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ABSTRACT

In this paper, we provide an information-theoretic (IT) understanding of self-
supervised learning methods, their construction, and optimality. As a first step,
we demonstrate how IT quantities can be obtained for deterministic networks as
an alternative to the commonly used unrealistic stochastic networks assumption.
Secondly, we demonstrate how different SSL models can be (re)discovered based on
first principles and highlight the underlying assumptions of different SSL variants.
Based on this understanding, we present new SSL methods that are superior to
existing methods in terms of performance. Third, we derive a novel generalization
bound based on our IT understanding of SSL methods, providing generalization
guarantees for the downstream supervised learning task. As a result of this bound,
along with our unified view of SSL, we can compare the different approaches
and provide general guidelines to practitioners. Consequently, our derivation and
insights contribute to a better understanding of SSL and transfer learning from a
theoretical and practical perspective.

1 INTRODUCTION

Self-Supervised Learning methods (SSL) learn representations using a surrogate objective between
inputs and self-defined signals. In SimCLR (Chen et al., 2020), for example, a contrastive loss is
defined that makes representations for different versions of the same image similar, while making the
representations for different images different. After optimizing the surrogate objective, the pre-trained
model is used as a feature extractor for a downstream supervised task, such as image classification,
object detection, instance segmentation and transfer learning (Caron et al., 2021; Chen et al., 2020;
Misra & Maaten, 2020; Shwartz-Ziv et al., 2022). However, despite success in practice, only a few
number of authors (Arora et al., 2019; Lee et al., 2021a) have sought to provide theoretical insights
about the effectiveness of SSL.

In recent years, information theory methods have played a key role in several deep learning achieve-
ments, from practical applications in representation learning (Alemi et al., 2016), to theoretical
investigations (Xu & Raginsky, 2017; Steinke & Zakynthinou, 2020; Shwartz-Ziv, 2022). Moreover,
different deep learning problems have been successfully approached by developing and applying
novel estimators and learning principles derived from information-theoretic quantities. Specifically,
many works have attempted to analyze SSL from an information theory perspective. An example is
the use of the renowned information maximization (InfoMax) principle (Linsker, 1988) in SSL (Bach-
man et al., 2019). However, looking at these works may be confusing. Numerous objective functions
are presented without a rigorous justification, some contradicting each other, as well as many implicit
assumptions (Kahana & Hoshen, 2022; Wang et al., 2022; Lee et al., 2021b) Moreover, these works
rely on a crucial assumption: a stochastic DN mapping, which is rarely the case nowadays.

This paper presents a unified framework for SSL methods from an information theory perspective,
which can be applied to deterministic DN training. We summarize our contributions into four
points: (i) First, in order to study deterministic DNs from an information theory perspective, we
shift stochasticity to the DN input, which is a much more faithful assumption for current training
techniques. (ii) Second, based on this formulation, we analyze how current SSL methods that use
deterministic networks optimize information-theoretic quantities. (iii) Third, we present new SSL
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methods based on our analysis and empirically validate their superior performance. (iv) Fourth, we
study how the optimization of information-theoretic quantities is related to the final performance in
the downstream task using a new generalization bound.

2 BACKGROUND

Continuous Piecewise Affine (CPA) Mappings. A rich class of functions emerges from piecewise
polynomials: spline operators. In short, given a partition Ω of a domain RD, a spline of order k is a
mapping defined by a polynomial of order k on each region ω ∈ Ω with continuity constraints on the
entire domain for the derivatives of order 0,. . . ,k − 1. As we will focus on affine splines (k = 1), we
define this case only for concreteness. An K-dimensional affine spline f produces its output via

f(z) =
∑
ω∈Ω

(Aωz + bω)1{z∈ω}, (1)

with input z ∈ RD and Aω ∈ RK×D, bω ∈ RK ,∀ω ∈ Ω the per-region slope and offset param-
eters respectively, with the key constraint that the entire mapping is continuous over the domain
f ∈ C0(RD). Spline operators and especially affine spline operators have been widely used in
function approximation theory (Cheney & Light, 2009), optimal control (Egerstedt & Martin, 2009),
statistics (Fantuzzi et al., 2002), and related fields.
Deep Networks. A deep network (DN) is a (non-linear) operator fΘ with parameters Θ that map
a input x ∈ RD to a prediction y ∈ RK . The precise definitions of DNs operators can be found in
Goodfellow et al. (2016). We will omit the Θ notation for clarity unless needed. The only assumption
we require for our study is that the non-linearities present in the DN are CPA, as is the case with
(leaky-) ReLU, absolute value, and max-pooling. In that case, the entire input-output mapping
becomes a CPA spline with an implicit partition Ω, the function of the weights and architecture of the
network (Montufar et al., 2014; Balestriero & Baraniuk, 2018). For smooth nonlinearities, our results
hold from a first-order Taylor approximation argument.
Self-Supervised Learning. Joint embedding methods learn the DN parameters Θ without supervision
and input reconstruction. The difficulty of SSL is to produce a good representation for downstream
tasks whose labels are not available during training —while avoiding a trivially simple solution
where the model maps all inputs to constant output. Many methods have been proposed to solve
this problem, see Balestriero & LeCun (2022) for a summary and connections between methods.
Contrastive methods learn representations by contrasting positive and negative examples, e.g. Sim-
CLR (Chen et al., 2020) and its InfoNCE criterion (Oord et al., 2018). Other recent work introduced
non-contrastive methods that employ different regularization methods to prevent collapsing of the
representation. Several papers used stop-gradients and extra predictors to avoid collapse (Chen & He,
2021; Grill et al., 2020) while Caron et al. (2020) uses an additional clustering step. As opposed to
contrastive methods, noncontrastive methods do not explicitly rely on negative samples. Of particular
interest to us is the VICReg method (Bardes et al., 2021) that considers two embedding batches
Z = [f(x1), . . . , f(xN )] and Z ′ = [f(x′

1), . . . , f(x
′
N )] each of size (N ×K). Denoting by C the

(K ×K) covariance matrix obtained from [Z,Z ′] we obtain the VICReg triplet loss

L= 1

K

K∑
k=1

αmax
(
0, γ −

√
Ck,k + ϵ

)
+β

∑
k′ ̸=k

(Ck,k′)
2

+ γ∥Z −Z ′∥2F /N.

Deep Networks and Information-Theory. Recently, information-theoretic methods have played
a key role in several remarkable deep learning achievements (Alemi et al., 2016; Xu & Raginsky,
2017; Steinke & Zakynthinou, 2020; Shwartz-Ziv & Tishby, 2017). Moreover, different deep
learning problems have been successfully approached by developing and applying information-
theoretic estimators and learning principles (Hjelm et al., 2018; Belghazi et al., 2018; Piran et al.,
2020; Shwartz-Ziv et al., 2018). There is, however, a major problem when it comes to analyzing
information-theoretic objectives in deterministic deep neural networks: the source of randomness. The
mutual information between the input and the representation in such networks is infinite, resulting in
ill-posed optimization problems or piecewise constant, making gradient-based optimization methods
ineffective (Amjad & Geiger, 2019). To solve these problems, researchers have proposed several
solutions. For SSL, stochastic deep networks with variational bounds could be used, where the
output of the deterministic network is used as parameters of the conditional distribution (Lee et al.,
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2021b; Shwartz-Ziv & Alemi, 2020). Dubois et al. (2021) suggested another option, which assumed
that the randomness of data augmentation among the two views is the source of stochasticity in
the network. Another line of works assume a random input, but not using any properties of the
distribution of the newtork’s output in order to analysis the netwokr’s objective, which rely on general
lower bounds (Wang & Isola, 2020; Zimmermann et al., 2021). For supervised learning, Goldfeld
et al. (2018) introduced an auxiliary (noisy) DN framework by injecting additive noise into the
model and demonstrated that it is a good proxy for the original (deterministic) DN in terms of both
performance and representation. Finally, Achille & Soatto (2018) found that minimizing a stochastic
network with a regularizer is equivalent to minimizing cross-entropy over deterministic DNs with
multiplicative noise. However, all of these methods assume that the noise comes from the model itself,
which contradicts current training methods. In this work, we explicitly assume that the stochasticity
comes from the data, which is a less restrictive assumption and does not require changing current
algorithms.

3 INFORMATION THEORY FOR DETERMINISTIC DEEP NETWORKS

This section first sets up notation and assumption on the information-theoretic challenges in SSL
(section 3.1) and on our assumptions regarding the data distribution (section 3.2) so that any training
sample x can be seen as coming from a single Gaussian distribution as in x ∼ N (µx,Σx). From this
we obtain that the output of any deep network f(x) corresponds to a mixture of truncated Gaussian
(section 3.3). In particular, it can fall back to a single Gaussian under small noise (det(Σ) → ϵ)
assumptions. These results will enable information measures to be applied to deterministic DNs.
We then recover known SSL methods (Bardes et al., 2021; Chen et al., 2020) by making different
assumptions about the data distribution and estimating their information.

3.1 SSL AS AN INFORMATION-THEORETIC PROBLEM

To better grasp the difference between key SSL methods, we first formulate the general SSL goal
from an information-theoretical perspective. We start with the MultiView InfoMax principle, i.e.,
maximizing the mutual information between the representations. Let X and X ′ be two different
views and Z and Z ′ their corresponding representations. As shown in Federici et al. (2020), to
maximize their information, we maximize I(Z;X ′) and I(Z ′;X) using the lower bound

I(Z,X ′) = H(Z)−H(Z|X ′) ≥ H(Z) + Ex′ [log q(z|x′)] (2)

where H(Z) is the entropy of Z. In supervised learning, where we need to maximize I(Z;Y ), the
labels (Y ) are fixed, the entropy term H(Y ) is constant, and you only need to optimize the log-loss
Ex′ [log q(z|x)] (cross-entropy or square loss). However, it is well known that for Siamese networks
there exists a degenerate solution, in which all outputs ”collapse” into an undesired value (Chen
et al., 2020). Looking at eq. (2) we can see that the entropies are not constant and can be optimized
throughout the learning process. Therefore, only minimizing the log loss will cause it to collapse
to the trivial solution of making the representations constant (where the entropy goes to zero). To
regularize these entropies, that is, prevent collapse, different methods utilize different approaches to
implicit regularizing information. To recover them in section 4, we must first introduce the results
around the data distribution (section 3.2) and how a DN transforms that distribution (section 3.3).

3.2 DATA DISTRIBUTION HYPOTHESIS

Our first step is to assess how the output random variables of the network are represented, assuming a
distribution on the data itself. Under the manifold hypothesis, any point can be seen as a Gaussian
random variable with a low-rank covariance matrix in the direction of the manifold tangent space of
the data (Fefferman et al., 2016). Therefore, we will consider throughout this study the conditioning
of a latent representation with respect to the mean of the observation, i.e., X|x∗ ∼ N (x∗,Σx∗)
where the eigenvectors of Σx∗ are in the same linear subspace than the tangent space of the data
manifold at x∗, which varies with the position of x∗ in space.
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Hence a dataset is considered to be a collection of {x∗
n, n = 1, . . . , N} and the full data distribution

to be a sum of low-rank covariance Gaussian densities, as in

X ∼
N∑
n=1

N (x∗
n,Σx∗

n
)1{T=n} , T ∼ Cat(N), (3)

with T the uniform Categorical random variable. For simplicity, we consider that the effective
support of N (x∗

i ,Σx∗
i
) and N (x∗

j ,Σx∗
j
) do not overlap, where the effective support is defined as

{x ∈ RD : p(x) > ϵ} This keeps things general, as it is enough to cover the domain of the data
manifold overall, without overlap between different Gaussians. Therefore, we have that.

p(x) ≈ N
(
x;x∗

n(x),Σx∗
n(x)

)
/N, (4)

where N (x; ., .) is the Gaussian density at x and with n(x) = argminn(x− x∗
n)
TΣx∗

n
(x− x∗

n).
This assumption, that a dataset is a mixture of Gaussians with non-overlapping support, will simplify
our derivations below, and could be extended to the general case if needed.

3.3 DATA DISTRIBUTION AFTER DEEP NETWORK TRANSFORMATION

Consider an affine spline operator f (Eq. 1) that goes from a space of dimension D to a space of
dimension K with K ≥ D. The span, that we denote as image, of this mapping is given by

Im(f) ≜ {f(x) : x ∈ RD} =
⋃
ω∈Ω

Aff(ω;Aω, bω) (5)

with Aff(ω;Aω, bω) = {Aωx+ bω : x ∈ ω} the affine transformation of region ω by the per-region
parameters Aω, bω, and with Ω the partition of the input space in which x lives in. The practical
computation of the per-region affine mapping can be obtained by setting Aω to the Jacobian matrix
of the network at the corresponding input x, and b to be defined as f(x)−Aωx.

Therefore, the DN mapping consists of affine transformations on each input space partition region
ω ∈ Ω based on the coordinate change induced by Aω and the shift induced by bω .

When the input space is equipped with a density distribution, this density is transformed by the
mapping f . In general, finding the density of f(X) is an intractable task. However, given our disjoint
support assumption provided in section 3.2, we can arbitrarily increase the representation power of
the density by increasing the number of prototypes N . In doing so, the support of each Gaussian is
included with the region ω in which its means lie in, leading to the following result.
Theorem 1. Given the setting of eq. (4) the unconditional DN output density denoted as Z is
approximately a mixture of the affinely transformed distributions x|x∗

n(x) e.g. for the Gaussian case

Z∼
N∑
n=1

N
(
Aω(x∗

n)
x∗
n + bω(x∗

n)
,AT

ω(x∗
n)
Σx∗

n
Aω(x∗

n)

)1{T=n}
, (6)

where ω(x∗
n) = ω ∈ Ω ⇐⇒ x∗

n ∈ ω is the partition region in which the prototype x∗
n lives in.

Proof. The proof of of Theorem 1 is presented in Appendix A.

4 INFORMATION OPTIMIZATION AND OPTIMALITY

Next, we will show how SSL algorithms for deterministic networks can be derived. According to
Section 3.1, we want to maximize I(Z;X ′) and I(Z ′;X). Although this mutual information is
intractable in general, we can obtain a tractable variational estimation using the expected loss. First,
when our input noise is small, namely that the effective support of the Gaussian centered at x is
contained within the region w of the DN’s input space partition, we can reduce the conditional output
density to a single Gaussian: (Z ′|X ′ = xn) ∼ N (µ(xn),Σ(xn)) , where µ(xn) = Aω(xn)xn +

bω(xn) and Σ(xn) = AT
ω(xn)

ΣxnAω(xn). Second, In order to compute the expected loss, we need
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Figure 1: Left: The network output SSL training is more Gaussian for small input noise. The
P-value of the normality test for different SSL models trained on CIFAR-10 for different input noise
levels. The dashed line represents the point at which the null hypothesis (Gaussian distribution) can
be rejected with 99% confidence. Right: Smaller learning rates prevent collapsing. GMM points
where in black is the entropy, in blue and red are the data points and GMM centroids respectively,
with the corresponding learning rate

to marginalize out the stochasticity in the output of the network. In general, training with squared
loss is equivalent to assuming a Gaussian observation model p(z|z′) ∼ N (z′,Σr), where Σr = I .
To compute the expected loss over samples of x′, we need to marginalize out the stochasticity in Z ′:
which means that the conditional decoder is a Gaussian - (Z|X ′ = xn) ∼ N (µ(xn),Σr +Σ(xn)).
However, the expected log loss over samples of Z is hard to compute, and therefore we focused on its
lower bound, the expected log loss over samples of Z ′. For simplicity, we set Σr = I which gives us:

Ex′ [log q(z|x′)] ≥ Ez′|x′ [log q(z|z′)] = d

2
log 2π − 1

2
(z − µ(x′))

2 − 1

2
Tr log Σ(x′) (7)

and now we can take the expectation over Z:

Ez|x
[
Ez′|x′ [log q(z|z′)]

]
=
d

2
log 2π − 1

2
(µ(x)− µ(x′))

2 − 1

2
log (|Σ(x)| · |Σ(x′)|) (8)

Full derivations of eq. (7) and eq. (8) are presented in Appendix B. Combine all the above give us

I(Z;X ′) ≥ H(Z) + Ex,z|x,x′,z′|x′ [log q(z|z′)] (9)

= H(Z) +
d

2
log 2π − 1

2
Ex,x′

[
(µ(x)− µ(x′))

2
+ log (|Σ(x)| · |Σ(x′)|)

]
(10)

To optimize it in practice, we can approximate p(x, x′) using the empirical data distribution:

L ≈ 1

N

N∑
i=1

H(Z)− 1

2
(µ(xi)− µ(x′i))

2 − 1

2
log (|Σ(xi)| · |Σ(x′i)|) (11)

Next, we will discuses how the estimation of the intractable entropy H(Z) effect our objective.

4.1 DERIVING VICREG FROM FIRST PRINCIPLES

As a result of eq. (11), we can reconstruct VICReg from first principles. Unfortunately, H(Z) cannot
be determined explicitly. However, there are several approximations in the literature (Kolchinsky &
Tracey, 2017; Huber et al., 2008). For a detailed discussion about the different entropy estimator,
see appendix C. A simpler solution is to approximate the entire mixture by capturing the first two
moments of the distribution, which provides an upper bound on the entropy. Note that we are
optimizing an upper bound, which means we do not have a formal guarantee, and could lead to an
arbitrary increase in our estimator. In practice, there are cases where we can achieve good results by
maximizing a lower bound (Martinez et al., 2021; Nowozin et al., 2016), even though this may cause
instability in the training process. Using ΣZ as the covariance matrix of Z, we will maximize:
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L ≈
N∑
n=1

log
|ΣZ |

|Σ(xi)| · |Σ(x′i)|
− 1

2
(µ(x)− µ(x′))2 (12)

Optimizing the log determinate of Z means maximizing its log eigenvalues. Although it is theoreti-
cally possible to differentiate eigendecomposition, this leads to numerical instability (Dang et al.,
2018). While many works have attempted to address this issue (Giles, 2008; Ionescu et al., 2015),
VICReg is using a straightforward approach. Because the eigenvalues of a diagonal matrix are the
diagonal, increasing the sum of the log-diagonal terms is equivalent to increasing the sum of the
log eigenvalues. One approach is to set the off-diagonal terms of ΣZ to zero. However, VICReg
maximizes the sum of the diagonal term instead of the log of diagonal terms, which is an upper. An
exciting research direction is to maximize the eigenvalues of Z using more sophisticated methods,
such as using a differential expression for eigendecomposition.

4.2 EMPIRICAL EVALUATION

4.2.1 VALIDATION OF OUR ASSUMPTIONS

Based on the theory presented in Section 3.3, the conditional output density pz|x=i reduces to a
single Gaussian with decreasing input noise. We validated it using a ResNet-18 model trained with
SimCLR or VICReg on the CIFAR-10 dataset (Krizhevsky, 2009). From the test dataset, we sample
512 Gaussian samples for each image and analyzed whether each sample remains Gaussian in the
penultimate layer of the DN. Then, we employ the D’Agostino and Pearson’s test (D’Agostino,
1971). Figure 1 (left) shows the p-value as a function of the normalized standard deviation. For small
noise, we can reject the hypothesis that the conditional output density of the network is not Gaussian
(85% for VICReg). Increasing the input noise causes the network’s output to become less Gaussian.
Although the results indicate that the output of the network is Gaussian, even for the small noise
regime, there is a 15% of Type I error.

The next step is to try to confirm our assumption that the model of the data distribution has non-
overlapping effective support. We calculate the distribution of pairwise l2 distances between images
for seven datasets: MNIST, CIFAR10, CIFAR100, Flowers102, Food101, FGVAircaft. In Figure
appendix D, we can see that even for raw pixels, the pairwise distances are far from zero, which
means you can use a small Gaussian around each point without overlapping. Therefore, the effective
support of these datasets are not-overlapping, and our assumption is realistic.

4.2.2 OPTIMIZING THE MUTUAL INFORMATION OBJECTIVE

Implementing Eq 9 in practice requires many ”design choices”. In section 4.1, we discuss how
VICReg uses an approximation of the entropy that is both loose and an upper bound on the true
entropy. Next, we suggest combining the VICReg invariance term with different methods for
optimizing the entropy.

Estimators. The VICReg objective aims to approximate the log determinate of the empirical
covariance matrix by using diagonal terms. However, this estimator can be problematic Huber et al.
(2008). Instead, we use the LogDet Entropy Estimator Zhouyin & Liu (2021), which provides a
tighter upper bound. This estimator is still an upper bound on entropy, which does not provide any
guarantee. To address this problem, we also use a lower bound, based on the pairwise distances of
the individual Gaussians (Kolchinsky & Tracey, 2017). These proposed methods are compared with
recent SSL methods - SimCLR (Chen et al., 2020) and Barlow Twin (Zbontar et al., 2021).

Setup Our experiments are conducted on CIFAR-10 Krizhevsky et al. (2009). We use ResNet-18 (He
et al., 2016) as our backbone. We use linear evaluation for the quality of the representation. For full
details see Appendix E.

Results. It can be seen from Table E that the proposed estimators outperform both the original
VICReg and SimCLR as well as Barlow Twin. By estimating the entropy with a more accurate
estimator, we can improve the results of VICReg, and the pairwise distance estimator, which is a
lower bound, achieves the best results. This aligns with the theory that we want to maximize a lower
bound on true entropy. The results of our study suggest that a smart selection of entropy estimators,
inspired by our framework, leads to better results.
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5 SELF SUPERVISED LEARNING, EM AND INFORMATION

Several SSL methods employ the stop gradient operator and only train with positive pairs of data
(Grill et al., 2020; Chen & He, 2021). According to (Chen & He, 2021), presetting the stop gradient
operation implicitly involves presenting two sets of variables where the algorithm alternates between
optimizing each set. Next, we formalize these SSL methods as generalized EM optimization problems,
link them to information theory, and analyze how specific design choices affect their collapse.

5.1 THE EM ALGORITHM AND SELF SUPERVISED LEARNING

The classical approach to learning with hidden variables is based on the Expectation Maxi-
mization (EM) algorithm (Dempster et al., 1977). Neal & Hinton (1998) showed that we can
view it as a dual optimization where both steps are seen as maximizing the same function,
F (P̃ , θ) = EP̃ [P (Z,Z ′|θ)] +H(P̃ ) where H(P̃ ) = −EP̃

[
log P̃ (z′)

]
is the entropy of the empir-

ical distribution P̃ and EP̃ [P (Z,Z ′|θ)] is the regular likelihood. Using this formulation, Neal &
Hinton (1998) showed that the (G)EM algorithm maximizes a variational lower bound on the log
likelihood. However, as discussed in section 3.1, optimize the likelihood can be problematic when
both variables are changing. Unlike the classic EM algorithm, for SSL, our input variable Z changes
in each iteration, and the optimization is with respect to both Z and Z ′.

5.2 PREVENTING POINT COLLAPSE UNDER THE EM ALGORITHM

For Gaussian mixture models (GMMs), clustering consists of estimating the parameters that maximize
its likelihood function, followed by assigning to each data point the cluster corresponding to its most
likely multivariate Gaussian distribution. Chen & He (2021) suggested that the SimSiam method can
be viewed as the K-means algorithm, which can be derived by reducing the GMMs

Let us examine a toy dataset on the pattern of two intertwining moons to illustrate the collapse
phenomenon under GMM (Figure 1 - right). We begin by training a classical GMM with maximum
likelihood, where the means are initialized based on random samples, and the covariance is used as the
identity matrix. A red dot represents the Gaussian’s mean after training, while a blue dot represents
the data points. In the presence of fixed input samples, we observe that there is no collapsing and
that the entropy of the centers is high (Figure 4 - left, in the Appendix). However, when we make
the input samples trainable and optimize their location, all the points collapse into a single point,
resulting in a sharp decrease in entropy (Figure 4 - right, in the Appendix).

To prevent collapse, we follow the K-means algorithm in enforcing sparse posteriors, i.e. using small
initial standard deviations and learning only the mean. This forces a one-to-one mapping which
leads all points to be closest to the mean without collapsing, resulting in high entropy (Figure 4 -
middle, in the Appendix). Another option to prevent collapse is to use different learning rates for
input and parameters. Using this setting, the collapsing of the parameters does not maximize the
likelihood. Figure 1 (right) shows the results of GMM with different learning rates for learned inputs
and parameters. When the parameter learning rate is sufficiently high in comparison to the input
learning rate, the entropy decreases much more slowly and no collapse occurs.

6 BENEFITS OF INFORMATION MAXIMIZATION FOR GENERALIZATION

The purpose of this section is to further connect the invariance loss, the covariance matrix, and the
information with the input to the generalization ability of the model by deriving a novel generalization
bound. Together with the results from the previous sections, this provides a mathematical understand-
ing of the benefits of SSL through maximization of information with implicit regularization.

6.1 NOTATION

Let x be our input and y ∈ Rr the output. We are given a labeled training data S = ((xi, yi))
n
i=1

of size n and an unlabeled training data S̄ = ((x+i , x
++
i ))mi=1 of size m, where x+i and x++

i
share the same (unknown) label. With the unlabeled training data, we define the invariance loss
IS̄(fθ) = 1

m

∑m
i=1 ∥fθ(x

+
i ) − fθ(x

++
i )∥ where fθ is the trained representation on the unlabeled
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data S̄. We define a labeled loss ℓx,y(w) = ∥Wfθ(x) − y∥ where w = vec[W ] ∈ Rdr is the
vectorization of the matrix W ∈ Rr×d. Let wS = vec[WS ] be the minimum norm solution as
WS = minimizeW ′ ∥W ′∥F s.t. W ′ ∈ argminW

1
n

∑n
i=1 ∥Wfθ(xi) − yi∥2. We also define the

representation matrices ZS = [f(x1), . . . , f(xn)] ∈ Rd×n and ZS̄ = [f(x+1 ), . . . , f(x
+
m)] ∈ Rd×m,

and the projection matrices PZS
= I − ZS

⊤(ZSZS
⊤)†ZS and PZS̄

= I − ZS̄
⊤(ZS̄ZS̄

⊤)†ZS̄ .
We define the label matrix YS = [y1, . . . , yn]

⊤ ∈ Rn×r and the unknown label matrix YS̄ =
[y+1 , . . . , y

+
m]⊤ ∈ Rm×r, where y+i is the unknown label of x+i . Let F be a hypothesis space of

fθ. For a given hypothesis space F , we define the normalized Rademacher complexity R̃m(F) =
1√
m
ES̄,ξ[supf∈F

∑m
i=1 ξi∥f(x

+
i )− f(x++

i )∥], where , ξ1, . . . , ξm are independent uniform random

variables taking values in {−1, 1}. It is normalized such that R̃m(F) = O(1) as m→ ∞ for typical
choices of hypothesis spaces F , including DNs (Bartlett et al., 2017; Kawaguchi et al., 2018).

6.2 GENERALIZATION BOUND FOR VICREG

We now show that SSL via VICReg can be understood to improve the generalization ability for the
supervised downstream task. Namely, Theorem 2 shows that the expected labeled loss Ex,y[ℓx,y(wS)]
is minimized when we minimize the unlabeled invariance loss IS̄(fθ) while controlling the covariance
ZS̄ZS̄

⊤ and the complexity of representations R̃m(F):

Theorem 2. (Informal version). For any δ > 0, with probability at least 1− δ, the following holds:

Ex,y[ℓx,y(wS)] ≤ IS̄(fθ) +
2√
m
∥PZS̄

YS̄∥F +
1√
n
∥PZS

YS∥F +
2R̃m(F)√

m
+Qm,n, (13)

where Qm,n = O(G
√

ln(1/δ)
m +

√
ln(1/δ)
n ) → 0 as m,n→ ∞. In Qm,n, the value of G for the term

decaying at the rate 1/
√
m depends on the hypothesis space of fθ and w whereas the term decaying

at the rate 1/
√
n is independent of any hypothesis space.

Proof. The complete version of Theorem 2 and its proof are presented in Appendix G.

Note that our framework holds for a classification with a linear layer and the l2 norm as the loss.
Also, in order that this bounds will not become vacuous we should imposed that the class F has a
finite norm range and that the class of matrices for the linear layer W is of finite norm.

The term ∥PZS̄
YS̄∥F in Theorem 2 contains the unobservable label matrix YS̄ . However, we can

minimize this term by using ∥PZS̄
YS̄∥F ≤ ∥PZS̄

∥F ∥YS̄∥F and by minimizing ∥PZS̄
∥F . The

factor ∥PZS̄
∥F is minimized when the rank of the covariance ZS̄ZS̄

⊤ is maximized. Since a
strictly diagonally dominant matrix is non-singular, this can be enforced by maximizing the diagonal
entries while minimizing the off-diagonal entries, as is done in VICReg. For example, if d ≥ n,
then ∥PZS̄

∥F = 0 when the covariance ZS̄ZS̄
⊤ is of full rank. The term ∥PZS

YS∥F contains
only observable variables and we can directly measure the value of this term using training data.
In addition, the term ∥PZS

YS∥F is also minimized when the rank of the covariance ZSZS⊤ is
maximized. Since the covariances ZSZS⊤ and ZS̄ZS̄

⊤ concentrate to each other via concentration
inequalities with the error in the order of O(

√
(ln(1/δ))/n+ R̃m(F)

√
(ln(1/δ))/m), we can also

minimize the upper bound on ∥PZS
YS∥F by maximizing the diagonal entries of ZS̄ZS̄

⊤ while
minimizing its off-diagonal entries, as is done in VICReg.

Thus, VICReg can be understood as a method to minimize the generalization bound in Theorem 2
by minimizing the invariance loss while controlling the covariance ZS̄ZS̄

⊤ to minimize the label-
agnostic upper bounds on ∥PZS̄

YS̄∥F and ∥PZS
YS∥F . If we know partial information about the

label YS̄ of the unlabeled data, we can use it to minimize ∥PZS̄
YS̄∥F and ∥PZS

YS∥F directly. This
direction can be used to improve VICReg in future work for the partial observable setting.

6.3 UNDERSTANDING VIA MUTUAL INFORMATION

Theorem 2 together with the result of the previous section shows that, for generalization in the
downstream task, it is helpful to maximize the mutual information I(Z;X ′) in SSL via minimizing

8
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the invariance loss IS̄(fθ) while controlling the covariance ZS̄ZS̄
⊤. The term 2R̃m(F)√

m
captures the

importance of controlling the complexity of the representations fθ. To understand this term further in
terms of mutual information, let us consider a discretization of the parameter space of F to have finite
|F| <∞ (indeed, a computer always implements some discretization of continuous variables). Then,
by Massart’s Finite Class Lemma, we have that R̃m(F) ≤ C

√
ln |F| for some constant C > 0.

Moreover, Shwartz-Ziv (2022) shows that we can approximate ln |F| by 2I(Z;X). Thus, in Theorem
2, the term IS̄(fθ) +

2√
m
∥PZS̄

YS̄∥F + 1√
n
∥PZS

YS∥F corresponds to I(Z;X ′) while the term of
2R̃m(F)√

m
corresponds to I(Z;X). Recall that the information can be decomposed as

I(Z;X) = I(Z;X ′) + I(Z;X|X ′). (14)

where we want to maximize the predictive information I(Z;X ′), while minimizing I(Z;X) (??).
Thus, in order to improve generalization, we also need to control 2R̃m(F)√

m
to restrict the superfluous

information I(Z;X|X ′), in addition to minimize IS̄(fθ) +
2√
m
∥PZS̄

YS̄∥F + 1√
n
∥PZS

YS∥F that
corresponded to maximize the predictive information I(Z;X ′). Although we can explicitly add
regularization on I(Z;X|X ′) to control 2R̃m(F)√

m
, it is possible that I(Z;X|X ′) and 2R̃m(F)√

m
are

implicitly regularized via implicit bias through e design choises (Gunasekar et al., 2017; Soudry et al.,
2018; Gunasekar et al., 2018). Thus, Theorem 2 connects the information-theoretic understanding of
SSL with the probabilistic guarantee on the generalization ability.

6.4 COMPARING GENERALIZATION BOUNDS

The generalization bound of SimCLR (Saunshi et al., 2019) requires the number of label classes to go
infinity to make the generalization gap decrease towards zero. In contrast, the bound on VICReg in
Theorem 2 does not require the number of label classes to approach infinity to let the generalization
gap go to zero. This reflects the fact that, unlike SimCLR, VICReg does not use negative pairs
and thus does not use a loss function that is based on the implicit expectation that the labels of a
negative pair (y+, y−) are different. Another difference is that our VICReg bound improves as n
increases, while the previous bound of SimCLR (Saunshi et al., 2019) does not depend on n. This
is because the previous work assumes partial access to the true distribution of x given y per class
for setting W , which removes the importance of labeled data size n and is not assumed in our study.
Consequently, our bound provides a new insight for VICReg regarding the ratio of the effects of m
v.s. n through G

√
ln(1/δ)/m+

√
ln(1/δ)/n. Finally, Theorem 2 also illuminates the advantages of

VICReg over standard supervised training. That is, with standard training, the generalization bound
via the Rademacher complexity requires the complexities of hypothesis spaces, R̃n(W)/

√
n and

R̃n(F)/
√
n, with respect to the size of labeled data n, instead of the size of unlabeled data m. Here,

R̃n(W) is the the normalized Rademacher complexity for the hypothesis space of w. Thus, Theorem
2 shows that using SSL, we can replace all the complexities of hypothesis spaces in terms of n with
those in terms of m. Since m is typically much larger than n, this illuminates the benefit of SSL.

7 CONCLUSIONS

In this study, we examine SSL’s objective function from an information-theoretic perspective. Based
on transfering of the required stochasticity to the input distribution, we show how SSL objectives
can be derived. Thus, even when using deterministic DNs, it is possible to perform an information-
theoretic analysis. The second part of the paper rediscovered SSL loss functions from first principles
and demonstrated their implicit assumptions. We empirically validated our analysis and confirmed
the validity of our novel understanding. As a result of our analysis, we have proposed new SSL
algorithms that perform better than existing ones. Furthermore, we derived a generalization bound on
the downstream task, tight it to known information objeective terms and demonstrate that VICReg
minimizes it. In addition, our work opens many new avenues for future research, including a
better estimation of information-theoretic quantities that are consistent with our assumptions and
identifying which SSL method is the most appropriate according to data characteristics. In addition,
our probabilistic guarantee suggests that VICReg can be further improved for the setting of partial
label information by aligning the covariance matrix with the partially observable label matrix.
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A DATA DISTRIBUTION AFTER DEEP NETWORK
TRANSFORMATION

Theorem 3. Given the setting of eq. (4) the unconditional DN output density denoted as Z approxi-
mates (given the truncation of the Gaussian on its effective support that is included within a single
region ω of the DN’s input space partition) a mixture of the affinely transformed distributions x|x∗

n(x)

e.g. for the Gaussian case

Z∼
N∑
n=1

N
(
Aω(x∗

n)
x∗
n + bω(x∗

n)
,AT

ω(x∗
n)
Σx∗

n
Aω(x∗

n)

)T=n

,

where ω(x∗
n) = ω ∈ Ω ⇐⇒ x∗

n ∈ ω is the partition region in which the prototype x∗
n lives in.
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Proof. We know that If
∫
ω
p(x|x∗

n(x))dx ≈ 1 then f is linear within the effective support of p.
Therefore, any sample from p will almost surely lie within a single region ω ∈ Ω and therefore the
entire mapping can be considered linear with respect to p. Thus, the output distribution is a linear
transformation of the input distribution based on the per-region affine mapping.

B LOWER BOUNDS ON Ex′ [log q(z|x′)]

In this appendix we present the full derivation of the lower bound on Ex′ [log q(z|x′)].
Because Z ′|X ′ is a Gaussian, we can write it as Z ′ = µ(x′) + L(x′)ϵ where ϵ ∼ N (0, 1) and
L(x′)TL(x′) = Σ(x′). Now, setting Σr = I , will give us:

Ex′ [log q(z|x′)] ≥ (15)

Ez′|x′ [log q(z|z′)] = (16)

Ez′|x′

[
d

2
log 2π − 1

2
(z − z′)

T
(I))

−1
(z − z′)

]
= (17)

d

2
log 2π − 1

2
Ez′|x′,

[
(z − z′)

2
]
= (18)

d

2
log 2π − 1

2
Eϵ
[
(z − µ(x′)− L(x′)ϵ)

2
]
= (19)

d

2
log 2π − 1

2
Eϵ
[
(z − µ(x′))

2 − 2 (z − µ(x′) ∗ L(x′)ϵ) +
(
(L(x′)ϵ)

T
(L(x′)ϵ)

)]
=

(20)
d

2
log 2π − 1

2
Eϵ
[
(z − µ(x′))

2
]
+ (z − µ(x′)L(x′))Eϵ [ϵ]−

1

2
Eϵ
[
ϵTL(x′)TL(x′)ϵ

]
=

(21)
d

2
log 2π − 1

2
(z − µ(x′))

2 − 1

2
Tr log Σ(x′) (22)

where Ex′ [log q(z|x′)] = Ex′
[
logEz′|x′ [q(z|z′)]

]
≥ Ez′ [log q(z|z′)] by Jensen’s inequality,

Eϵ[ϵ] = 0 and Eϵ
[
ϵ
(
L(x′)TL(x′

)
ϵ
]
= Tr log Σ(x′) by the Hutchinson’s estimator.

Ez|x
[
Ez′|x′ [log q(z|z′)]

]
= (23)

Ez|x
[
d

2
log 2π − 1

2
(z − µ(x′))

2 − 1

2
Tr log Σ(x′)

]
= (24)

d

2
log 2π − 1

2
Ez|x

[
(z − µ(x′))

2
]
− 1

2
Tr log Σ(x′) = (25)

d

2
log 2π − 1

2
Eϵ
[
(µ(x) + L(x)ϵ− µ(x′))

2
]
− 1

2
Tr log Σ(x′) =

(26)
d

2
log 2π − 1

2
Eϵ
[
(µ(x)− µ(x′))

2
]
+ Eϵ [(µ(x)− µ(x′))L(x)ϵ]

(27)

− 1

2
Eϵ
[
ϵTL(x)TL(x)ϵ

]
− 1

2
Tr log Σ(x′) = (28)

d

2
log 2π − 1

2
(µ(x)− µ(x′))

2 − 1

2
Tr log Σ(x)− 1

2
Tr log Σ(x′) =

(29)
d

2
log 2π − 1

2
(µ(x)− µ(x′))

2 − 1

2
log (|Σ(x)| · |Σ(x′)|) (30)
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C ENTROPY ESTIMATORS

The estimation of entropy is one of the classic problems in information theory, where Gaussian
mixture density is one of the most popular representations. With a sufficient number of components,
they can approximate any smooth function with arbitrary accuracy. For Gaussian mixtures, there is,
however, no closed-form solution to differential entropy. There exist several approximations in the
literature, including loose upper and lower bounds (Huber et al., 2008). Monte Carlo (MC) sampling
is one way to approximate Gaussian mixture entropy. With sufficient MC samples, an unbiased
estimate of entropy with an arbitrarily accurate can be obtained. Unfortunately, MC sampling is a
very computationally expensive and typically requires a large number of samples, especially in high
dimensions (Brewer, 2017). Using the first two moments of the empirical distribution, VIGCreg used
one of the most straightforward approaches for approximating the entropy. Despite this, previous
studies have found that this method is a poor approximation of the entropy in many cases Huber
et al. (2008). Another options is to use the LogDet function. Several estimators have been proposed
to implement it, including uniformly minimum variance unbiased (UMVU) (Ahmed & Gokhale,
1989), and bayesian methods Misra et al. (2005). These methods, however, often require complex
optimizations. The LogDet estimator presented in Zhouyin & Liu (2021) used the differential entropy
α order entropy using scaled noise. They demonstrated that it can be applied to high-dimensional
features and is robust to random noise. Based on Taylor-series expansions, Huber et al. (2008)
presented a lower bound for the entropy of Gaussian mixture random vectors. They use Taylor-series
expansions of the logarithm of each Gaussian mixture component to get an analytical evaluation
of the entropy measure. In addition, they present a technique for splitting Gaussian densities to
avoid components with high variance, which would require computationally expensive calculations.
Kolchinsky & Tracey (2017) introduce a novel family of estimators for the mixture entropy. For this
family, a pairwise-distance function between component densities defined for each member. These
estimators are computationally efficient, as long as the pairwise-distance function and the entropy of
each component distribution are easy to compute. Moreover, the estimator is continuous and smooth
and is therefore useful for optimization problems. In addition, they presented both lower bound
(using Chernoff distance) and an upper bound (using the KL divergence) on the entropy, which are
are exact when the component distributions are grouped into well-separated clusters,

D EMPIRICAL VALIDATION OF OUR ASSUMPTION

We will try to verify empirically our assumptions on different datasets We compute the pairwise l2
distances between images for seven datasets: MNIST, CIFAR10, CIFAR100, Flowers102, Food101,
and FGVAircaft. We found that even for raw pixels, the pairwise distances are far from zero, which
means you can use a small Gaussian around each point without overlapping. Consequently, the
effective supports of these high-dimensional datasets are not overlapping, and our assumption is
realistic even for current popular SSL datasets..

E EXPERIMENTAL VERIFICATION OF INFORMATION-BASED BOUND
OPTIMIZATION

Setup Our experiments are conducted on CIFAR-10 Krizhevsky et al. (2009). We use ResNet-18
(He et al., 2016) as our backbone. Each model is trained with 512 batch size for 800 epochs. We use
linear evaluation to assess the quality of the representation. Once the model has been pre-trained, we
follow the same fine-tuning procedures as for the baseline methods (Caron et al., 2020).

F EXPECTATION MAXIMIZATION AND COLLAPSING

G ON BENEFITS OF INFORMATION MAXIMIZATION FOR GENERALIZATION

In this Appendix, we present the complete version of Theorem 2 along with its proof and additional
discussions.
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Figure 2: The Gaussians around each point are not overlapping The l2 distances between raw
images for different datasets

Method Accuracy
SimCLR 89.72± 0.05
Barlow Twins 88.81± 0.1
VICReg 89.32± 0.09
VICReg + Pairwise Distances Estimator (ours) 90.09± 0.09
VICReg + Log Derminate Estimator (ours) 89.77± 0.08

Table 1: Entropy estimator achieved better results on SSL - CIFAR10 accuracy on linear
evaluation of SSL for different entropy estimators. The best results achieved by pairwise distances
lower bound
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Figure 3: Evolution of the entropy for each of the learning rate configurations showing that the impact
of picking the incorrect learning rate for the data and/or centroids lead to a collapse of the samples.

G.1 ADDITIONAL NOTATION AND DETAILS

We start to introduce additional notation and details. We use the notation of x ∈ X for an input and
y ∈ Y ⊆ Rr for an output. Define p(y) = P(Y = y) to be the probability of getting label y and
p̂(y) = 1

n

∑n
i=1 1{yi = y} to be the empirical estimate of p(y). Let ζ be an upper bound on the

norm of the label as ∥y∥2 ≤ ζ for all y ∈ Y . Define the minimum norm solution WS̄ of the unlabeled
data as WS̄ = minimizeW ′ ∥W ′∥F s.t. W ′ ∈ argminW

1
m

∑m
i=1 ∥Wfθ(x

+
i )− g∗(x+i )∥2. Let κS

be a data-dependent upper bound on the per-sample Euclidian norm loss with the trained model as
∥WSfθ(x) − y∥ ≤ κS for all (x, y) ∈ X × Y . Similarly, let κS̄ be a data-dependent upper bound
on the per-sample Euclidian norm loss as ∥WS̄fθ(x)− y∥ ≤ κS̄ for all (x, y) ∈ X × Y . Define the
difference between WS and WS̄ by c = ∥WS −WS̄∥2. Let W be a hypothesis space of W such that
WS̄ ∈ W . We denote by R̃m(W ◦F) = 1√

m
ES̄,ξ[supW∈W,f∈F

∑m
i=1 ξi∥g∗(x

+
i )−Wf(x+i )∥] the

normalized Rademacher complexity of the set {x+ 7→ ∥g∗(x+) −Wf(x+)∥ : W ∈ W, f ∈ F}.
we denote by κ a upper bound on the per-sample Euclidian norm loss as ∥Wf(x)− y∥ ≤ κ for all
(x, y,W, f) ∈ X × Y ×W ×F .

We adopt the following data-generating process model that is used in the previous paper on analyzing
contrastive learning (Saunshi et al., 2019). For the labeled data, first, y is drawn from the distritbuion
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Figure 4: Evolution of GMM training when enforcing a one-to-one mapping between the data
and centroids akin to K-means i.e. using a small and fixed covariance matrix. We see that
collapse does not occur. Left - In the presence of fixed input samples, we observe that there is
no collapsing and that the entropy of the centers is high. Right - when we make the input samples
trainable and optimize their location, all the points collapse into a single point, resulting in a sharp
decrease in entropy.

ρ on Y , and then x is drawn from the conditional distribution Dy conditioned on the label y. That is,
we have the join distribution D(x, y) = Dy(x)ρ(y) with ((xi, yi))

n
i=1 ∼ Dn. For the unlabeled data,

first, each of the unknown labels y+ and y− is drawn from the distritbuion ρ, and then each of the
positive examples x+ and x++ is drawn from the conditional distribution Dy+ while the negative
example x− is drawn from the Dy− . Unlike the analysis of contrastive learning, we do not require
the negative samples. Let τS̄ be a data-dependent upper bound on the invariance loss with the trained
representation as ∥fθ(x̄)− fθ(x)∥ ≤ τS̄ for all (x̄, x) ∼ D2

y and y ∈ Y . Let τ be a data-independent
upper bound on the invariance loss with the trained representation as∥f(x̄) − f(x)∥ ≤ τ for all
(x̄, x) ∼ D2

y, y ∈ Y , and f ∈ F . For the simplicity, we assume that there exists a function g∗ such
that y = g∗(x) ∈ Rr for all (x, y) ∈ X × Y . Discarding this assumption adds the average of label
noises to the final result, which goes to zero as the sample sizes n and m increase, assuming that the
mean of the label noise is zero.

G.2 RESULT

The following theorem is the complete version of Theorem 2:
Theorem 4. For any δ > 0, with probability at least 1− δ, the following holds:

Ex,y[ℓx,y(wS)] ≤ cIS̄(fθ) +
2√
m
∥PZS̄

YS̄∥F +
1√
n
∥PZS

YS∥F +Qm,n, (31)

where

Qm,n = c

(
2R̃m(F)√

m
+ τ

√
ln(3/δ)

2m
+ τS̄

√
ln(3/δ)

2n

)

+ κS

√
2 ln(6|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +

√
p(y)

)
+

4Rm(W ◦ F)√
m

+ 2κ

√
ln(4/δ)

2m
+ 2κS̄

√
ln(4/δ)

2n
.

Proof. The complete proof is presented in Appendix G.3.
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The bound in the complete version of Theorem 4 is better than the one in the informal version of
Theorem 2, because of the factor c. The factor c measures the difference between the minimum
norm solution WS of the labeled training data and the minimum norm solution WS̄ of the unlabeled
training data. Thus, the factor c also decreases towards zero as n and m increase. Moreover, if the
labeled and unlabeled training data are similar, the value of c is small, decreasing the generalization
bound further, which makes sense. Thus, we can view the factor c as a measure on the distance
between the labeled training data and the unlabeled training data.

We obtain the informal version from the complete version of Theorem 2 by the following reasoning
to simplify the notation in the main text. We have that cIS̄(fθ)+ c 2R̃m(F)√

m
= IS̄(fθ)+

2R̃m(F)√
m

+Q,

where Q = (c − 1)(IS̄(fθ) +
2R̃m(F)√

m
) ≤ ς → 0 as as m,n → ∞, since c → 0 as m,n → ∞.

However, this reasoning is used only to simplify the notation in the main text. The bound in the
complete version of Theorem 2 is more accurate and indeed tighter than the one in the informal
version.

In Theorem 2, Qm,n → 0 as m,n → ∞ if R̃m(F)√
m

→ 0 as m → ∞. Indeed, this typically

holds because R̃m(F) = O(1) as m→ ∞ for typical choices of F , including deep neural networks
(Bartlett et al., 2017; Kawaguchi et al., 2018; Golowich et al., 2018) as well as other common machine
learning models (Bartlett & Mendelson, 2002; Mohri et al., 2012; Shalev-Shwartz & Ben-David,
2014).

G.3 PROOF OF THEOREM 2

Proof of Theorem 2. Let W = WS where WS is the the minimum norm solution as WS =
minimizeW ′ ∥W ′∥F s.t. W ′ ∈ argminW

1
n

∑n
i=1 ∥Wfθ(xi) − yi∥2. Let W ∗ = WS̄ where

WS̄ is the minimum norm solution as W ∗ = WS̄ = minimizeW ′ ∥W ′∥F s.t. W ′ ∈
argminW

1
m

∑m
i=1 ∥Wfθ(x

+
i )− g∗(x+i )∥2. Since y = g∗(x),

y = g∗(x)±W ∗fθ(x) =W ∗fθ(x) + (g∗(x)−W ∗fθ(x)) =W ∗fθ(x) + φ(x)

where φ(x) = g∗(x)−W ∗fθ(x). Define LS(w) = 1
n

∑n
i=1 ∥Wfθ(xi)− yi∥. Using these,

LS(w) =
1

n

n∑
i=1

∥Wfθ(xi)− yi∥

=
1

n

n∑
i=1

∥Wfθ(xi)−W ∗fθ(xi)− φ(xi)∥

≥ 1

n

n∑
i=1

∥Wfθ(xi)−W ∗fθ(xi)∥ −
1

n

n∑
i=1

∥φ(xi)∥

=
1

n

n∑
i=1

∥W̃fθ(xi)∥ −
1

n

n∑
i=1

∥φ(xi)∥

where W̃ =W −W ∗. We now consider new fresh samples x̄i ∼ Dyi for i = 1, . . . , n to rewrite the
above further as:

LS(w) ≥
1

n

n∑
i=1

∥W̃fθ(xi)± W̃fθ(x̄i)∥ −
1

n

n∑
i=1

∥φ(xi)∥

=
1

n

n∑
i=1

∥W̃fθ(x̄i)− (W̃fθ(x̄i)− W̃fθ(xi))∥ −
1

n

n∑
i=1

∥φ(xi)∥

≥ 1

n

n∑
i=1

∥W̃fθ(x̄i)∥ −
1

n

n∑
i=1

∥W̃fθ(x̄i)− W̃fθ(xi)∥ −
1

n

n∑
i=1

∥φ(xi)∥

=
1

n

n∑
i=1

∥W̃fθ(x̄i)∥ −
1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥ −
1

n

n∑
i=1

∥φ(xi)∥
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This implies that

1

n

n∑
i=1

∥W̃fθ(x̄i)∥ ≤ LS(w) +
1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥+
1

n

n∑
i=1

∥φ(xi)∥.

Furthermore, since y =W ∗fθ(x) + φ(x), by writing ȳi =W ∗fθ(x̄i) + φ(x̄i) (where ȳi = yi since
x̄i ∼ Dyi for i = 1, . . . , n),

1

n

n∑
i=1

∥W̃fθ(x̄i)∥ =
1

n

n∑
i=1

∥Wfθ(x̄i)−W ∗fθ(x̄i)∥

=
1

n

n∑
i=1

∥Wfθ(x̄i)− ȳi + φ(x̄i)∥

≥ 1

n

n∑
i=1

∥Wfθ(x̄i)− ȳi∥ −
1

n

n∑
i=1

∥φ(x̄i)∥

Combining these, we have that

1

n

n∑
i=1

∥Wfθ(x̄i)− ȳi∥ ≤ LS(w) +
1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥ (32)

+
1

n

n∑
i=1

∥φ(xi)∥+
1

n

n∑
i=1

∥φ(x̄i)∥.

To bound the left-hand side of equation 32, we now analyze the following random variable:

EX,Y [∥WSfθ(X)− Y ∥]− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥, (33)

where ȳi = yi since x̄i ∼ Dyi for i = 1, . . . , n. Importantly, this means that as WS depends on yi,
WS depends on ȳi. Thus, the collection of random variables ∥WSfθ(x̄1)− ȳ1∥, . . . , ∥WSfθ(nn)−
ȳn∥ is not independent. Accordingly, we cannot apply standard concentration inequality to bound
equation 33. A standard approach in learning theory is to first bound equation 33 by Ex,y∥WSfθ(x)−
y∥ − 1

n

∑n
i=1 ∥WSfθ(x̄i) − ȳi∥ ≤ supW∈W Ex,y∥Wfθ(x) − y∥ − 1

n

∑n
i=1 ∥Wfθ(x̄i) − ȳi∥ for

some hypothesis space W (that is independent of S) and realize that the right-hand side now contains
the collection of independent random variables ∥Wfθ(x̄1)− ȳ1∥, . . . , ∥Wfθ(nn)− ȳn∥ , for which
we can utilize standard concentration inequalities. This reasoning leads to the Rademacher complexity
of the hypothesis space W . However, the complexity of the hypothesis space W can be very large,
resulting into a loose bound. In this proof, we show that we can avoid the dependency on hypothesis
space W by using a very different approach with conditional expectations to take care the dependent
random variables ∥WSfθ(x̄1)− ȳ1∥, . . . , ∥WSfθ(nn)− ȳn∥. Intuitively, we utilize the fact that for
these dependent random variables, there are a structure of conditional independence, conditioned on
each y ∈ Y .

We first write the expected loss as the sum of the conditional expected loss:

EX,Y [∥WSfθ(X)− Y ∥] =
∑
y∈Y

EX,Y [∥WSfθ(X)− Y ∥ | Y = y]P(Y = y)

=
∑
y∈Y

EXy
[∥WSfθ(Xy)− y∥]P(Y = y),

where Xy is the random variable for the conditional with Y = y. Using this, we decompose
equation 33 into two terms:

EX,Y [∥WSfθ(X)− Y ∥]− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥ (34)

=

∑
y∈Y

EXy [∥WSfθ(Xy)− y∥] |Iy|
n

− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥


+
∑
y∈Y

EXy
[∥WSfθ(Xy)− y∥]

(
P(Y = y)− |Iy|

n

)
,
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where
Iy = {i ∈ [n] : yi = y}.

The first term in the right-hand side of equation 34 is further simplified by using

1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥ =
1

n

∑
y∈Y

∑
i∈Iy

∥WSfθ(x̄i)− y∥,

as ∑
y∈Y

EXy
[∥WSfθ(Xy)− y∥] |Iy|

n
− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥

=
1

n

∑
y∈Ỹ

|Iy|

EXy [∥WSfθ(Xy)− y∥]− 1

|Iy|
∑
i∈Iy

∥WSfθ(x̄i)− y∥

 ,

where Ỹ = {y ∈ Y : |Iy| ≠ 0}. Substituting these into equation equation 34 yields

EX,Y [∥WSfθ(X)− Y ∥]− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥ (35)

=
1

n

∑
y∈Ỹ

|Iy|

EXy [∥WSfθ(Xy)− y∥]− 1

|Iy|
∑
i∈Iy

∥WSfθ(x̄i)− y∥


+
∑
y∈Y

EXy [∥WSfθ(Xy)− y∥]
(
P(Y = y)− |Iy|

n

)
Importantly, while ∥WSfθ(x̄1)− ȳ1∥, . . . , ∥WSfθ(x̄n)− ȳn∥ on the right-hand side of equation 35
are dependent random variables, ∥WSfθ(x̄1)− y∥, . . . , ∥WSfθ(x̄n)− y∥ are independent random
variables since WS and x̄i are independent and y is fixed here. Thus, by using Hoeffding’s inequality
(Lemma 1), and taking union bounds over y ∈ Ỹ , we have that with probability at least 1− δ, the
following holds for all y ∈ Ỹ:

EXy
[∥WSfθ(Xy)− y∥]− 1

|Iy|
∑
i∈Iy

∥WSfθ(x̄i)− y∥ ≤ κS

√
ln(|Ỹ|/δ)
2|Iy|

.

This implies that with probability at least 1− δ,

1

n

∑
y∈Ỹ

|Iy|

EXy
[∥WSfθ(Xy)− y∥]− 1

|Iy|
∑
i∈Iy

∥WSfθ(x̄i)− y∥


≤ κS

n

∑
y∈Ỹ

|Iy|

√
ln(|Ỹ|/δ)
2|Iy|

= κS

∑
y∈Ỹ

√
|Iy|
n

√ ln(|Ỹ|/δ)
2n

.

Substituting this bound into equation 35, we have that with probability at least 1− δ,

EX,Y [∥WSfθ(X)− Y ∥]− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥ (36)

≤ κS

∑
y∈Ỹ

√
p̂(y)

√ ln(|Ỹ|/δ)
2n

+
∑
y∈Y

EXy
[∥WSfθ(Xy)− y∥]

(
P(Y = y)− |Iy|

n

)
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where

p̂(y) =
|Iy|
n
.

Moreover, for the second term on the right-hand side of equation 36, by using Lemma 1 of (Kawaguchi
et al., 2022), we have that with probability at least 1− δ,∑

y∈Y
EXy

[∥WSfθ(Xy)− y∥]
(
P(Y = y)− |Iy|

n

)

≤

∑
y∈Y

√
p(y)EXy [∥WSfθ(Xy)− y∥

√2 ln(|Y|/δ)
2n

≤ κS

∑
y∈Y

√
p(y)

√2 ln(|Y|/δ)
2n

where p(y) = P(Y = y). Substituting this bound into equation 36 with the union bound, we have
that with probability at least 1− δ,

EX,Y [∥WSfθ(X)− Y ∥]− 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥ (37)

≤ κS

∑
y∈Ỹ

√
p̂(y)

√ ln(2|Ỹ|/δ)
2n

+ κS

∑
y∈Y

√
p(y)

√2 ln(2|Y|/δ)
2n

≤

∑
y∈Y

√
p̂(y)

κS

√
2 ln(2|Y|/δ)

2n
+

∑
y∈Y

√
p(y)

κS

√
2 ln(2|Y|/δ)

2n

≤ κS

√
2 ln(2|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +

√
p(y)

)
Combining equation 32 and equation 37 implies that with probability at least 1− δ,

EX,Y [∥WSfθ(X)− Y ∥] (38)

≤ 1

n

n∑
i=1

∥WSfθ(x̄i)− ȳi∥+ κS

√
2 ln(2|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +

√
p(y)

)
≤ LS(wS) +

1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥

+
1

n

n∑
i=1

∥φ(xi)∥+
1

n

n∑
i=1

∥φ(x̄i)∥+ κS

√
2 ln(2|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +

√
p(y)

)
.

We will now analyze the term 1
n

∑n
i=1 ∥φ(xi)∥+

1
n

∑n
i=1 ∥φ(x̄i)∥ on the right-hand side of equa-

tion 38. Since W ∗ =WS̄ ,

1

n

n∑
i=1

∥φ(xi)∥ =
1

n

n∑
i=1

∥g∗(xi)−WS̄fθ(xi)∥.

By using Hoeffding’s inequality (Lemma 1), we have that for any δ > 0, with probability at least
1− δ,

1

n

n∑
i=1

∥φ(xi)∥ ≤ 1

n

n∑
i=1

∥g∗(xi)−WS̄fθ(xi)∥ ≤ Ex+ [∥g∗(x+)−WS̄fθ(x
+)∥] + κS̄

√
ln(1/δ)

2n
.
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Moreover, by using (Mohri et al., 2012, Theorem 3.1) with the loss function x+ 7→ ∥g∗(x+) −
Wf(x+)∥ (i.e., Lemma 2), we have that for any δ > 0, with probability at least 1− δ,

Ex+ [∥g∗(x+)−WS̄fθ(x
+)∥] ≤ 1

m

m∑
i=1

∥g∗(x+i )−WS̄fθ(x
+
i )∥+

2R̃m(W ◦ F)√
m

+ κ

√
ln(1/δ)

2m

(39)

where R̃m(W ◦ F) = 1√
m
ES̄,ξ[supW∈W,f∈F

∑m
i=1 ξi∥g∗(x

+
i ) − Wf(x+i )∥] is the normalized

Rademacher complexity of the set {x+ 7→ ∥g∗(x+)−Wf(x+)∥ :W ∈ W, f ∈ F} (it is normalized
such that R̃m(F) = O(1) as m → ∞ for typical choices of F), and ξ1, . . . , ξm are independent
uniform random variables taking values in {−1, 1}. Takinng union bounds, we have that for any
δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

∥φ(xi)∥ ≤ 1

m

m∑
i=1

∥g∗(x+i )−WS̄fθ(x
+
i )∥+

2R̃m(W ◦ F)√
m

+ κ

√
ln(2/δ)

2m
+ κS̄

√
ln(2/δ)

2n

Similarly, for any δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

∥φ(x̄i)∥ ≤ 1

m

m∑
i=1

∥g∗(x+i )−WS̄fθ(x
+
i )∥+

2R̃m(W ◦ F)√
m

+κ

√
ln(2/δ)

2m
+κS̄

√
ln(2/δ)

2n
.

Thus, by taking union bounds, we have that for any δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

∥φ(xi)∥+
1

n

n∑
i=1

∥φ(x̄i)∥ (40)

≤ 2

m

m∑
i=1

∥g∗(x+i )−WS̄fθ(x
+
i )∥+

4Rm(W ◦ F)√
m

+ 2κ

√
ln(4/δ)

2m
+ 2κS̄

√
ln(4/δ)

2n

To analyze the first term on the right-hand side of equation 40, recall that

WS̄ = minimize
W ′

∥W ′∥F s.t. W ′ ∈ argmin
W

1

m

m∑
i=1

∥Wfθ(x
+
i )− g∗(x+i )∥

2. (41)

Here, since Wfθ(x
+
i ) ∈ Rr, we have that

Wfθ(x
+
i ) = vec[Wfθ(x

+
i )] = [fθ(x

+
i )

⊤ ⊗ Ir] vec[W ] ∈ Rr,

where Ir ∈ Rr×r is the identity matrix, and [fθ(x
+
i )

⊤ ⊗ Ir] ∈ Rr×dr is the Kronecker product
of the two matrices, and vec[W ] ∈ Rdr is the vectorization of the matrix W ∈ Rr×d. Thus, by
defining Ai = [fθ(x

+
i )

⊤ ⊗ Ir] ∈ Rr×dr and using the notation of w = vec[W ] and its inverse
W = vec−1[w] (i.e., the inverse of the vectorization from Rr×d to Rdr with a fixed ordering), we
can rewrite equation 41 by

WS̄ = vec−1[wS̄ ] where wS̄ = minimize
w′

∥w′∥F s.t. w′ ∈ argmin
w

m∑
i=1

∥gi −Aiw∥2,

with gi = g∗(x+i ) ∈ Rr. Since the function w 7→
∑m
i=1 ∥gi − Aiw∥2 is convex, a necessary and

sufficient condition of the minimizer of this function is obtained by

0 = ∇w

m∑
i=1

∥gi −Aiw∥2 = 2

m∑
i=1

A⊤
i (gi −Aiw) ∈ Rdr

This implies that
m∑
i=1

A⊤
i Aiw =

m∑
i=1

A⊤
i gi.
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In other words,

A⊤Aw = A⊤g where A =


A1

A2

...
Am

 ∈ Rmr×dr and g =


g1
g2
...
gm

 ∈ Rmr

Thus,

w′ ∈ argmin
w

m∑
i=1

∥gi −Aiw∥2 = {(A⊤A)†A⊤g + v : v ∈ Null(A)}

where (A⊤A)† is the Moore–Penrose inverse of the matrix A⊤A and Null(A) is the null space of
the matrix A. Thus, the minimum norm solution is obtained by

vec[WS̄ ] = wS̄ = (A⊤A)†A⊤g.

Thus, by using this WS̄ , we have that

1

m

m∑
i=1

∥g∗(x+i )−WS̄fθ(x
+
i )∥ =

1

m

m∑
i=1

√√√√ r∑
k=1

((gi −AiwS̄)k)
2

≤

√√√√ 1

m

m∑
i=1

r∑
k=1

((gi −AiwS̄)k)
2

=
1√
m

√√√√ m∑
i=1

r∑
k=1

((gi −AiwS̄)k)
2

=
1√
m
∥g −AwS̄∥2

=
1√
m
∥g −A(A⊤A)†A⊤g∥2 =

1√
m
∥(I −A(A⊤A)†A⊤)g∥2

where the inequality follows from the Jensen’s inequality and the concavity of the square root function.
Thus, we have that

1

n

n∑
i=1

∥φ(xi)∥+
1

n

n∑
i=1

∥φ(x̄i)∥ (42)

≤ 2√
m
∥(I −A(A⊤A)†A⊤)g∥2 +

4Rm(W ◦ F)√
m

+ 2κ

√
ln(4/δ)

2m
+ 2κS̄

√
ln(4/δ)

2n

By combining equation 38 and equation 42 with union bound, we have that

EX,Y [∥WSfθ(X)− Y ∥] (43)

≤ LS(wS) +
1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥+
2√
m
∥PAg∥2

+
4Rm(W ◦ F)√

m
+ 2κ

√
ln(8/δ)

2m
+ 2κS̄

√
ln(8/δ)

2n

+ κS

√
2 ln(4|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +

√
p(y)

)
.

where W̃ =WS −W ∗ and PA = I −A(A⊤A)†A⊤.

We will now analyze the second term on the right-hand side of equation 43:

1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥ ≤ ∥W̃∥2

(
1

n

n∑
i=1

∥fθ(x̄i)− fθ(xi)∥

)
, (44)
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where ∥W̃∥2 is the spectral norm of W̃ . Since x̄i shares the same label with xi as x̄i ∼ Dyi (and
xi ∼ Dyi ), and because fθ is trained with the unlabeled data S̄, using Hoeffding’s inequality (Lemma
1) implies that with probability at least 1− δ,

1

n

n∑
i=1

∥fθ(x̄i)− fθ(xi)∥ ≤ Ey∼ρEx̄,x∼D2
y
[∥fθ(x̄)− fθ(x)∥] + τS̄

√
ln(1/δ)

2n
. (45)

Moreover, by using (Mohri et al., 2012, Theorem 3.1) with the loss function (x, x̄) 7→ ∥fθ(x̄)−fθ(x)∥
(i.e., Lemma 2), we have that with probability at least 1− δ,

Ey∼ρEx̄,x∼D2
y
[∥fθ(x̄)− fθ(x)∥] ≤

1

m

m∑
i=1

∥fθ(x+i )− fθ(x
++
i )∥+ 2R̃m(F)√

m
+ τ

√
ln(1/δ)

2m

(46)

where R̃m(F) = 1√
m
ES̄,ξ[supf∈F

∑m
i=1 ξi∥f(x

+
i ) − f(x++

i )∥] is the normalized Rademacher
complexity of the set {(x+, x++) 7→ ∥f(x+) − f(x++)∥ : f ∈ F} (it is normalized such that
R̃m(F) = O(1) as m → ∞ for typical choices of F), and ξ1, . . . , ξm are independent uniform
random variables taking values in {−1, 1}. Thus, taking union bound, we have that for any δ > 0,
with probability at least 1− δ,

1

n

n∑
i=1

∥W̃ (fθ(x̄i)− fθ(xi))∥ (47)

≤ ∥W̃∥2

(
1

m

m∑
i=1

∥fθ(x+i )− fθ(x
++
i )∥+ 2R̃m(F)√

m
+ τ

√
ln(2/δ)

2m
++τS̄

√
ln(2/δ)

2n

)
.

By combining equation 43 and equation 47 using the union bound, we have that with probability at
least 1− δ,
EX,Y [∥WSfθ(X)− Y ∥] (48)

≤ LS(wS) + ∥W̃∥2

(
1

m

m∑
i=1

∥fθ(x+i )− fθ(x
++
i )∥+ 2R̃m(F)√

m
+ τ

√
ln(4/δ)

2m
+ τS̄

√
ln(4/δ)

2n

)

+
2√
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∥PAg∥2 +
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+ 2κ
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ln(16/δ)

2n

+ κS

√
2 ln(8|Y|/δ)

2n

∑
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(√
p̂(y) +

√
p(y)

)

= LS(wS) + ∥W̃∥2

(
1

m

m∑
i=1

∥fθ(x+i )− fθ(x
++
i )∥

)
+

2√
m
∥PAg∥2 +Qm,n

where

Qm,n = ∥W̃∥2

(
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m
+ τ

√
ln(3/δ)

2m
+ τS̄

√
ln(3/δ)

2n

)
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2 ln(6|Y|/δ)
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∑
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p̂(y) +
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p(y)
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+
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ln(4/δ)

2n
.

Define ZS̄ = [f(x+1 ), . . . , f(x
+
m)] ∈ Rd×m. Then, we have A = [ZS̄

⊤ ⊗ Ir]. Thus,

PA = I − [ZS̄
⊤ ⊗ Ir][ZS̄ZS̄

⊤ ⊗ Ir]
†[ZS̄ ⊗ Ir] = I − [ZS̄

⊤(ZS̄ZS̄
⊤)†ZS̄ ⊗ Ir] = [PZS̄

⊗ Ir]

where PZS̄
= Im − ZS̄

⊤(ZS̄ZS̄
⊤)†ZS̄ ∈ Rm×m. By defining YS̄ = [g∗(x+1 ), . . . , g

∗(x+m)]⊤ ∈
Rm×r, since g = vec[Y ⊤

S̄
],

∥PAg∥2 = ∥[PZS̄
⊗ Ir] vec[Y

⊤
S̄ ]∥2 = ∥ vec[Y ⊤

S̄ PZS̄
]∥2 = ∥PZS̄

YS̄∥F (49)
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On the other hand, recall that WS is the minimum norm solution as

WS = minimize
W ′

∥W ′∥F s.t. W ′ ∈ argmin
W

1

n

n∑
i=1

∥Wfθ(xi)− yi∥2.

By solving this, we have
WS = Y ⊤ZS

⊤(ZSZS
⊤)†,

where ZS = [f(x1), . . . , f(xn)] ∈ Rd×n and YS = [y1, . . . , yn]
⊤ ∈ Rn×r. Then,

LS(wS) =
1

n

n∑
i=1

∥WSfθ(xi)− yi∥ =
1

n

n∑
i=1

√√√√ r∑
k=1

((WSfθ(xi)− yi)k)2

≤

√√√√ 1

n

n∑
i=1

r∑
k=1

((WSfθ(xi)− yi)k)2

=
1√
n
∥WSZS − Y ⊤∥F

=
1√
n
∥Y ⊤(ZS

⊤(ZSZS
⊤)†ZS − I)∥F

=
1√
n
∥(I − ZS

⊤(ZSZS
⊤)†ZS)Y ∥F

Thus,

LS(wS) =
1√
n
∥PZS

Y ∥F (50)

where PZS
= I − ZS

⊤(ZSZS
⊤)†ZS .

By combining equation 48–equation 50 and using 1 ≤
√
2, we have that with probability at least

1− δ,

EX,Y [∥WSfθ(X)− Y ∥] ≤ cIS̄(fθ) +
2√
m
∥PZS̄

YS̄∥F +
1√
n
∥PZS

YS∥F +Qm,n, (51)

where

Qm,n = c

(
2R̃m(F)√

m
+ τ

√
ln(3/δ)

2m
+ τS̄

√
ln(3/δ)

2n

)

+ κS

√
2 ln(6|Y|/δ)

2n

∑
y∈Y

(√
p̂(y) +
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p(y)

)
+

4Rm(W ◦ F)√
m

+ 2κ

√
ln(4/δ)

2m
+ 2κS̄

√
ln(4/δ)

2n
.

H KNOWN LEMMAS

We use the following well-known theorems as lemmas in our proof. We put these below for the
completeness. These are classical results and not our results.
Lemma 1. (Hoeffding’s inequality) Let X1, ..., Xn be independent random variables
such that a ≤ Xi ≤ b almost surely. Consider the average of these random variables,

Sn =
1

n
(X1 + · · ·+Xn). Then, for all t > 0,

PS

(
E [Sn]− Sn ≥ (b− a)

√
ln(1/δ)

2n

)
≤ δ,
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and

PS

(
Sn − E [Sn] ≥ (b− a)

√
ln(1/δ)

2n

)
≤ δ.

Proof. By using Hoeffding’s inequality, we have that for all t > 0,

PS (E [Sn]− Sn ≥ t) ≤ exp

(
− 2nt2

(b− a)2

)
,

and

PS (Sn − E [Sn] ≥ t) ≤ exp

(
− 2nt2

(b− a)2

)
,

Setting δ = exp
(
− 2nt2

(b−a)2

)
and solving for t > 0,

1/δ = exp

(
2nt2

(b− a)2

)
=⇒ ln(1/δ) =

2nt2

(b− a)2

=⇒ (b− a)2 ln(1/δ)

2n
= t2

=⇒ t = (b− a)

√
ln(1/δ)

2n

It has been shown that generalization bounds can be obtained via Rademacher complexity (Bartlett &
Mendelson, 2002; Mohri et al., 2012; Shalev-Shwartz & Ben-David, 2014). The following is a trivial
modification of (Mohri et al., 2012, Theorem 3.1) for a one-sided bound on the nonnegative general
loss functions:

Lemma 2. Let G be a set of functions with the codomain [0,M ]. Then, for any δ > 0, with probability
at least 1− δ over an i.i.d. draw of m samples S = (qi)

m
i=1, the following holds for all ψ ∈ G:

Eq[ψ(q)] ≤
1

m

m∑
i=1

ψ(qi) + 2Rm(G) +M

√
ln(1/δ)

2m
, (52)

where Rm(G) := ES,ξ[supψ∈G
1
m

∑m
i=1 ξiψ(qi)] and ξ1, . . . , ξm are independent uniform random

variables taking values in {−1, 1}.

Proof. Let S = (qi)
m
i=1 and S′ = (q′i)

m
i=1. Define

φ(S) = sup
ψ∈G

Ex,y[ψ(q)]−
1

m

m∑
i=1

ψ(qi). (53)

To apply McDiarmid’s inequality to φ(S), we compute an upper bound on |φ(S)− φ(S′)| where S
and S′ be two test datasets differing by exactly one point of an arbitrary index i0; i.e., Si = S′

i for all
i ̸= i0 and Si0 ̸= S′

i0
. Then,

φ(S′)− φ(S) ≤ sup
ψ∈G

ψ(qi0)− ψ(q′i0)

m
≤ M

m
. (54)

Similarly, φ(S)− φ(S′) ≤ M
m . Thus, by McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

φ(S) ≤ ES [φ(S)] +M

√
ln(1/δ)

2m
. (55)
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Moreover,

ES [φ(S)] (56)

= ES

[
sup
ψ∈G

ES′

[
1

m

m∑
i=1

ψ(q′i)

]
− 1

m

m∑
i=1

ψ(qi)

]
(57)

≤ ES,S′

[
sup
ψ∈G

1

m

m∑
i=1

(ψ(q′i)− ψ(qi))

]
(58)

≤ Eξ,S,S′

[
sup
ψ∈G

1

m

m∑
i=1

ξi(ψ(q
′
i)− ψ(qi))

]
(59)

≤ 2Eξ,S

[
sup
ψ∈G

1

m

m∑
i=1

ξiψ(qi)

]
= 2Rm(G) (60)

where the fist line follows the definitions of each term, the second line uses the Jensen’s inequality and
the convexity of the supremum, and the third line follows that for each ξi ∈ {−1,+1}, the distribution
of each term ξi(ℓ(f(x

′
i), y

′
i)− ℓ(f(xi), yi)) is the distribution of (ℓ(f(x′i), y

′
i)− ℓ(f(xi), yi)) since S

and S′ are drawn iid with the same distribution. The forth line uses the subadditivity of supremum.

I SIMCLR

In contrastive learning, different augmented views of the same image are attracted (positive pairs),
while different augmented views are repelled (negative pairs). MoCo (He et al., 2020) and SimCLR
(Chen et al., 2020) are recent examples of self-supervised visual representation learning that reduce
the gap between self-supervised and fully-supervised learning. SimCLR applies randomized aug-
mentations to an image to create two different views, x and y, and encodes both of them with a
shared encoder, producing representations rx and ry . Both rx and ry are l2-normalized. The SimCLR
version of the InfoNCE objective is:

Ex,y

[
− log

(
e

1
η r

T
y rx∑K

k=1 e
1
η r

T
yk
rx

)]
where η is a temperature term and K is the number of views in a minibatch
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