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ABSTRACT

Unlike traditional supervised learning, in many settings only partial feedback is
available. We may only observe outcomes for the chosen actions, but not the coun-
terfactual outcomes associated with other alternatives. Such settings encompass
a wide variety of applications including pricing, online marketing and precision
medicine. A key challenge is that observational data are influenced by historical
policies deployed in the system, yielding a biased data distribution. We approach
this task as a domain adaptation problem and propose a self-training algorithm
which imputes outcomes with finite discrete values for finite unseen actions in the
observational data to simulate a randomized trial. We offer a theoretical motiva-
tion for this approach by providing an upper bound on the generalization error
defined on a randomized trial under the self-training objective. We empirically
demonstrate the effectiveness of the proposed algorithms on both synthetic and
real datasets.

1 INTRODUCTION

Counterfactual inference (Pearl et al., 2000) attempts to address a question central to many appli-
cations - What would be the outcome had an alternative action was chosen? It may be selecting
relevant ads to engage with users in online marketing (Li et al., 2010), determining prices that max-
imize profit in revenue management (Bertsimas & Kallus, 2016), or designing the most effective
personalized treatment for a patient in precision medicine (Xu et al., 2016). With observational
data, we have access to past actions, their outcomes, and possibly some context, but in many cases
not the complete knowledge of the historical policy which gave rise to the action (Shalit et al., 2017).
Consider a pricing setting in the form targeted promotion. We might record information of a cus-
tomer (context), promotion offered (action) and whether an item was purchased (outcome), but we
do not know why a particular promotion was selected.

Unlike traditional supervised learning, we only observe feedback for the chosen action in observa-
tional data, but not the outcomes associated with other alternatives (i.e., in the pricing example, we
do not observe what would occur if a different promotion was offered). In contrast to the gold stan-
dard of a randomized controlled trial, observational data are influenced by historical policy deployed
in the system which may over or under represent certain actions, yielding a biased data distribution.
A naive but widely used approach is to learn a machine learning algorithm directly from observa-
tional data and use it for prediction. This is often referred to as direct method (DM) (Dudı́k et al.,
2014). Failure to account for the bias introduced by historical policy often results in an algorithm
which has high accuracy on the data it was trained on, but performs considerably worse under a
different policy. For example in the pricing setting, if historically most customers who received high
promotion offers bear a certain profile, then a model based on direct method may fail to produce
reliable predictions on these customers when low offers are given.

To overcome the limitations of direct method, Shalit et al. (2017); Johansson et al. (2016); Lopez
et al. (2020) cast counterfactual learning as a domain adaptation problem, where the source domain
is observational data and the target domain is a randomized trial whose assignment of actions fol-
lows a uniform distribution for a given context. The key idea is to map contextual features to an
embedding space and jointly learn a representation that encourages similarity between these two
domains, leading to better counterfactual inference. The embedding is generally learned by a neural
network and the estimation of the domain gap is usually slow to compute.
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Figure 1: Illustration of the proposed Counterfactual Self-Training (CST) framework. There are
two sales records (observational data) shown in the table, i.e., , Customer A was offered $2 and
bought an item; Customer B was offered $1 and did not buy. The question marks in the tables
represent the counterfactual outcome which we do not observe. For all these unseen counterfactual
outcomes, pseudo-labels which are colored in red in the tables are imputed by a model and are
used to augment the observational data. The model is subsequently updated by training on both the
imputed counterfactual data and the factual data. This iterative training procedure continues until it
converges.

In this paper, while we also view counterfactual inference as a domain adaptation problem between
observational data and an ideal randomized trial, we take a different approach - instead of estimating
the domain gap between the two distributions via an embedding, we explicitly simulate a randomized
trial by imputing pseudo-labels for the unobserved actions in the observational data. The optimiza-
tion process is done by iteratively updating the pseudo-labels and a model that is trained on both
the factual and the counterfactual data, as illustrated in Figure 1. As this method works in a self-
supervised fashion (Zou et al., 2018; Amini & Gallinari, 2002), we refer to our proposed framework
as Counterfactual Self-Training (CST).

The contribution of our paper is as follows. First, we propose a novel self-training algorithm for
counterfactual inference. To the best of our knowledge, this is the first application of self-training
algorithm for learning from observational data. Moreover, in contrast to the existing methods from
domain adaption on counterfactual inference, CST is flexible and can work with a wide range of ma-
chine learning algorithms, not limited to neural networks. Second, we offer a theoretical motivation
of our approach by providing an upper bound on the generalization error defined on a randomized
trial under the self-training objective. In other words, we show that the counterfactual self-training
algorithm helps minimizing the risk on the target domain. Our theoretical bounds suggest gener-
ating pseudo-labels with random imputation, which is a methodological departure from traditional
self-training algorithms which impute hard labels. Third, we present comprehensive experiments on
several synthetic datasets and three counterfactual learning datasets converted from multi-label clas-
sification tasks to evaluate our method against state-of-the-art baselines. In all experiments, CST
shows competitive or superior performance against all the baselines. Moreover, our algorithm is
easy to optimize with a much faster training time than other baselines.

2 RELATED WORK

Counterfactual policy optimization has received a lot of attention in the machine learning com-
munity in the recent years (Swaminathan & Joachims, 2015a; Joachims et al., 2018; Shalit et al.,
2017; Lopez et al., 2020; Kallus, 2019; Kallus & Zhou, 2018; Wang et al., 2019). Most of the
proposed algorithms can be divided into two categories: counterfactual risk minimization (CRM)
and direct method (DM). Both can be used together to construct doubly robust estimators (Dudı́k
et al., 2014) to further improve efficiency. CRM, also known as off-policy learning or batch learn-
ing from bandit feedback, typically utilizes inverse propensity weighting (IPW) (Rosenbaum, 1987;
Rosenbaum & Rubin, 1983) to account for the bias in the data. Swaminathan & Joachims (2015a)
introduces the CRM principle with a variance regularization term derived from an empirical Bern-
stein bound (Maurer & Pontil, 2009) for finite samples. In order to reduce the variance of the IPW
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estimator, Swaminathan & Joachims (2015b) proposes a self-normalized estimator, while Bandit-
Net (Joachims et al., 2018) utilizes the baseline technique (Greensmith et al., 2004) in deep nets. As
pointed out by Lefortier et al. (2016), CRM-based methods tend to struggle with medium to large
action spaces in practice. Morever, CRM-based methods generally require a known and stochastic
logging policy, along with full support on the action space. When either one of the requirements
is violated, Sachdeva et al. (2020); Kang et al. (2007) observe direct method often demonstrates
a more robust performance. When the logging policy is not available, the counterfactual learning
problem is often referred to as learning from observational data, which is the setting we focus on.
In addition to select the optimal actions, direct method can also be used to identify causal treatment
effect (Künzel et al., 2019), CST can be viewed as an extention to direct method.

Learning from observational data is also closely related to estimating Individualized Treatment Ef-
fects (ITE) (Shpitser & Pearl, 2012) or conditional average treatment effect (CATE), which is de-
fined as the difference of expected outcomes between two actions, with respect to a given context.
The main challenge of identifying ITE is that unlike an ideal randomized trial, observational data is
biased and we do not have the access to the counterfactuals. Hill (2011) uses a bayesian nonpara-
metric algorithm to address this issue. Yoon et al. (2018) proposes using generative adversarial nets
to capture the uncertainty in the counterfactual distributions to facilitate ITE estimation. Johansson
et al. (2016); Shalit et al. (2017) approach counterfactual inference with representation learning and
domain adaptation. Their key idea is to learn a representation between observational data and a
randomized trial that encourages better generalization on all possible actions. It is achieved by min-
imizing a weighted sum of the factual loss on the observational data (loss for direct method) plus an
estimated domain gap measured by integral probability metrics. Lopez et al. (2020) further extends
this framework to multiple treatments using Hilbert-Schmidt Independence Criterion (HSIC) (Gret-
ton et al., 2008) and achieves state-of-the-art performance. The HSIC proposed in Lopez et al.
(2020) has a computation time of at least O(N2), making its training process slow. While the
aforementioned methods and our approach can be viewed as extensions to direct method, we tackle
the domain adaptation problem differently by explicitly augmenting the observational data to create
a simulated randomized trial via self-training. Different counterfactual estimation algorithms are
classified as X-, T-, S-learner in Künzel et al. (2019), for example Hill (2011) is an instance of
S-learner. Our approach is similar to X-learner which uses pseudo-label to create counterfactuals,
but CST considers multiple instead of binary actions and is trained in an iterative fashion.

Self-training algorithms have been widely studied in semi-supervised learning and domain adap-
tation problems (Nigam et al., 2000; Amini & Gallinari, 2002; Grandvalet & Bengio, 2005; Zou
et al., 2019; Han et al., 2019). Grandvalet & Bengio (2005) proposes to use entropy regularization
for semi-supervised learning as a class-overlapping measure to utilize unlabeled data. Nigam et al.
(2000); Amini & Gallinari (2002); Zou et al. (2019) formulate the pseudo-label imputation as classi-
fication EM algorithm and show its convergence under proper initialization. Han et al. (2019) points
out that pseudo-label imputation can be viewed as minimizing min-entropy as a type of Rényi en-
tropy 1

1−α log(
∑n
i=1 p

α
i ) when α→∞, and Shannon entropy in Grandvalet & Bengio (2005) is the

case when α → 1. Self-training is also shown to be effective in semi-supervised learning for many
other machine learning models besides neural networks (Tanha et al., 2017; Li et al., 2008). It is wor-
thy to mention that unlike traditional self-training where the target domain is given by the problem,
we propose to construct a target domain by imputing pseudo-labels on all unseen actions to simulate
a pseudo-randomized trial. Moreover, instead of hard labels used in traditional self-training, we pro-
pose to use random imputation to create pseudo-labels which have a theoretical motivation tailored
for counterfactual inference and are shown to be more effective based on the experiments results.

3 PROBLEM STATEMENT

Following the notation in Lopez et al. (2020), we use X to represent an abstract space and P(x) is
a probability distribution on X . Each sample x = x1, · · · , xn ∈ Xn is drawn independently from
P(x). P is the discrete action space that a central agent can select for each sample, after which a
discrete reward r with finite possible values is revealed to the agent. In precision medicine, X may
represent a patient cohort, P refers to feasible treatment for a disease, and r can be the indicator of
whether a patient survives after the treatment. Similarly, X ,P, r can represent visitors, ads shown
and whether visitor clicks in online marketing.
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We focus on an example of pricing to illustrate our method. We use x ∈ Xn ∼ P(x) to denote a
customer. Let P represent finite price options a central agent can offer to customers. After offering
price p ∈ P , the agent observes the response from the customer r ∼ P(r|x, p), i.e., , either a 1
(buy) or a 0 (no-buy). As a direct method, the task is to learn a function f(x, p) by minimizing the
loss Ex∼P(x),p∼π0(p|x)L(f(x, p), r) where π0(p|x) is a randomized assignment policy (Shalit et al.,
2017; Lopez et al., 2020). The estimation task is often referred to as demand estimation (Wales &
Woodland, 1983), which is critical for many downstream decisions such as inventory optimization
and revenue management (Kök & Fisher, 2007; McGill & Van Ryzin, 1999). This is in contrast to
CRM-based methods which use the final reward as objective to learn a policy π(p|x) that maximizes
Ex∼P(x),p∼π(p|x)E[r|x, p] (Swaminathan & Joachims, 2015a).

With observational data, the individualized treatment effect is not always identifiable. We use Ru-
bin’s potential outcome framework and assume consistency and strong ignorability which is a suf-
ficient condition for identifying ITE (Imbens & Wooldridge, 2009; Pearl, 2017). Here we formally
present the ignorability assumption (Rubin, 2005; Shalit et al., 2017):
Assumption 3.1 (Ignorability). Let P be action set, x is context (feature), r(p)|x is observed reward
for action p ∈ P given context x, r(p) ⊥⊥ p|x,∀p ∈ P .

In other words, we assume there is no unobserved confounders. This condition generally cannot be
made purely based on data and requires some domain knowledge.

4 ALGORITHM

In this section, we introduce Counterfactual Self-Training (CST) algorithm, which can be viewed as
an extension of the direct method via domain adaptation. Unlike existing methods using represen-
tation learning, we propose a novel self-training style algorithm to account the bias inherent in the
observational data.

4.1 SELF-TRAINING

Self-training has recently been used in unsupervised domain adaptation (UDA) and semi-supervised
learning (SSL) and achieved great success (Zou et al., 2019; Han et al., 2019; Zou et al., 2018; Amini
& Gallinari, 2002; Nigam et al., 2000; Grandvalet & Bengio, 2005). The self-training algorithm
works in an iterative fashion: First, after training a classifier f(x, p) on a source dataset, pseudo-
labels are created by the best guess of f . Next, the model is trained on a target dataset, and the
trained model is used to generate new pseudo labels. This idea is illustrated in Figure 1.

To formulate the counterfactual learning problem as a domain adaptation problem, observational
data is viewed as data sampled from a source distribution DS = P(x)π(p|x). The target domain is
a randomized trial on the same feature distribution to ensure a uniformly good approximation on all
actions. Our goal is to transfer observational data from the source domain to a simulated pseudo-
randomized trial via self-training. To accomplish this, we first train an initial classifier f0(x, p) on
observational data, then impute pseudo-labels on all unseen actions from the observation data with
r̂i,p ∼ f(xi, p). The model is then updated by training with the following objective:

min
θ
LST =

1

N |P|

( N∑
i=1

l(fθ(xi, pi), ri)︸ ︷︷ ︸
Lsrc

+

N∑
i=1

∑
p∈P\pi

l(fθ(xi, p), r̂i,p)
)

(1)

The first term Lsrc in Equation 1 corresponds to the loss used in direct method, defined over the
factual data alone. Meanwhile, the second term refers to the loss defined over the imputed counter-
factual data. In other words, in order to get a good model across all actions, we utilize the pseudo-
population induced from imputation which represents a simulated randomized trial. We iteratively
train the model and impute pseudo-labels until it converges. The algorithm is stated in Algorithm 1.

Note that a key difference between our CST algorithm and traditional self-training (ST) methods
for unsupervised domain adaptation (such in Zou et al. (2018)): Pseudo-labels in traditional ST are
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Algorithm 1 Counterfactual Self-Training

1: while NOT converged do . Main training loop
2: for each i ∈ {1 . . . N} do
3: for each p ∈ P \ pi do
4: Impute pseudo-label r̂i,p ∼ fθ(r|xi, p). . Pseudo-label imputation
5: end for
6: end for
7: Update θ by minimizing LST defined in Equation 1. . Self-training
8: end while

generated from hard imputation while ours are sampled from a probability distribution as illustrated
in Algorithm 1 line 4. Not only this randomized imputation has a theoretical motivation presented
in Section 4.2, it also demonstrates superior performance over hard imputation in our experiments
in Section 5.

4.2 THEORETICAL MOTIVATION

As our objective is to augment observational data to a randomized trial such that the learnt model is
able to perform better on all feasible actions, we focus on bounding the generalization error defined
on a randomized trial. We use D to represent the distribution of a true randomized trial where the
assignment policy is a uniform probability over P given context, and D̂ is the distribution of pseudo-
label generated by the current model output fθ(r|x, p). DefineRD(f) as the risk of function f with
respect to a loss function l(·, ·) asRD(f) = Ex,p∼D[l(f(x, p), p)], and R̂D̂(f) as empirical risk on
D̂. Assume our classifier outputs a probability estimation fθ(r|x, p) for a feature and action pair
(x, p), and we use a random imputation r̂ ∼ fθ(r|x, p) to generate outcomes for the unseen actions.
We have the following theorem on the generalization bound:
Theorem 1. Assume fθ(r|x, p) ≥ 1

M0+1 , where M0 > 1 is constant, x, p is defined on a compact,
discrete set respectively, let M = min{maxx,p(

P
fθ
− 1),M0}, f? = argminf∈F RD(f) , D̂ is the

dataset generated by random imputation of current model output fθ, and f̂ minimizes the empirical
risk on D̂. For any loss function l(·, ·), we have:

RD(f̂)−RD(f?) ≤C(

√
V

n
+

√
log(1/δ)

n
) + (M + 1)R̂D̂(f̂)−RD(f?) (2)

V is the VC dimension of hypothesis class F , and C is a universal constant. The proof is in Ap-
pendix A.1. By replacing M with M0 and minimizing the right hand side of Equation 2 over θ,
we recover Equation 1 which is the objective that we are optimizing in the training procedure. This
complete optimization involves optimizing over θ and r̂, and can be solved via classification EM
(CEM) (Amini & Gallinari, 2002) and traditional self-training is an instance of CEM (Zou et al.,
2019). These methods use a hard label as a classification step to impute the pseudo-labels but it
is not clear how it relates to the risk that we are interested in. To establish Theorem 1, we require
a random imputation of labels based on the probability output of the classifier to upper bound the
risk under a true randomized trial using this objective. Therefore, we use a random sampling to
generate pseudo-labels in our algorithm, and it is shown to be more robust than hard labels in our
experiments. We would like to note this bound is relatively loose when P is very different from fθ,
thus we only use it as a motivation of our proposed algorithm. Since in the source domain, the data
is generated by the true data distribution, it is possible to get a tighter upper bound, which we leave
for future work.

Our assumption fθ(r|x, p) ≥ 1
M0+1 is also proposed in Zou et al. (2019) in the form of entropy

regularization to prevent the model converging too fast and getting too confident in the early stages
of training. Since cross-validation is biased in the counterfactual learning due to the logging pol-
icy (Lopez et al., 2020), we avoid using hyperparameters and do not use this regularization in our
experiments. Note that in traditional semi-supervised learning, deterministic pseudo-labels are com-
monly used by argmax operation r̂ = argmaxrf(r|x, p), which we refer to as CST-AI, and we refer
the one with random imputation as CST-RI.
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In Proposition 1, we show the convergence result of CST-AI . Theoretical analysis on convergence
of CST-RI is more challenging. However, we empirically observe CST-RI converges without any
additional techniques in all of our experiments. We show empirical loss curves and discuss the
connection between CST-RI and entropy regularization (Grandvalet & Bengio, 2005) in Section
A.3 in Appendix.
Proposition 1. CST with argmax imputation is convergent under certain conditions.

Proof. Please refer to Section A.2 of Appendix.

5 EXPERIMENTS

We construct synthetic datasets for a pricing example and utilize three real datasets to demonstrate
the efficacy of our proposed algorithm. Implementationwise, we use a three layer neural network
with 128 nodes as our model and binary entropy loss as the loss function. We avoid using early stop-
ping and train each method until convergence to ensure a fair comparison. The following baselines
are considered in our experiments:

• Direct Method (DM): This baseline directly trains a model on observational data.
• HSIC (Lopez et al., 2020): We use the last layer as an embedding and calculate HSIC

between the embedding and the actions. The training objective is binary cross entropy
loss + λ·HSIC, where λ is the hyperparameter which we choose from a grid search over
[0.01, 0.1, 1, 10, 100].

• BanditNet (Joachims et al., 2018): BanditNet is a CRM-based method developed for deep
nets. For the baseline required in BanditNet, we normalize the reward as in Swami-
nathan & Joachims (2015a) and choose the hyperparameter using a grid search over
[0, 0.2, 0.4, 0.6, 0.8] and cross validation. We fit an additional logging policy model on
historical data for BanditNet.

• Uniform DM (Wang et al., 2019): Uniform DM (UDM) also estimates the logging policy
using historical data and use importance sampling to simulate a randomize trial.

Since BanditNet is designed for reward maximization, evaluation of the accuracy (i.e., hamming
loss) is not appropriate under our problem. In each experiment, we only evaluate BanditNet in the
reward comparison. We also experiment with two versions of CST, CST-AI and CST-RI. Unlike
CST, HSIC and BanditNet require a hyperparameter as an input to their algorithms. Following
Joachims et al. (2018); Lopez et al. (2020), we use a 5-fold cross-validation and grid search to select
the hyperparameter for all experiments. All experiments are conducted using one NVidia GTX
1080-Ti GPU with five repetitions. Mean and standard error are reported for each metric.

5.1 SYNTHETIC DATASETS

In synthetic experiments, we use a pricing example similar to the experiment in Lopez et al. (2020).
Let U(·, ·) be a uniform distribution. Assume customer features are a 50-dimensional vector X
drawn from U(0, 1)50 and there are 10 price options from $1 to $10. The logging policy is set
as π(p = i|x) = xi∑10

i=1 xi
. Five types of demand functions are simulated, and the complete data

generation process is detailed in Appendix A.5.

We generate 1000 samples for each demand function and report hamming loss which relies on the
hard labels generated by the algorithm in Table 1. In addition, as we are interested in probability
estimation, we report the multi-label soft margin loss in Table 2. Lastly, as a pricing application, we
also evaluate the revenue generated on the test set by solving the revenue maximization problem:

pi = argmax
p

P(r = 1|xi, p) · p (3)

For each dataset, the test set has 5000 samples from the corresponding demand distribution. The
results are shown in Table 3.

Among all datasets, CST-RI has the best performance in terms of both hamming loss and soft margin
loss. HSIC outperforms DM baseline by a significant margin and comes as a close second to CST-
RI. In 4 out of 5 demand functions (with the exception of D1), CST-RI achieves a comparable
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or superior performance on reward as shown in Table 3. Hence, while CST-RI results in the best
demand model in terms of the losses, it does not guarantee the highest revenue in all cases. This
is because the downstream optimization task is independent from demand estimation (Elmachtoub
& Grigas, 2017). Nevertheless, CST-RI significantly outperforms BanditNet which is designed for
reward maximization due to unknown logging policy (Kang et al., 2007). We also want to point out
that CST-AI performs worse than DM which is a naive baseline, demonstrating the importance of
random imputation in our algorithm.

D1 D2 D3 D4 D5
Direct Method 0.2101±0.0042 0.2418±0.0026 0.3358±0.0036 0.2614±0.0051 0.1753±0.0024

CST-RI 0.1766±0.0020 0.1833±0.0030 0.2716±0.0049 0.2000±0.0026 0.1447±0.0029
CST-AI 0.4342±0.0699 0.5568±0.0498 0.4544±0.0432 0.5514±0.0507 0.4769±0.0533
HSIC 0.1940±0.0036 0.1947±0.0023 0.2821±0.0078 0.1969±0.0036 0.1447±0.0029
UDM 0.2246±0.0053 0.2687±0.0114 0.2951±0.0059 0.2059±0.0049 0.1892±0.0145

Table 1: Hamming Loss on Synthetic Dataset.

D1 D2 D3 D4 D5
Direct Method 1.8032±0.1118 2.2517±0.1760 3.4890±0.2734 3.2841±0.1644 1.9047±0.1838

CST-RI 0.3729±0.0047 0.4134±0.0020 0.5230±0.0044 0.4319±0.0019 0.3206±0.0026
CST-AI 1.2618±0.1684 1.5679±0.1181 1.3896±0.0988 1.5534±0.1216 1.3196±0.1259
HSIC 0.4407±0.0134 0.4393±0.0088 0.5578±0.0077 0.4405±0.0064 0.3284±0.0050
UDM 0.9086±0.0571 1.0824±0.0171 1.0082±0.0317 0.8481±0.0293 0.8152±0.0482

Table 2: Multi-Label Soft-Margin Loss on Synthetic Datasets

D1 D2 D3 D4 D5
Direct Method 4861.6±149.5 4240.2±108.9 7806.6±141.5 4442.6±124.3 3238.6±113.8

CST-RI 3894.4±118.2 4626.8±265.1 7622.0±208.0 4692.6±295.3 3381.6±239.8
CST-AI 3800.6±113.6 2212.4±138.4 6975.2.4±217.6 2084.4±128.2 1082.6±40.7
HSIC 3692.0±76.3 4361.4±280.8 7416.0±276.4 4653.8±219.4 3050.4±76.2

BanditNet 3610.4±106.4 4334.6±144.7 6739.2±112.7 4582.0±335.9 2907.2±222.2
UDM 3580.8±94.9 4430.0±264.4 6014.6±235.2 4208.2±482.5 1844.8±416.8
Oracle 6505.2±158.8 5082.0±0 9527.6±231.0 5904.4±129.2 4423.4±111.8

Table 3: Total Reward on Synthetic Dataset. Oracle represents the best possible reward with perfect
knowledge of the demand function.

5.2 MULTI-LABEL DATASETS

We use three multi-label datasets from LIBSVM repository (Elisseeff & Weston, 2002; Boutell
et al., 2004; Chang & Lin, 2011), which are used for semantic scene, text and gene classification.
We convert the supervised learning datasets to bandit feedback by creating a logging policy using
5% of the data following Swaminathan & Joachims (2015a); Lopez et al. (2020). More specifically,
each feature x has a label y ∈ {0, 1}p where p is the number of labels. After the logging policy
selects a label (action) i, a reward yi is revealed as bandit feedback (x, i, yi), i.e., , for each data
point, if the policy selects one of the correct labels of that data point, it gets a reward of 1 and
0 otherwise. By doing so, we have the full knowledge of counterfactual outcomes for evaluation.
Data statistics are summarized in Section A.6 in Appendix.

Hamming loss, multi-label soft margin loss and reward are reported in Table 4, 5 and 6 respectively.
CST-RI generally achieves comparable or superior performance against all baselines in all three
datasets. Since we assume we do not know the logging policy, BanditNet performs poorly in dataset
like Scene, which is consistent with Kang et al. (2007). HSIC has a comparable performance
with CST-RI on TMC and Yeast, but performs poorly on Scene. We suspect this is due to the
bias introduced in cross-validation which in turn results in a sub-optimal hyperparameter selection.
UDM can improve over DM effectively but CST-RI still outperforms it significantly. Overall, CST-
RI shows the most robust performance across all three metrics being studied.

5.3 RUNNING TIME ANALYSIS

We compare the average running time for one repetition for each experiment under same number of
epochs. The results are summarized in Section A.4 in Appendix. Unsurprisingly, DM is the fastest
algorithm. While our method is almost twice as slow as DM, it is still relatively fast compared to
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TMC Yeast Scene
Direct Method 0.1224±0.0194 0.3669±0.0028 0.2428±0.0035

CST-RI 0.0775±0.0023 0.2796±0.0019 0.2306±0.0372
CST-AI 0.5589±0.0336 0.3179±0.0580 1.2288±0.2255
HSIC 0.0797±0.0016 0.3024±0.0047 0.4504±0.0541
UDM 0.0905±0.0039 0.3547±0.0007 0.2293±0.0019

Table 4: Hamming Loss on Real Datasets

TMC Yeast Scene
Direct Method 2.0578±0.2034 9.2488±0.0137 5.1004±0.1019

CST-RI 0.2325±0.0222 0.5573±0.0048 0.4918±0.0512
CST-AI 3.0167±0.0682 0.9718±0.1691 1.2288±0.2255
HSIC 0.2259±0.0037 0.5898±0.0019 0.9403±0.2616
UDM 1.3178±0.1877 7.0741±0.0243 3.8074±0.0444

Table 5: Multi-Label Soft-Margin Loss on Real Datasets

TMC Yeast Scene
Direct Method 3926.5±106.2 457.8±4.7 587.0±3.6

CST-RI 5035±162.0 677.8±1.6 604.0±55.3
CST-AI 194.0±49.1 226.6±30.3 264.0±17.9
HSIC 4874.0±41.3 675.4±1.9 277.8±122.2

BanditNet 4302.3.4±84.2 574.8±8.6 243.4±52.0
UDM 4408.3±19.3 480.6±2.7 584.6±3.2

Table 6: Reward on Real Datasets

the other baselines. BanditNet is relatively slow due to the cross validation selection. Note that
the time efficiency of HSIC is bottlenecked by its high computational complexity (Lopez et al.,
2020). We thus observe HSIC is approximately 30 to 100 times slower than CST across all datasets.
Since CST offers a competitive performance against HSIC with a much faster running time, it is
potentially more suitable for large-scale applications which require frequent model update, such as
a daily updated pricing system. For example, HSIC may take days for model re-training but CST
can be updated day-to-day.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel counterfactual self-training algorithm for learning from obser-
vational data. Comparing to existing approaches, our method is easy to compute and optimize. It
also does not have the need for hyperparameter selection through cross validation, which is biased
in nature for observational data. We provided a theoretical analysis showing self-training objective
serves as an upper bound of the true risk of a randomized trial. However, our CST framework has
several limitations. First, CST requires finite discrete action set. In order to augment observation
data, CST will augment every action not observed. For continuous action, discretization or joint
kernel embedding proposed in Zenati et al. (2020) might be used as an extension to CST, which
we leave for future work. Second, CST in this paper can only work with discrete outcomes. If the
outcome is continuous, it is also possible to extend our framework to continuous valued problems
by: (1) discretize continuous value into discrete categories; (2) the pseudo-labels can be defined as
self-ensemble (French et al., 2017) predictions, e.g. dropout (Bayesian neural networks) ensemble
or temporal ensembling (Laine & Aila, 2016).

While this analysis is tailored for counterfactual learning, we hope it can shed light on a broader
range of problems such as unsupervised domain adaptation and semi-supervised learning. It may
also open doors for solving counterfactual learning with a model-based extrapolation for direct
method. As shown in our pricing example, a good demand model may not necessarily lead to the
highest revenue because of the downstream revenue maximization optimization (Elmachtoub & Gri-
gas, 2017). A different formulation of target domain may help address this problem, which we leave
for future work. Moreover, we believe our counterfactual self-training framework can be adapted
to yield many specific algorithms for tasks such as learning from observational data with structured
reward (Lopez et al., 2020; Kallus, 2019) and deficient historical logging policy (Sachdeva et al.,
2020).
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André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In Advances
in neural information processing systems, pp. 681–687, 2002.

Adam N Elmachtoub and Paul Grigas. Smart” predict, then optimize”. arXiv preprint
arXiv:1710.08005, 2017.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adapta-
tion. arXiv preprint arXiv:1706.05208, 2017.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Ad-
vances in neural information processing systems, pp. 529–536, 2005.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530,
2004.

Arthur Gretton, Kenji Fukumizu, Choon H Teo, Le Song, Bernhard Schölkopf, and Alex J Smola.
A kernel statistical test of independence. In Advances in neural information processing systems,
pp. 585–592, 2008.

Ligong Han, Yang Zou, Ruijiang Gao, Lezi Wang, and Dimitris Metaxas. Unsupervised domain
adaptation via calibrating uncertainties. In CVPR Workshops, volume 9, 2019.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Guido W Imbens and Jeffrey M Wooldridge. Recent developments in the econometrics of program
evaluation. Journal of economic literature, 47(1):5–86, 2009.

Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. Deep learning with logged bandit
feedback. In International Conference on Learning Representations, 2018.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. In International conference on machine learning, pp. 3020–3029, 2016.

Nathan Kallus. Classifying treatment responders under causal effect monotonicity. arXiv preprint
arXiv:1902.05482, 2019.

Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In Advances in neural
information processing systems, pp. 9269–9279, 2018.

Joseph DY Kang, Joseph L Schafer, et al. Demystifying double robustness: A comparison of alter-
native strategies for estimating a population mean from incomplete data. Statistical science, 22
(4):523–539, 2007.

A Gürhan Kök and Marshall L Fisher. Demand estimation and assortment optimization under sub-
stitution: Methodology and application. Operations Research, 55(6):1001–1021, 2007.

9



Under review as a conference paper at ICLR 2021
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1. Assume fθ(r|x, p) ≥ 1
M0+1 , where M0 > 1 is constant, x, p is defined on a compact,

discrete set respectively, let M = min{maxx,p(
P
fθ
− 1),M0}, f? = argminf∈F RD(f) , D̂ is the

dataset generated by random imputation of current model output fθ, and f̂ minimizes the empirical
risk on D̂. For any loss function l(·, ·), we have:

RD(f̂)−RD(f?) ≤C(

√
V

n
+

√
log(1/δ)

n
) + (M + 1)R̂D̂(f̂)−RD(f?) (2)

Proof.

RD(f̂)−RD(f?)

=RD̂(f̂)−RD̂(f?) +RD(f̂)−RD̂(f̂)− (RD(f?)−RD̂(f?)) (4)

=RD̂(f̂)−RD̂(f?) + ED̂(
P(r|x, p)
fθ(r|x, p)

− 1)(l(f̂ (x, p), r)− l(f ?(x, p), r)) (5)

≤RD̂(f̂)−RD̂(f?) +MED̂l(f̂ (x, p), r) + ED̂l(f
?(x, p), r)−RD(f?) (6)

=(M + 1)(RD̂(f̂)− R̂D̂(f̂)) + (M + 1)R̂D̂(f̂)−RD(f?) (7)

≤C(

√
V

n
+

√
log(1/δ)

n
) + (M + 1)R̂D̂(f̂)−RD(f?) (8)
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Equation 4 comes from adding and subtracting the risk defined on D and D̂. Since D̂ is imputed
with probability Pθ, we can use importance sampling to get Equation 5. We get Equation 7 by
adding and subtracting the empirical risk. Equation 8 is from the basic excess-risk bound. V is the
VC dimension of hypothesis class F , and C is a universal constant.

A.2 PROOF OF PROPOSITION 1

Proposition 1. CST with argmax imputation is convergent under certain conditions.

Proof. Our CST objective is defined as

min
θ,R̂

C1 =
1

N |P|

( N∑
i=1

l(fθ(xi, pi), ri) +

N∑
i=1

∑
p∈P\pi

l(fθ(xi, p), r̂i,p)
)

(9)

where ri is the factual data observed and r̂i,p is imputed by trained classifier fθ. We show our proof
using binary cross entropy loss which we use in the paper, it can be generalized to cross entropy
easily. We show the convergence of CST-AI defined in Section 5, which imputes pseudo-label using
argmax operation. The objective is optimized via the following two steps:

1) Pseudo-Label Imputation: Fix θ and impute R̂ to solve:

min
R̂

N∑
i=1

∑
p∈P\pi

−
(
r̂i log fθ(xi, p) + (1− r̂i) log(1− fθ(xi, p))

)
(10)

s.t. r̂i,p ∈ ∆,∀i, p
where ∆ is the possible discrete values of the outcome.

2) Model Retraining: Fix R̂ and solve the following optimization using gradient descent, where
l(·, ·) is binary cross entropy loss:

min
θ

N∑
i=1

l(fθ(xi, pi), ri) +

N∑
i=1

∑
p∈P\pi

l(fθ(xi, p), r̂i,p) (11)

For CST-AI, we have:

Step 1) is non-increasing: (10) has an optimal solution which is given by pseudo-labels imputed by
argmax operation with feasible set being all possible outcomes. As a result, (10) is non-increasing.

Step 2) is non-increasing: If one use gradient descent to minimize the loss defined in Equation 11.
The loss is guaranteed to decrease monotonically with a proper learning rate (Zou et al., 2019). For
mini-batch gradient descent commonly used in practice, the loss is not guaranteed to decrease but
also almost certainly converge to a lower value.

Since loss in Equation 9 is lower bounded, CST-AI is convergent.

A.3 EMPIRICAL CONVERGENCE ANALYSIS OF CST-RI

For CST-RI, since the convergence analysis is more challenging, we show empirically CST-RI con-
verges in all of our experiments without any additional techniques. We show our loss curves in all
experiments for our synthetic and multi-label datasets in Figure 7 and 11 respectively. CST-RI is
trained with gradient descent with momentum (Ruder, 2016). For syntheic datasets, we set learn-
ing rate as 1e-3 and momentum as 0.9. For multi-label datasets, we set learning rate as 1e-1 and
momentum as 0.9.

Next, we share some intuition on CST-RI and its connection with entropy regularization (Grandvalet
& Bengio, 2005). Consider the second term in Equation 9 with stochastic imputation:
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Figure 2: D1 Figure 3: D2 Figure 4: D3

Figure 5: D4 Figure 6: D5

Figure 7: Loss Curves for Synthetic Datasets

Figure 8: TMC Figure 9: Yeast Figure 10: Scene

Figure 11: Loss Curves for Multi-Label Datasets

N∑
i=1

∑
p∈P\pi

−
(
r̂i logfθ(xi, p) + (1− r̂i) log(1− fθ(xi, p))

)
(12)

r̂i,p ∼ Bern(fθ(xi, p)),∀i, p

Since r ∈ {0, 1}, by taking expectation over r̂,

Er̂
N∑
i=1

∑
p∈P\pi

−
(
r̂i log fθ(xi, p) + (1− r̂i) log(1− fθ(xi, p))

)
(13)

=

N∑
i=1

∑
p∈P\pi

−
(
fθ(xi, p) log fθ(xi, p) + (1− fθ(xi, p)) log(1− fθ(xi, p))

)
(14)

which equals to the entropy term defined on fθ, thus Our CSI-RI framework can be viewed as a
variant of entropy regularization in semi-supervised learning (Grandvalet & Bengio, 2005). Since
we aim to simulate a randomized trail, the hyper-parameter in Grandvalet & Bengio (2005) is set
to 1 in CST. Instead of taking the argmax imputation which is commonly used in classification EM
(CEM) (Amini & Gallinari, 2002) that minimizes the objective, we impute a randomly assigned
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label with a larger probability to be the CEM solution. This step is very similar to deterministic
annealing EM (Grandvalet & Bengio, 2005; Yuille et al., 1994; Rose et al., 1990) where a pseudo-
label is generated by the output probability with a annealing temperature instead of CEM solution,
which aims to find the global minimum more efficiently.

A.4 EXPERIMENT RESULTS FOR RUNNING TIME ANALYSIS

D1 D2 D3 D4 D5
Direct Method 21.64±1.46 21.34±1.81 21.70±1.71 21.44±1.66 21.67±1.18

CST-RI 38.28±1.23 35.30±0.02 36.65±0.27 37.19±0.33 37.71±0.80
CST-AI 38.00±1.14 35.90±0.04 36.99±0.26 38.10±0.54 37.89±0.33
HSIC 4038.35±4.65 4029.02±0.51 4087.17±1.36 4060.01±0.79 4055.30±1.11

BanditNet 657.82±10.50 614.91±1.99 632.93±2.77 639.83±1.53 659.10±3.11
UDM 24.99±0.34 25.85±0.91 25.18±0.39 24.23±0.49 25.57±0.48

Table 7: Running Time on Synthetic Datasets (measured in seconds)

TMC Yeast Scene
Direct Method 570.63±0.87 33.43±2.95 26.88±0.29

CST-RI 1428.65±2.22 93.60±4.14 71.98±0.69
CST-AI 1441.3±3.00 95.11±4.54 72.74±0.59
HSIC 43806.3±216.05 3276.82±46.25 3299.99±18.90

BanditNet 10342.65±35.83 488.71±35.84 271.22±8.79
UDM 958.49±0.99 39.03±0.11 32.20±0.04

Table 8: Running Time on Real Datasets (measured in seconds)

A.5 DATA GENERATION FOR SYNTHETIC DATASET

In the synthetic experiments, we use a pricing example similar to the experiment in Lopez et al.
(2020). Let U(·, ·) be a uniform distribution. Assume customer features are a 50-dimensional vector
X drawn from U(0, 1)50 and there are 10 price options from $1 to $10. The logging policy is set as
π(p = i|x) = xi∑10

i=1 xi
. σ denotes sigmoid function. We simulated five types of demand functions,

with h(x) =
∑
ai
∑

exp(
∑
bj‖xj − cj‖), a, b, c ∼ U(0, 1)50, r ∈ {0, 1} :

• r ∼ σ(h(x)− 2x0 · p)
• r ∼ σ(5 · (x0 − 0.5)− 0.4 · p)
• r ∼ σ(h(x)− stepwise1(x0) · p)
• r ∼ σ(h(x)− stepwise2(x0, x1) · p)
• r ∼ σ(h(x)− (x0 + x1) · p)

where the stepwise function is defined as:

stepwise1(x) =


0.7, if x ≤ 0.1

0.5, if 0.1 < x ≤ 0.3

0.3, if 0.3 < x ≤ 0.6

0.1, if 0.6 < x ≤ 1

(15)

stepwise2(x, y) =



0.65, if x ≤ 0.1 and y > 0.5

0.45, if x ≤ 0.1 and y ≤ 0.5

0.55, if 0.1 < x ≤ 0.3 and y > 0.5

0.35, if 0.1 < x ≤ 0.1 and y ≤ 0.5

0.45, if 0.3 < x ≤ 0.6 and y > 0.5

0.25, if 0.3 < x ≤ 0.6 and y ≤ 0.5

0.35, if 0.6 < x ≤ 1 and y > 0.5

0.15, if 0.6 < x ≤ 1 and y ≤ 0.5

(16)
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A.6 MULTI-LABEL DATASETS STATISTICS

# features # labels train size test size
Yeast 103 14 1500 917
Scene 294 6 1211 1196
TMC 30438 22 21519 7077

Table 9: Dataset Statistics
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