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Abstract

We propose DrBoost, a dense retrieval ensem-001
ble inspired by boosting. DrBoost is trained in002
stages: each component model is learned se-003
quentially and specialized by focusing only on004
retrieval mistakes made by the current ensem-005
ble. The final representation is the concatena-006
tion of the output vectors of all the component007
models, making it a drop-in replacement for008
standard dense retrievers at test time. DrBoost009
enjoys several advantages compared to stan-010
dard dense retrieval models. It produces repre-011
sentations which are 4x more compact, while012
delivering comparable retrieval results. It also013
performs surprisingly well under approximate014
search with coarse quantization, reducing la-015
tency and bandwidth needs by another 4x. In016
practice, this can make the difference between017
serving indices from disk versus from mem-018
ory, paving the way for much cheaper deploy-019
ments.1020

1 Introduction021

Identifying a small number of relevant documents022

from a large corpus to a given query, information023

retrieval is not only an important task in-and-of024

itself, but also plays a vital role in supporting a025

variety of knowledge-intensive NLP tasks (Lewis026

et al., 2020; Petroni et al., 2021), such as open-027

domain Question Answering (ODQA, Voorhees028

and Tice, 2000; Chen et al., 2017) and Fact Check-029

ing (Thorne et al., 2018). While traditional retrieval030

methods, such as TF-IDF and BM25 (Robertson,031

2008), are built on sparse representations of queries032

and documents, dense retrieval approaches have033

shown superior performance recently on a range034

of retrieval and ranking tasks (Guu et al., 2020;035

Karpukhin et al., 2020; Reimers and Gurevych,036

2019; Hofstätter et al., 2021b). Dense retrieval037

involves embedding queries and documents as low-038

dimensional, continuous vectors, such that query039

1Code used in our experiments will be released publicly.

and document embeddings are similar when the 040

document is relevant to the query. The embedding 041

function leverages the representational power of 042

pretrained language models and is further finetuned 043

using any available training query-document pairs. 044

Document representations are computed offline in 045

an index allowing dense retrieval to scale to mil- 046

lions of documents, with query embeddings being 047

computed on the fly. 048

When deploying dense retrievers in real-world 049

settings, however, there are two practical concerns: 050

the size of the index and the retrieval time latency. 051

The index size is largely determined by the num- 052

ber of documents in the collection, as well as the 053

embedding dimension. Whilst we cannot gener- 054

ally control the former, reducing the embedding 055

size is an attractive way to reduce index size. On 056

lowering latency, Approximate Nearest-Neighbor 057

(ANN) or Maximum Inner Product Search (MIPS) 058

techniques are required in practice. This implies 059

that it is far more important for retrieval models to 060

perform well under approximate search rather than 061

in the exact search setting. Developing a dense 062

retrieval model that produces more compact em- 063

beddings and are more amenable to approximate 064

search is thus the focus of this research. 065

In this paper, we propose DrBoost, an ensem- 066

ble method for learning a dense retriever, inspired 067

by boosting (Schapire, 1990; Freund and Schapire, 068

1997). DrBoost attempts to incrementally build 069

compact representations at training time. It con- 070

sists of multiple component dense retrieval models 071

(“weak learners” in boosting terminology), where 072

each component is a BERT-based bi-encoder, pro- 073

ducing vector embeddings of the query and docu- 074

ment. These component embeddings are in lower 075

dimensions (e.g., 32 vs. 768) compared to those 076

of regular BERT encoders. The final relevance 077

function is implemented as a linear combination 078

of inner products of embeddings produced by each 079

weak learner. This can be efficiently calculated 080
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by concatenating vectors from each component081

and then performing a single MIPS search, which082

makes DrBoost a drop-in replacement for standard083

dense retrievers at test time. Component models084

are trained and added to the ensemble sequentially.085

Each model is trained as a reranker over negative086

examples sampled by the current ensemble and can087

be seen as specializing on retrieval mistakes made088

previously. For example, early components focus089

on high-level topical information, whereas later090

components can capture finer-grained tail phenom-091

ena. Through this mechanism, individual compo-092

nents are disentangled and redundancy minimized,093

leading to more compact representations.094

There are a couple of noticeable differences in095

training DrBoost when compared to existing dense096

retrieval models. Although iterative training us-097

ing negatives sampled by models learned in the098

previous rounds has been proposed (Xiong et al.,099

2020; Qu et al., 2021; Oğuz et al., 2021; Sachan100

et al., 2021, inter alia.), existing methods keep only101

the final model. In contrast, each weak learner in102

DrBoost is preserved and added to the ensemble.103

The construction of the embedding also differs. Dr-104

Boost can be viewed as a method of slowly “grow-105

ing” overall dense vector representations, lend-106

ing some structure to otherwise de-localized repre-107

sentations, while existing retrieval models encode108

queries and documents in one step.109

More importantly, DrBoost enjoys several ad-110

vantages in real-world settings. Because each weak111

learner in DrBoost produces very low-dimensional112

embeddings to avoid overfitting (32-dim in our113

experiments), many components can be added114

whilst the index stays small. Our experiments115

demonstrate that DrBoost produces very compact116

embeddings overall, achieving accuracy on par117

with a comparable non-boosting baseline with 4–118

5x smaller vectors, and strongly outperforming119

a dimensionally-matched variant. Probing Dr-120

Boost’s embeddings using a novel technique, we121

also show that the embeddings can be used to re-122

cover more topical information from Wikipedia123

than a dimensionally-matched baseline.124

Empirically, DrBoost performs superbly when125

using approximate fast MIPS. With a K-mean in-126

verted file index (IVF), the simple and widely used127

approach, especially in hierarchical indices and128

Web-scale settings (Jégou et al., 2011; Johnson129

et al., 2019; Matsui et al., 2018), DrBoost greatly130

outperforms the baseline DPR model (Karpukhin131

et al., 2020) by 3–10 points. Alternatively, it can 132

reduce bandwidth and latency requirements by 4– 133

64x while retaining accuracy. In principle, this 134

allows for the approximate index to be served on- 135

disk rather than in expensive and limited RAM 136

(which is typically 25x faster), making it feasible 137

to deploy dense retrieval systems more cheaply 138

and at much larger scale. We also show that Dr- 139

Boost’s index is amenable to compression, and can 140

be compressed to 800MB, 2.5x smaller than a re- 141

cent state-of-the-art efficient retriever, whilst being 142

more accurate (Yamada et al., 2021). 143

2 Dense Retrieval 144

We give here the background of dense retrieval and 145

boosting, as well as our proposed method. More 146

extensive related work can be found in §A.1. 147

Dense Retrieval involves learning a scalable rel- 148

evance function h(q, c) which takes high values for 149

passages c that are relevant for question q, and low 150

otherwise. In the popular dense bi-encoder frame- 151

work, h(q, c) is implemented as the dot product 152

between q and c, dense vector representations of 153

passages and questions respectively, produced by a 154

pair of neural network encoders, EQ and EC , 155

h(q, c) = EQ(q)>EC(c) = q>c (1) 156

where q = EQ(q) and c = EC(c). At in- 157

ference time, retrieval from a large corpus C = 158

{c1 , . . . , c|C|} is accomplished by solving the fol- 159

lowing MIPS problem: c∗ = arg maxc∈C q
>c. 160

In standard settings, we assume access to a set of 161

m gold question-passage pairs D = {(qi, c+i )}mi=1. 162

It is most common to learn models by training 163

to score gold pairs higher than sampled nega- 164

tives. Negatives can be obtained in a variety 165

of ways, such as by sampling at random from 166

corpus C, or by using some kind of importance 167

sampling function on retrieval results (see §2.1). 168

When augmented by n negatives per gold passage- 169

document pair, we have training data of the form 170

D̃ = {(qi, c+i , c
−
i,1, . . . c

−
i,n)}mi=1, which we use to 171

train a model, e.g., using a ranking or margin ob- 172

jective, or in our case, by optimizing negative log- 173

likelihood (NLL) of positive pairs 174

Lθ = − log
eh(qi,c

+
i )

eh(qi,c
+
i ) +

∑n
j=1 e

h(qi,c
−
i,j)

175

2.1 Iterated Negatives for Dense Retrieval 176

The choice of negatives is an important factor for 177

what behaviour dense retrievers will learn. Simply 178

2



Algorithm 1 Dense Retrieval with Iteratively-
sampled Negatives v.s. Boosted Dense Retrieval
Require: Dtrain,Ddev, C . Training Data and Corpus
Require: h0 . Initial Retrieval Model
Require: τ . Min. Error Reduction Tolerance
1: r ← 0
2: h← h0 . Initialize Current Model with Initial Model
3: εold ←∞
4: ε← GetModelError(Ddev, C, h)
5: while (εold − ε) > τ do
6: r ← r + 1
7: D̃r

train = AddNegatives(Dtrain, C, h)
8: D̃r

dev = AddNegatives(Ddev, C, h)
9: hr = TrainDenseRetriever(D̃r

train, D̃r
dev)

10: if Dense Retrieval w/ Iteratively-sampled Negs. then
11: h← hr

12: else if Boosted Dense Retrieval then
13: h← CombineModels(h, hr)
14: end if
15: εold ← ε
16: ε← GetModelError(D̃dev, C, h)
17: end while
18: return h

using randomly-sampled negatives has been shown179

to perform poorly, because they are too easy for180

the model to discriminate. Thus it is common to181

mix in some hard negatives along with random182

negatives, which are designed to be more challeng-183

ing to distinguish from gold passages (Karpukhin184

et al., 2020). Hard negatives are typically collected185

by retrieving passages using an untrained retriever,186

such as BM25, and filtering out any unintentional187

golds. This ensures the hard negatives are at least188

topically-relevant.189

Recently, it has become common practice to run190

a number of rounds of dense retrieval training to191

bootstrap hard negatives (Xiong et al., 2020; Qu192

et al., 2021; Oğuz et al., 2021; Sachan et al., 2021,193

inter alia.). Here, we first train a dense retriever194

following the method we describe above, and then195

use this retriever to produce a new set of hard nega-196

tives. This retriever is discarded, and a new one is197

trained from scratch, using the new, “harder” nega-198

tives. This process can then be repeated until per-199

formance ceases to improve. This approach, which200

we refer to dense retrieval with iteratively-sampled201

negatives is described in Algorithm 1.202

2.2 Boosting203

Boosting is a loose family of training algorithms204

for machine learning problems, based on the princi-205

ple of gradually ensembling “weak learners” into a206

strong learner. Boosting can be described by the fol-207

lowing high-level formalism (Schapire, 2007). For208

a task with a training set {(x1, y1), · · · , (xm, ym)},209

where (xi, yi) ∈ X×Y we want to learn a function 210

h : X → Y , such that h(xi) = ŷi ≈ yi. This is 211

achieved using an iterative procedure over R steps: 212

• For round r, we construct an importance dis- 213

tribution Dr over the training data, based on 214

where error ε of our current model h is high 215

• Learn a “weak learner” hr to minimize er- 216

ror εr =
∑

iDr(i)L(hr(xi), yi) for some 217

loss function L measuring the discrepancy be- 218

tween predictions and real values. 219

• Combine h and hr to form a new, stronger 220

overall model, e.g., by a linear combination 221

hnew = αhr + βh. The iteration can now be 222

repeated. 223

The initial importance distribution D0 is usually as- 224

sumed to be a uniform distribution, and h0 models 225

a constant function. Note that how each additional 226

model added to h is specifically designed to solve 227

instances that h currently struggles with. 228

2.3 Boosted Dense Retrieval: DrBoost 229

We note similarities between the boosting formu- 230

lation, and the dense retrieval with iteratively- 231

sampled negatives. We can adapt a boosting- 232

inspired approach to dense retrieval with minimal 233

changes, as shown in Algorithm 1. Algorithmically, 234

the only difference (lines 10–13) is that in the case 235

of iterative negatives, the model h after r rounds 236

is replaced by the new model hr, whereas in the 237

boosting case, we combine hr and h. 238

In this paper, we view the boosted “weak learner” 239

models hr as rerankers over the retrieval distri- 240

bution from the current model h. That is, when 241

training dense boosted retrievers, we only train us- 242

ing hard negatives, and do not use any random or 243

in-batch negatives. Using the construction of neg- 244

atives as a mechanism to define the importance 245

distribution, each new model is directly trained to 246

solve the retrieval mistakes that the current ensem- 247

ble makes. Each model hr is implemented as a 248

bi-encoder, as in Eq. (1). We combine models as 249

linear combinations: 250

CombineModels(h, hr) = hnew = αhr + βh 251

The coefficients could be learnt from development 252

data, or, simply by setting all coefficients to 1, 253

which we find to be empirically effective. The 254
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overall model after R rounds can be written as:255

h(q, c) = αhR(q, c) + β
(
hR−1(q, c) + γ (· · · )

)
256

=
R∑
r=1

α′rhr(q, c) =
R∑
r=1

α′rq
>
r cr257

= [qR , . . . ,q1 ,q0 ]>[α′
R
cR , . . . , α

′
1
c1 , α

′
0
c0 ]258

= q̄>c̄259

where [. . . ] indicates vector concatenation. Thus h260

can be computed as a single inner product, making261

it a drop-in replacement for standard MIPS dense262

retrievers at test time.263

One downside of the boosting approach is that264

we must maintain R encoders for both passages265

and questions. Since passages are embedded of-266

fline, this does not create additional computational267

burden on the passage side at test time. However,268

on the query side, for a question q, boosted dense269

retrieval requires R forward passes to compute270

the full representation, one for each subvector qr.271

While this step is fully parallelizable, it is still un-272

desirable. We can remedy this for low-latency, low-273

resource settings by distilling the question encoders274

of h into a single encoder, which can produce the275

overall question representations q̄ directly. Here,276

given the training dataset Dtrain of gold question-277

passage pairs, and a model h we want to distill, we278

first compute overall representations q̄ and c̄ for279

all pairs using h as distillation targets, then train a280

new question encoder Edist
Q with parameters φ, by281

minimizing the objective:282

Lφ =
∑

(q,c+)∈Dtrain

‖Edist
Q (q)− q̄‖2+‖Edist

Q (q)− c̄‖2283

3 Experiments284

3.1 Datasets285

Natural Questions (NQ) We evaluate retrieval286

for downstream ODQA using the widely-used NQ-287

open retrieval task (Kwiatkowski et al., 2019).288

This requires retrieving Wikipedia passages which289

contain answers to questions mined from Google290

search logs. We use the preprocessed and gold291

pairs prepared by Karpukhin et al. (2020), and re-292

port recall-at-K (R@K) for K ∈ {20, 100}.293

MSMARCO We evaluate in a Web-text setting294

using the widely-used passage retrieval task from295

MSMARCO (Bajaj et al., 2016). Queries consist296

of user search queries from Bing, with human-297

annotated gold relevant documents. We use the298

preprocessed corpus, training and dev data (gold 299

pairs and data splits) from Oğuz et al. (2021). We 300

follow the common practice of reporting the Mean- 301

Reciprocal-Rank-at-10 (MRR@10) metric for the 302

public development set. 303

3.2 Tasks 304

In this section, we will describe the experiments 305

we perform, and the motivations behind them. 306

Exact Retrieval We are interested in under- 307

standing whether the boosting approach results 308

in superior performance for exhaustive (exact) re- 309

trieval. Here, no quantization or approximations 310

are made to MIPS, which results in large indices, 311

and slow retrieval, but represents the upper bound 312

of accuracy. This setting is the most commonly- 313

reported in the literature. 314

Approximate MIPS: IVF Exact Retrieval does 315

not evaluate how a model performs in practically- 316

relevant settings. As a result, we also evaluate in 317

two approximate MIPS settings. First, we con- 318

sider approximate MIPS with an Inverted File In- 319

dex (IVF, Sivic and Zisserman, 2003). IVF works 320

by first clustering the document embeddings of- 321

fline using K-means (Lloyd, 1982) resulting K 322

cluster centroids. At test time, for a given query 323

vector, rather than compute an inner product for 324

each document in the index, we instead compute 325

inner products to the K centroids. We then visit 326

the n probes highest scoring clusters, and com- 327

pute inner products for only the documents in these 328

clusters. This technique increases the speed of 329

search significantly, at the expense of some accu- 330

racy. Increasing K, the number of centroids, in- 331

creases speed, at the expense of accuracy, as does 332

decreasing the value of n probes. A model is 333

preferable if retrieval accuracy remains high with 334

very fast search, i.e., low n probes and high K 2. 335

In our experiments we fit K = 65536 clusters and 336

sweep over a range of values of n probes from 20 337

to 215. Other methods such as HNSW (Malkov and 338

Yashunin, 2020) are also available for fast search, 339

but are generally more complex and can increase 340

index sizes significantly. IVF is a particularly pop- 341

ular approach due it its simplicity, and as a first 342

coarse quantizer in hierarchical indexing (Johnson 343

et al., 2019), since it is straightforward to apply 344

2Up to the point in K where the first stage search becomes
the bottleneck. This happens when K is in the order of

√
|C|,

which is how we pick K = 65536. We also include results
with K ∈ {4092, 16384} in the Appendix.
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sharding to the clusters, and further search indices345

can be built for each cluster.346

Approximate MIPS: PQ Whilst IVF will in-347

crease search speeds, it does not reduce the size of348

the index, which may be important for scalability,349

latency and memory bandwidth considerations. To350

investigate whether embeddings are amenable to351

compression, we experiment with applying Product352

Quantization (PQ, Jégou et al., 2011). PQ is a lossy353

quantization method that works by 1) splitting vec-354

tors into subvectors 2) clustering each subvector355

space and 3) representing vectors as a collection356

cluster assignment codes. We apply PQ using 4-357

dimensional sub-vectors and 256 clusters per sub-358

space, leading to a compression factor of 16x over359

uncompressed float32.360

All MIPS retrieval is implemented using361

FAISS (Johnson et al., 2019).362

Generalization Tests In addition to in-domain363

evaluation, we also perform two generalization364

tests. These will determine whether the boosting365

approach is superior to iteratively-sampling nega-366

tives in out-of-distribution settings. We evaluate367

MSMARCO-trained models for zero-shot general-368

ization using selected BEIR (Thakur et al., 2021)369

datasets that have binary relevance labels. Namely,370

we test on the SciFact, FiQA, Quora and ArguAna371

subsets. This will test how well models generalize372

to new textual domains and different query surface373

forms. We also evaluate NQ-trained models on374

EntityQuestions (Sciavolino et al., 2021), a dataset375

of simple entity-centric questions which has been376

recently shown to challenge dense retrievers. This377

dataset uses the same Wikipedia index as NQ, and378

tests primarily for robustness and generalization to379

new entities at test time.380

3.3 Models381

We compare a model trained with iteratively-382

sampled negatives to an analogous model trained383

with boosting, which we call DrBoost. There384

are many dense retrieval training algorithms avail-385

able which would be suitable for training with386

iteratively-sampled negatives and boosting with387

DrBoost. Broadly-speaking, any dense retriever388

could be used if utilizes negative sampling, and389

could be trained in Step 9 of Algorithm 1. We390

choose Dense Passage Retriever (DPR, Karpukhin391

et al., 2020) with iteratively-sampled negatives due392

to its comparative simplicity and popularity.393

3.3.1 Iteratively-sampled negatives baseline: 394

DPR 395

DPR follows the dense retrieval paradigm outlined 396

in §2 It is trained with a combination of in-batch 397

negatives, where gold passages for one question 398

are treated as negatives for other questions in the 399

batch (which efficiently simulates random nega- 400

tives), and with hard negatives, sampled initially 401

from BM25, and then from the previous round, 402

as in Algorithm 1. We broadly follow the DPR 403

training set-up of Oğuz et al. (2021). We train 404

BERT-base DPR models using the standard 768 405

dimensions, as well as models which match the 406

final dimension size of DrBoost. We use parameter- 407

sharing for the bi-encoders, and layer-norm after 408

linear projection. Models are trained to minimize 409

the negative log-likelihood of positives, and the 410

number of training rounds is decided using devel- 411

opment data, as in Algorithm 1, using an initial h0 412

retriever BM25. 413

3.3.2 DrBoost Implementation 414

For our DrBoost version of DPR, we keep as many 415

experimental settings the same as possible. There 416

are two exceptions, which are required for adapting 417

dense retrieval to boosting. The first is that each 418

component “weak learner” model has a low embed- 419

ding dimension. This is to avoid overfitting, and to 420

make sure the final index size is manageable. We 421

report using models of 32 dims (cf. the standard 422

768 dims), but note that training with dimension as 423

low as 8 is stable. The second is that, as motivated 424

in §2.3, we train each weak learner using only hard 425

negatives, and no in-batch negatives. In effect, this 426

choice of negatives means that each model is essen- 427

tially trained as a reranker.3 DrBoost models are fit 428

following Algorithm 1, and we stop adding mod- 429

els when the development set performance stops 430

improving. The initial retriever h0 for DrBoost is 431

a constant function, and thus the initial negatives 432

for DrBoost are sampled at random from the cor- 433

pus, unlike DPR, which uses initial hard negatives 434

collected from BM25. 435

DrBoost α Coefficients DrBoost combines 436

weak learners as a linear combination. We experi- 437

ment with learning the α coefficients using devel- 438

opment data, however this does not significantly 439

improve results over simply setting them all to 1. 440

3Note: We sample negatives from the model’s retrieval
distribution rather than taking the top-K retrieved negatives.
We find this improves results for early rounds
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Therefore, for the sake of simplicity and efficiency,441

we report DrBoost numbers with all α = 1.0. Em-442

pirically, we find the magnitudes of embeddings443

for DrBoost’s component models to be similar. In444

other words, one component does not dominate445

over others.446

DrBoost Distillation We experiment with distill-447

ing DrBoost ensembles into a single model for448

latency-sensitive applications using the L2 loss at449

the end of §2.3. We distill a single BERT-base450

query encoder, and perform early stopping and451

model selection using development L2 loss.452

4 Results453

4.1 Exact Retrieval454

Exact Retrieval results for MSMARCO and Nat-455

ural Questions are shown in Table 1 in the “Ex-456

act Search” Column. We find that our DrBoost457

version of DPR reaches peak accuracy after 5 or458

6 rounds when using 32-dim weak learners (see459

§A.2), leading to overall test-time index of 160/192-460

dim. In terms of Exact Search, DrBoost outper-461

forms the iteratively-sampled negatives DPR base-462

line on MSMARCO by 2.2%, and trails it by only463

0.3% on NQ R@100, despite having a total dimen-464

sion 4–5x smaller. It also strongly outperforms465

a dimensionally-matched DPR, by 3% on MS-466

MARCO, and 1% on NQ in R@100, demonstrating467

DrBoost’s ability to learn high-quality, compact em-468

beddings. We also quote recent state-of-the-art re-469

sults, which generally achieve stronger exact search470

results (AR2, Zhang et al., 2021). Our empha-471

sis, however, is on comparing iteratively-sampled472

negatives to boosting, and we note that state-of-473

the-art approaches generally use larger models and474

more complex training strategies than the “inner475

loop” BERT-base DPR we report here. Such strate-476

gies could also be incorporated into DrBoost if477

higher accuracy was desired, as DrBoost is largely-478

agnostic to the training algorithm used.479

4.2 Approximate MIPS480

Table 1 also shows how DPR and DrBoost behave481

under IVF MIPS search, which is shown graphi-482

cally in Figure 1 as well. We find that DrBoost483

dramatically outperforms DPR in IVF search, in-484

dicating that much faster search is possible with485

DrBoost. High-dimensional embeddings suffer un-486

der IVF due to the the curse of dimensionality, and487

thus compact embeddings are important. Using 8488

Figure 1: Search accuracy vs the number of clusters
visited in IVF search (proportional to latency). Accu-
racy drops as search speed increases, but the accuracy
drop-off for DrBoost is much slower than for DPR.

search probes, DrBoost outperforms DPR by 10.5% 489

on MSMARCO and 6.3% on NQ in R@100. The 490

dimensionally-matched DPR is stronger, but still 491

trails DrBoost by about 4% using 8 probes. The 492

strongest exact search model is thus not necessarily 493

the best in practical approximate MIPS settings. 494

For example, if we can tolerate a 10% relative 495

drop in accuracy from the best performing sys- 496

tem’s exact search, DrBoost requires 16 (4) probes 497

for MSMARCO (NQ) to reach the required accu- 498

racy, whereas DPR will require 1024 (16), meaning 499

DrBoost can be operated approximately 64x (4x) 500

faster. 501

The distilled DrBoost is also shown for NQ in 502

Table 1. The precision (low R@K values) is essen- 503

tially unaffected, (exact search drops by 0.1% for 504

R@20), but recall drops slightly (-0.7% R@100). 505

Interestingly, the distilled DrBoost performs even 506

better under IVF search, improving over DrBoost 507

by ∼1% at low numbers of probes. Crucially, 508

whilst the distilled DrBoost is only slightly better 509

than the 192-dim DPR under exact search, it is 4– 510

5% stronger under IVF with 8 probes (alternatively, 511

8x faster for equivalent accuracy). 512

Aside from fast retrieval, small indices are also 513

important for edge devices, or for scalability rea- 514

sons. While DrBoost can already produce high 515

quality compact embeddings, Product Quantization 516
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Methods Total
Dimension

MSMARCO Natural Questions
MRR@10 R@20 R@100

Exact
Search

IVF
8

IVF
64

Exact
Search

IVF
4

IVF
8

IVF
32

Exact
Search

IVF
4

IVF
8

IVF
32

BM25 (Yang et al., 2017) - 18.7 - - 59.1 - - - 73.7 - - -
AR2 (Zhang et al., 2021) 768 39.5 - - 86.0 - - - 90.1 - - -

DPR w/ iteratively-sampled negatives
768 32.8 21.6 27.9 82.7 64.7 69.0 76.0 87.9 71.7 75.6 81.6

160 / 192∗ 32.5 26.8 30.2 80.8 67.9 71.7 76.6 86.6 74.1 77.8 82.6

DrBoost (32-dim subvectors)
160 (5x32d) 34.4 29.6 32.7 80.9 73.2 75.8 78.4 87.6 79.5 81.9 85.0
192 (6x32d) - - - 81.3 73.0 75.5 78.6 87.4 79.3 81.9 84.5

DrBoost-Distilled 160 - - - 80.8 74.4 76.4 79.3 86.8 80.0 82.1 85.0

Table 1: Summary of Results on MSMARCO development set and NaturalQuestions test set. “Exact” indicates
Exact MIPS results, IVF indicates IVF MIPS search with 65K centroids, with the number of search probes (pro-
portional to search speed) indicated. ∗Dimensional-matched DPR is 160 dims for MSMARCO and 192 for DPR.

Methods Total
Dim.

Size
(GB)

NQ
R@20 R@100

DPR (Yamada et al., 2021) 768 64.6 78.4 85.4
+ PQ (8-dim subvecs) 2.0 72.2 81.2

BPR (Yamada et al., 2021) 768∗ 2.0 77.9 85.7

DrBoost 160 13.5 80.9 87.6
+ PQ (4-dim subvecs) 0.84 80.3 86.8
+ PQ (8-dim subvecs) 0.42 76.7 84.8

Table 2: Product Quantization Results. ∗ Indicates Bi-
nary vector.

can reduce this even further. Table 2 shows that517

DrBoost’s NQ index can be compressed from 13.5518

GB to 840MB with less than 1% drop in perfor-519

mance. We compare to BPR (Yamada et al., 2021),520

a method specifically designed to learn small in-521

dices through binarization. DrBoost’s PQ index522

is 2.4x smaller than the BPR index reported by523

Yamada et al. (2021), whilst being 2.4% more ac-524

curate (R@20). A more aggressive quantization525

leads to a 420MB index — 4.8x smaller than BPR526

— whilst only being 1.2% less accurate.527

5 Analysis528

5.1 Qualitative Analysis529

Since each round’s model is learned on the errors530

of the previous round, we expect each learner to531

“specialize” and learn complementary representa-532

tions. To see if this is qualitatively true, we look at533

the retrieved passages from each round’s retriever534

in isolation (Table 10 in §A.4). Indeed, we find535

that each 32-dim sub-vector tackles the query from536

different angles. For instance, for the query “who537

got the first nobel prize in physics?”, the first sub-538

vector captures general topical similarity based on539

keywords, retrieving passages related to the “Nobel540

Figure 2: Quantiles of the top-20 margin on the NQ
training set, for each iteration of DrBoost.

Prize”. The second focuses mostly on the first para- 541

graphs of articles of prominent historical person- 542

alities, presumably because these are highly likely 543

to contain answers in general; and the third one 544

retrieves from the pages of famous scientists and 545

inventors. The combined DrBoost model would 546

favor passages in the intersection of these sets. 547

5.2 In-distribution generalization 548

Boosting algorithms are remarkably resistant to 549

over-fitting, even when the classifier has sufficient 550

capacity to achieve zero training error. In their 551

landmark paper, Bartlett et al. (1998) show that 552

this generalization property is a result of the fol- 553

lowing: the training margins increase with each 554

iteration of boosting. We empirically show the 555

same to be true for DrBoost. For a fixed query 556

embedding, dense retrieval acts as a linear binary 557

classifier, where the gold passage is positive and all 558

other passages are negatives (Eq. (1)). We adopt 559

the classical definition of margin for linear classi- 560

fiers to dense retrieval by defining a top-k margin: 561

562

Top-k margini =
h(qi, c

+)−max
{k}
c− h(qi, c

−)

||qi||µc
(2) 563
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Method SciFact FiQA Quora ArguAna
NDCG@10 NDCG@10 NDCG@10 NDCG@10

SotA Dense 64.3 30.8 85.2 42.9

DPR (160 dim) 50.9 22.8 84.3 42.5
DrBoost (160 dim) 49.7 22.4 78.8 39.9

Table 3: BEIR results. The SotA row is copied
from Thakur et al. (2021), and the numbers represent
the best model for each dataset.

Method EntityQuestions
R@20 R@100

BM25 (Chen et al., 2021) 71.2 79.7
DPR (Chen et al., 2021) 49.7 63.4

DPR (192 dim) 47.1 60.6
DrBoost (160 dim) 51.2 63.4

Table 4: Entity Questions Results.

where µc is the average norm of passage embed-564

dings and the operator max{k} returns the k-th565

maximum element in the set. For a fixed qi and566

k = 1, this definition is identical to the classical567

margin definition. Figure 2 plots the 50th, 75th and568

90th percentiles of the top-20 margin for DrBoost569

on the NQ training set. We clearly see that margins570

indeed increase at each step, especially for cases571

that the model is confident in (high margin). We572

hypothesize this property to be the main reason for573

the strong in-distribution generalization of DrBoost574

that we observed, and potentially also for the sur-575

prisingly strong IVF results, since wide margins576

should intuitively make clustering easier as well.577

5.3 Cross-domain generalization578

It has been observed in previous work (Thakur579

et al., 2021) that dense retrievers still largely lag580

behind sparse retrievers in terms of generalization581

capabilities. We are interested to test whether our582

method could be beneficial for out-of-domain trans-583

fer as well. We show the results for zero-shot trans-584

fer on a subset of the BEIR benchmark in Table 3585

and the EntityQuestions dataset in Table 4. While586

DrBoost improves slightly over the dimension-587

matched baseline on EntityQuestions, where the588

passage corpora stays the same, it produces worse589

results on the BEIR datasets. We conclude that590

boosting is not especially useful for cross-domain591

transfer, and should be combined with other meth-592

ods if this is a concern.593

5.4 Representation Probing594

One of the hypothesis we formulate for the stronger595

performance of DrBoost over DPR is that the for-596

 40

 45

 50

 55

passages questions

a
c
c
u
ra

c
y

DPR d=192
DPR d=768

DrBoost d=192

 40

 45

 50

 55

passages questions

a
c
c
u
ra

c
y

DPR d=192
DPR d=768

DrBoost d=192

Figure 3: Topic classification accuracy when probing
DrBoost and DPR representations with an SVM.

mer might better capture topical information of pas- 597

sages and questions. To test this, we collected top- 598

ics for all Wikipedia articles in Natural Questions 599

using the strategy of Johnson et al. (2021) and as- 600

sociate them with both passages and questions. We 601

then probed both DPR and DrBoost representations 602

with an SVM (Steinwart and Christmann, 2008) 603

classifier considering a 5-fold cross-validation over 604

500 instances and 8 different seeds. Results (in Fig- 605

ure 3) confirms our hypothesis: the topic classifier 606

accuracy is higher with DrBoost representations 607

with respect to DPR ones of the same dimension 608

(i.e., 192), for both questions and passages. 609

6 Discussion 610

In this work we have explored boosting in the con- 611

text of dense retrieval, inspired by the similarity 612

of iteratively-sampling negatives to boosting. We 613

find that our simple boosting approach, DrBoost, 614

performs largely on par with a 768-dimensional 615

DPR baseline, but produces more compact vectors, 616

and is more amenable to approximate search. We 617

note that DrBoost requires maintaining more neu- 618

ral models at test time, which may put a greater 619

demand on GPU resources. However, the mod- 620

els can be run in parallel if latency is a concern, 621

and if needed, these models can be distilled into 622

a single model with little drop in accuracy. We 623

hope that future work will build on boosting ap- 624

proaches for dense retrieval, including adding adap- 625

tive weights, and investigating alternative losses 626

and sampling techniques. We also suggest that em- 627

phasis in dense retrieval should be placed on more 628

holistic evaluation than just exact retrieval accu- 629

racy, demonstrating that models with quite similar 630

exact retrieval can perform very differently under 631

practically-important approximate search settings. 632
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Schröder, Mete Sertkan, and Allan Hanbury. 712
2021a. Improving Efficient Neural Ranking Mod- 713
els with Cross-Architecture Knowledge Distillation. 714
arXiv:2010.02666 [cs]. ArXiv: 2010.02666. 715

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong 716
Yang, Jimmy Lin, and Allan Hanbury. 2021b. Ef- 717
ficiently Teaching an Effective Dense Retriever with 718
Balanced Topic Aware Sampling. In Proceedings 719
of the 44th International ACM SIGIR Conference on 720
Research and Development in Information Retrieval, 721
SIGIR ’21, pages 113–122, New York, NY, USA. 722
Association for Computing Machinery. Event-place: 723
Virtual Event, Canada. 724

Tongwen Huang, Qingyun She, and Junlin Zhang. 725
2020. BoostingBERT:Integrating Multi- 726
Class Boosting into BERT for NLP Tasks. 727
arXiv:2009.05959 [cs]. ArXiv: 2009.05959. 728

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, 729
and Jason Weston. 2020. Poly-encoders: Architec- 730
tures and Pre-training Strategies for Fast and Accu- 731
rate Multi-sentence Scoring. In International Con- 732
ference on Learning Representations. 733

Gautier Izacard and Edouard Grave. 2021. Distilling 734
Knowledge from Reader to Retriever for Question 735
Answering. In International Conference on Learn- 736
ing Representations. 737

Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola 738
De Cao, Sebastian Riedel, and Edouard Grave. 739
2020. A Memory Efficient Baseline for Open Do- 740
main Question Answering. arXiv:2012.15156 [cs]. 741
ArXiv: 2012.15156. 742

9

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://doi.org/10.1609/aaai.v34i04.5722
https://doi.org/10.1609/aaai.v34i04.5722
https://doi.org/10.1609/aaai.v34i04.5722
https://doi.org/10.1609/aaai.v34i04.5722
https://doi.org/10.1609/aaai.v34i04.5722
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
http://arxiv.org/abs/2002.03932
http://arxiv.org/abs/2002.03932
http://arxiv.org/abs/2002.03932
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/2110.06918
http://arxiv.org/abs/2110.06918
http://arxiv.org/abs/2110.06918
https://openreview.net/forum?id=5k8F6UU39V
https://openreview.net/forum?id=5k8F6UU39V
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://aclanthology.org/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.75
https://doi.org/10.1145/3409256.3409838
https://doi.org/10.1145/3409256.3409838
https://doi.org/10.1145/3409256.3409838
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2010.02666
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
http://arxiv.org/abs/2009.05959
http://arxiv.org/abs/2009.05959
http://arxiv.org/abs/2009.05959
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
http://arxiv.org/abs/2012.15156
http://arxiv.org/abs/2012.15156
http://arxiv.org/abs/2012.15156


Isaac Johnson, Martin Gerlach, and Diego Sáez-743
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A Appendix 1026

A.1 Related Work 1027

Boosting for retrieval Boosting has been 1028

studied in machine learning for over three 1029

decades (Kearns and Valiant, 1989; Schapire, 1030

1990). Models such as AdaBoost (Freund and 1031

Schapire, 1997) and GBMs (Friedman, 2001) be- 1032

came popular approaches to classification prob- 1033

lems, with implementations such as XGBoost 1034

still popular today (Chen and Guestrin, 2016). 1035

Many boosting approaches have been proposed 1036

for retrieval and learning-to-rank (LTR) prob- 1037

lems, typically employing decision trees, such as 1038

AdaRank (Xu and Li, 2007), RankBoost (Freund 1039

et al., 2003) and lamdaMART (Wu et al., 2009). 1040

Apart from speed and accuracy, boosting is attrac- 1041

tive due to promising theoretical properties such 1042

as convergence and generalization. (Bartlett et al., 1043

1998; Freund et al., 2003; Mohri et al., 2012). 1044

Boosted decision trees have recently been demon- 1045

strated to be competitive on LTR tasks (Qin et al., 1046

2021), but, in recent years, boosting approaches 1047

have generally received less attention, as (pre- 1048

trained) neural models began to dominate much 1049

of the literature. However, modern neural models 1050

and boosting techniques need not be exclusive, and 1051

a small amount of work exploring boosting in the 1052

context of modern pre-trained neural models has 1053

been carried out (Huang et al., 2020; Qin et al., 1054

2021). Our work follows this line of thinking, iden- 1055

tifying dimensionally-constrained bi-encoders as 1056

good candidates as neural weak learners, adopt- 1057

ing a simple boosting approach which allows for 1058

simple and efficient MIPS at test time. 1059

Dense Retrieval Sparse, term-based Retrievers 1060

such as BM25 (Robertson and Zaragoza, 2009) 1061

have dominated retrieval until recently. Dense, 1062

MIPS-based Retrieval using bi-encoder architec- 1063

tures leveraging contrastive training with gold 1064

pairs (Yih et al., 2011) has recently shown to 1065

be effective in several settings (Lee et al., 2019; 1066

Karpukhin et al., 2020; Reimers and Gurevych, 1067

2019; Hofstätter et al., 2021b). See Yates et al. 1068

(2021) for a survey. The success of Dense Re- 1069

trieval has led to many recent papers proposing 1070

schemes to improve dense retriever training by in- 1071
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novating on how negatives are sampled (Xiong1072

et al., 2020; Qu et al., 2021; Zhan et al., 2021c;1073

Lin et al., 2021, inter alia.), and/or proposing pre-1074

training objectives (Oğuz et al., 2021; Guu et al.,1075

2020; Chang et al., 2020; Sachan et al., 2021; Gao1076

and Callan, 2021). Our work also innovates on1077

how dense retrievers are trained, but is arguably1078

orthogonal to most of these training innovations,1079

since these could still be employed when training1080

each component weak learner.1081

Distillation We leverage a simple distillation1082

technique to make DrBoost more efficient at test1083

time. Distillation for dense retrievers is an active1084

area, and more complex schemes exist which could1085

improve results further (Izacard and Grave, 2021;1086

Qu et al., 2021; Yang and Seo, 2020; Lin et al.,1087

2021; Hofstätter et al., 2021a; Barkan et al., 2020;1088

Gao et al., 2020).1089

Multi-vector Retrievers Several approaches1090

represent passages with multiple vectors. Humeau1091

et al. (2020) represent queries with multiple vec-1092

tors, but retrieval is comparatively slow as rele-1093

vance cannot be calculated with a single MIPS call.1094

ME-BERT (Luan et al., 2021) index a fixed number1095

of vectors for each passage and ColBERT (Khattab1096

and Zaharia, 2020) index a vector for every word.1097

Both can perform retrieval with a single MIPS1098

call (although ColBERT requires reranking) but1099

produce very large indices, which, in turn, slows1100

down search. DrBoost can also be seen as a multi-1101

vector approach, with each weak learner produc-1102

ing a vector. However, each vector is small, and1103

we index concatenated vectors, rather than index-1104

ing each vector independently, leading to small in-1105

dices and fast search. This said, adapting DrBoost-1106

style training to these settings would be feasible.1107

SPAR (Chen et al., 2021) is a two-vector method:1108

one from a standard dense retriever, and the other1109

from a more lexically-oriented model. SPAR uses1110

a similar test-time MIPS retrieval strategy to ours,1111

and SPAR’s lexical embeddings could be trivially1112

added to DrBoost as an additional subvector.1113

Efficient retrievers There have been a number1114

of recent efforts to build more efficient retrieval1115

and question answering systems (Min et al., 2021).1116

Izacard et al. (2020) and Yang and Seo (2021) ex-1117

periment with post-hoc compression and lower-1118

dimensional embeddings, Lewis et al. (2021) in-1119

dex and retrieve question-answer pairs and Yamada1120

et al. (2021) propose BPR, which approximates1121

Methods Round Total
Dim.

MSMARCO
MRR@10

DPR w/
iteratively-sampled negs.

(Initial Hard Negs. BM25)

1 768 28.6
2 768 32.2
3 768 32.3
4 768 32.8
5 768 32.6

1 160 28.9
2 160 31.4
3 160 31.7
4 160 32.1
5 160 32.3
6 160 32.5
7 160 32.3

DrBoost
(32-dim subvectors)

(Initial Negs. Random)

1 32 22.2
2 64 31.5
3 96 33.8
4 128 34.3
5 160 34.4

Table 5: Ablations for the number of rounds for DPR
with iterative negatives and DrBoost for MSMARCO

MIPS using binary vectors. There is also a line of 1122

work learning embeddings specifically suited for 1123

approximate search (Yu et al., 2018; Zhan et al., 1124

2021a,b) Generative retrievers (De Cao et al., 2021) 1125

can also be very efficient. DrBoost also employs 1126

lower-dimensional embeddings and off-the-shelf 1127

post-hoc compression for its smallest index, pro- 1128

ducing smaller indices than BPR, whilst also being 1129

more accurate. 1130

A.2 Number of Rounds 1131

The performance of DPR and DrBoost on MS- 1132

MARCO for different numbers of rounds are shown 1133

in Table 5. We find that all models saturate at about 1134

4 or 5 rounds. Note DrBoost does not need more it- 1135

erations to train, even though it does not use BM25 1136

negatives for the first round. On NQ, adding a 6th 1137

model slightly improves DrBoost’s precision, at the 1138

expense of recall (see Table 1). 1139

While iterative training is expensive, we find that 1140

subsequent rounds are much cheaper than the first 1141

round, with the first round taking∼20K steps in our 1142

experiments to converge, with additional DrBoost 1143

rounds converging after about 3K steps. 1144

Bagging Dense Retrieval We also trained a sim- 1145

ple ensemble of six 32-dim DPR models for NQ, 1146

which we compare to our 6×32-dim component 1147

DrBoost. This experiment investigates whether the 1148

improvement over DPR is just a simple ensembling 1149

effect, or whether it is due to boosting effects and 1150

specialization of concerns. This DPR ensemble 1151

13



performs poorly, scoring 74.5 R@20 (not shown in1152

tables), 6.8% below the equivalent DrBoost, con-1153

firming that the boosting formulation is important,1154

not simply having several ensembled dense retriev-1155

ers.1156

A.3 Implementation Details1157

We implement our models architectures based on1158

HuggingFace’s Transformers (Wolf et al., 2020)1159

and run our experiments on 16 V100 GPUs. For all1160

training rounds, we used the same set of training1161

hyperparameters — we set learning rate as 3e-5,1162

dropout as 0.1, weight decay as 0.01, batch size as 21163

(per GPU) and max training steps as 30k. The max-1164

imum question and passage lengths are set as 401165

and 200 respectively and we accompany each ques-1166

tion with 50 passages during training. Using our1167

training infrastructure, the first round of the train-1168

ing takes about 8 hours and each additional training1169

round takes about 1.5 hours until convergence. We1170

always use the dev loss for model selection.1171

A.4 Detailed results1172
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DrBoost DPR DPR, 160 dim.
(n=4096) (n=16384) (n=65536) (n=4096) (n=16384) (n=65536) (n=4096) (n=16384) (n=65536)

Exhaustive 0.3438 0.3438 0.3438 0.328 0.328 0.328 0.3248 0.3248 0.3248
1 0.1905 0.1884 0.2057 0.1277 0.1186 0.1088 0.1669 0.1637 0.183
2 0.2338 0.2359 0.2458 0.172 0.1599 0.1479 0.2129 0.2072 0.2159
4 0.2694 0.2652 0.2719 0.2095 0.1996 0.1836 0.2465 0.2395 0.2452
8 0.2919 0.2873 0.2955 0.2433 0.2326 0.2155 0.2722 0.2637 0.2678
16 0.3106 0.3018 0.3094 0.2693 0.2532 0.2415 0.2906 0.2822 0.2827
32 0.324 0.3161 0.3179 0.2855 0.2715 0.2629 0.3027 0.297 0.2931
64 0.3314 0.3236 0.3266 0.2994 0.2864 0.2791 0.3127 0.3063 0.3018
128 0.3382 0.332 0.3312 0.31 0.2982 0.2922 0.3179 0.3129 0.309
256 0.34 0.3375 0.3354 0.3161 0.3092 0.3011 0.3206 0.3182 0.3136
512 0.3424 0.34 0.3395 0.3226 0.3141 0.3085 0.3232 0.3212 0.3176
1024 0.3437 0.3416 0.3415 0.325 0.3197 0.3139 0.3243 0.3229 0.3211
2048 0.3438 0.343 0.342 0.3279 0.3243 0.3188 0.3247 0.3242 0.3226
4096 0.3435 0.3433 0.3268 0.3228 0.3249 0.3236
8192 0.3438 0.3432 0.3278 0.3254 0.3248 0.3241

16384 0.3435 0.3268 0.3247
32768 0.3437 0.3278 0.3247

Table 6: IVF indexing results on MSMARCO. Metric is MRR@10. n refers to number of clusters used for IVF
training.

DrBoost, 160 dim DrBoost-distilled, 160 dim DrBoost, 192 dim DrBoost-distilled, 192 dim DPR DPR, 192 dim.
Exhaustive 0.876 0.868 0.874 0.870 0.879 0.866

1 0.683 0.706 0.684 0.701 0.595 0.623
2 0.751 0.767 0.750 0.760 0.670 0.688
4 0.795 0.800 0.793 0.803 0.717 0.741
8 0.819 0.821 0.819 0.825 0.756 0.778
16 0.836 0.837 0.835 0.840 0.795 0.806
32 0.850 0.849 0.845 0.848 0.816 0.826
64 0.859 0.855 0.858 0.856 0.835 0.838
128 0.865 0.858 0.864 0.859 0.845 0.847
256 0.870 0.862 0.868 0.863 0.855 0.855
512 0.874 0.864 0.870 0.866 0.864 0.861
1024 0.874 0.865 0.871 0.866 0.871 0.864
2048 0.875 0.865 0.873 0.867 0.874 0.865

Table 7: IVF indexing results on NQ. Metric is Recall@100. The number of clusters used for IVF training was
65536.

DrBoost, 160 dim DrBoost-distilled, 160 dim DrBoost, 192 dim DrBoost-distilled, 192 dim DPR DPR, 192 dim.
Exhaustive 0.809 0.809 0.813 0.809 0.827 0.808

1 0.624 0.650 0.625 0.647 0.518 0.557
2 0.686 0.703 0.684 0.703 0.597 0.625
4 0.732 0.744 0.730 0.746 0.647 0.679
8 0.758 0.764 0.755 0.764 0.690 0.717
16 0.771 0.779 0.775 0.780 0.732 0.743
32 0.784 0.793 0.786 0.791 0.760 0.766
64 0.794 0.797 0.799 0.799 0.779 0.780
128 0.799 0.800 0.805 0.801 0.791 0.789
256 0.804 0.803 0.810 0.804 0.803 0.797
512 0.807 0.805 0.812 0.807 0.813 0.803
1024 0.808 0.806 0.812 0.807 0.820 0.805
2048 0.808 0.806 0.813 0.808 0.823 0.807

Table 8: IVF indexing results on NQ. Metric is Recall@20. The number of clusters used for IVF training was
65536.
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DrBoost, 160 dim DrBoost-distilled, 160 dim DrBoost, 192 dim DrBoost-distilled, 192 dim DPR DPR, 192 dim.
Exhaustive 0.710 0.706 0.715 0.703 0.731 0.710

1 0.544 0.560 0.535 0.557 0.439 0.475
2 0.597 0.615 0.594 0.605 0.506 0.540
4 0.634 0.646 0.636 0.644 0.551 0.593
8 0.662 0.663 0.663 0.665 0.597 0.623
16 0.678 0.676 0.681 0.680 0.640 0.653
32 0.691 0.689 0.692 0.688 0.666 0.671
64 0.699 0.692 0.702 0.695 0.687 0.685
128 0.704 0.696 0.708 0.699 0.698 0.694
256 0.707 0.701 0.710 0.702 0.709 0.703
512 0.709 0.703 0.712 0.703 0.718 0.707
1024 0.710 0.704 0.713 0.703 0.726 0.708
2048 0.710 0.704 0.714 0.704 0.728 0.709

Table 9: IVF indexing results on NQ. Metric is Recall@5. The number of clusters used for IVF training was 65536.

Rounds who got the first nobel prize in physics? when is the next deadpool movie being released?

1 0: Title: Nobel Prize in Physics
The Nobel Prize in Physics is a yearly award given by the Royal
Swedish Academy of Sciences for those who have made the . . .
1: Title: Nobel Prize in Physics
. . . receive a diploma, a medal and a document confirming the prize
amount. Nobel Prize in Physics . . .
2: Title: Nobel Prize controversies
. . . research CERN, commented in a scientific meet in Kolkata titled
”Frontiers of Science” that ”it is unfortunate that pioneering . . .

0: Title: Deadpool (film)
. . . was written by Reese and Wernick and played in front of ”Logan”.
”Deadpool 2” was released on May 18, 2018, with . . .
1: Title: Deadpool 2
. . . chimichangas, traditionally Deadpool’s favorite food, as well as
”Deadpool”-inspired Harder drinks. The campaign also . . .
2: Title: Deadpool 2
. . . the final two hours. By May 2018, Leitch was working on an official
extended edition of the film with Fox wanting to ”spin that . . .

2 0: Title: George B. McClellan
George Brinton McClellan (December 3, 1826-October 29, 1885) was
an American soldier, civil engineer, railroad executive . . .
1: Title: Johannes Brahms
Johannes Brahms (; 7 May 1833 – 3 April 1897) was a German com-
poser and pianist of the Romantic period. Born in Hamburg . . .
2: Title: Bede
Bede ( ; ; 672/3 – 26 May 735), also known as Saint Bede, Venerable
Bede, and Bede the Venerable (), was an English Benedictine . . .

0: Title: Here and Now (2018 TV series)
Here and Now is an American drama television series created by Alan
Ball. The series consists of ten episodes and . . .
1: Title: Deadpool 2
. . . is dedicated to her memory. The film’s score is the first to receive a
parental advisory warning for explicit content, and . . .
2: Title: I’m New Here
I’m New Here is the 13th and final studio album by American vocalist
and pianist Gil Scott-Heron. It was released on February . . .

3 0: Title: Henri Poincare
Jules Henri Poincaré (; ; 29 April 1854 – 17 July 1912) was a French
mathematician, theoretical physicist, engineer, and . . .
1: Title: Marie Curie
. . . named in her honor. Marie Curie Marie Skłodowska Curie (; ; ; born
Maria Salomea Skłodowska; 7 November 18674 July 1934 . . .
2: Title: Alberto Santos-Dumont
Alberto Santos-Dumont (; 20 July 187323 July 1932, usually referred
to as simply Santos-Dumont) was a Brazilian inventor . . .

0: Title: Deadpool 2
. . . is dedicated to her memory. The film’s score is the first to receive a
parental advisory warning for explicit content, and . . .
1: Title: Deadpool (film)
. . . was written by Reese and Wernick and played in front of ”Logan”.
”Deadpool 2” was released on May 18, 2018, with . . .
2: Title: Kong: Skull Island
. . . later moved to Warner Bros. in order to develop a shared cinematic
universe featuring Godzilla and King Kong. . . .

Table 10: Example retrieval results from each round of DrBoost. Only the beginning of each passage is shown.
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