is our hardware601

for training and inference. We use Nvidia Titan602

RTX GPUs with 24GB memory, so the size of stu-603

dent models that we can fine-tune is limited, which604

is why we choose 7b models for our experiments.605

Furthermore, since our evaluation has many di-606

mensions (6 languages, 3 models, 5 baselines, 2607

benchmarks, 160 questions each benchmark), we608

are limited in the amount of sampling we can do609

for each question. Although it may be interesting610

to obtain higher pass@k rates like k=10 or k=100,611

these are not time efficient to measure and do not612

contribute that much to our arguments. Thus, we613

choose to only show pass@1 for repair rounds.614

Ethics Statement615

Since computing resources and research funding616

is extremely valuable, querying costly models like617

GPT-4 should be conducted responsibly. Estimat-618

ing costs before running experiments and mak-619

ing necessary adjustments is a responsible and620

resource-conscious approach to using such APIs.621

Furthermore, there exists the possibility that622

users apply code repair for harmful applications. 623

People with malicious intentions could use our re- 624

search to improve code generation in certain do- 625

mains that produce dangerous code, such as attacks 626

on privacy and security. We encourage that code re- 627

pair and DistiLRR be used for socially responsible 628

technology. 629
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A Fine-tuning Dataset Sizes847

Fine-tuning Dataset Sizes
Language Initial Post-Student Post-Teacher Train Dev

CodeLlama-7b-Instruct
Perl 800 649 489 440 49
Golang 800 601 455 409 46
Swift 800 635 470 423 47
Python 800 559 446 401 45
Javascript 800 509 394 354 40
Java 800 667 510 459 51

CodeLlama-7b
Perl 800 680 489 440 49
Golang 800 614 456 410 46
Swift 800 651 465 418 47
Python 800 596 470 423 47
Javascript 800 586 470 423 47
Java 800 642 499 449 50

Mistral-7b
Perl 800 689 533 479 54
Golang 800 745 539 459 54
Swift 800 625 468 421 47
Python 800 602 487 438 49
Javascript 800 535 413 371 42
Java 800 573 439 395 44

Table 4: The final fine-tuning dataset sizes for each model, starting from the original MBXP train split of 800
questions. Intermediate sizes at each step of our dataset construction are also provided.

B Training and Inference Hyperparameters848

We provide our training and inference hyperparameters used throughout experiments. All training and849

inference are conducted on Nvidia Titan RTX (24GB) GPUs.850

For training, we use LoRA fine-tuning with a rank of 128, lora alpha of 128, lora dropout of 0.1,851

maximum sequence length of 2048, batch size of 4, gradient accumulation steps of 2, weight decay of852

0.01, cosine learning rate scheduler with warm up steps of 10, and checkpoint every 50 steps. For models853

in the CodeLlama family, we train for 8 epochs with a learning rate of 2e-5, and for Mistral-7b, we train854

for 5 epochs with a learning rate of 5e-6. To obtain our final distilled repair model, we pick the checkpoint855

with the lowest validation loss.856

For inference, we use nucleus sampling with a threshold of 0.95, sampling temperature of 0.2, and limit857

the maximum new tokens to 800. When generating the initial 10 samples, we use random seeds from 1 to858

10. For later repair rounds, all generations use a random seed of 17.859

C In-Context Rationale Prompt860

### Instruction: You are given an incorrect python function and an error message. 
Explain how to modify the code to fix the error, but do not write any actual code.
### Incorrect Code:
<Q,A>
### Error: <E>
### Response:

Figure 4: The prompt given to GPT-3.5-Turbo to generate the rationale portion of a repair. This is only used for the
in-context learning baseline. <Q,A> is replaced with the question and previous answer, while <E> is replaced with
the corresponding error.
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D Repair Prompt 861

We provide the general format of our repair prompt. When conducting code repair with a DistiLRR model, 862

we use zero-shot prompting. When conducting code repair with our baselines, we use one-shot prompting. 863

When creating a fine-tuning dataset with the teacher model, we use three-shot prompting. The few-shot 864

examples change with each programming language. 865

### Instruction: You are given an incorrect python function and an error message. Explain how to fix 
the error, and then write an updated python function with the correct code.

### Incorrect Code:
def check_String(str):
        """
        Write a python function to check whether a string has at least one letter and one number.
        >>> check_String('thishasboth29')
        True
        >>> check_String('python')
        False
        >>> check_String ('string')
        False
        """
        if (str.isalnum()):
                return True
        else:
                return False

### Error:
Traceback (most recent call last):
  File "temp.py", line 27, in <module>
    check(check_String)
  File "temp.py", line 23, in check
    assert candidate('python') == False
AssertionError

### Response: The incorrect function is returning True for an input of "python", but it should return 
False, since there is no number. This is because the incorrect code does not check for both a letter 
and number. To fix this, the correct function can use two booleans to find both a letter and a number.
```python
def check_String(str):
        """
        Write a python function to check whether a string has at least one letter and one number.
        >>> check_String('thishasboth29')
        True
        >>> check_String('python')
        False
        >>> check_String ('string')
        False
        """
        has_letter = False
        has_number = False
        for char in str:
                if char.isalpha():
                        has_letter = True
                elif char.isdigit():
                        has_number = True
                if has_letter and has_number:
                        return True
        return False
```

### Instruction: You are given an incorrect python function and an error message. Explain how to fix 
the error, and then write an updated python function with the correct code.

### Incorrect Code: <Q,A>

### Error: <E>

### Response:

Figure 5: The prompt for generating a repair. For brevity, we only show a one-shot example. <Q,A> is replaced
with the question and previous answer, while <E> is replaced with the corresponding error.
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E Evaluation on CodeLlama-7b866
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Figure 6: Average pass@1 versus repair round for CodeLlama-7b. Round 0 denotes the initial generation.

14



F Evaluation on Mistral-7b 867
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Figure 7: Average pass@1 versus repair round for Mistral-7b. Round 0 denotes the initial generation.

15



G Pass@1 Comparison on CodeLlama-7b868

HumanEval Pass@1
Language Initial ICL Repair DistiLRR
Perl 0.207 0.347 ↑67.6% 0.421 ↑103.3%

Golang 0.178 0.352 ↑97.7% 0.372 ↑108.9%

Swift 0.184 0.361 ↑96.1% 0.392 ↑113.0%

Python 0.303 0.536 ↑76.8% 0.537 ↑77.2%

Javascript 0.324 0.455 ↑40.4% 0.481 ↑48.4%

Java 0.273 0.424 ↑55.3% 0.443 ↑62.2%

MBXP Pass@1
Perl 0.359 0.481 ↑33.9% 0.597 ↑66.2%

Golang 0.370 0.597 ↑61.3% 0.604 ↑63.2%

Swift 0.345 0.561 ↑62.6% 0.585 ↑69.5%

Python 0.440 0.646 ↑46.8% 0.651 ↑47.9%

Javascript 0.520 0.639 ↑22.8% 0.679 ↑30.5%

Java 0.444 0.595 ↑34.0% 0.662 ↑49.0%

Table 5: Pass@1 of initial generations vs pass@1 after code repair using ICL and DistiLRR for CodeLlama-7b.
Weak gains are in orange, moderate gains are in light green, and strong gains are in dark green.

H Pass@1 Comparison on Mistral-7b869

HumanEval Pass@1
Language Initial ICL Repair DistiLRR
Perl 0.144 0.314 ↑118.0% 0.371 ↑157.6%

Golang 0.140 0.310 ↑121.4% 0.321 ↑129.2%

Swift 0.188 0.357 ↑89.8% 0.366 ↑94.6%

Python 0.278 0.559 ↑101.0% 0.520 ↑87.0%

Javascript 0.345 0.472 ↑36.8% 0.526 ↑52.4%

Java 0.262 0.445 ↑69.8% 0.442 ↑68.7%

MBXP Pass@1
Perl 0.303 0.479 ↑58.0% 0.545 ↑79.8%

Golang 0.330 0.543 ↑64.5% 0.576 ↑74.5%

Swift 0.337 0.514 ↑52.5% 0.536 ↑59.0%

Python 0.432 0.643 ↑48.8% 0.643 ↑48.8%

Javascript 0.509 0.640 ↑25.7% 0.660 ↑29.6%

Java 0.460 0.661 ↑43.6% 0.648 ↑40.8%

Table 6: Pass@1 of initial generations vs pass@1 after code repair using ICL and DistiLRR for Mistral-7b. Weak
gains are in orange, moderate gains are in light green, and strong gains are in dark green.

I GPT-4 Judgement Prompt870

### Instruction: You are given an incorrect python function, an error message, and a 
rationale to fix the error. Classify if the rationale is 'Good' or 'Bad'. If the rationale 
provides enough detail to fix the code, output 'Good'. Otherwise, output 'Bad'.
### Incorrect Code: <Q,A>
### Error: <E>
### Rationale: <R>
### Response:

Figure 8: The prompt given to GPT-4 to judge rationale sufficiency. <Q,A> is replaced with the question and
previous answer, <E> is replaced with the corresponding error, and <R> is replaced with the repair model’s rationale.
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J Syntax Errors for CodeLlama-7b 871

HumanEval Average Syntax Errors
Initial Base ICL DistiLRR Teacher

Language Errors Repair Repair Repair Repair
Perl 21.2 21.0 ↓0.2 20.6 ↓0.6 12.8 ↓8.4 7.2 ↓14.0

Golang 39.1 72.8 ↑33.7 36.6 ↓2.5 30.8 ↓8.3 22.2 ↓16.9

Swift 78.1 57.2 ↓20.9 47.0 ↓31.1 48.4 ↓29.7 40.4 ↓37.7

Python 17.1 22.4 ↑5.3 23.5 ↑6.4 12.5 ↓4.6 7.8 ↓9.3

Javascript 10.6 10.0 ↓0.6 28.6 ↑18.0 13.2 ↑2.6 5.4 ↓5.2

Java 44.7 55.0 ↑10.3 44.6 ↓0.1 42.4 ↓2.3 20.4 ↓24.3

MBXP Average Syntax Errors
Perl 16.4 15.0 ↓1.4 15.7 ↓0.7 6.2 ↓10.2 3.5 ↓12.9

Golang 30.7 48.2 ↑17.5 18.2 ↓12.5 15.2 ↓15.2 12.6 ↓18.1

Swift 62.4 37.6 ↓24.8 22.6 ↓39.8 19.0 ↓43.4 19.4 ↓43.0

Python 2.3 7.4 ↑5.1 5.7 ↑3.4 2.5 ↑0.2 1.3 ↓1.0

Javascript 7.1 5.0 ↓2.1 14.6 ↑7.5 7.0 ↓0.1 2.0 ↓5.1

Java 31.4 33.2 ↑1.8 24.0 ↓7.4 20.6 ↓10.8 9.6 ↓21.8

Table 7: Average number of syntax errors after code repair for CodeLlama-7b. We also include a column containing
results from the GPT-3.5-Turbo teacher. We continue to see the trend where DistiLRR sees larger declines than ICL
for LRPLs.

K Syntax Errors for Mistral-7b 872

HumanEval Average Syntax Errors
Initial Base ICL DistiLRR Teacher

Language Errors Repair Repair Repair Repair
Perl 26.4 30.4 ↑4.0 24.0 ↓2.4 11.0 ↓15.4 9.4 ↓17.0

Golang 55.9 72.4 ↑16.5 48.2 ↓7.7 31.0 ↓24.9 25.2 ↓30.7

Swift 62.0 60.0 ↓2.0 54.0 ↓8.0 55.4 ↓6.6 39.8 ↓22.2

Python 14.5 17.2 ↑2.7 12.4 ↓2.1 13.5 ↓1.0 8.0 ↓6.5

Javascript 6.7 7.4 ↑0.7 16.6 ↑9.9 7.8 ↑1.1 7.8 ↑1.1

Java 41.4 42.2 ↑0.8 36.2 ↓5.2 31.4 ↓10.0 19.2 ↓22.2

MBXP Average Syntax Errors
Perl 26.3 25.2 ↓1.1 24.0 ↓2.3 6.0 ↓20.3 4.2 ↓22.1

Golang 43.6 40.0 ↓3.6 27.2 ↓16.4 13.8 ↓29.8 13.2 ↓30.4

Swift 49.3 36.6 ↓12.7 32.6 ↓16.7 25.6 ↓23.7 21.6 ↓27.7

Python 0.9 3.6 ↑2.7 4.2 ↑3.3 3.2 ↑2.3 2.2 ↑1.3

Javascript 7.8 7.6 ↓0.2 10.4 ↑2.6 7.4 ↓0.4 3.6 ↓4.2

Java 29.9 15.0 ↓14.9 11.2 ↓18.7 14.0 ↓15.9 7.2 ↓22.7

Table 8: Average number of syntax errors after code repair for Mistral-7b. We also include a column containing
results from the GPT-3.5-Turbo teacher. We continue to see the trend where DistiLRR sees larger declines than ICL
for LRPLs.
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L DistiLRR vs Baselines Examples873

We hypothesize base models struggle to convert suggestions from the rationale into specific code modifica-874

tions. We provide examples of this for each language. In each example, ICL is provided a stellar rationale875

but generates incorrect code, while DistiLRR produces a decent rationale but generates correct code.876

These examples support that the correlation between rationale quality and code correctness is weaker than877

previously perceived, and that DistiLRR teaches models to respond better to feedback.878

### Instruction: You are given an incorrect perl 
function and an error message. Explain how to fix 
the error, and then write an updated perl 
function with the correct code.

### Incorrect Code:
# You are an expert Perl programmer, and here is 
your task.
# # remove_vowels is a function that takes string 
and returns string without vowels.
# >>> remove_vowels('')
# ''
# >>> remove_vowels("abcdef\nghijklm")
# 'bcdf\nghjklm'
# >>> remove_vowels('abcdef')
# 'bcdf'
# >>> remove_vowels('aaaaa')
# ''
# >>> remove_vowels('aaBAA')
# 'B'
# >>> remove_vowels('zbcd')
# 'zbcd'
#
sub remove_vowels
{
  my ($text) = @_;
  $text =~ s/[aeiou]//g;
  return $text;
}

### Error: Exception -- test case 4 did not pass. 
at temp.pl line 57.

### Response:

The incorrect function is using the wrong regex pattern to 
remove vowels. The correct function should use the pattern 
"[aeiou]".

sub remove_vowels
{
  my ($text) = @_;
  $text =~ s/[aeiou]//g;
  return $text;
}

To fix the error, we need to modify the regular expression 
pattern used in the substitution to be case-insensitive. 
Currently, it only matches lowercase vowels, so we need to 
make it match both lowercase and uppercase vowels. This 
can be achieved by adding the 'i' flag at the end of the 
pattern.

sub remove_vowels
{
  my ($text) = @_;
  $text =~ s/[aeiou]/i//g;
  return $text;
}

Base Repair

ICL Repair

Repair Prompt

The issue with the incorrect code is that it is not 
handling the case where the input string contains uppercase 
vowels. To fix this, we need to modify the regular 
expression to include uppercase vowels as well.

sub remove_vowels 
{
    my ($text) = @_;
    $text =~ s/[aeiouAEIOU]//g;
    return $text;
} DistiLRR Repair

Figure 9: Perl example from HumanEval question 51. The initial code is wrong because it does not remove
uppercase vowels. In base repair, we see a weak rationale that fails to diagnose the uppercase issue. In ICL, we see a
stellar rationale that proposes using the "i" regex flag for case insensitivity. However, the generated code incorrectly
modifies the regex to "/[aeiou]/i//g" instead of "/[aeiou]//gi", displaying a lack of knowledge. In DistiLRR, we see a
good rationale that suggests adding uppercase letters to the regex, followed by correct code modifications.
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### Instruction: You are given an incorrect 
golang function and an error message. Explain 
how to fix the error, and then write an updated 
golang function with the correct code.

### Incorrect Code:
// You're an expert Golang programmer
// Return the largest prime factor of n. 
Assume n > 1 and is not a prime.
// >>> largest_prime_factor(13195)
// 29
// >>> largest_prime_factor(2048)
// 2
//
func largest_prime_factor (n int) int {

    for n % 2 == 0 {
        n = n / 2
    }
    for n % 3 == 0 {
        n = n / 3
    }
    for n % 5 == 0 {
        n = n / 5
    }
    for n % 7 == 0 {
        n = n / 7
    }
    return n
}

### Error: panic: Exception --- test case 0 
failed to pass

### Response:

The incorrect function is wrong because it does not check for the prime factors of 
n. To fix this, the correct function should check for the prime factors of n, and 
return the largest one.
func largest_prime_factor (n int) int {
    for i := 2; i < n; i++ {
        if n % i == 0 {
            return i
        }
    }
    return n
}

The incorrect code is not correctly finding the prime factors of "n". Instead of 
hardcoding prime factors, you need to generalize the loop to check for all possible 
prime factors.
One way to achieve this is to iterate through all numbers starting from 2 up to the 
square root of "n" and check if each number is a factor of "n" and a prime number. 
This way, we can ensure that we are finding the largest prime factor of the given 
number "n" accurately.
func largest_prime_factor (n int) int {
    if n == 1 {
        return 1
    }
    if n % 2 == 0 {
        return 2
    }
    for i := 3; i <= int(n ** 0.5); i += 2 {
        for n % i == 0 {
            n /= i
        }
    }
    return n
}

Base Repair

ICL Repair

Repair Prompt

Test case 0 failed because the function is not correctly finding the largest prime 
factor of n. The function is currently returning n instead of the actual largest 
prime factor. To fix this, we need to update the function to iterate over all 
prime factors of n and return the largest one. Here is the corrected code:
func largest_prime_factor(n int) int {
    if n <= 1 {
        return n
    }
    for i := 2; i*i <= n; i++ {
        if n%i == 0 {
            n = n / i
            i--
        }
    }
    return n
}

DistiLRR Repair

Figure 10: Golang example from HumanEval question 59. The initial code is wrong because it hardcodes prime
factors. In base repair, we see a weak rationale that is unable to diagnose the hardcoding issue. In ICL, we see a
stellar rationale that suggests iterating over all numbers from 2 to

√
n. However, the generated code results in a

compilation error due to using "n ∗∗ 0.5" to obtain the square root (which does not work in golang), displaying
a lack of knowledge. In DistiLRR, we see a good rationale that provides a plan of iterating over prime factors,
followed by correct code modifications.
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### Instruction: You are given an incorrect swift function 
and an error message. Explain how to fix the error, and then 
write an updated swift function with the correct code.

### Incorrect Code:
/**
 * You are an expert Swift programmer, and here is your task.
 * Return list of prime factors of given integer in the order 
from smallest to largest.
 * Each of the factors should be listed number of times 
corresponding to how many times it appears in factorization.
 * Input number should be equal to the product of all factors
 * >>> factorize(8)
 * [2, 2, 2]
 * >>> factorize(25)
 * [5, 5]
 * >>> factorize(70)
 * [2, 5, 7]
 *
 */
func factorize(n : Int) -> [Int] {

    var factors = [Int]()
    var i = 2
    while i * i <= n {
        while n % i == 0 {
            factors.append(i)
            n /= i
        }
        i += 1
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}

### Error: temp.swift:21:15: error: left side of mutating 
operator isn't mutable: 'n' is a 'let' constant
            n /= i
            ~ ^

### Response:

The incorrect function is trying to modify the input number, which is a 
constant. To fix this, the correct function should return a new array of 
prime factors instead of modifying the input number.
func factorize(n : Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        while n % i == 0 {
            factors.append(i)
            n /= i
        }
        i += 1
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}

To fix the error in the given Swift function, you need to change the 
parameter declaration of `n` from `let` to `var`. This change will make `n` 
mutable so that you can reassign it when performing the division operation 
inside the while loop. By making this change, you will be able to update the 
value of `n` during the factorization process.
func factorize(n : Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        while n % i == 0 {
            factors.append(i)
            n /= i
        }
        i += 1
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}

Base Repair

ICL Repair

Repair Prompt

The error is due to trying to modify a constant 'n' in the function. To fix 
this, we need to create a mutable copy of 'n' before modifying it. Here is 
the corrected function:
func factorize(n: Int) -> [Int] {
    var n = n
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        while n % i == 0 {
            factors.append(i)
            n /= i
        }
        i += 1
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
} DistiLRR Repair

Figure 11: Swift example from HumanEval question 25. The initial code is wrong because it tries to modify the
immutable input variable n. For swift, input parameters are immutable by default. In base repair, we see a weak
rationale that does not specify how to fix the error. In ICL, we see a stellar rationale that explicitly mentions using
the "var" keyword. However, the generated code remains the same because the base model is unable to make
the necessary code modifications, displaying a lack of responsiveness. In DistiLRR, we see a good rationale that
proposes making a mutable copy, followed by correct code modifications through the additional line "var n = n".
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### Instruction: You are given an incorrect 
python function and an error message. Explain 
how to fix the error, and then write an updated 
python function with the correct code.

### Incorrect Code:
def digits(n):
    """Given a positive integer n, return the 
product of the odd digits.
    Return 0 if all digits are even.
    For example:
    digits(1)  == 1
    digits(4)  == 0
    digits(235) == 15
    """
    s = str(n)
    product = 1
    for digit in s:
        if int(digit) % 2 == 1:
            product *= int(digit)
    return product

### Error: Traceback (most recent call last):
  File "temp.py", line 41, in <module>
    check(digits)
  File "temp.py", line 38, in check
    assert candidate(2468) == 0
           ^^^^^^^^^^^^^^^^^^^^
AssertionError

### Response:

The incorrect function is returning 0 for an input of 
2468, but it should return 15, since there are 15 odd 
digits. This is because the incorrect code does not check 
for odd digits. To fix this, the correct function can use 
the modulo operator to check for odd digits.
def digits(n):
    s = str(n)
    product = 1
    for digit in s:
        if int(digit) % 2 == 1:
            product *= int(digit)
    return product

The error occurs when the function is called with an even 
number and it fails the test case for an even number. To 
fix this error, you need to modify the code to handle the 
case where all digits are even. Specifically, you should 
return 0 when there are no odd digits in the given number, 
rather than returning 1.
def digits(n):
    s = str(n)
    product = 1
    for digit in s:
        if int(digit) % 2 == 1:
            product *= int(digit)
    if product == 1:
        return 0
    return product

Base Repair

ICL Repair

Repair Prompt

The error in the code is that the function is not correctly 
handling the case where all digits are even. The function 
should return 0 if all digits are even. To fix this, we 
need to update the logic to check if all digits are even 
before returning the product. Here is the corrected code:
def digits(n):
    s = str(n)
    product = 1
    odd_count = 0
    for digit in s:
        if int(digit) % 2 == 1:
            odd_count += 1
            product *= int(digit)
    if odd_count == 0:
        return 0
    return product DistiLRR Repair

Figure 12: Python example from HumanEval question 131. The initial code is wrong because it returns 1 if there
are no odd digits, instead of 0. In base repair, we see a weak rationale that states wrong information. In ICL, we see
a stellar rationale that addresses the edge case and suggests returning 0 if there are no odd digits. However, the
generated code implements this incorrectly, displaying weak responsiveness. In DistiLRR, we see a good rationale
that suggests checking if all digits are even, followed by correct code modifications via the additional variable
"odd_count".
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### Instruction: You are given an 
incorrect javascript function and an 
error message. Explain how to fix the 
error, and then write an updated 
javascript function with the correct 
code.

### Incorrect Code:
/**
 * Evaluate whether the given number n 
can be written as the sum of exactly 4 
positive even numbers
 * Example
 * is_equal_to_sum_even(4) == False
 * is_equal_to_sum_even(6) == False
 * is_equal_to_sum_even(8) == True
 *
 */
function isEqualToSumEven(n) {
 for (let i = 2; i <= n; i += 2) {
    if (n - i === 2) {
      return true;
    }
  }
  return false;
}

### Error:
temp.js:29
    throw 'Error at 1th assert 
statement. Value = ' + 
JSON.stringify(x0)  
    ^
Error at 1th assert statement. Value = 
true
(Use `node --trace-uncaught ...` to 
show where the exception was thrown)

### Response:

The incorrect code is using a for loop to iterate through the numbers from 2 to n, and then checking if 
the number is equal to 2. However, the function description wants to check if the number can be written 
as the sum of exactly 4 positive even numbers. To fix this, the correct code should use a different 
approach to check if the number can be written as the sum of 4 positive even numbers.
function isEqualToSumEven(n) {
    let arr = [2, 4, 6, 8];
    let sum = 0;
    for (let i = 0; i < arr.length; i++) {
        if (n - arr[i] === 0) {
            return true;
        }
        sum += arr[i];
    }
    return false;
}

The error message is indicating that the code provided is not returning the correct output for the test 
case where `n` is 8. Currently, the code checks if `n - i` is equal to 2, which doesn't cover all 
possible combinations. You should update the logic in the function to iterate over possible combinations 
of 4 positive even numbers and check if their sum equals `n`. You can do this by considering all 
possible even numbers less than or equal to `n/4` and checking if there exists a combination of 4 even 
numbers that sum up to `n`. By making these adjustments, you can ensure that the function correctly 
checks if the given number `n` can be represented as the sum of exactly 4 positive even numbers.
function isEqualToSumEven(n) {
  let count = 0;
  for (let i = 2; i <= n; i += 2) {
    if (count === 4) return true;
    for (let j = 2; j <= n; j += 2) {
      if (count === 4) return true;
      for (let k = 2; k <= n; k += 2) {
        if (count === 4) return true;
        for (let l = 2; l <= n; l += 2) {
          if (count === 4) return true;
          if (i + j + k + l === n) {
            count++;
          }
        }
      }
    }
  }
  return false;
}

Base Repair

ICL Repair

Repair Prompt

The error indicates that the function is failing the first test case. The issue lies in the logic of 
the function, which is not correctly checking if the given number can be written as the sum of exactly 
4 positive even numbers. To fix this, we need to adjust the condition in the loop to ensure that the 
sum of 4 even numbers is equal to the given number. Here is the corrected code for the function:
function isEqualToSumEven(n) {
    for (let i = 2; i <= n; i += 2) {
        for (let j = i + 2; j <= n; j += 2) {
            for (let k = j + 2; k <= n; k += 2) {
                if (k + 2 === n) {
                    return true;
                }
            }
        }
    }
    return false;
} DistiLRR Repair

Figure 13: Javascript example from HumanEval question 138. The initial code is wrong because it checks if n
is a sum of 2 even numbers, instead of 4. In base repair, we see a decent rationale that lacks a highly detailed
plan. In ICL, we see a stellar rationale suggesting a highly detailed plan. However, the generated code implements
this incorrectly by misusing the "count" variable, displaying weak responsiveness. In DistiLRR, we see a decent
rationale that lacks a highly detailed plan, but correct code modifications anyways, displaying strong responsiveness.
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### Instruction: You are given an incorrect java function 
and an error message. Explain how to fix the error, and 
then write an updated java function with the correct code.

### Incorrect Code:
/**
 * This function takes a list l and returns a list l' such 
that
 * l' is identical to l in the odd indicies, while its 
values at the even indicies are equal
 * to the values of the even indicies of l, but sorted.
 * >>> sort_even([1, 2, 3])
 * [1, 2, 3]
 * >>> sort_even([5, 6, 3, 4])
 * [3, 6, 5, 4]
 *
 */
public static List<Integer> sortEven(List<Integer> l) {
    List<Integer> l2 = new ArrayList<Integer>();
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 == 0) {
            l2.add(l.get(i));
        }
    }
    Collections.sort(l2);
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 != 0) {
            l2.add(l.get(i));
        }
    }
    return l2;
}

### Error: 
Exception in thread "main" java.lang.Exception: Exception 
-- test case 0 did not pass. x0 = [1, 3, 2]
        at Main.main(Main.java:24)

### Response:

The incorrect function is trying to sort the even indices of the list, but 
it is not correctly identifying the even indices. To fix this, the correct 
function should use the modulo operator to check if the index is even.
public static List<Integer> sortEven(List<Integer> l) {
    List<Integer> l2 = new ArrayList<Integer>();
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 == 0) {
            l2.add(l.get(i));
        }
    }
    Collections.sort(l2);
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 != 0) {
            l2.add(l.get(i));
        }
    }
    return l2;
}

The error message indicates that the test case [1, 3, 2] did not pass. To 
fix this issue in the code, the function sortEven should correctly handle 
the even and odd indices when constructing the new list l2. Make sure that 
the values at even indices of l are added to l2 in sorted order, while the 
values at odd indices are retained from the original list. This adjustment 
will ensure that the function behaves as intended for sorting even indices.
public static List<Integer> sortEven(List<Integer> l) {
    List<Integer> l2 = new ArrayList<Integer>();
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 == 0) {
            l2.add(l.get(i));
        } else {
            l2.add(l.get(i));
        }
    }
    Collections.sort(l2);
    return l2;
}

Base Repair

ICL Repair

Repair Prompt

The error indicates that the test case is failing because the output is not 
correct. The issue in the incorrect code is that the sorting is happening 
incorrectly. To fix this, we need to sort the even indices of the list 
separately and then add them back to the original list in the correct order.
public static List<Integer> sortEven(List<Integer> l) {
    List<Integer> l2 = new ArrayList<Integer>();
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 == 0) {
            l2.add(l.get(i));
        }
    }
    Collections.sort(l2);
    for (int i = 0; i < l.size(); i++) {
        if (i % 2 == 0) {
            l.set(i, l2.get(i / 2));
        }
    }
    return l;
}

DistiLRR Repair

Figure 14: Java example from HumanEval question 37. The initial code is wrong because it first appends even
indices and then appends odd indices, instead of interleaving them. In base repair, we see a weak rationale and
no code modifications. In ICL, we see a stellar rationale suggesting to interleave odd/even indices. However, the
generated code incorrectly implements the sorting of even indices by sorting the entire list at the end, displaying
weak responsiveness. In DistiLRR, we see a good rationale suggesting to interleave odd/even indices, followed by
correct code modifications.
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