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ABSTRACT

Real-world sequential decision-making tasks often require balancing trade-offs
between multiple conflicting objectives, making Multi-Objective Reinforcement
Learning (MORL) an increasingly prominent field of research. Despite recent ad-
vances, existing MORL literature has narrowly focused on performance within
static environments, neglecting the importance of generalizing across diverse
settings. Conversely, existing research on generalization in RL has always as-
sumed scalar rewards, overlooking the inherent multi-objectivity of real-world
problems. Generalization in the multi-objective context is fundamentally more
challenging, as it requires learning a Pareto set of policies addressing varying
preferences across multiple objectives. In this paper, we formalize the con-
cept of generalization in MORL and how it can be evaluated. We then con-
tribute a novel benchmark featuring diverse multi-objective domains with pa-
rameterized environment configurations to facilitate future studies in this area.
Our baseline evaluations of state-of-the-art MORL algorithms on this bench-
mark reveals limited generalization capabilities, suggesting significant room for
improvement. Our empirical findings also expose limitations in the expressiv-
ity of scalar rewards, emphasizing the need for multi-objective specifications to
achieve effective generalization. We further analyzed the algorithmic complex-
ities within current MORL approaches that could impede the transfer in perfor-
mance from the single- to multiple-environment settings. This work fills a crit-
ical gap and lays the groundwork for future research that brings together two
key areas in reinforcement learning: solving multi-objective decision-making
problems and generalizing across diverse environments. Code is available at
https://anonymous.4open.science/r/morl-generalization

1 INTRODUCTION

Developing agents capable of generalizing across diverse environments is a central challenge in
reinforcement learning (RL) research. While significant progress has been made in studying the
generalizability of RL algorithms, these efforts predominantly focus on optimizing a single scalar
reward signal (Zhang et al., 2018; Cobbe et al., 2019; Irpan & Song, 2019; Packer et al., 2019; Kirk
et al., 2023). Single-objective RL (SORL) overlooks the complexity of real-world problems, which
often necessitate trade-offs to be made between multiple conflicting objectives. Reducing these mul-
tifaceted considerations to a single scalar reward (objective) obscures critical interactions between
the objectives and limits the agent’s utility (Vamplew et al., 2022). The field of Multi-Objective
Reinforcement Learning (MORL) has sought to address the inherent multi-objective nature of se-
quential decision-making tasks (Roijers et al., 2013; Hayes et al., 2022). However, the existing body
of MORL research has concentrated on optimizing agent performance within static environments,
neglecting the dimension of generalization across varying situations. Consequently, there exists a
significant gap in the RL literature: the intersection of generalization and MORL.

Generalising over multiple scenarios and objectives simultaneously is routinely demanded in many
real-world applications, such as healthcare management, autonomous driving, and recommendation
systems. Consider an autonomous vehicle, which must not only generalize across varied environ-
mental conditions—different weather patterns, lighting, and road surfaces—but also learn optimal
trade-offs between competing objectives such as fuel consumption, travel time, passenger’s comfort,
and safety. Failure to effectively generalize across these environments and objectives would lead to
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inefficient operation or even catastrophic outcomes. The real world’s dynamic nature extends be-
yond just environmental variability, but also includes evolving goals and utility preferences. An
agent optimizing a single scalar reward may exhibit some level of generalization, such as adapting
to state variations, but it will struggle to generalize when faced with new goals or reward structures.
This is because the agent has only observed its current reward signal, and lacks the basis for adapt-
ing its behaviour should the reward signal change. In contrast, a MORL agent learns to consider all
dimensions of a vector reward, even those that are not immediately relevant to current goals. This
holistic approach to learning allows the agent to adapt swiftly when its utility landscape evolves or
when stakeholders’ prioritisation over the different objectives shifts. For example, in autonomous
driving, a generally capable MORL agent can satisfy unique preferences over objectives for different
passengers without the need for retraining. Therefore, developing generally capable multi-objective
agents enables not only generalization across diverse environments, but also across dynamic goals
and utility functions—an overlooked aspect in current single-objective RL generalization literature,
yet one that is arguably essential for real-world applicability.

As the pioneering work to explore this promising area of research, we carefully scoped our contri-
butions to maximize their utility for advancing future studies combining generalization and multi-
objectivity in RL. Specifically, this paper provides: (1) formalisms for a general framework to dis-
cuss and evaluate generalization in MORL in Sections 3 and 4, (2) a novel benchmark comprising
six diverse domains with rich environment configurations in Section 5 and Appendix F, (3) exten-
sive evaluations of current state-of-the-art (SOTA) algorithms in Section 6, and (4) post-hoc anal-
yses of the results and the failure modes of existing SOTA methods in Section 6.2 and Appendix
B respectively. Perhaps most importantly, we provide open-source software to streamline MORL
generalization training and evaluation across these six domains, along with a raw dataset from over
1,000 GPU hours of evaluations involving eight SOTA MORL algorithms. These lays the ground-
work for driving future research on generalization in multi-objective domains, ultimately pushing
the boundaries of what RL agents can accomplish in complex, real-world scenarios.

2 BACKGROUND

In this section, we introduce MORL and establish the formal notations referenced throughout this
paper. A multi-objective sequential decision-making problem can be modeled by a Multi-Objective
Markov Decision Process (MOMDP; White (1982)) represented by the tuple: ⟨S,A, T ,R, µ, γ⟩
with state space S, action space A, transition function T : S × A × S → [0, 1], initial state
distribution µ, and discount factor γ ∈ [0, 1). The key distinction between MOMDPs and standard
MDPs lies in the vector-valued reward function R : S × A × S → Rk, where k is the number of
objectives. The goal of a standard RL agent is to maximize its expected long-term discounted sum
of rewards, i.e. value function. For a stationary policy π : S × A → [0, 1], the multi-objective state
value function at state s ∈ S is given by

Vπ(s) := Eπ

[ ∞∑
t=0

γtR(st, at, st+1)|s0 = s
]
,

where R(st, at, st+1) is the k-dimensional reward vector for the transition st, at, st+1. The expected
value vector of π under the initial state distribution µ is defined as vπ = Es0∼µ[V

π(s0)]. In
MORL, each user expresses varying preferences over the objectives, which are modeled by a utility
(scalarization) function u : Rk → R translating the expected vector reward vπ into a scalar utility,
i.e. vπ

u = u(vπ). These utility functions are assumed to be monotonically increasing in every
objective. This is a natural assumption in accordance with notions of reward – getting more reward
for an objective should not decrease a user’s utility as long as it does not result in a decrease in
reward for another. Since there may be no single policy that satisfies every user’s preference, unlike
single-objective RL, MORL requires the agent to learn a solution set of policies, each reflecting
different trade-offs across objectives. This leads to the concept of Pareto dominance. A policy π
Pareto dominates (denoted by ≻P ) another policy π′ if its expected value vector is higher or equal
across all objectives, that is: vπ ≻P vπ′ ⇐⇒ (∀i : vπi ≥ vπ

′

i ) ∧ (∃i : vπi > vπ
′

i ). The Pareto Set
consists of all nondominated (Pareto optimal) policies:

PS(Π) = {π ∈ Π | ∄π′ ∈ Π,vπ′
≻P vπ},

2
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where Π is the set of all possible policies. The image of the Pareto set under the expected value
function mapping is known as the Pareto Front. In MORL, there are two primary approaches: the
axiomatic approach and the utility-based approach (Roijers et al., 2013). The axiomatic approach
operates on the axiom that the Pareto set must contain an optimal policy for any possible monoton-
ically increasing utility function. Hence, they seek to derive the entire Pareto set without explicitly
considering specific utility functions. On the other hand, the more prevalent utility-based approach
considers classes of parameterized utility functions that can be expressed as uw(vπ), where w is
a weight vector parameterizing u. During training, utility-based agents learn optimal policies π∗

that maximize the scalar utility for different w (or neighborhood of w) across the weight space,
i.e. π∗ = argmaxπ∈Π uw(vπ). Linear scalarization functions with weights summing to unity, i.e.
uw(vπ) = w⊺vπ where

∑
i wi = 1, wi ≥ 0, i = 1, . . . , k, are commonly employed. Axiomatic

approaches and utility-based approaches are two sides of the same coin: both perspectives seek to
derive optimal trade-offs across the entire Pareto front. However, the utility-based approach puts
the user preferences at the forefront, making it easier for users to select policies based on their pref-
erences and allowing constraints to be placed on the solution set. We will use the terms “utility
function” and “scalarization function” interchangeably throughout this paper.

3 MULTI-OBJECTIVE CONTEXTUAL MARKOV DECISION PROCESS

To formalize the notion of generalization in the context of MORL, we need to start with a way to
reason about a collection of multi-objective environments. In single-objective RL (SORL), this is
often done using the Contextual MDP (CMDP; Hallak et al. (2015)) 1 framework. As such, we for-
mally define a Multi-Objective Contextual Markov Decision Process (MOC-MDP) – an adaptation
of the CMDP framework to the multi-objective setting.
Definition 1 (Multi-Objective Contextual MDP). A MOC-MDP is defined by the tuple

⟨C,S,A, T ,R, µ, γ,M⟩
where S,A, T ,R are as in the definition of the MOMDP. C is the context space and M is a function
mapping any c ∈ C to a MOMDP, i.e. M(c) = ⟨S,A, T c,Rc, µc, γ⟩.

The context space, C defines a set of static parameters, each representing a different MOMDP.
Intuitively, the context can be viewed as a discrete or continuous parameter specifying the multi-
objective environment configuration, such as a seed or a vector controlling the environment dynam-
ics. Each configuration varies in its initial state distribution, transition functions and multi-objective
rewards, but share enough common structure across which the MORL agent can generalize. MOC-
MDP describes a model where for each context there is a potentially distinct optimal Pareto front.
Throughout this paper, we will also refer to a particular MOC-MDP as a “domain”, and its asso-
ciated “contexts” as “environments”, interchangeably. For a given MOC-MDP M , the expected
multi-objective value vector of a policy π across all contexts is

vπ
C = Ec∼p(c) [v

π
c ] = Ec∼p(c)

[
Es0∼µc [Vπ

c (s0)]
]
,

where p(c) is the context distribution, vπ
c denotes the expected value vector under µc, and Vπ

c (s)
represents the multi-objective state value function for the MOMDP mapped by context c. We begin
by formalizing the generalization objective for axiomatic MORL approaches. The main objective
of the axiomatic approach lies in identifying all nondominated vectors across the Pareto front that is
optimal for any monotonically increasing scalarization function. In the case of a MOC-MDP, since
there are different Pareto fronts for each context, to attain optimality in any scalarization function
for any context, it would involve a union of policies from Pareto sets across contexts. Collectively,
these policies form a global Pareto set.
Definition 2 (Generalization in Axiomatic MORL Approaches). Given a MOC-MDP M with policy
space Π, the generalization problem for axiomatic approaches is to learn a global Pareto set:

Global Pareto Set = {π ∈ Π | ∃c ∈ C,∄π′ ∈ Π, vπ′

c ≻P vπ
c },

where vπ
c is the expected value vector in a context c. Thus, the global Pareto set comprises of policies

that are nondominated in at least one context, ensuring that all necessary policies for constructing
the Pareto Fronts in every context are captured.

1Not to be confused with Constrained MDPs.
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However, learning the global Pareto set in axiomatic approaches can pose challenges. First, the
axiomatic goal lacks specifications on the properties of the policies that is learned in the global
Pareto set. This permits the learning of disjoint sets of Markovian policies optimized for individual
contexts, which resembles “memorization” rather than generalization. Moreover, when the context
is partially observable at test time, it is unclear how the agent should select the subset of policies
corresponding to the Pareto front of the context. Evaluating all policies within the global Pareto
set would be intractable. The utility-based approach offers a more structured path for formalizing
generalization in MORL. Recall in utility-based approaches, each user’s preference is modeled by a
utility function uw(·) parameterized by a weight vector w. In a MOC-MDP, the optimal policy for
a given w may vary across contexts. Thus, utility-based approaches would aim to find policies that
maximize the expected utility across the context distribution for each w.
Definition 3 (Generalization in Utility-based MORL Approaches). For each weight w, the general-
ization problem for utility-based approaches is to find an optimal policy π∗

w such that

π∗
w = argmax

π∈Π
Ec∼p(c) [uw(vπ

c )]

In this framework, each policy must generalize across contexts for a specific utility function param-
eterized by w, keeping the size of the agent’s policy set bounded by the weight space. This structure
also permits for clear specification of policies by users via w during test time, regardless of the con-
text. Besides it practical benefits, the utility-based approach aligns more closely with the concept
of generalization. Since the agent only learns a single policy per preference weight, for each policy
to maximize its corresponding utility function in any context, even those unseen from its training
distribution, the agent would likely have to find a way to learn and leverage the shared structure
across contexts in the MOC-MDP.

4 EMPIRICAL EVALUATION OF MORL GENERALIZATION PERFORMANCE

In this section, we propose an evaluation protocol for generalization performance in MORL and dis-
cuss important considerations. Let Ceval = {c1, c2, . . . , cn} represent a set of independent evaluation
contexts. Measuring an agent’s generalization performance in SORL is straightforward: the larger
the reward value across Ceval, the better. In MORL, however, agents produce an approximate Pareto
front comprising multiple value vectors for each c ∈ Ceval, and translating the quality of this Pareto
front into a scalar metric that captures generalization performance is non-trivial. The Hypervolume
indicator (Zitzler & Thiele, 1998) is widely used to evaluate the quality of approximate Pareto fronts
in single-environment MORL. It measures the volume in the objective space occupied by a Pareto
front, relative to a reference point. However, the Hypervolume indicator is inherently not scale-
invariant, and biases evaluations towards objectives with larger magnitudes. While normalization
has been discussed in multi-objective optimization (MOO) (Deb & Kalyanmoy, 2001), it has been
overlooked in the MORL literature. To ensure fair and reliable generalization evaluations, we first
propose the Normalized Hypervolume (HVnorm).

Definition 4 (Normalized Hypervolume). Let F̃c ⊂ Rk be an approximate Pareto front in a k-
dimensional objective space for context c. The Normalized Hypervolume (HVnorm) is defined as:

HVnorm(F̃c) = λk

( ⋃
v∈Nc

[v,0]
)
,

where λk is the k-dimensional Lebesgue measure (Lebesgue, 1902) and Nc is the normalized Pareto
front. The Pareto front F̃c is normalized to Nc by linearly mapping each objective dimension to the
range [0, 1], using the minimum and maximum achievable values for that objective in the correspond-
ing objective space. Since the objectives are normalized, we can use the origin 0 as the reference
point, eliminating the need for a priori knowledge of an appropriate reference point.

The use of HVnorm also enhances interpretability as it is bounded within 0 and the hypervolume of the
unit hypercube (which is 1). However, in practice, determining the true optimal Pareto front and its
boundary values for normalization is difficult, especially in continuous domains. To approximate the
optimal Pareto front for each context, we can combine the nondominated value vectors from a set of
specialist agents trained independently on that specific context, forming a combined specialist Pareto
front. The approximate normalization vectors for a context c, denoted as vc

min and vc
max, are then

4
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derived from the boundary values of the combined specialist Pareto front for c. For each objective i ∈
{1, · · · , k} and cj ∈ Ceval, we measure: vcjmin,i = minπ∈Πind V

π
i (cj), v

cj
max,i = maxπ∈Πind V

π
i (cj),

where V π
i (cj) is the discounted return of a policy π on objective i in context cj , and Πind is the

set of Pareto optimal policies obtained by specialist agents trained on cj . With these normalization
bounds for calculating HVnorm established, we introduce a novel metric to evaluate the generalization
performance of MORL agents called the Normalized Hypervolume Generalization Ratio (NHGR):

0 1

1

v1

v2

Generalist agent’s N
Combined Specialist N

NHGR =

Figure 1: NHGR visualized as the ra-
tio between hypervolume of the normal-
ized generalist and combined specialist
Pareto fronts (dashed and shaded areas).

Definition 5 (Normalized Hypervolume Generalization
Ratio). Let N gen

cj and N spec
cj be the normalized Pareto

front obtained by the generalist MORL agent and the
normalized combined specialist Pareto front on context
cj respectively. The NHGR for cj is defined as:

NHGR(N gen
cj ,N spec

cj ) =
HVnorm(N gen

cj )

HVnorm(N spec
cj )

.

NHGR measures the ratio of normalized hypervolume
between the generalist and specialist agents. When a
generalist agent attains NHGR=1 across all cj ∈ Ceval, it
has recovered the performances of specialists optimized
for each context. NHGR draws similarities to the Hyper-
area Ratio (Veldhuizen & Allen, 1999) metric in MOO
literature but additionally employs normalization before
calculating hypervolume to ensure scale-invariance.

Fig. 1 illustrates the NHGR metric for a biobjective domain. The NHGR metric is intu-
itive because a generally-capable MORL agent should ideally achieve a Pareto front of com-
parable quality to that of agents specialized for each context. While collecting specialist
performances is tedious, it is essential for accurate generalization evaluations. Without the
combined specialist Pareto front as a reference, evaluations would be biased towards agents
that excel in contexts with convex-like Pareto fronts and higher hypervolume, while penaliz-
ing those that divide their learning across all contexts, even those with concave Pareto fronts.

Default Hard Slippery

Hyper-
volume 1.7e5 6.1e4 1.3e5

HVnorm 0.25 0.048 0.19
NHGR 0.40 0.11 0.34

Table 1: Illustration of different metrics
on 3 MO-HalfCheetah environments.

That contradicts the motivations of generalization.
NHGR resolves this issue by evaluating generalist per-
formance as a ratio of an approximated maximal achiev-
able one, ensuring every evaluation context is fairly con-
sidered. Table 1 shows the mean performance of the
GPI-PD (Alegre et al., 2023) algorithm on 3 environ-
ments in the MO-HalfCheetah domain (discussed more
in Section 5). As shown, the raw hypervolume metric
results in differences in performance between environ-
ments in the magnitude of 10e4. This is because slight
differences in reward ranges compounds in hypervolume with every added dimension, resulting in a
lack of interpretability. Meanwhile, the HVnorm score heavily penalizes the performance of the agent
in the Hard environment, and the NHGR metric offers the most balanced assessment by taking the
ratio over the specialists’ achieved scores. We invite motivated readers to Appendix D for extended
discussions on the benefits of NHGR and other metrics for generalization evaluations in MORL.

5 MORL GENERALIZATION BENCHMARK

In this section, we introduce a novel benchmark featuring a diverse set of multi-objective domains
with rich environmental variations to facilitate the future study of generalization in MORL algo-
rithms. We adapted existing domains from MO-Gymnasium (Felten et al., 2023), a multi-objective
extension of the Gymansium (Towers et al., 2024; Brockman et al., 2016) library, and introduced
new ones, each with expressive parameters controlling environmental variations. Kirk et al. (2023)
identified four key types of domain variations for studying generalization: 1) state-space variation
(S), which alters the initial state distribution, 2) dynamics variation (D), which alters the transition
function, 3) visual variation (O), which impacts the observation function, and 4) reward function
variation (R). This benchmark primarily focuses on state-space and dynamics variations. Observa-
tion variations do not alter the underlying MOMDP structure (Du et al., 2019). Hence, they provide

5
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Figure 2: Domains in the MORL Generalization benchmark. Top row from left to right: 1) MO-
LunarLander, 2) MO-Hopper, 3) MO-Cheetah, 4) MO-Humanoid. Middle row: MO-LavaGrid (8
handcrafted evaluation environments). Bottom row: MO-SuperMarioBros (8 out of 32 stages).

limited insights into the multi-objective decision-making capabilities of the agent since the optimal
Pareto front across variations remain isomorphic. Reward variations are often introduced through
multiple goals. Multiple goals can naturally be modeled as multiple objectives by treating each goal
as a conflicting objective (Sener & Koltun, 2018), which means MORL inherently involves learn-
ing to adapt to reward function variations. Nevertheless, we provided a novel maze domain that
explicitly segregates the goals and multiple objectives, for posterity. Fig. 2 visualizes the domains
provided in the benchmark with annotations for their environment parameters, where applicable. We
provide detailed descriptions of each benchmark domain and their introduced domain variations in
Appendix F.1.

6 EXPERIMENTS

In this section, we evaluate state-of-the-art MORL algorithms on the newly-developed benchmark
to establish baseline expectations for their generalization capabilities. The implementations of
these algorithms are adapted from Felten et al. (2023). Specifically, the algorithms evaluated are
CAPQL (Lu et al., 2023), Envelope (Yang et al., 2019), GPI-LS (Alegre et al., 2023), PCN (Rey-
mond et al., 2022), PGMORL (Xu et al., 2020), and MORL/D SB (Felten et al., 2024). We also
include the model-based extension of GPI-LS, i.e. GPI-PD, and the weight adaptation variant of
MORL/D SB, i.e. MORL/D SB+PSA. Note that Envelope is limited to discrete-action domains, and
both CAPQL and PGMORL are limited to continuous-action domains. Additionally, we include the
SAC (Haarnoja et al., 2018) algorithm trained with a single objective/utility function in our evalu-
ations to verify that the objectives are not so highly correlated that a single-objective agent could
also achieve high performance across multiple objectives. In total, we evaluate 8 MORL algorithms
across 6 domains using 5 seeds each, requiring over 1,000 GPU hours. These established base-
line performances will be open-sourced via Weights and Biases (Biewald, 2020), facilitating future
research and saving computational resources.

Domain Randomization (DR) is an efficient method to expose the agent to a wide range of environ-
ments during training by uniformly sampling from the environment parameter space. It has found
success in deep RL even for complex visual domains and real-world robotic control (Tobin et al.,
2017; Peng et al., 2018). We utilise DR for all our experiments by randomizing the environment
parameters after every training episode. This also enables us to standardise the presentation of
environments across algorithms via the RNG seed, and evaluate the algorithms solely for their gen-
eralization capabilities. At each evaluation time step, each algorithm is assessed over 100 episodes 2

2In MO-SuperMarioBros, 32 evaluation episodes are used to keep runtime under 120 hours.
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across a set of environment configurations. Whenever possible, these configurations are chosen us-
ing the boundary values of environment parameter ranges to ensure diverse evaluation environments
and behaviors. For MORL algorithms using linear scalarization, weights are sampled equally across
the unit simplex during each evaluation episode. We aggregate the NHGR performance across all
evaluation environments for each domain and report results in terms of inter-quartile mean (IQM)
and optimality gap using the rliable library (Agarwal et al., 2021), which helps account for statis-
tical uncertainty prevalent in deep RL. IQM focuses on the middle 50% of combined runs, discarding
the bottom and top 25%. Optimality gap captures the amount by which the algorithm fails to meet a
desirable target, i.e. when NHGR=1. The evaluation environment configurations, hyperparameters
and other experiment setups are detailed in Section F of the appendix for reproducibility.

6.1 MORL GENERALIZATION RESULTS

The baseline results reveal significant performance gaps between specialist and generalist agents (via
NHGR) across various domains, highlighting the benchmark’s potential to serve as a foundational
benchmark for future research in MORL generalization.

(a) MO-LunarLander (b) MO-Hopper

(c) MO-HalfCheetah (d) MO-Humanoid

(e) MO-SuperMarioBros (f) MO-LavaGrid

Figure 3: Aggregate NHGR performance in all domains of the benchmark. Each algorithm is eval-
uated across 5 independent seeds and several evaluation environment configurations. Higher IQM
and lower optimality gap scores are better. The best algorithm for each domain is bolded.

MO-LunarLander In MO-LunarLander (see Fig. 3a), most algorithms achieved a mean IQM
NHGR score within the range of ∼0.65-0.75. Given this performance saturation, we recom-
mend using this domain only as a starting point for testing and rapid iteration when developing new
approaches, as its low-dimensional observation and discrete action spaces enable a relatively shorter
training horizon compared to other domains. For testing more significant algorithmic advancements,
exploring the continuous-action variant of this domain may reveal larger NHGR optimality gaps and
greater opportunities for improvement.

Mujoco-based Domains The challenge of MORL generalization becomes more pronounced in the
Mujoco-based (Todorov et al., 2012) domains, as shown in Figures 3b, 3c and 3d. Across the 3
domains, a wider spread in performances and noticeably lower performance ceilings are observed.
In the MO-Hopper domain, the leading algorithm, MORL-D(SB+PSA), managed to reach a mean

7
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IQM NHGR score of only ∼0.53, resulting in a substantial 68% optimality gap. This gap further
intensifies in the higher-dimensional domains, i.e. MO-HalfCheetah (Fig. 3c) and MO-Humanoid
(Fig. 3d), where the leading algorithms, GPI-PD and CAPQL, achieved mean IQM NHGR scores
of only ∼0.32 and ∼0.35, respectively. These low performance ceilings are expected, given the
notorious difficulty of generalization in continuous control tasks already established in SORL. These
wide optimality gaps, combined with the strong relevance to real-world robotic control tasks, suggest
that these domains may serve as enduring benchmarks for studying generalization in MORL.

=+ +

(a) MO-SuperMarioBros Performances (b) Heatmap of visited tiles

Figure 4: (a) MO-SuperMarioBros performances on 4 stages. Stage 3-3 in the rightmost column
shares visual similarities with the other stages so it is excluded from training to evaluate for ZSG.
(b) Heatmap of visited tiles for a specialist and generalist in the MO-LavaGrid “Room” environment.
Each column’s title shows the conditioned linear weights for the lava and time penalty objectives.

MO-SuperMarioBros Fig. 3e presents the NHGR performance of 3 discrete MORL algorithms
and SAC on MO-SuperMarioBros. MORL/D SB and MORL/D SB+PSA were excluded due to
the high GPU memory demands of using convolutional neural networks in this domain, which is
incompatible with their evolutionary approach. The leading algorithm, GPI-LS, achieved a mean
IQM NHGR score of only ∼0.18. We also conducted a zero-shot generalization (ZSG) experiment
by excluding Stage 3-3 from the training distribution. This stage shares a combination of visual
features with Stages 3-2, 4-3, and 5-3, allowing us to test if an agent has learned generalizable
behaviors over the pixel space or merely memorized stage-specific sequences. The results in Fig. 4a
show a steep decline in NHGR performance in the zero-shot environment, suggesting the latter.

MO-LavaGrid Fig. 3f shows the evaluation performance of 5 discrete MORL algorithms on MO-
LavaGrid, with MORL/D SB achieving the highest mean IQM NHGR score, albeit still far from
optimality. We recorded multiple trajectories for a generalist agent (MORL/D SB) and a specialist
agent (GPI-LS) in the “Room” environment of MO-LavaGrid, both of which uses linear scalariza-
tion. Fig. 4b displays heatmaps of visit counts for each tile when the specialist and generalist were
conditioned on three different linear weights (for lava and time penalty objectives). The specialist
consistently takes optimal routes for each weight, while the generalist exhibits random walks over-
lapping with the three goals. This likely explains MORL/D SB’s nonzero NHGR performance across
environments but significant optimality gap, as it incurs high penalties from inefficient navigation.

In summary, the generalization performance of the current MORL algorithms leaves much to be
desired. This outcome is not surprising, as these experiments were aimed to provide a baseline un-
derstanding of existing methods without any tailored interventions to enhance generalization yet.
Despite not attaining the top performance in every domain, MORL/D SB and MORL/D SB+PSA,
demonstrated the most consistent results overall. Future research aiming to improve MORL gener-
alizability can consider building upon these algorithms for more reliable testing.

6.2 SCALAR REWARD IS NOT ENOUGH FOR RL GENERALIZATION

Real-world problems are often multi-objective. In fact, many popular SORL benchmarks are in-
herently multi-objective but are simplified with hidden scalarization functions. For example, the
original Hopper domain’s combines forward velocity (vx), control cost (c), and a bonus for not
falling (h) into a scalar reward: 1.5vx + 0.001c+ h. In contrast, MORL treats these as independent
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objectives, and occasionally adds objectives like torso height that are superfluous to the goal of the
SORL agent. One might argue that if a stakeholder’s sole goal is for the agent to move forward,
utility-based MORL approaches that seek to maximise multiple utility functions might be redundant
in RL generalization. However, our empirical results challenge this assumption.

Figure 5: Single-objective return on 6 MO-Hopper testing environments during training. Each curve
is measured across 5 seeds (mean and standard error).

Let fSORL denote the fixed scalar utility function that SORL agents are trained to optimise during
generalization. Throughout the generalization training horizon of the MORL algorithms in Sec-
tion 6.1, we sampled solution vectors across their Pareto front and scalarized them using fSORL,
and recorded the highest scalar utility for each evaluation environment. For the SORL agent, which
already specializes on fSORL, we allow it as many runs as solution vectors sampled from the MORL
agents and take the best result. Our results reveal that when trained on the same generalization pro-
cedure, leading MORL algorithms can actually outperform the SORL agent on its specialized utility
function, i.e. fSORL. Fig. 5 shows several MORL algorithms surpassing the SAC agent on fSORL
return by large margins across six distinct environment variations during generalization training in
the MO-Hopper domain. Note that CAPQL is a multi-objective variant of SAC, while MORL/D
SB and MORL/D SB+PSA is population-based approach of SAC. All SAC-based implementations
are from the same library, CleanRL (Huang et al., 2022), making these results fair. Similar find-
ings are observed in other domains (see Section D.4 in appendix), where leading MORL algorithms
consistently outperform or achieved parity with SAC on fSORL performance.

(a) Default (b) Slippery (c) Hard

Default Slippery Hard

forward velocity 0.84 0.52 0.3
torso height 0.09 0.4 0.23
control cost 0.07 0.08 0.47

Figure 6: Screenshots of MORL/D SB+PSA
agent’s behavior in different MO-Hopper environ-
ments and the corresponding linear weights.

Fig. 6 presents snapshots from the highest
fSORL episodes of the MORL/D SB+PSA agent
on three MO-Hopper environments. Since
MORL/D SB+PSA is a linear utility approach,
the table in Fig. 6 provides the weight vectors
which the agent conditioned on. In the Default
environment, the agent placed a higher weight
on forward velocity, causing it to lean forward
and cover more distance. In the Slippery envi-
ronment, where the friction coefficient is min-
imal, leaning forward would make the agent
topple over. Instead, MORL/D SB+PSA max-
imised fSORL when balancing between the for-
ward velocity and torso height, thereby main-
taining an upright posture to prevent slipping.
In the Hard environment, which features a slip-
pery floor, unbalanced body masses, and low
joint damping, the agent maximized fSORL by
prioritizing torso height and minimizing control cost. This allows the agent to maintain stability and
reduce abrupt movements. In contrast, the single-objective SAC agent only learnt a single behavior
to generalise across all environments, causing it to fail in dire conditions.

The single-objective approach to RL generalization is heavily reliant on reward engineering, i.e.
finding an optimal scalar reward signal through trial-and-error search of scalarization functions (Sut-
ton & Barto (2018), Chapter 17.4). However, the observations above highlight that there may be no
universal scalarization function which optimizes reward signal during generalization. Each environ-
ment demands distinct behaviors from the agent to maximize performance, even for a fixed goal
like moving forward. Consequently, a priori scalarization in SORL limits the agent’s flexibility to
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adapt its behavior to environmental changes. In contrast, generalization with MORL approaches
circumvents the reward engineering problem by considering all dimensions of a vector reward inde-
pendently, even those not immediately relevant to current goals. This allows agents to learn diverse
behaviors for different tradeoffs among objectives. Stakeholders can then select policies from the
agent’s Pareto set that best maximize their utility function for any given environment, enhancing the
adaptability of MORL agents in generalization tasks. These observations align with recent studies
that challenge the expressivity of scalar rewards and advocate for the adoption of multi-objective
reward formulations (Vamplew et al., 2022; Skalse & Abate, 2024; Subramani et al., 2024).

7 RELATED WORK

Multi-Objective Contextual Multi-Armed Bandits: Multi-Objective Contextual Multi-Armed
Bandits (MOC-MAB; Tekin & Turgay (2017); Turgay et al. (2018)) are a context-dependent, multi-
objective extension of the Multi-Arm Bandit (MAB) problem. In MOC-MAB, at each decision
point, the agent observes a context and selects an action (arm) to maximize a vector of immediate
rewards corresponding to different objectives. While MOC-MAB provides valuable insights into
handling contexts and balancing multiple objectives simultaneously, it fundamentally differs from
the MOC-MDP framework. Specifically, MOC-MAB does not address the state-transitions and se-
quential decision-making inherent in MORL. Our work extends beyond the MOC-MAB setting by
focusing on the generalization of RL agents in a context-dependent, multi-objective environment—a
problem that, to our knowledge, has not been previously explored in the literature. However, bandit
analysis often forms the foundations of progress in RL, so we implore future work to look into the
MOC-MAB framework for inspiration on improving generalization in MORL.

Multi-Tasking and Meta-Learning: Multi-Task Learning (MTL; Caruana (1998)) and Multi-Task
Reinforcement Learning (MTRL; Tanaka & Yamamura (2003)) aim to improve learning efficiency
and performance by leveraging shared representations across multiple tasks. Reinforcement Learn-
ing based on CMDPs is closely related to MTRL but involves a parameterized variable, termed the
context, which allows for a more unified modeling of tasks within a single framework. However,
both MTRL and CMDPs have predominantly been studied in the single-objective setting, focusing
on maximizing a scalar reward function. Sener & Koltun (2018) framed MTL as a MOO prob-
lem by treating different tasks as conflicting objectives. While this perspective introduces multi-
objectivity into MTL, it primarily addresses trade-offs between tasks rather than scenarios where
each task involves multiple objectives. In the optimization domain, the Multi-Objective Multifacto-
rial Optimization (MO-MFO) paradigm (Gupta et al., 2017) considers multitasking across multiple
multi-objective problems by leveraging shared evolutionary operators to solve them simultaneously.
Despite these advancements, there is a notable gap in the literature regarding the simultaneous con-
sideration of multi-objectivity and generalization across contexts (or tasks) in reinforcement learn-
ing. To the best of our knowledge, this is the first study to formalise and systematically explore
generalization in MORL, highlighting unique difficulties within this combined setting.

8 DISCUSSION AND CONCLUSION

Developing reinforcement learning agents for real-world tasks necessitates not only generalization
across diverse environments, but also across multiple objectives. By formally introducing a frame-
work for discussing and evaluating generalization in MORL, we bridge a crucial gap between RL
generalization and multi-objective decision-making. To measure progress in this area, we con-
tributed a novel benchmark to facilitate rigorous investigations into MORL generalization. The
extensive baseline evaluations of state-of-the-art MORL algorithms on the benchmark also highlight
significant room for future research to improve upon. We encourage readers to look at Section B of
the appendix, where we analyzed algorithmic failure modes in current MORL approaches, offering
insights into their poor generalization performance. Extended discussions of MORL generalization
and future research directions are also provided in Appendix C. Moreover, we have open-sourced
our software, alongside the raw dataset derived from over 1,000 GPU hours of baseline evaluations.
These contributions would streamline future investigations into MORL generalization. We hope this
paper spurs greater recognition of the importance of multi-objective reward structures for RL gen-
eralization. Ultimately, by unifying these two fields, this paper lays the groundwork for advancing
RL agents capable of tackling the complexities of real-world, multi-objective scenarios.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization, 2019. URL https://arxiv.org/abs/1811.
11214.

Lucas N. Alegre, Ana L. C. Bazzan, Diederik M. Roijers, Ann Nowé, and Bruno C. da Silva.
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A RELATED WORK

Multi-Objective Contextual Multi-Armed Bandits Multi-Objective Contextual Multi-Armed
Bandits (MOC-MAB; Tekin & Turgay (2017); Turgay et al. (2018)) are a context-dependent, multi-
objective extension of the Multi-Arm Bandit (MAB) problem. In MOC-MAB, at each decision
point, the agent observes a context and selects an action (arm) to maximize a vector of immediate
rewards corresponding to different objectives. While MOC-MAB provides valuable insights into
handling contexts and balancing multiple objectives simultaneously, it fundamentally differs from
the MOC-MDP framework. Specifically, MOC-MAB does not address the state-transitions and se-
quential decision-making inherent in MORL. Our work extends beyond the MOC-MAB setting by
focusing on the generalization of RL agents in a context-dependent, multi-objective environment—a
problem that, to our knowledge, has not been previously explored in the literature. However, bandit
analysis often forms the foundations of progress in RL, so we implore future work to look into the
MOC-MAB framework for inspiration on improving generalization in MORL.

Multi-Tasking and Meta-Learning Multi-Task Learning (MTL; Caruana (1998)) and Multi-Task
Reinforcement Learning (MTRL; Tanaka & Yamamura (2003)) aim to improve learning efficiency
and performance by leveraging shared representations across multiple tasks. Reinforcement Learn-
ing based on CMDPs is closely related to MTRL but involves a parameterized variable, termed the
context, which allows for a more unified modeling of tasks within a single framework. However,
both MTRL and CMDPs have predominantly been studied in the single-objective setting, focusing
on maximizing a scalar reward function. Sener & Koltun (2018) framed MTL as a MOO prob-
lem by treating different tasks as conflicting objectives. While this perspective introduces multi-
objectivity into MTL, it primarily addresses trade-offs between tasks rather than scenarios where
each task involves multiple objectives. In the optimization domain, the Multi-Objective Multifacto-
rial Optimization (MO-MFO) paradigm (Gupta et al., 2017) considers multitasking across multiple
multi-objective problems by leveraging shared evolutionary operators to solve them simultaneously.
Despite these advancements, there is a notable gap in the literature regarding the simultaneous con-
sideration of multi-objectivity and generalization across contexts (or tasks) in reinforcement learn-
ing. To the best of our knowledge, this is the first study to formalise and systematically explore
generalization in MORL, highlighting unique difficulties within this combined setting.

B ANALYSIS OF FAILURE MODES IN MORL APPROACHES

In this section, we seek a deeper understanding on failure modes within the current MORL algo-
rithms that can hinder generalization. We caution readers looking to further MORL generalization
to be wary of them and encourage exploration to solve these failure modes. Note that we will only
discuss challenges that are unique to generalization within MORL, and problems pertaining to the
broader RL generalization literature is excluded.

Pareto Archival Methods MORL methods often maintain a Pareto archive—a set of nondom-
inated policies discovered during training. This archive is constantly updated by comparing the
value vector of new policies with old ones, and discarding the dominated ones. This archive can
then aid the agent’s search process within the objective space, or be used as solutions during test
time. This technique is commonly used in multi-objective evolutionary algorithms like PGMORL
and MORL/D. Similarly, GPI-LS and GPI-PD track a finite convex subset of the PF where dom-
inance is defined only for linear utility functions. However, when extending these methods to a
MOC-MDP—where each context has its own optimal PF—current archiving mechanisms can lead
to suboptimal outcomes. Most MORL literature assumes a static environment, so existing Pareto
archival mechanisms are not designed to handle context variability in MOC-MDPs. As a result,
the archive overrepresents policies that perform well in a narrow set of contexts with higher reward
scales or lower difficulty, while discarding those optimal for more challenging or less rewarding
contexts. This has severe implications as it will cause the agent to converge to a maximax strategy,
adopting policies that are only optimized to yield the best of the best possible outcomes during test
time, and results in poor generalization across the entire range of contexts in the MOC-MDP.

Reliance on Linear Scalarisation The convexity of the induced value functions’ range deter-
mines if MORL algorithms relying on linear scalarization (LS), are capable of finding all policies
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corresponding to the optimal PF (Vamplew et al., 2008; Roijers et al., 2013). Lu et al. (2023)
showed that in the static-environment setting, the induced value functions’ range of stochastic sta-
tionary policies in a MOMDP is convex, which means LS is not a bottleneck for approximating the
PF. If we consider maximizing the expected multi-objective value function (across contexts) as the
learning objective, the same results by Lu et al. (2023) can be applied directly to show the convexity
of the range of expected value vectors in a MOC-MDP. This is a trivial result of the linearity of the
expectation operator, which preserves convexity (Boyd & Vandenberghe, 2004). However, if our
maximization objective is the recovery of the globally optimal PF across contexts, the policies that
the agent learn may need to be non-stationary and/or non-Markovian (further discussion in C.1).
Prima facie, in cases where the policies exhibits nonlinear dependence on state-action history, meth-
ods relying solely on LS would be insufficient to identify all globally Pareto-optimal policies in a
MOC-MDP. Currently, the MORL field lags significantly behind MOO, particularly in methodolog-
ical advancements. The prominence of LS-reliant methods in state-of-the-art MORL algorithms
underscores this gap. We encourage future exploration of approaches established in MOO which
can approximate the PF without relying on convexity assumptions, such as those based on nonlinear
scalarization or evolutionary algorithms.

Value Function Interference Within state-of-the-art MORL, many approaches extend value-
based scalar RL algorithms such as Q-learning or Deep Q-Networks to handle vector rewards. If the
utility function allows actions with widely differing vector outcomes to map to the same utility value,
then the vector value function learned for earlier states may be inconsistent with the actual optimal
policy (Vamplew et al., 2024). This problem is particularly likely to arise in environments which
are stochastic or partially-observable. We note that for MOC-MDPs, the dynamics and rewards ob-
served by the agent may appear to be stochastic even if the underlying MDPs are deterministic, due
to the influence of the hidden context variables. In fact, Ghosh et al. (2021) showed that gener-
alization, even in fully-observable RL tasks, requires solving an implicitly partially-observable RL
problem they term as epistemic POMDP. Therefore, value function interference may pose a particu-
lar problem when naively applying value-based MORL algorithms to MOC-MDPs. We note that if
the utility function is linear then value interference does not impact on selecting the optimal action,
hence there is an implicit tension between this failure mode, and the issues of reliance on linear
scalarisation raised in the previous paragraph.

C EXTENDED DISCUSSIONS

C.1 PRINCIPLE OF UNCHANGED PARETO OPTIMALITY

When constructing a benchmark in reinforcement learning, it is important to ensure that the domain
satisfies The Principle of Unchanged Optimality (Irpan & Song, 2019), an underappreciated yet fun-
damentally important principle. This principle asserts that, for a domain to support generalization,
it should provide all necessary information such that a policy optimal in every context can exist. In
the MOC-MDP framework, The Principle of Unchanged (Pareto) Optimality implies the existence
of globally Pareto optimal policies, π∗, such that:

∀c ∈ C : π∗ ∈ PS(Πc),

where Πc is the set of feasible policies, and PS(Πc) denotes the Pareto set containing nondomi-
nated policies, for a given c ∈ C. This principle has significant theoretical implications. When the
unchanged optimality principle is disregarded, the benchmark can become a proxy measure of the
memorization capability (Zhang et al., 2018) of the MORL agents, instead of generalization.

The Principle of Unchanged Pareto Optimality is also important for our generalization evaluations.
If this principle is violated, generalist agents would be fundamentally unable to achieve an NHGR
score of 1, as they could never match the performance of specialists across all contexts. This section
examines how The Principle of Unchanged Pareto Optimality is upheld in the domains of our MORL
generalization benchmark, thereby supporting its validity for measuring MORL generalization. It
is important to note that each context or environment in the benchmark varies in its initial state
distribution, transition dynamics, and multi-objective reward function. When the context is fully
observable, the agent can include the context as part of its state representation, enabling the learning
of ”universal” policies that adapt to variations across contexts. However, if the context is hidden, the
agent must infer it during deployment to recover optimality. Therefore, for our benchmark to respect
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The Principle of Unchanged Pareto Optimality, we need to ensure that sufficient information about
the context can be inferred from the agent’s observations within our proposed domains.

For MO-SuperMarioBros, although visual similarities exist between levels, each observation pro-
vides sufficient information for determining the optimal action at every time step (e.g. immediate
coins, enemies, bricks are visible). Additionally, given the finite number of stages (32), the agent
can easily deduce its current stage from its observations. Similarly, in MO-LavaGrid, the placement
of lava and goals is fully observable in each observation. Furthermore, as described in Section 5,
we concatenate the reward weights of each goal with the agent’s observations, a deliberate choice
to ensure that necessary information about the context, specifically the current reward function, is
provided to the agent for optimal planning.

For the continuous control domains–MO-Hopper, MO-HalfCheetah, and MO-Humanoid–each con-
text varies in environment dynamics, such as gravity and friction. However, the agent’s observa-
tions only include the positions and velocities of the robot’s joints, making it impossible to infer
the context or determine optimal actions from a single time step. A similar situation occurs in
MO-LunarLander, where the agent’s observations are limited to its orientation and velocity. The
environment dynamics is, however, inferrable when the agent considers its state-action history. Con-
sequently, the optimal policies in these domains are inherently non-Markovian, requiring either re-
current policies (e.g., recurrent neural networks) or regression over state-action history buffers. We
must therefore note that The Principle of Unchanged Pareto Optimality can indeed be upheld
in our proposed domains, but current MORL algorithms, which typically assume Markovian poli-
cies, fail to achieve this. This is expected since we are the first work to consider MORL outside of
static environments. This also largely explains the poor NHGR performances observed for existing
MORL algorithms, as shown in Section 6.

C.2 FUTURE WORK AND LIMITATIONS

In this paper, we conducted extensive evaluations of current Multi-Objective Reinforcement Learn-
ing (MORL) algorithms on the benchmark we introduced, utilizing domain randomization tech-
niques. However, the poor generalization results indicate a clear need for more innovative ap-
proaches. A promising starting point for future research would be to leverage insights from the
single-objective RL generalization literature, where several established methods could be adapted to
enhance MORL generalization. These approaches include regularization techniques (Cobbe et al.,
2019; Ahmed et al., 2019; Li et al., 2019; Igl et al., 2019; Eysenbach et al., 2021; Wang et al., 2020),
incorporating inductive biases (Tang et al., 2020; Raileanu & Fergus, 2021; Higgins et al., 2018),
and curriculum learning methods (Wang et al., 2019; Narvekar et al., 2020; Dennis et al., 2021; Jiang
et al., 2021).

For more specialized techniques that target MORL generalization specifically, there are several pos-
sible avenues. As highlighted in Section B, many current methods rely heavily on linear scalar-
ization, which may constrain the generalization potential of MORL agents. Recently, evolutionary
methods such as those proposed by Xu et al. (2020) and Felten et al. (2024) have been introduced,
but they remain underexplored in the MORL context and warrant further investigation to boost gen-
eralization. Moreover, exploration has been shown to play a critical role in enhancing generalization
in single-objective RL (Jiang et al., 2023). Thus, approaches like Vamplew et al. (2017), which
incorporate exploration techniques from single-objective RL into the MORL framework would be
of interest to future research. Finally, as just mentioned in Section C.1, implementing MORL algo-
rithms which can recover The Principle of Unchanged Pareto Optimality in domains with partially-
observable contexts would be important for generalization. Therefore, future work should definitely
look into how leveraging of state-action history and recurrent policies have been implemented in
SORL generalization literature (Yu et al., 2017; Peng et al., 2018; Packer et al., 2019), and adapt
them to current MORL algorithms.
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D EXTENDED METRIC DISCUSSION AND RESULTS

D.1 EXPECTED UTILITY METRIC

The Expected Utility Metric (EUM) proposed by Zintgraf et al. (2015) can be used when a prior
over scalarisation functions is known. This metric calculates the expected utility of the agent’s
approximate Pareto front under some prior distribution over utility functions. It is similar to the R-
Metric (Li et al., 2018) in MOO. It assesses the expected utility of policies on the normalized Pareto
front across various weights w from a predefined weight space W . A higher EUM indicates that
the policies offer a better trade-off between objectives and leads to more desirable outcomes under
the specified distribution of utility functions. The EUM of a given approximate Pareto front F̃ is
given by:

EUM(F̃) = Ew∼W

[
max
vπ∈F̃

uw(v
π)

]
,

where uw is the chosen utility function parameterized a weight w and vπ is the expected value vector
of the policy π taken from F̃ .

There are several reasons as to why EUM is used in single-environment MORL evaluations. In
practical applications, the utility function of the stakeholders might be known due to domain knowl-
edge. Using EUM would therefore allow for more direct evaluations on how the solutions generated
by the MORL agent corresponds to improving the utility of the stakeholders. Not every point on the
Pareto front would contribute to an increase in the EUM for a given utility function. For example,
with linear utility functions, adding solutions in concave regions of the Pareto front do not result in
an increase of utility. Lastly, the hypervolume metric is known for its computational challenge es-
pecially in higher dimensions, although various approximation algorithms and heuristics have been
developed to estimate the hypervolume more efficiently. The EUM, on the other hand, depends only
on the number of solutions on the approximate Pareto front and the size of the weight space.

In the main body of this paper, we focused on hypervolume-based measures of MORL generaliza-
tion. While EUM offers a meaningful way to evaluate solution sets, it does require a well-informed
prior over possible scalarization functions to be effective. This dependency limits its generality, and
our goal is to introduce a general metric that can be applied in any MORL problem. A Pareto front
that maximizes hypervolume will also maximize the EUM for any monotonic utility function, but
the reverse is not necessarily true. Using EUM requires assuming a specific utility function for the
calculations, which restricts its applicability in cases where the true utility function is unknown.
Hypervolume also possesses desirable mathematical properties and remains a popular metric in the
multi-objective optimization (MOO) literature, and it is more commonly used than the R-metric.

That said, in specific scenarios where a reliable prior over utility functions is available, it is im-
portant to explore how EUM can be incorporated into generalization evaluations. As mentioned in
Section 4 of the main body, when aggregating performances across multiple contexts for measuring
generalization, we must ensure that each context is equally attributed. Specifically, we can calculate
a variant on the NHGR metric we call the Expected Utility Generalization Ratio (EUGR). Let F̃ gen

cj

and F̃ spec
cj be the approximate Pareto front obtained by generalist MORL agent and the combined

specialist Pareto front on context cj . The EUGR for cj is defined as:

EUGR(F̃ gen
cj , F̃ spec

cj ) =
EUM(F̃ gen

cj )

EUM(F̃ spec
cj )

.

Unlike in NHGR, the Pareto front is not normalized here. This is because the utility functions used
in the EUM should inherently reflect the stakeholders’ preferences over objectives, including their
relative importance. Normalizing the objective space would eliminate these preferences. However,
obtaining the combined specialist Pareto front for the evaluation contexts remains essential, as each
context presents a distinct shape of the optimal Pareto front. Without comparing against an approx-
imation of the true maximally-achievable EUM in each context, evaluations risk introducing bias
towards specific contexts under different utility functions.

Now that EUGR is established and every context can be fairly weighted in generalization evalua-
tions, we are ready to present the aggregated EUGR performances for each domain. Note that, we
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assume the utility functions are linear with weights summing to unity, and we sampled 100 weight
vectors equally across the unit weight simplex during evaluations and calculated each algorithms’
EUM under the EUM metric. We provide plots of our evaluated MORL algorithms and the SAC
agent on individual evaluation contexts (without aggregation) across training in Fig. 7. We then
present the aggregated IQM and optimality gap EUGR performances using the rliable library
in Fig. 8. MORL/D SB and MORL/D SB+PSA again appears demonstrates the most consistent
results in terms of leading EUGR performances.

(a) MO-LunarLander

(b) MO-Hopper

(c) MO-HalfCheetah

(d) MO-Humanoid

(e) MO-SuperMarioBros

Figure 7: Expected Utility Metric performance in individual evaluation context of each benchmark
domain across training. Each algorithm is evaluated across 5 independent seeds.
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(a) MO-LunarLander (b) MO-Hopper

(c) MO-HalfCheetah (d) MO-Humanoid

(e) MO-SuperMarioBros (f) MO-LavaGrid

Figure 8: Aggregate EUGR performance in all domains of the benchmark. Each algorithm is eval-
uated across 5 independent seeds and several evaluation environment configurations. Higher IQM
and lower optimality gap scores are better. The best algorithm for each domain is bolded.

D.2 CARDINALITY

The Cardinality metric used in MORL measures the number of non-dominated points generated by
a given algorithm. This evaluation mechanism closely relates to the cardinality indicator in multi-
objective optimization. We provide calculations for cardinality in our codebase.

D.3 EXTENDED DISCUSSIONS ON BENEFITS OF NHGR

Prior to this work, hypervolume metric calculations in MORL typically relied on assuming an ar-
bitrary reference point–a vector where each dimension represents an estimate of the worst-possible
return per objective. This is necessary because the true reward ranges are often unknown. For exam-
ple, in the static-environment version of MO-LunarLander in MO-Gymnasium (Felten et al., 2023),
the reference point is set to [−101,−1001,−101,−101]. However, the values in this reference vec-
tor are based on arbitrary estimates. If an exaggerated estimate is used for the worst-case reward
in a specific dimension, hypervolume differences in that objective become negligible. For example,
changing the reference point to [−1001,−1001,−101,−101] would still yield a valid hypervol-
ume measurement, but differences in performance along the first objective dimension would have a
diminished effect on comparisons across algorithms.

This reliance on arbitrary reference points leads to unfair and problematic evaluations when used
naively in MORL generalization studies. To address this, our paper introduces hypervolume nor-
malization (HVnorm), which ensures equal weighting for each objective in the hypervolume cal-
culation. This is achieved by normalizing the scales of the rewards using minimum and maximum
values derived from specialist performances before computing hypervolume. Ensuring equal weigh-
tage across objectives when measuring generalization performance is important, because unlike in
single-objective RL, in MORL, we are concerned about whether the agents can generalize not only
across environments, but also across objectives and maximize their trade-offs. Moreover, the need
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for an arbitrary reference point is also eliminated–we can simply use the origin vector, as the objec-
tive ranges are normalized to [0, 1].

While HVnorm resolves issues of scale bias and reference point dependence, it introduces a new
challenge: it does not account for differences in the maximally achievable HVnorm across contexts.
Intuitively, contexts with more convex-like Pareto fronts will have higher maximally achievable
HVnorm compared to those with more concave fronts. Aggregating HVnorm scores across contexts
without addressing this difference (e.g., through mean, median, IQM, or optimality gap) biases
evaluations toward contexts with more convex Pareto fronts. This creates the false impression that
agents focusing only on these environments generalize better than those striving to improve across
all contexts, including those with concave fronts. Such bias contradicts the core motivations of
generalization in RL.

To address this, we propose the Normalized Hypervolume Generalization Ratio (NHGR), which
corrects for these discrepancies by first estimating the maximal achievable normalized hypervolume
in each context using specialist agents. It then evaluates the performance of generalist agents as a
ratio of this maximum. This ensures that contexts with lower achievable hypervolumes are weighted
equally against those with higher achievable hypervolumes during generalization evaluations, pro-
moting fairness across all contexts.

Estimating maximal thresholds for evaluation is a common practice in RL literature. For instance,
arbitrary return scores are often used to determine ”success rates” in single-objective RL general-
ization (Packer et al., 2019), or human testers’ scores serve as thresholds in the Atari 100k bench-
mark (Mnih et al., 2015). However, arbitrary or human-based estimates often fail to accurately
measure the true capabilities of RL algorithms (Badia et al., 2020). By contrast, NHGR leverages
specialist performances to empirically estimate thresholds, offering a more reliable and evidence-
based alternative.

Another advantage of NHGR is its adaptability. Even as upper bounds shift with advancements in
MORL algorithms, NHGR scores can be recalculated post-hoc without requiring additional training.
Updates to specialist hypervolume values automatically allow recalculation of NHGR scores for all
generalist agents, as only the hypervolume values of generalist agents need to be stored. This feature
facilitates leaderboard-style comparisons of generalist MORL algorithms, fostering progress as the
field increasingly acknowledges the inherently multi-objective nature of real-world generalization
challenges.

While training specialist agents involves a computational cost, we argue that this cost is a contribu-
tion of our work. We have shouldered the burden of specialist training to provide baseline bounds
and raw datasets for the research community. Future studies can leverage these results, bypassing
the need for duplicated efforts. Given the scale-invariance and inter-environment fairness properties
of NHGR, we believe there are strong reasons to utilise it as a metric for MORL generalization.

D.4 SINGLE OBJECTIVE UTILITY FUNCTION RESULTS

As mentioned in Section 6.2, majority of the classic SORL domains from Gymnasium involves
implicit scalarization of multiple objectives when crafting the scalar reward. As such, for every
domain, we record and plot the single utility function (scalarization function), fSORL return for all
the MORL algorithms and SAC for all evaluations throughout training. Across all domains, we
observe that the leading MORL algorithms often outperforms or achieves parity with the single-
objective SAC algorithm in terms of maximum fSORL return across the evaluation episodes. Here
are all the fSORL equations for each environment and their corresponding plots.

D.4.1 MO-HOPPER

The default single objective utility function of the MO-Hopper domain is same as the one used in
Gymnasium’s Hopper, which is

fSORL = 1.5vx + 0.001c+ h

where vx is the forward speed, c is the control cost and h is the reward for staying alive.
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Figure 9: Single-objective return on 6 MO-Hopper testing environments during training. Each curve
is measured across 5 seeds (mean and standard error).

D.5 MO-HALFCHEETAH

The default single objective utility function of the MO-HalfCheetah domain is same as the one used
in Gymnasium’s HalfCheetah, which is

fSORL = 1.0vx + 0.1c

where vx is the forward reward and c is the control cost. The HalfCheetah is always alive so it has
no alive reward.

Figure 10: Single-objective return on 5 MO-HalfCheetah testing environments during training. Each
curve is measured across 5 seeds (mean and standard error).

D.5.1 MO-HUMANOID

The single objective utility function of the MO-Humanoid domain is

fSORL = 1.25vx + 0.001c+ 2.0h

where vx is the forward speed, c is the control cost and h is the reward for staying alive. The original
Gymansium’s Humanoid domain uses a 5.0 coefficient for the alive reward but we tuned it down to
because it dominating all the other objectives in terms of magnitude.

Figure 11: Single-objective return on 5 MO-Humanoid testing environments during training. Each
curve is measured across 5 seeds (mean and standard error).
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D.5.2 MO-LUNARLANDER

The default single objective utility function of the MO-LunarLander domain is same as the one used
in Gymnasium’s LunarLander, which is

fSORL = l + s+ 0.3mc+ 0.03sc

where l is a -100/+100 one-time reward if the lander lands successfully or crashes, s is the shaping
reward, mc is the main engine cost and sc is the side engine cost.

Figure 12: Single-objective return on 8 MO-LunarLander testing environments during training.
Each curve is measured across 5 seeds (mean and standard error).

D.5.3 MO-SUPERMARIOBROS

The default single objective utility function of the MO-SuperMarioBros domain is same as the one
used in Gym Super Mario Bros (Kauten, 2018), which is

fSORL = f + t+ d

where f is a forward reward, t is the time penalty, d is the death penalty.

Figure 13: Single-objective return on 5 MO-SuperMarioBros (abbreviated as MO-SMB) testing
environments during training. Each curve is measured across 5 seeds (mean and standard error).

E MORL GENERALIZATION TRAINING DETAILS

Table 2 shows general training hyperparameters for each domain in the MORL generalization bench-
mark. The scripts to reproduce the results in this paper are provided in the codebase, alongside with
more specific hyperparameters for the different algorithms. To have fair evaluations, we utilize the
same architectures for the policy and value functions across all algorithms for each domain. Specif-
ically, for MO-LavaGrid, MO-LunarLander, MO-Hopper, MO-HalfCheetah, and MO-Humanoid,
the policy and value functions are multi-layer perceptrons (MLPs) with four hidden layers of 256
units each. For MO-SuperMarioBros which has image observations, the policy and value functions
consist of a NatureCNN Mnih et al. (2015) followed by a MLP with two hidden layers of 512 units
each. For off-policy algorithms that depend on experience replay, we ensure the same replay buffer
size is used.
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Parameter MO-
LavaGrid

MO-
Lunar-
Lander

MO-
Super-
MarioBros

MO-
Hopper

MO-
HalfCheetah

MO-
Humanoid

Discount γ 0.995 0.99 0.99 0.99 0.99 0.99

Adam
learning rate 3e−4 3e−4 3e−4 3e−4 3e−4 3e−4

Adam ϵ 1e−8 1e−8 1e−8 1e−8 1e−8 1e−8

Batch Size 128 128 64 256 256 256

Replay
buffer size 1e6 1e6 1e5 1e6 1e6 1e6

Max
episode steps 256 1000 2000 1000 1000 1000

Env Steps 5e6 3e6 3e6 3e6 5e6 1e7

Table 2: Hyperparameters used for training on MORL generalization benchmark.

F MORL GENERALIZATION BENCHMARK DETAILS

In this section, we first provide detailed descriptions of the benchmark domains introduced in Section
5. Afterwards, we list the environment parameters used creating our evaluation environments in each
the benchmark domain of the main body. The code commands to initialize these environments using
Gymnasium are also be included within our codebase. We also detail the normalization ranges
used for calculating the HVnorm and NHGR metrics within the evaluations of the main body. These
normalization ranges are derived from the specialist and generalist agents performances with some
minor adjustments and rounding.

F.1 BENCHMARK DOMAIN DETAILS

Kirk et al. (2023) identified four key types of domain variations for studying generalization: 1) state-
space variation (S), which alters the initial state distribution, 2) dynamics variation (D), which alters
the transition function, 3) visual variation (O), which impacts the observation function, and 4) reward
function variation (R). We provide detailed descriptions of the benchmark domains introduced in
Section 5 below:

MO-LunarLander (D+S) This is a multi-objective adaptation of Gymnasium’s LunarLander do-
main where the agent has to balance between successfully landing on the moon surface, the stability
of the spacecraft, the fuel cost of the main engine, and the fuel cost of the side engine. The agent
operates over discrete-action and continuous-observation spaces. We introduce a 7-dimensional pa-
rameter that varies the environment’s gravity, wind power, turbulence, and the lander’s main engine
power, side engine power, and initial x, y coordinates.

MO-Hopper (D) This is a multi-objective adaptation of Gymnasium’s Hopper domain. The one-
legged agent must balance optimizing for its forward velocity, torso height, and energy cost. The
agent operates over continuous action and observation spaces. We introduce an 8-dimensional pa-
rameter that varies the hopper’s body masses (4D), joint damping (3D), and the floor’s friction.

MO-HalfCheetah (D) This is a multi-objective adaptation of Gymnasium’s HalfCheetah domain.
The 2-dimensional cheetah robot must balance optimizing for its forward velocity and energy cost.
The agent operates over continuous action and observation spaces. We introduce an 8-dimensional
parameter that varies the cheetah’s body masses (7D) and the floor’s friction.

MO-Humanoid (D) This is a multi-objective adaptation of Gymnasium’s Humanoid domain. The
humanoid robot must balance between optimizing for its forward velocity and its energy cost. The
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agent operates over continuous action and observation spaces. We introduce a 30-dimensional envi-
ronment parameter that varies the humanoid’s body masses (13D) and joint damping (17D).

MO-SuperMarioBros (S) This is a multi-objective adaptation of the Gym Super Mario
Bros (Kauten, 2018) domain based on the popular Super Mario Bros video game. The agent has
to balance between moving forward, collecting coins, and increasing the game score (by stomping
enemies, breaking bricks, etc.). The agent operates over discrete-action and discrete-observation
(pixel images) spaces. We introduce a 2-dimensional parameter that controls which stage of the
Super Mario Bros game to place the agent in. There are a total of 32 possible stages.

MO-LavaGrid (S+R) This is a novel multi-objective domain based on MiniGrid (Chevalier-
Boisvert et al., 2023). The agent (red triangle) has to navigate a 11 x 11 grid, incurring a penalty each
time it touches lava and another for every step it takes to collect all 3 goals (blue, green, and yellow
blocks), after which the episode terminates. The placements of the agent, goals and lava blocks
are fully controllable. We also introduce a 3-dimensional parameter that controls the reward weight
of each goal. These weights are concatenated to the state space, allowing the agent to optimise its
trajectory, while balancing between lava damage and collecting all goals. The agent operates over
discrete-action and mixed continuous-discrete (because of the reward weights) observation spaces.

F.2 MO-LAVAGRID

The environment parameters for the MO-LavaGrid domain are represented using bit maps, which
we are unable to directly translate into this paper. Instead, the evaluation environments are visually
shown in Fig. 14. Also, as mentioned in 5, the MO-LavaGrid environment has a 3-dimensional
parameter controlling the reward weightages of each goal square (green, blue, yellow). The reward
weights for each goal are concatenated to the state space of the agent, and the weights sum to unity.
The reward weightages for each goal in each evaluation environment are shown in Table 3.

During training using domain randomization, after each episode concludes, the agent’s start position
and orientation, the number of lava blocks, the placement of the goals and lava blocks, and the
reward weightages of the goals are all randomly set. When an agent has collected/visited a goal,
the weightage of the goal in the state space is set to 0, to indicate that the reward corresponding to
that goal has already been awarded. The normalization ranges used for calculating the HVnorm and
NHGR metrics for MO-LavaGrid evaluations are shown in Tables 4 and 5.

Figure 14: MO-LavaGrid Evaluation Environments. Top row (left to right): MO-LavaGridSnake,
MO-LavaGridRoom, MO-LavaGridSmiley, MO-LavaGridMaze. Bottom row (left to right): MO-
LavaGridCheckerBoard, MO-LavaGridCorridor, MO-LavaGridIslands, MO-LavaGridLabyrinth
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Environment Green Yellow Blue
MO-LavaGridSnake 0.20 0.30 0.50
MO-LavaGridRoom 0.50 0.30 0.20
MO-LavaGridSmiley 0.40 0.40 0.20
MO-LavaGridMaze 0.05 0.05 0.90
MO-LavaGridCheckerBoard 0.30 0.10 0.60
MO-LavaGridCorridor 0.60 0.10 0.30
MO-LavaGridIslands 0.33̇ 0.33̇ 0.33̇
MO-LavaGridLabyrinth 0.50 0.05 0.45

Table 3: Illustration of different metrics on 3 MO-HalfCheetah environments.

Objectives CheckerBoard Smiley Snake Islands
Lava
Penalty [0, 107.34] [0, 270.69] [0, 234.21] [0, 124.23]

Time
Penalty [0, 218.76] [0, 225.5] [0, 220.54] [0, 204.70]

Table 4: Normalization Ranges for MO-LavaGrid Environments (Part 1)

Objectives Labyrinth Maze Corridor Room
Lava
Penalty [0, 250.05] [0, 237.33] [0, 265.66] [0, 263.86]

Time
Penalty [0, 226.95] [0, 203.59] [0, 240.21] [0, 215.75]

Table 5: Normalization Ranges for MO-LavaGrid Environments (Part 2)

F.3 MO-SUPERMARIOBROS

In MO-SuperMarioBros, each environment configuration is instantiated via a 2-dimensional param-
eter. The first dimension has discrete values {1, 2, 3, 4, 5, 6, 7, 8}, and indicates the SuperMarioBros
world. The second dimension has discrete values {1, 2, 3, 4}, and indicates the level within the cho-
sen world. Together, the parameters <world>-<level> defines the stage (configuration) of the
environment.

During training using domain randomization, an environment is randomly selected from the 32
possible stages, except Stage 3-3 which is reserved for zero-shot generalization evaluation. During
evaluation, the agents are evaluated on only 8/32 stages to keep the runtime within reasonable limits.
The evaluation stages are visually shown in Fig. 15. The evaluation stages are carefully selected
to encompass a wide range of environment dynamics and visual renditions. Additionally, they are
chosen to ensure that each stage offers non-zero rewards across all objective dimensions. This
is crucial to prevent hypervolume evaluations from collapsing to zero, which would occur if any
dimension of the objective space had a zero achievable range. The normalization ranges used for
calculating the HVnorm and NHGR metrics for MO-SuperMarioBros evaluations are shown in Tables
6 and 7.
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Figure 15: MO-SuperMarioBros Evaluation Environments. Top row (left to right): Stage 1-2, Stage
3-2, Stage 3-3 (zero shot), Stage 4-3. Bottom row (left to right): Stage 5-2, Stage 5-3, Stage 7-3,
Stage 8-1

Objectives Stage 1-2 Stage 2-3 Stage 3-2
Forward
Reward [0, 24.09] [0, 30.7] [0, 29.5]

Coin
Reward [-1, 6.52] [-1, 26.7] [-1, 3.73]

Points
Reward [-1, 85.78] [-1, 40] [-1, 102.4]

Table 6: Normalization Ranges for MO-SuperMarioBros Evaluation (Part 1)

Objectives Stage 3-3 Stage 4-3 Stage 5-2 Stage 8-1
Forward
Reward [0, 29.1] [0, 17.8] [0, 26.1] [0, 20.11]

Coin
Reward [-1, 22.3] [-1, 16.3] [-1, 8.6] [-1, 0.58]

Points
Reward [-1, 20.5] [-1, 44.9] [-1, 31.5] [-1, 158.17]

Table 7: Normalization Ranges for MO-SuperMarioBros Evaluation (Part 2)

F.4 MO-LUNARLANDER

In MO-LunarLander, each environment configuration is instantiated via a 7-dimensional parameter.
The dimensions of the environment parameter corresponds to the gravity coefficient, wind power,
turbulence, the lander’s main engine power, the lander’s side engine power, the lander’s initial x-
coordinate, and the lander’s initial y-coordinate.

During evaluation, we assess the agents performances on a predefined set of 8 environment con-
figurations: Default, High Gravity, Windy, Turbulent, Low Main Engine, Start Low, Start Right,
and Hard. The naming of the environment configurations are self-explanatory, and they are de-
signed to test varying agent/environment dynamics corresponding to boundary values of the envi-
ronment parameters. Table 8 displays the environment parameter values used for each environment
configuration. The normalization ranges used for calculating the HVnorm and NHGR metrics for
MO-LunarLander evaluations are shown in Tables 9 and 10.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Parameters Default High
Gravity Windy Turbulent Low Main

Engine
Start
Low

Start
Right Hard

Gravity -10.0 -15.0 -10.0 -10.0 -10.0 -10.0 -10.0 -13.0

Wind
Power 15.0 15.0 20.0 15.0 15.0 15.0 15.0 20.0

Turbulence
Power 1.5 1.5 1.5 4.0 1.5 1.5 1.5 2.5

Main
Engine
Power

13.0 13.0 13.0 13.0 7.0 13.0 13.0 10.0

Side
Engine
Power

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4

Initial X
Coeff 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.7

Initial Y
Coeff 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0

Table 8: Environment parameters for MO-LunarLander

Objectives Default High Gravity Windy Turbulent Hard
Landing
Reward [-60, 18.7] [-59.3, 0] [-59.3, 5.83] [-60.2, -7.7] [-62.7, -9.96]

Shaping
Reward [-175.9, 100] [-174.0, 111.4] [-174.0, 111.4] [-175.4, 86.95] [-200.2, 99.4]

Main
Engine
Cost

[-55.1, 0] [-57.44, 0] [-57.44, 0] [-54.4, 0] [-71.6, 0]

Side
Engine
Cost

[-47.4, 0] [-45.7, 0] [-45.8, 0] [-60.3, 0] [-43.6, 0]

Table 9: Normalization Ranges for MO-LunarLander Environments (Part 1)
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Objectives Start Low Start Right Low Main Engine
Landing
Reward [-67.3, 29.4] [-57.1, 17.8] [-56.5, -13.6]

Shaping
Reward [-218.9, 100] [-223.1, 123.94] [-196, 120.1]

Main
Engine
Cost

[-67.1, 0] [-60.4, 0] [-74.9, 0]

Side
Engine
Cost

[-41.6, 0] [-47.63, 0] [-39.4, 0]

Table 10: Normalization Ranges for MO-LunarLander Environments (Part 2)

F.5 MO-HOPPER

In MO-Hopper, each environment configuration are instantiated via a 8-dimensional parameter that
varies the hopper’s body masses (4D), joint damping (3D), and the floor’s friction (1D).

During evaluation, we assess the agents performances on a predefined set of 6 environment configu-
rations: Default, Light, Heavy, Slippery, Low Damping, and Hard. The naming of the environment
configurations are self-explanatory, and they are designed to test varying agent/environment dy-
namics corresponding to boundary values of the environment parameters. Table 11 displays the
environment parameter values used for each environment configuration. The normalization ranges
used for calculating the HVnorm and NHGR metrics for MO-Hopper evaluations are shown in Table
12.

Parameters Default Light Heavy Slippery Low Damping Hard
Torso Mass 3.7 0.5 9.0 3.7 3.7 0.1

Thigh Mass 4.0 0.5 9.0 4.0 4.0 9.0

Leg Mass 2.8 0.3 8.5 2.8 2.8 9.0

Foot Mass 5.3 0.7 10.0 5.3 5.3 0.1

Damping 0 1.0 1.0 1.0 1.0 0.1 0.1

Damping 1 1.0 1.0 1.0 1.0 0.1 0.1

Friction 1.0 1.0 1.0 0.1 1.0 0.1

Table 11: Environment parameters for MO-Hopper
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Objectives Default Light Heavy Slippery Low
Damping Hard

Forward
Reward [0, 242] [0, 252.2] [0, 218] [0, 175.3] [0, 262.6] [0, 174.8]

Upward
Reward [0, 321] [0, 457.4] [0, 247] [-21, 324.1] [0, 315] [0, 334.2]

Control
Cost [-62.1, 97] [-41.3, 100] [-54, 96.5] [-43.1, 96.1] [-40, 96.5] [-38, 97.3]

Table 12: Normalization Ranges for MOHopper Environments

F.6 MO-HALFCHEETAH

In MO-HalfCheetah, each environment configuration is instantiated via a 8-dimensional parameter
that varies the cheetah’s body masses (7D) and the floor’s friction (1D).

During evaluation, we assess the agents performances on a predefined set of 5 environment config-
urations: Default, Light, Heavy, Slippery, and Hard. The naming of the environment configurations
are self-explanatory, and they are designed to test varying agent/environment dynamics correspond-
ing to boundary values of the environment parameters. Table 13 displays the environment parameter
values used for each environment configuration. The normalization ranges used for calculating the
HVnorm and NHGR metrics for MO-Hopper evaluations are shown in Table 14.

Parameters Default Light Heavy Slippery Hard
Torso Mass 6.25 0.5 10.0 6.25 6.25

Back Thigh Mass 1.538 0.1 9.5 1.54 9.5

Back Shin Mass 1.441 0.1 9.5 1.59 9.5

Back Foot Mass 0.891 0.1 9.5 1.10 9.5

Front Thigh Mass 1.434 0.1 9.5 1.44 0.1

Front Shin Mass 1.198 0.1 9.5 1.20 0.1

Front Foot Mass 0.869 0.1 9.5 0.88 0.1

Friction 0.4 0.4 0.4 0.1 0.1

Table 13: Environment parameters for MO-HalfCheetah

Objectives Default Light Heavy Slippery Hard
Forward Reward [0, 836] [0, 1061] [0, 227] [0, 791] [0, 511]

Control Cost [-353, -3.4] [-345, -4.3] [-379, -4.3] [-411, -3.6] [-417, -3.8]

Table 14: Normalization Ranges for MO-HalfCheetah Environments

F.7 MO-HUMANOID

In MO-Humanoid, each environment configuration is instantiated via a 30-dimensional parameter
that varies the humanoid’s body masses (13D) and joint damping (17D).
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During evaluation, we assess the agents performances on a predefined set of 5 environment config-
urations: Default, Light, Heavy, Low Damping, and Hard. The naming of the environment con-
figurations are self-explanatory, and they are designed to test varying agent/environment dynamics
corresponding to boundary values of the environment parameters. Table 15 displays the environ-
ment parameter values used for each environment configuration. The normalization ranges used for
calculating the HVnorm and NHGR metrics for MO-Hopper evaluations are shown in Table 16.

Parameters Default Light Heavy Low Damping Hard
Mass 1 8.91 1.7 10.0 8.91 8.91
Mass 2 2.26 0.5 7.0 2.26 2.26
Mass 3 6.62 1.3 9.0 6.62 6.62
Mass 4 4.75 0.7 8.0 4.75 0.7
Mass 5 2.76 0.6 7.0 2.76 0.6
Mass 6 1.77 0.5 6.0 1.77 0.5
Mass 7 4.75 0.7 8.0 4.75 8.0
Mass 8 2.76 0.5 7.0 2.76 7.0
Mass 9 1.77 0.3 6.0 1.77 6.0
Mass 10 1.66 0.3 6.0 1.66 0.1
Mass 11 1.23 0.1 5.5 1.23 0.1
Mass 12 1.66 0.3 6.0 1.66 5.0
Mass 13 1.23 0.1 5.5 1.23 5.0
Damp 1 1.0 5.0 5.0 1.0 1.0
Damp 2 1.0 5.0 5.0 1.0 1.0
Damp 3 1.0 5.0 5.0 1.0 1.0
Damp 4 1.0 5.0 5.0 1.0 1.0
Damp 5 1.0 5.0 5.0 1.0 1.0
Damp 6 1.0 5.0 5.0 1.0 1.0
Damp 7 0.2 1.0 1.0 0.2 0.2
Damp 8 1.0 5.0 5.0 1.0 1.0
Damp 9 1.0 5.0 5.0 1.0 1.0
Damp 10 1.0 5.0 5.0 1.0 1.0
Damp 11 0.2 1.0 1.0 0.2 0.2
Damp 12 0.2 1.0 1.0 0.2 0.2
Damp 13 0.2 1.0 1.0 0.2 0.2
Damp 14 0.2 1.0 1.0 0.2 0.2
Damp 15 0.2 1.0 1.0 0.2 0.2
Damp 16 0.2 1.0 1.0 0.2 0.2
Damp 17 0.2 1.0 1.0 0.2 0.2

Table 15: Environment parameters for MO-Humanoid

Objectives Default Light Heavy Low Damping Hard
Forward Reward [0, 395.4] [0, 548] [0, 232] [0, 374] [0, 330]

Control Cost [-35, 188] [0, 156.4] [0, 135.4] [0, 182.4] [-9, 88.6]

Table 16: Normalization Ranges for MO-Humanoid Environments
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