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Abstract

Learning adversarially robust models requires invariant predictions to a small
neighborhood of its natural inputs, often encountering insufficient model capacity.
There is research showing that learning multiple sub-models in an ensemble could
mitigate this insufficiency, further improving the generalization and the robustness.
However, the ensemble’s voting-based strategy excludes the possibility that the true
predictions remain with the minority. Therefore, this paper further improves the
ensemble through a collaboration scheme—Synergy-of-Experts (SoE). Compared
with the voting-based strategy, the SoE enables the possibility of correct predictions
even if there exists a single correct sub-model. In SoE, every sub-model fits its
specific vulnerability area and reserves the rest of the sub-models to fit other
vulnerability areas, which effectively optimizes the utilization of the model capacity.
Empirical experiments verify that SoE outperforms various ensemble methods
against white-box and transfer-based adversarial attacks. The source codes are
available at https://github.com/cuis15/synergy-of -experts]

1 Introduction

Deep models have been widely applied in various real-world applications including high-stakes
scenarios (such as in healthcare, finance, and autonomous driving). An increasing concern is whether
these models make adversarially robust decisions [1} 2]]. Recently, there are research revealing that
an adversarially robust method requires invariant predictions to a small neighborhood of its natural
inputs, thus often encountering insufficient model capacity [3}4]. This limits the further improvement
of robustness and has the undesirable degradation of generalization [3]].

Learning multiple sub-models in an ensemble [0} [7] can mitigate this insufficiency. Remarkably,
there are research [8| 9, [10] proposing to minimize the vulnerability overlaps between each pair of
sub-models and improving both robustness and generalization over a single model. However, the
voting-based ensemble may waste the limited capacity of multiple models.

In the example of three sub-models (see Figure[I(b)), the adversarial input that lies in the black areas
can fool the ensemble successfully, i.e., more than half of sub-models must correctly classify the
adversarial input. Therefore, the ensemble’s voting-based strategy excludes the possibility that true
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Figure 1: Illustrations of the vulnerability area of (a) Single model (b) Ensemble, and (c) Collaboration.
The black area represents the vulnerability area in which the model is undoubtedly fooled.

predictions remain with the minority. In other words, learning an ensemble requires more than half of
the sub-models to fit the same vulnerability areas, which leaves the following question unanswered
whether we could only leverage a single sub-model to fit a vulnerability area and reserve the rest of
the sub-models to fit other vulnerability areas.

Inspired by mixture-of-experts (MoE) [L1], we propose to learn a collaboration among multiple sub-
models to optimally utilize the limited capacity. As shown in Figure[T(c)] the adversarial input that
lies in the vulnerability overlaps of all sub-models can undoubtedly fool the collaboration. Compared
with the ensemble in Figure[I(b)), collaboration enables the possibility of correct predictions even
if there exists a single correct sub-model. Besides, learning a collaboration could enable every
sub-model to fit its vulnerability area, which could collectively fix broader vulnerability areas. Then,
sub-models could collaboratively choose a trustworthy one to make the final predictions.

Classic MoE methods assume that the problem space is separable, and the separability is irrelevant
to the learned model [[11]. However, the non-i.i.d adversarial inputs [12] depend on the learned
models and are hard to be classified by a learned gate in MoE. To tackle the above challenge, we
propose Synergy-of-Experts (SoE), which explicitly builds the relationship between learned models
and adversarial inputs. Specifically, each sub-model has dual heads: one outputs a vector of predicted
probability fy(-); another outputs a scalar that measures the confidence of the prediction. In the
adversarial training phase, given an adversarial input x, each sub-model chooses an easy one(s) to
feed itself. The other head is meanwhile updated by comparing the predicted probability on the true
label—fJ/ () (a scalar). In the inference phase, given an input, SOE chooses a sub-model with the
largest confidence as the representative to output the overall prediction.

We highlight our key contributions as follows.

* We provide a new perspective on learning multiple sub-models for defending against adver-
sarial attacks. We show that the collaboration could make better decisions than the ensemble
(Proposition|[T)), which implies collaboration may fix broader vulnerability areas.

 We propose a novel collaboration framework—SoE (see Section [3.2). In the training phase,
SoE minimizes the vulnerability overlap of all sub-models; In the inference phase, SoE could
effectively choose a representative sub-model to make correct predictions. We also provide
a comprehensive analysis illustrating the rationale of SoE in Appendix.

* Empirical experiments corroborate the SoE outperforms various ensemble methods [10} |8,
Ol [13] against white-box and transfer attacks.

2 Related Work

Adversarial attack. Adversarial attacks aim to craft the human-imperceptible adversarial input
to fool the deep models. Adversarial attacks could be roughly divided into white-box attacks in
which the adversary is fully aware of the model’s structures [[1} [14} [15] [16} [17, [18} [19} 20} 21}, 22}
23| 241 125 26] and black-box attacks in which the deep models are treated as black boxes to the
adversary [27, 128 29,130, 31} 132},133| 134} 135, [36]]. This paper focuses on building effective defense
and select both white-box and black-box attack methods as our robustness evaluation metrics.



Adversarial defense. Defending adversarial attacks is a challenging task and researchers have
proposed various solutions. Certified defense tries to learn provably robust deep models against norm-
bounded (e.g., {2 and ¢, ) perturbations [37, 38}, 39| |40, 411,142} |43]144| [45], |46 |47, 48], [49]]. Empirical
defense. leverages adversarial data to build effective defense such as adversary detection [30, 51,
52,1531 1541 155 156, 157, 158,159, 160, 1611 162, 163\, 164, 165, 166, 167, 68]] and adversarial training (AT), in
which AT stands out as the most effective defense. Researchers have investigated various aspects
of AT, such as improving AT’s robustness or generalization [J5 69\ [70L [71} 72} 73] 74, [75, [76} 77,
78, (7941801 181, 182 183 184! 185 186, 871 188\ 189, 3], fixing AT’s undesirable robust overfitting [90, 91}
92||, improving AT’s training efficiency [93, 94} 95, 196, |97, 98], understanding/interpreting AT’s
unique traits [99, (100} [101}, (102, (103} [104} [105} (106} [107} (108, 149, (109, [110], applying AT into
applications [[111,[112], etc. Besides, researchers have also actively investigated robust-structured
models [113} 114} 115,116} [117,[118,119]). Nevertheless, the above research thoroughly investigated
a single model; this paper focuses on the collaboration among multiple models for adversarial defense.

Ensemble methods for adversarial robustness. The most relevant studies are the ensemble
methods. Ensemble methods such as bagging [6] and boosting [7] have been investigated for
significantly improving the model’s generalization. Motivated by the benefits of ensemble methods in
improving generalization, researchers introduced an ensemble to improve the model robustness [/10,
9. 18, [120]]. Tramer et al. [120] proposed to reduce the adversarial transferability by training a single
model with adversarial examples from multiple pretrained sub-models. Pang et al. [8] introduce
a regularization method—ADP—to encourage high diversity in the non-maximal predictions of
sub-models. Kariyappa et al. [9] improved the ensemble diversity by maximizing the introduced
cosine distance between the gradients of sub-models with respect to the input. Yang et al. [10]
proposed to distill non-robust features in the input and diversify the adversarial vulnerability. These
methods reduced overlaps of vulnerability areas between sub-models [[10]. Compared with voting
strategy in ensemble, mixture-of-experts (MoE) assumes that the problem space can be divided
into multiple sub-problems through a gate module [[11},[121]]. However, in adversarial training, the
adversarial samples, which depend on the learned models, are not i.i.d. A vanilla MoE is hard to
identify the best performing sub-models for each adversarial sample without the information about
the learned models.

3 Collaboration to Defend Against Adversarial Attacks
3.1 Superiority of Collaboration

This section shows a collaboration, in theory, could make better decisions than an ensemble.
Ensemble. Suppose that there are M learned sub-models { fy, , fo,, ---, fo,, }> given an input z, M

sub-models make predictions { Jo. (%), fo, (), ..., for () } The ensemble outputs a final prediction
ensemble(z, fq, , ..., fo,,) by the voting-based strategy:

M
ensemble(x, fo, , ..., fo,,) = argmax ey .k} <Z Ly=so, (m)> , 1)

i=1

where 1 is the indicator function and K denotes the number of classes. Note that the ensemble
outputs the predicted label y that agrees with the majority predictions of the sub-models.

Definition 1 (best-performing sub-model). Given an input x and its label y, the best-performing
sub-model achieves the lowest objective loss on the data (x,y) among all M sub-models:

fgbest ('T) = arg min E(f@i (Jf), y) )

Note that the best-performing sub-model is w.r.t. the input data (x,y), i.e., different input data
correspond to different best-performing sub-models.

Collaboration. Suppose that there are M learned sub-models { fy, , fo,, ---, fo,, }- Given an input
x, sub-models make predictions { fo, (), fo, (), ..., fo,,(x) }- The collaboration tries to output a
final prediction collaboration(z, fy,, ..., fo,,) by the best-performing sub-model:

collaboration(z, fo,, ..., for) = foues (T)- 3)
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Figure 2: (a) The blue and pink lines denote the decision boundaries of two sub-models. Each
sub-model makes negative predictions (—) on its left and makes positive predictions on its right
(+). The given data will be assigned to the sub-model that has the lowest objective loss. The
arrows represent the data assignment. (b) Each sub-model has two heads—P head that outputs the
predicted probability (vector) and E head approximates the predicted probability of the true label in
the prediction (scalar).
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Figure 3: Optimization process of the M sub-models in a collaboration

Proposition 1. Given M learned sub-models, the predicted accuracy of the collaboration is upper-
bounded that of the ensemble, i.e.,

E(I,y)ED [1collaboration(w,f91 oo fony ):y] > E(w7y)6D [1ensemble(m,f91 seesfopny ):y] . (4)
Proof. Given an (x,y) € D, if the ensemble’s prediction is correct, at least one sub-model makes
correct prediction, i.e., 1 Fopon, (@)=y holds; therefore, the collaboration’ prediction is correct. If
the collaboration’s prediction is correct, there exists a case that the majority of sub-models make
consistent but wrong predictions, while a single sub-model’s prediction is correct; then, ensemble’s
prediction is wrong. Therefore, Proposition [T]holds. O

From Proposition|[I] a collaboration could achieve an equal or higher performance than an ensemble.
Compared with the ensemble, the collaboration requires the identification of the best-performing
sub-models using label information. Next, we will introduce a realization of our collaboration
framework.

3.2 Realization of collaboration for defending against adversarial attacks

Notation. We firstly introduce the needed notations. Suppose X and ) denote input space and
output space, where ) = {1, ..., K'} for a K-class classification problem. There are N samples
in the dataset D = {(z,y)}, where x € X and y € Y. Let dip¢(x,2') = ||z — 2’| denotes the
infinity distance metric, and B.[z] = {2’ € X | dint (2, 2") < €} is the closed ball of of radius € > 0
centered at z. To search for adversarial data within norm ball B.[z], [5]] proposed a projected gradient
descent (PGD) method that iteratively searches for adversarial data  (x refers to natural data). fy(z)
outputs a K-dimensional predicted probability, i.e., p(x) = [p1(z), ..., Pr (z)].

Goal of collaboration. 1) ensure the correct prediction of the best-performing sub-model for a
given input, and 2) select the best-performing sub-model among all sub-models to make predictions.

First, intuitively, every sub-model in a collaboration should maximize its expertise to fit its areas and
leave the remaining areas fitted by others. As a result, the collaboration can minimize the vulnerability
overlaps of all sub-models. Section 4 shows “minimizing the vulnerability overlap of all sub-models”



Algorithm 1 training phase I: the sub-model training
M

Input: the sub-models with dual heads { fp, }fﬁl and {gy, },_,, where fy, outputs the label predic-
tion and g4, outputs the approximated confidence, the training dataset D, and the hyperparameter
o

1: for each data (z,y) € D do

2:  for each sub-model fy,,i =1,2,..., M do
3 Obtain the adversarial data 7% of the sub-model fy, using the PGD method;

4 for each sub-model fy,,7 = 1,2,..., M do

5: Calculate the approximated confidence, i.e., g4, (z%);

6 Minimize BCE loss £, = BCE(gy, (2%), p,(2%")) to update the module gy, ;
7 Collect sub-model 7’s cross entropy (CE) loss on data 7% : ¢ ( o, (5:01') ,y);

8

9

end for
- / —¢ (7% K
Calculate surrogate loss on data #%: /,, = —cIn Z;\il exp (W) ;
10 Update { fy, }Zl\i1 by minimizing /,,,. //choose the best-performing sub-model to fit £
11:  end for
12: end for

13: Output: the learned sub-models with dual heads { fy, }gl and {g, }gl

is “minimizing the objective loss of the best-performing sub-models”. Therefore, during the training
phase, the given data should always be allocated to the sub-model that has the lowest objective loss.
In other words, the sub-models always choose the easiest data to learn. In the example of Figure [2(a)}
1) Data@®) is misclassified by both sub-models. The blue sub-model is near Data@) and has the lowest
objective loss. We assign the blue sub-model to fit Data@). i7) Data@) is correctly classified by the
pink model but wrongly classified by the blue model; for ease of effort, we assign the pink model to
fit Data@), because the collaboration can correctly be classified Data@) by selecting the pink model
as the representative. ii) Data(D) is correctly classified by both models. The blue model is far from
Data(l) and takes the lowest effort on fitting it; therefore, we assign the blue model to fit Data(D).

Second, to select the best-performing sub-model, we construct dual-head structured sub-models. As
shown in Figure our sub-model has dual heads: 1) predictor (P) head: fy predicts the label
probability fo(z) = p(z) = [p1(x), ..., Pr (z)] (a vector); 2) evaluator (E) head: g, approximates
the confidence of the prediction p(z).

Note that we use g, to approximate the true label probability p, (), which denotes the true confidence
of a given prediction p(z). Meanwhile, the largest confidence corresponds to the lowest objective loss,
and vice versa (see theoretical proof in Proposition [2)). Therefore, the best-performing sub-models
could be identified using the approximated confidence (g, ()) by the E head.

To defend against adversarial attacks, the collaboration needs to
the sub-model learn from adversarial data. Algorithm[I|2]along with Figure

training - articulates how to learn such the collaboration. In particular, the
training of our framework SoE shown in Figure {|is as follows:

' 1

. the sub-model training: the sub-models fit adversarial

i samples from their own or other sub-models;
[the ctorgﬁlk;grgatlon] > Alg. 2 p | " |
2. the collaboration training: the sub-models fit adversarial
samples from the collaboration.
the learned SoE The sub-model training. As shown in Figure[3(al), given a

natural training data x and its label y, we use the PGD method
to obtain M adversarial variants {7}, of M sub-models as
existing baselines do. For each adversarial variant %, we assign
the best-performing sub-model to learn and update its feature extractor and label head. This process
corresponds to Lines 1-8 and Lines 9-10 in Algorithm[I] Note that in Line 9, we use a surrogate loss
to approximate the sub-model assignment process (reasons see Eq.[5]and[6). As shown in Figure 3(b),
given an adversarial variant 2%, we propose to use the binary-cross-entropy (BCE) loss between

Figure 4: Training process of SoE.



Algorithm 2 training phase II: the collaboration training

Input: sub-models with dual heads { fgi}ﬁl and {g@}ﬁl, where fy, outputs the label

prediction and g4, outputs the approximated confidence, training dataset D, hyperparameter
o;
1: for each data (z,y) € D do
2:  for each sub-model fy,,i =1,2,..., M do
3 Calculate the approximated confidence, i.e., g¢, (2);
4: Calculate the prediction i.e., fo, (z);
5.  end for
6:  Output the prediction p’(x) with the highest confidence;
7:  Obtain Z by perturbing x to worsen the prediction; // generate the adversarial samples of the
collaboration
8:  Minimize BCE loss {4 (Z) to update the module g of all sub-models;
9:  Update { fo, }fﬁl to fit # by minimizing the surrogate loss £, (%);
10: end for
11: Output: the learned sub-models { fgi}i]\il with { g¢i}?i1

the predicted label probability on the true label (i.e., ﬁy(;ﬁei )) and the approximated confidence (i.e.,
g¢(:739i)) to update each sub-model’s E head. This process corresponds to Lines 5-6 in Algorithm

The collaboration training. During the sub-model training, we learn the most adversarial data from
each sub-model using the sub-models performing best. The most adversarial samples cannot attack
the collaboration successfully. However, there may exist harmful samples (which may not be the most
adversarial for any sub-model) that are unexplored and can attack all sub-models. Therefore, the sub-
model training may converge without a full exploration of the adversarial samples. (The experimental
verification about this could be found in Appendix.) To defend these potential adversarial samples,
we propose the collaboration training shown in Figure [3] (a2) and Algorithm 2] Firstly, we propose to
generate the adversarial samples that can worsen the outputs of the collaboration. In particular, for
each data sample x, we output the prediction p(z) whose confidence g () is the highest. We perturb
z to fool the prediction using PGD method. Then we minimize a surrogate loss to fit this adversarial
data Z. This process is detailly shown in Algorithm[2] We use Algorithm [T] and Algorithm [2]in
sequence to train our collaboration. Algorithm [2]is proposed to explore the adversarial samples
which could be not the most adversarial samples of any sub-model, but could fool all sub-models. In
Algorithm 2] we attack the collaboration iteratively to obtain the adversarial samples. However, in
each iteration we update the adversarial sample Z, the best-performing sub-model could be different.
For example, in the first iteration, given the input x, the best-performing sub-model is fp,. We obtain
an adversarial sample Z’ by attacking fy,. However, in the second iteration, given the input Z’, the
best-performing sub-model is another sub-model (e.g., fy,). We attack the best-performing sub-
model fp, to obtain the adversarial sample Z”. Therefore, by attacking the collaboration following
Algorithm[2] we could obtain the adversarial sample Z” which is not the most adversarial samples
but could fool all sub-models and is unseen in Algorithm

During the inference phase shown in Algorithm 3 in Appendix, once M sub-models are properly
learned, SoE chooses a representative sub-model whose confidence is the highest among all sub-
models, and then outputs this sub-model’s prediction.

3.3 Analyses of SoE

Optimizing the best-performing sub-models. We firstly show that minimizing the vulnerability
overlap of all sub-models is equal to minimizing the objective loss of the best-performing sub-models.
For ease of optimization of the best-performing sub-model, we provide a surrogate loss.

The vulnerability overlap of all sub-models refers to the set of adversarial data (Z,y) that are
misclassified by all sub-models, i.e., all sub-models’ objective loss is higher than a certain degree
6t ming, eqg, .00,y £(fo,(Z,y)) > 6, I € D, where D denotes the vulnerability overlap of all
sub-models.



To reduce the vulnerability overlap of all sub-models, we only need to reduce objective loss of a
single model, which is equal to minimizing the loss of the best-performing sub-model, i.e.,

(0102000t} enep (Fictra...an bes@,9))

h . ~0; _ : (794
where  Lyes (3%, y) je{lr’g’l{aM}f(fe,(z ),y)

&)

where 7% is the adversarial data generated by the sub-model fj,.

While directly performing the outer minimization in Eq.(3)) may cause a trivial solution (e.g., there is
only one optimized sub-model), for ease of the optimization of Eq.(5) (Corresponding to Lines 9-10
in Algorithm [I)), we provide a surrogate objective as follows.

min {01,02,....0M: } E(m,y)ED (Eie{l,Q,...,N[}ém(iﬂivy)) ) (6)
M (E(fej (%))

where /,,, (2%, y) = —oIn Y j—1€XP and o > 0 is a pre-defined hyper-parameter.

In Eq.(@, we approximate the objective ming, ¢, 0,,....0,,} £ (fo, (%), y) using a smooth surro-

gated maximum function due to

i (E%),y) = 8- In(M) < 0,,(2%),y) < ' (7)) .
je{lg}§7kj}€(fe](w ),y) =0 -In(M) < €y, (E )’y)—je{fgfﬂM}g(f%(“; 7))

The proof of Eq.(7) is in Appendix.

The best-performing sub-model has the highest confidence. We show that a sub-model with
the highest confidence achieves the minimum of the objective loss among all sub-models, i.e., the
best-performing sub-model.

,,,,,

Proposition 2. Given an input x, the sub-model that has the highest confidence corresponds to the
best-performing sub-model, i.e.,

argmax confidence(fy,(r)) = argmin £(fy,(x),y). 8)
je{1,2,...,M} je{1,2,..M}

where confidence corresponds to the probability of the true label in a given p(z). To learn the E
head to approximate the confidence of p(z), we could simply compare its output with the predicted
probability on the true label (i.e.,p, (x)), then update the E head by gradient descent (corresponds to
Lines 67 in Algorithm E]) Given an input to the collaboration, our dual-head structured sub-models
can collaboratively decide the best-performing sub-model by comparing the values of the E head
(corresponds to Algorithm 3 in Appendix).

Note that the E head may be susceptible to adversarial attacks in the white-box setting. In our
implementation, we use a simple linear structure to regress the confidence. Experimental results on
adaptive attacks demonstrate the reliability of our framework.

4 Experiments

In this section, we conduct experiments on a benchmark dataset to verify the effectiveness of our
method in defending against white-box and transfer attacks. Then we provide ablation studies to
demonstrate the significance of the collaboration training described in Algorithm[2] The experimental
results about black-box attacks and more discussions could be found in Appendix.

4.1 Experimental Setup

Following the work in [10], we compare our method with various related methods, including ADP [§]],
GAL [9]], DVERGE [10]] and MoRE [13]]. We use ResNet-20 [[122] as sub-models in all methods for
fair comparisons, and we use CIFAR10 as the data set, a classical image dataset [123] that has 50,000
training images and 10,000 test images.

4.2 Performance on White-box attack

As there are mainly two threat modes in the adversarial attack setting: white-box attack and black-box
attack. White-box attack refers to that attackers know all the information about the models, including
training data, model architectures, and parameters, while black-box attackers have no access to the
information about the model’s structures and parameters and rely on surrogate models to generate
transferable adversarial examples.
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Figure 5: SoE robustness with varying A under adaptive attacks with € € {0.01,0.02, ...,0.07}.

We compare our method with 4 baselines on defending against white-box attacks using a subset
of CIFAR10. We use 50-step PGD with five random starts and the step size of €/5 to attack all
methods as in [10]. We learn the models in adversarial training and evaluate the robustness under
various attacks with the same e. For example, to evaluate the robustness under white-box attack with
€ = 0.01, we first learn the models in adversarial training with ¢ = 0.01. We evaluate all methods
following the setting in [10]. In particular, we randomly select 1000 samples under different €. For
the PGD attack, we select the cross-entropy loss to update the perturbations to search for adversarial
samples. In addition to the robustness, we also report the performance of all methods on clean data
with the adversarial training under different e.

Table 1: Robustness and clean data accuracy (%) under white-box attack.

e(robust/clean) 0.01 0.02 0.03 0.04 0.05 0.06 0.07
GAL 49.5/87.8  31.4/854  25.4/81.2  22.7/78.7 18.4/77.3 13.4/76.2 9.0/76.0
DVERGE 67.3/85.4  52.3/83.0  41.1/79.7  29.9/77.6  22.5/76.7 14.2/75.8 10.0/75.3
MoRE 67.9/88.0 49.9/853  37.8/82.0  31.3/79.5  24.0/78.2 15.6/77.1 12.3/77.8
ADP 67.7/89.0  52.9/86.8  40.8/85.4  30.8/83.3  25.8/76.0 = 23.4/66.4  20.3/63.0
SoE 72.0/88.8  57.5/85.6  47.8/80.2  38.7/80.0  30.4/79.1 24.3/76.7  24.0/74.1

SoE (adaptive) ~ 70.9/88.8  56.2/85.6 ~ 45.6/80.2  38.7/80.0 = 28.9/79.1 = 22.1/76.7  21.8/74.1

From Table[I] SoE achieves a better robustness performance under white-box attack. The results
verify that collaboration significantly improves the utilization of the limited model capacity. Therefore,
SoE can fit more adversarial data and have a relatively smaller vulnerable area.

Performance on Adaptive Attacks. We follow the suggestions in [124] and conduct two
different adaptive attacks to fool the dual heads simultaneously. For the first adaptive at-
tack, we attack the E head to minimize the confidence of the best-performing sub-model. In
particular, we maximize /; = BCE(gg,(z),1), where j = argmax;c[as] g¢, () means the
j-th sub-model is identified as the best-performing sub-model. For the second adaptive at-
tack, we try to achieve a mismatch between the correct predictions and the highest confi-

dence. Specifically, we maximize l» = —log { fo; (2), * 9¢; (x) +1 — gg,; (x)|, where j =
arg max;eqy] — log [fei (), * g, (z) +1— gg, (:c)} We conduct experiments by maximizing

the weighted loss (9% = ¢(fo(x),y) + A - £1 and (3% = 0(fa(x),y) + A - £ with varying \. The
robustness with respect to A on the stronger adaptive attack (i.e., the attack achieves a higher success
rate) is shown in Figure[5] Though both adaptive attacks could attack the predictor and the evaluator

Table 2: Transfer attack with 3 adversarial variants (%).

\i 0.01 0.02 0.03 0.04 0.05 0.06 0.07
methods

GAL 642110 487107 502135 499132 23145 Miise 22111
ADP 85.64+ 2 8294 o 7834+ 3 73241 69.64 2 6044 o 5744 1
MoRE 84.84 3 82.14 1 7844 o 7434 1 73241 7034 2 69.14 3
DVERGE 8344 3 80.14 2 773+ 1 7244 4 7194 o 68.8+ 3 6621 o
SoE 8524 1 8344 7884+ 1 76.6+ 2 74.64 1 7234+ 2 7021 o

simultaneously, the evaluator in our method is robust to the adversarial samples because of its sample
structure. As seen in Figure [5|and Table[I] our method is slightly degraded by adaptive attacks and
still outperforms baseline models.

4.3 Visualization of the our Collaboration Scheme

To intuitively understand the collaboration mechanism of our proposed SoE, we show the decision
boundaries of the ensemble and the collaboration in Figure[6] In particular, we learn the ensemble
and the collaboration with 3 ResNet-20 sub-models on CIFAR10 dataset with adversarial training.



Table 3: Transfer attack with 30 adversarial variants (%).

\dse\ 0.01 0.02 0.03 0.04 0.05 0.06 0.07
metho

GAL 578432 64137 463125  56.0+3.0 439131 445120 4ldiszo
ADP 84215 80212 73711 69415 65219 5671 544y
MoRE 83713 796410  T4dro 70245 67611 638+ 59310
DVERGE 81543 78.14+ 3 73.5+ 3 6844 1 6724 2 63.84 1 5714 2
SoE 83113  804r. 75113 7081,  69.0r.  640L5;  6LI:.o
sub-model 1 sub-model 2 sub-model 3 Ensemble

sub-model 1 sub-model 2 sub-model 3 Collaboration

Figure 6: The visualization of the decision boundaries of the ensemble and the collaboration. The
same color areas denotes the same predicted label. The black regions means that the models predict
correctly while other color regions means that the models are fooled and predict incorrectly. The
vertical axis is along the adversarial direction and the horizontal axis is along a random Rademacher
vector.

The same color areas in Figure [6]denotes the same predicted label. The black regions means that
the models predict correctly while other color regions means that the models are fooled and predict
incorrectly. The ensemble defending against attacks requires more than half of the sub-models fit the
same vulnerability areas. From the top of Figure[d] all sub-models fit similar vulnerability areas and
there is a boarder vulnerability overlap between sub-models. Our proposed collaboration proposes
to minimize the overlap of all sub-models. From the bottem of Figure [6] different sub-models
defend against different vulnerability areas collaboratively and our collaboration achieves a smaller
vulnerability areas.

4.4 Performance on Transfer Attack

Due to the transferability of adversarial examples, transfer adversaries can craft adversarial examples
based on surrogate models and perform an attack on the target model. In our experiments, we follow
the transfer attack setting in [[10]] and select 1000 test samples randomly. We use hold-out baseline
ensembles with three ResNet-20 sub-models as the surrogate models to generate adversarial samples.
In particular, we use three attack methodologies: PGD with momentum [35]], SGM [29] which adds
weight to the gradient through the skip connections of the model, and M-FGSM [36] which randomly
augments the input images in each step. For each sample, three adversarial variants are using the
three attack methods. Only when the model can classify all kinds of adversarial variants can the
model successfully defend against adversarial attacks. We show the results of all methods in Table [2]
Furthermore, we also use a more challenging setting following the work in [[10]. We use hold-out
baseline models with 3, 5, and 8 ResNet-20 sub-models as the surrogate models. Meanwhile, we
generate adversarial samples with cross-entropy loss and CW loss [15]]. For each sample, we generate
30 adversarial variants, and only if the model classifies all the 30 variants can the model defend the
transfer attack successfully. The results are shown in Table[3]

In our experiments, GAL is hard to learn stably in adversarial training. In Table|2|, when 0.01 < e,
SoE achieves a better performance compared with baselines. With the increase of €, the volume



of e-ball increases exponentially. The performances of all methods get worse significantly because
of insufficient model capacity. Similar results can also be found in Table[3] Since SoE addresses
more adversarial data using a collaboration mechanism, it achieves a relatively better robustness
performance as € increases.

4.5 The Robustness of SoE under Different Number of Sub-models

To explore the robustness of the collaboration under different e with different number of sub-models,
we conduct experiments under transfer attacks with different number of sub-models (1 < N < 5).
The detailed information could be found in Section 4.3 in Appendix. In summary, we have the
following findings. For different e, more sub-models could achieve a more significant robustness
improvement with the increase of €. For different number of sub-models, more sub-models are more
likely to achieve a higher robustness, but the margin gain decreases with more sub-models.

5 Conclusion

In this paper, we study an essential question in the field of adversarial attacks that when we should
collaborate. (¢) If a single model can handle everything, there is no need for multiple models. (i)
If a single model can only handle a part of the whole, collaboration among multiple models makes
sense. Adversarial defense is a typical task that falls into the circumstance (i7) because a single model
hardly fits adversarial data. We provided a collaboration framework—SoE—as the defense strategy
over ensemble methods, and empirical experiments indeed verified the efficacy of SoE. Future work
includes applying our collaboration framework to other areas such as kernel methods, fairness, and
federated model, etc.
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