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ABSTRACT

Independently trained vision and language models inhabit disjoint representational
spaces, shaped by their respective modalities, learning objectives, and architec-
tures. The Platonic Representation Hypothesis (PRH) suggests these models may
nonetheless converge toward a shared statistical model of reality. This raises a
fundamental question: can we move beyond post-hoc detection of such alignment
and explicitly optimize for it? We argue this challenge is particularly important for
tasks such as fine-grained contextual distinctions—where multiple descriptions
share global semantics but differ in subtle compositional details. We tackle this
setting with the Joint Autoencoder Modulator (JAM), which aligns frozen uni-
modal models by jointly training modality-specific autoencoders with coordinated
reconstruction and cross-modal alignment objectives. We systematically evaluate
JAM across three design axes: (i) alignment objectives, introducing our multimodal
Spread Loss that outperforms classic contrastive methods; (ii) the layer depth at
which alignment is most effective; and (iii) the role of foundation model scale in
representational convergence. Our findings show that JAM reliably induces align-
ment (outperforming innately multimodal models and post-hoc alignment baselines
with absolute error reduction of up to 10%, and relative error reduction of up to
80%), offering both fundamental insight into the structure of shared semantics and
practical guidance for transforming generalist unimodal foundations into specialist
multimodal models.

1 INTRODUCTION

Neural networks trained on different modalities, datasets, and objectives typically inhabit disjoint
representational spaces. Yet the Platonic Representation Hypothesis (PRH) (1) suggests that these
models—despite having no shared supervision, architecture, or training regime—may nonetheless
converge toward a common statistical model of reality. The naming of PRH is inspired by Plato’s
Allegory of the Cave (2), which describes individuals who observe only shadows of objects cast
on the wall of a cave and mistake these projections for the entirety of reality. This hypothesis has
been discussed under several philosophical and empirical lenses, including convergent realism in the
philosophy of science and the Anna Karenina scenario (3) in representation learning, which suggests
that all well-performing models may ultimately resemble each other.

To date, most of the evidence for PRH has been purely observational and coarse-grained. These
methods quantify global correlations across feature spaces, but do not provide practical mechanisms
for constructing multimodal systems from unimodal ones, nor do they illuminate where alignment
fails. We are particularly interested in limitations that arise in fine-grained contextual settings, where
multiple candidate descriptions may share overall semantics yet differ in specific details. Here,
“context” refers to the high-level semantics shared across modalities, while “fine-grained” refers to
resolving distinctions within that shared context (e.g., attributes, relations, or localized compositional
shifts). For example, distinguishing whether an image contains a dog is a coarse judgment, but
deciding between “a brown dog chasing a red ball” and “a brown dog chasing a blue ball” requires
contextual sensitivity to subtle compositional cues. See Figure 1 for more examples.
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1.1 ESCAPING PLATO’S CAVE (PLATONIC ALIGNMENT)

We study Platonic Alignment, a conceptual framework to explicitly align unimodal models trained
independently on distinct modalities. Our Joint Autoencoder Modulator (JAM, Fig. 3) aligns
frozen language and vision representations using coordinated reconstruction and alignment objectives.
Reconstruction preserves modality-specific information, while a shared bottleneck enforces a coherent
conceptual space capable of aligning both coarse and fine-grained contextual semantics through our
newly proposed Spread Loss.

Our contributions are as follows:

• We demonstrate that the existing statistical tests for probing alignment only captures the repre-
sentational similarity at coarse-level, but not on fine-grained context. Thus, in this fine-grained
contextual settings, the representations are still trapped in Plato’s Cave.

• We introduce the multimodal Spread Loss, which leverages contextual structure to outperform
classic contrastive objectives for fine-grained alignment.

• We demonstrate the versatility of our JAM framework across a wide range of pretrained backbones.
On tasks that require fine-grained visio-linguistic compositional reasoning, we show that JAM
with Spread Loss consistently provides superior performance over jointly trained multimodal
baselines, with an absolute error reduction of up to 10%, and relative error reduction of up to 80%.

• We analyze the impact of pretrained backbone/model’s scale and layer depth on alignment perfor-
mance, providing insights into how these factors interact with alignment supervision.

1.2 RELATED WORK

Our work is related to two research threads: analyzing correlations between unimodal representations,
and aligning different data modalities to construct multimodal models.

Testing for Alignment. Prior work in this direction has been largely diagnostic focusing on evaluating
alignment between frozen features with broad, context-agnostic datasets (e.g., Wikipedia caption
dataset (WIT) (4)): measures such as centered kernel alignment (CKA) (5), variants of CCA (SVCCA
(6), projection-weighted CCA (7)), and nearest-neighbor metrics (8; 1). Other approaches explore
probing tasks or zero-shot transfer to assess latent compatibility across modalities (9; 10). More
recently, model-stitching frameworks have examined whether independently trained sub-networks
can be functionally composed to perform new tasks (3), hinting at deeper interoperability between
pretrained systems but focusing on vision domain (3; 11).

While informative, these methods are designed to be passive—they measure alignment but do not
offer mechanisms to optimize or induce it. As a result, they may conflate superficial correlation with
functional compatibility: two embedding spaces may appear statistically aligned yet remain ineffective
for fine-grained multimodal tasks. Moreover, although recent state-of-the-art multimodal models (e.g.,
Gemini (12), GPT-4V (13), LLaMA 3 (14)) demonstrate strong cross-modal performance, they do
not explicitly address the alignment dynamics between independently trained unimodal components.
In contrast, our work provides a systematic and controlled framework for probing and optimizing
cross-modal alignment—offering a potential design for future multimodal systems that build on or
unify strong unimodal foundations in specialist settings (which we showcase through fine-grained
vision-language compositional tasks).

Optimizing Alignment of Representations. A common framing of alignment in multimodal learning
refers to the emergence of structurally coherent or comparable latent spaces across modalities, such
that semantically related inputs (e.g., images and their captions) map to nearby embeddings. This
framing underlies much of the recent progress in large-scale multimodal models such as CLIP
(15), ALIGN (16), and BLIP/BLIP-2 (17; 18), DeepSeek (19), which are trained end-to-end using
massive paired corpora using explicitly multimodal objectives. Notably, BLIP/BLIP-2 adopt a
modular architecture that connects frozen vision encoders and large language models, offering design
flexibility. However, the pretrained vision encoders utilized in this method is CLIP, thus inheriting
CLIP’s multimodal alignment objective from the outset. In contrast, our approach begins with truly
unimodal foundations—vision and language models trained independently—and investigates whether
alignment can emerge post hoc, without relying on pre-imposed multimodal inductive biases.
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Figure 1: Illustration of fine-grained contextual understanding from the SugarCrepe dataset (20). Each image
is paired with three types of captions: (i) Match (true positive) captions that correctly describe the image, (ii)
Easy non-match captions that are entirely unrelated, and (iii) Hard non-match (hard negative) captions that
share global semantics with the true caption but diverge in subtle, fine-grained details (e.g., swapping relations,
replacing objects, or adding attributes). These controlled perturbations—Replace (R), Swap (S), and Add (A)
from the SugarCrepe (20) & Winoground dataset (21) provide a principled test for whether alignment methods
capture contextual fine-grained distinctions rather than just coarse semantic similarity.

2 STATISTICAL TESTS FOR REPRESENTATION ALIGNMENT

To probe the potential for aligning unimodal models, we applied four alignment metrics—CCA, CKA,
SVCCA, and CKNNA—to three types of image–text pairs, illustrated in Fig. 1: match (true positive,
image–caption pairs), easy non-match (unrelated captions), and hard non-match (semantically
similar captions differing in fine-grained details). The hard negatives are particularly interesting since
they share global semantics with the true captions but diverge in localized compositional attributes,
allowing us to test whether alignment captures fine-grained context rather than only coarse similarity.

We evaluate embeddings from unimodally pretrained vision and language models (Gemma2 (2B) (22),
Llama3.2 (1B) (14), OLMo2 (7B) (23) for language; DINOv2 (ViT-B) (24), ResNet50 (25) for vision),
using the SugarCrepe dataset (20), which is explicitly designed for fine-grained vision–language
compositionality. SugarCrepe provides minimal caption perturbations across three transformation
families—Replace, Swap, and Add—yielding controlled hard negatives (see Fig. 1). For experiments,
we extract CLS-token image embeddings and penultimate-layer text embeddings, then compute
alignment scores using the four metrics (See Appendix for metrics formulations).

With the extracted feature representations, let D be the whole data, and B be the batch. We construct
D in the nested pair format: D = {(vi, (lPi

, lNi
)}ni=1 (see Table 6 for variable descriptions). C(i),

the set of similar context text embedding for anchor i, is defined as lPi
and its hard negative lNi

(i.e.,
C(i) = {lPi , lNi}). Accordingly, C̃(i) = L \ C(i).

Figure 2: Statistical Metrics for Representation Alignment: Across all metrics and model cases, match pairs
consistently show higher alignment scores than easy non-match pairs, supporting the hypothesis that unimodal
models encode shared global structure. However, hard non-match pairs exhibit similarly high scores. This
indicates that while statistical metrics for representations reveal coarse representational compatibility – consistent
with PRH (1) – but are insufficient for diagnosing semantic alignment at a more granular level. (a) Linear and
Kernel (Gaussian (i.e., RBF) kernel) PCA to reduce the embeddings dimension to 50; Set CCA dimension as 50.
Variation of score values are based on the utilized kernel. (b) Variation of score values are based on the utilized
kernel (Linear & RBF). (c) SVD to reduce embeddings dimension to 10; Set CCA dimension as 10. (d) Set top k
nearest neighbors = 10 (following the default setting of (1)).
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2.1 STATISTICAL TESTS DETECT ALIGNMENT, BUT NOT FOR FINE-GRAINED CONTEXT

Intuitively, if the Platonic Representation Hypothesis from (1) strongly holds, then the observational
alignment metrics should be highest for match pairs, second highest for hard non-match pairs, and
lowest for easy non-match pairs. We see in Figure 2 that easy non-match pairs indeed do score
much lower than match pairs across all metrics and models, suggesting that these metrics can detect
coarse alignment which is consistent with (1). However, we also see that hard non-match pairs score
equally highly as match pairs, suggesting that either the models do not share a common representation
that can capture fine-grained contextual semantics, or these purely observation alignment metrics are
not sufficiently powerful. To move beyond this limitation, we turn to a lightweight post-hoc training
approach that explicitly optimizes for semantic coherence, discussed in the next section.

3 OUR METHOD: JOINT AUTOENCODER MODULATOR (JAM)

Figure 3: Joint Autoencoder Modulator (JAM) framework.

Our approach learns a joint autoencoder
across two disjoint pre-trained models,
as shown in Figure 3. We first uti-
lize a modality-specific autoencoder for
each pre-trained model which distills
dinput → dlatent, which can be viewed
as a form of statistical regularisation
reminiscent of PCA (26; 27): the net-
work is encouraged to find a compact
set that preserve essential variance while
discarding noise through reconstruction
loss (i.e., MSE Loss). The joint training
objective then contrastively pulls the latent vectors from matched image–text pairs together and
pushes hard-negative pairs apart.

Table 1: Glossary of variables and symbols
Symbol Description
ΦV ,ΨV Vision (image) autoencoder (encoder, decoder)
ΦL,ΨL Language (text) autoencoder (encoder, decoder)

V Set of image embeddings (|V | = n, vi ∈ V, i = {1, . . . , n})
L Set of text embedding (i.e., LP ∪ LN ; |L| = 2n)
LP Set of positive text embeddings (|LP | = n, lPi

∈ LP )
LN Set of hard negative text embeddings (|LN | = n, lNi

∈ LN )
dinput, dlatent Input, Latent (i.e., bottleneck) dimension of autoencoder

li Element of L \ {lPi
} with anchor index i

CL(i) Set of similar context text embeddings
C̃L(i) Set of dissimilar context text embeddings (i.e., L \ CL(i))

Architecture. The encoder fol-
lows a “funnel” layout: a se-
quence of fully connected layers
that progressively reduce the di-
mensionality of the input embed-
ding, each stage wrapped in Layer-
Norm for stability (28), a SwiGLU
non-linearity for gated expressive-
ness (29), and dropout for regular-
isation. After every dense layer,
a lightweight MLP residual block
(30) re-injects the intermediate representation back into itself, ensuring gradient flow. In a bottleneck
stage, a final linear projection maps the hidden width to the fixed latent size. The decoder mirrors the
encoder, walking back through the hidden sizes in reverse. We chose this design to be an effective
framework for building compact yet powerful module that fits both high-dimensional text and vision
representations (i.e., embeddings). In our experiments, we used 3 hidden layers with dimension size
of 512, and bottleneck dimension size as 256.

3.1 LOSS FUNCTIONS

In addition to the VAE reconstruction objective, our alignment training objective includes three loss
functions: the standard Contrastive and Negative Contrastive losses, as well as our novel Spread Loss.

Contrastive Loss (Con) Same as the contrastive loss for training CLIP model (15), we formulate
our contrastive loss (Lcon), in a symmetric fashion, designed to enforce bidirectional consistency
between images and texts: Vision-to-Language (VL) as matching each image with its corresponding
text, and Language-to-Vision (LV) as matching each text with its corresponding image. We then
leverage cross-entropy to maximize the similarity between the correct pairs while minimizing the
similarity between incorrect pairs. The cross-entropy loss is given by L = −

∑N
i=1 yi log pi, where yi

is the ground truth label (yi = 1 for the correct pair and yi = 0 for incorrect pairs), pi is the predicted
probability of the correct pair. Thus, the final contrastive loss is formulated as: Lcon = 1

2 [LVL + LLV].
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where image-to-text loss (VL) and text-to-image (LV) loss are the following, respectively:

LVL = − 1

N

N∑
i=1

log
σ(vi, lPi)∑N

j=1,j ̸=i σ(vi, lPj )
, LLV = − 1

N

N∑
i=1

log
σ(lPi , vi)∑N

j=1,j ̸=i σ(lPi , vj)
. (1)

Here, we denote σ(x, x′) = exp(sim(x, x′)/τ), where x, x′ are the modality-specific embeddings (in
this case, text and image embeddings, respectively), and τ is the temperature parameter that controls
the sharpness of the similarity distribution. For all the experiments, we set τ = 0.07, as done in (15).

Negative Contrastive Loss (NegCon) The standard CLIP objective treats all non-matching text
descriptions as implicitly negative, but without distinguishing between truly unrelated captions and
hard-to-distinguish negative examples (hard negatives)—those that share high semantic similarity
with the positive caption but are incorrect due to fine-grained distinctions (e.g., a location or object
mismatch). This lack of granularity can lead the model to underutilize structurally informative
negative samples. We address this challenge by introducing NegCon loss (LNegCon), which allows
hard negative texts to also be penalized in the image-to-text direction, while keeping the text-to-image
direction unchanged for stability. This loss scheme to incorporate hard negative texts is what has
been used in the development of NegCLIP (31).

For the vision-to-language direction, we extend the candidate pool of possible text matches by
concatenating both positive and hard negative captions, effectively doubling the number of candidates:
The image-to-text loss is then defined as:

LVL = − 1

2N

N∑
i=1

log
σ(vi, lPi)∑2N

j=1,j ̸=i σ(vi, lj)
. (2)

This formulation explicitly anchors the image to its positive caption while contrasting it against a
broader and more semantically informative set that includes hard negatives.

For the language-to-vision direction, we retain a standard CLIP-style formulation, utilizing LLV
utilized in Lcon. Since hard negative captions have no associated image, we only use positive
captions and match them against the corresponding images.

The final NegCon loss is: LNegCon = 1
2 [LVL + LLV]. This symmetric structure ensures that both

modalities contribute to alignment, while the asymmetry in negative usage avoids destabilizing
supervision on text inputs with unknown image counterparts. Hence NegCon provides a minimally
modified but effective baseline for studying the role of hard negative supervision.

Figure 4: Illustration of the
Spread Loss: Blue and Pink cir-
cle correspond to similar context
group; Green circles are represen-
tations outside of similar context.
Figure inspired by (32).

Spread Loss Recall that our objective is to develop a loss function
that more faithfully captures the structure of semantic similarity and
fine-grained contrast in multimodal representation learning. Specif-
ically, we aim to align image and text embeddings in a way that
accounts for both shared contextual meaning and localized distinc-
tions (fine-grain). Standard contrastive losses treat all non-matching
text as equally negative, which neglects semantic proximity of hard
negatives—text descriptions that differ only in the fine detail.

To address this, we introduce Lspread, a contrastive objective that
incorporates a notion of context similarity and fine-grained differ-
entiation. As shown in Figure 4, the core idea is to pull together all
semantically similar captions, including the ground-truth caption and
selected hard negatives, and then selectively push apart fine-grained
distinctions within that similar group. This two-stage formulation
allows us to preserve shared contextual alignment while enforcing
discriminative power at the instance level. The idea of spread loss
has been proposed in the domain of visual representation learning
(32; 33), which is a variant of Supervised Contrastive (SupCon) loss
(34), but tailored to tackling class collapse. We take inspiration from that work and apply this idea to
the multi-modal alignment problem.1 Our Lspread is formulated as:

Lspread =
1

2
[(1− α)LConCon + αLcontextNCE + LLV] , (3)

1We provide a parallel comparison between Lspread of multimodal representation space (i.e., ours) and
Lspread of visual representation domain (32; 33) in the Appendix.
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where LLV is from Equation 1, preserving bidirectional learning throughout joint-AE training.
LConCon and LcontextNCE are described below.

LConCon : ConCon (i.e., Context Contrastive) lumps the positive & hard negative (which share
contextual attributes) case as the similar context set and tries to push this set away from all other text
embeddings. The objective of this loss is to introduce the global learning scheme where we focus on
learning what is easily differentiable. Formally, we construct the loss as follows:

LConCon(i, B) = − 1

|CL(i)|
∑

cl∈CL(i)

log
σ(vi, cl)

σ(vi, cl) +
∑

c̃l∈C̃L(i) σ(vi, c̃l)
.

LcontextNCE : We introduce this second term for local learning scheme. We perform an InfoNCE-
style objective, explicitly highlighting the true positive as the only “correct” text. The negative text
embedding, though labeled as ’similar context’, is still in the denominator and is therefore treated as
incorrect text.

LcontextNCE(i, B) = − log
σ(vi, lPi)∑

cl∈CL(i) σ(vi, cl)
.

Thus, α in Equation 3 controls the trade-off between context-level alignment and intra-context
contrast. While LConCon allows similar context to be close, LcontextNCE prevents representation
collapse in similar context embeddings. Thus, Lspread enables learning representations that are not
only globally aligned across modalities but also sensitive to subtle mismatches in local content. In
our experiments, we use α = 0.5 to balance the two components.

4 EXPERIMENTS

We adopt the same data set-up as in the statistical tests using Sugarcrepe (20) and Winoground (21)
(see Fig. 1). Winoground is designed to test visuo-linguistic compositionality focused on the Swap (S)
task style of Sugarcrepe as described in Fig. 1. We split the data into 70-15-15 train/validation/test.

To test on our framework’s versatility across different pretrained backbones, we extracted text
embeddings and image embeddings from wider set of models: for language models, Gemma2
(2B,9B) (22), Llama3.2 (1B,3B) (14), OLMo2 (7B,13B) (23), and for vision models, DINOv2 (24),
MAE (35), and Swav (36) for self-supervised learning (SSL) objective and ResNet50 (25), Swin
(37), and ViT (38) for supervised (Sup) objective. (In Table 2, we show results for DINOv2 and
RestNet50 for vision backbones in Sugarcrepe & Winoground data setting. For full results (all
possible pretrained backbones configurations), refer to Appendix Table 14.)

For each task, we train our Joint Autoencoder Modulator (JAM) with Spread loss for 100 epochs
with a batch size of 32, using data seeds 5, 42, and 55. Both autoencoders are optimized jointly using
AdamW (39) with gradient clipping (1.0) and a cosine annealing scheduler. The reconstruction loss
is weighted by a linearly decaying factor λ(t), decreasing from 1.0 to 0.1 over training epochs to
gradually emphasize the alignment objective. Every five epochs, we compute image-to-text Recall@1
on the validation set, applying early stopping if no improvement is observed for five consecutive
validations. We evaluate on two retrieval settings: (1) binary choice between the positive and its
hard negative (standard in fine-grained evaluation (20; 31)), and (2) 5-way choice including three
additional distractors. All reported results are averaged across three seed runs.

To contextualize our approach—designed to escape the “Platonic cave” of unimodal models through
post-hoc alignment—we compare against CLIP (15), a model natively trained for multimodal
representation learning. For fairness, we also fine-tuned CLIP on the same train/val/test splits using
the fine-tuning method proposed in (31), although we find that fine-tuning often causes CLIP to
overfit. To further motivate our JAM architecture with spread loss, we experimented on simple
projection-based methods (linear/non-linear) with our Spread loss as well as JAM with spread loss
without reconstruction component (spread w/o reconst.) as ablation experiment (Table 3).

4.1 DOES JAM ENABLE ESCAPING PLATO’S CAVE?

Table 2 shows are main benchmark results for the Sugarcrepe & Winoground Tasks with binary
Recall@1 setting. We see that our JAM method with Spread loss consistently outperforms both the
Con and NegCon variants as well as pretrained/finetuned CLIP across tasks, with up to 10% absolute
error reduction and 80% relative error reduction versus the best CLIP baseline. We also see that the
other losses Con and NegCon can often perform worse than the CLIP baselines. Additional results
are found in Table 14 in the Appendix.
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Language Backbone Vision Backbone Alignment Method Sugarcrepe Tasks Winoground TaskReplace (R) Add (A) Swap (S)

Gemma2 (2B) DINOv2 Con 65.14 58.34 57.36 46.30
(ViT-B; 86M) NegCon 86.32 96.85 74.5 45

Spread 88.01 95.74 80.2 58.75

Gemma2 (2B) ResNet50 Con 74.23 63.02 63.75 41.30
NegCon 87.28 94.80 72.27 41.30
Spread 87.60 94.81 82.17 58.13

Llama3.2 (1B) DINOv2 Con 66.97 60.99 66.59 50
(ViT-B; 86M) NegCon 83.43 94.25 68.26 48.80

Spread 87.21 97.83 79.05 57.5

Llama3.2 (1B) ResNet50 Con 67.36 67.94 71.11 42.50
NegCon 85.74 94.10 71.69 46.30
Spread 87.17 96.85 82.17 61.30

OLMo2 (7B) DINOv2 Con 68.48 65.17 66.88 43.20
(ViT-B; 86M) NegCon 85.30 96.67 71.69 47.50

Spread 88.32 97.41 77.62 55

OLMo2 (7B) ResNet50 Con 68.01 64.35 73.38 42.50
NegCon 89.69 90.12 71.38 47.50
Spread 86.90 98.44 80.46 57.50

Pretrained CLIP (ViT-B-32/OpenAI) (40) 81.05 77.58 64.69 59.88

Pretrained CLIP (ViT-B-32/LAION-400m) (40; 41) 80.90 79.64 67.30 57.38

Pretrained CLIP (ViT-B-32/SigLIP) (42) 85.01 86.56 70.97 60.75

Finetuned CLIP (ViT-B-32) 74.62 92.69 67.21 58.33

Table 2: Image-to-Text Retrieval Results of Joint Autoencoder Modulator (JAM) for Vision-Language Composi-
tionality. We report Recall@1 scores (binary) across three compositional tasks in Sugarcrepe data (Replace,
Add, and Swap) and also in Winoground data (which only has Swap task for vision-language reasoning aspect),
using models trained with different alignment methods in JAM framework. JAM with Spread loss consistently
outperforms contrastive baselines across all tasks and backbones. Moreover, it matches or surpasses several
strong pretrained and finetuned CLIP variants, highlighting the effectiveness of structured alignment over
independently pretrained representations for fine-grained vision–language reasoning.

Post-hoc Alignment Method FLOPs(G) Sugarcrepe Data Tasks
Replace (R) Add (A) Swap (S)

Linear Proj. with Spread 0.06 85.95 91.94 63.33
NonLinear Proj. with Spread 0.12 86.99 92.22 68.57
JAM with Spread w/o reconst. 3.70 83.11 92.53 74.50
JAM with Spread 3.70 88.01 95.74 80.2

Pretrained CLIP (ViT-B-32/SigLIP) N/A 85.01 86.56 70.97

Finetuned CLIP (ViT-B-32) 10.48 74.62 92.69 67.21

Table 3: Image-to-Text Retrieval Results in Vision-Language Compositionality with Different Post-hoc Align-
ment architectures (Linear Projection, Nonlinear Projection, Joint Autoencoder Modulator (JAM)) with Spread
Loss and ablation result for removing the reconstruction component in Spread Loss. Same evaluation scheme as
shown in Table 2. We show results using Gemma2 (2B) and DINOv2 (ViT-B) as language and vision backbone.
We also provide FLOPs(G) across alignment methods (including finetuning CLIP) to show that JAM with Spread
framework shows the best performance but requires less FLOPs compared to finetuning.

We note that our JAM method achieves competitive performance with a lightweight, post-hoc
alignment approach, which avoids the need for massive paired datasets and the complexity associated
with pretraining large-scale multiomodal models like CLIP. This makes our method more robust in
low-resource or specialized data domains, where fine-tuning a model like CLIP can lead to overfitting
(i.e., losing CLIP’s broad priors) and a "representation collapse" (43), as we also observe in Table 2
that fine-tuning CLIP often led to lower performance.

We conducted additional baseline experiments using linear and nonlinear projections over frozen
embeddings. Note that for projection-based baselines, the reconstruction component of our Spread
loss is inherently absent. As Table 3 shows, our method (JAM+Spread) consistently outperformed
projection baselines: while projections achieved lower FLOPs, they suffered from significantly lower
accuracy and unstable learning due to the lack of reconstruction. Furthermore, in ablation experiments,
removing the reconstruction term led to rapid overfitting, with validation loss rising sharply and
models requiring early stopping to avoid collapse. This highlights the critical role of reconstruction
as a regularizer, preserving generalizable structure across modalities beyond alignment.

7
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Figure 5: α supervision with respect to the extracted embeddings layers to achieve the best retrieval accuracy for
each visuo-linguistic tasks in Sugarcrepe (Replace (R), Add (A), Swap (S) tasks). |NL|, |NV | refer to the total
layers of each pretrained language, and vision model. nL, nV refer to the layer-depth used for Early, Mid, Late
experiments, respectively.

Figure 6: Image-to-Text Retrieval Recall@1 achieved through the α in Figure 5. Same layer-depth configuration
as Figure 5. Despite the decreasing need of context-aware supervision through α in Lspread, performance
increases as layers progress.

4.2 WHAT KIND OF SUPERVISION IS USEFUL FOR DIFFERENT LAYER DEPTH?: LAYER-WISE
PROBING VIA CURRICULUM LEARNING

The previous setting in Table 2 uses a fixed α = 0.5, allowing our jointly trained text and image
autoencoders to equally emphasize both components of the Lspread — ConCon for broad semantic
alignment and ContextNCE for fine-grained contrast. We now investigate how performance changes
as we vary this trade-off. In particular, the optimal degree of contextual separation may not be
uniform across all settings — in particular, it may vary depending on the stage of representation (i.e.,
intermediate layers of pretrained backbones) used from each modality.

To investigate this, we move beyond a fixed-α formulation and adopt curriculum learning (44) as a
probing framework (Fig. 5, 6). Curriculum learning (44) is a training paradigm inspired by human
learning, where models are first exposed to easier concepts or objectives and gradually introduced
to harder or more nuanced distinctions. The motivation is to guide optimization along a smoother
path: by focusing early training on easier, more generalizable patterns, the model establishes a
robust representational foundation before facing fine-grained or ambiguous cases. We use curriculum
learning as a diagnostic framework to probe the nature of supervision required for aligning multimodal
embeddings.

On the inverse relationship between α and separability. By applying our curriculum across
embeddings from early, mid, and late layers of vision and language models, we find that earlier layers
consistently require higher α for optimal alignment—the point of peak retrieval accuracy (see Figures
5 & 6). This result mirrors those in interpretability studies (e.g., TCAV (45), Network Dissection (46))
showing that lower layers encode primitive or entangled features, demanding stronger supervision
to isolate meaningful concepts. Here, larger α provides the finer discriminative signal needed to
disentangle and align these early representations. Later layers, already more abstract and task-aligned,
align effectively with weaker supervision. Retrieval performance also improves steadily from early to
late layers, indicating that deeper layers both require less contrastive pressure and yield more directly
alignable representations. Thus, the curriculum offers a controlled lens into the supervision needed

8
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across representational depth, revealing how independently trained vision and language models
organize information.

4.3 DOES JAM PERFORMANCE SCALE WITH BACKBONE MODELS’ SCALE?

We finally test whether larger pretrained language backbones improve alignment in JAM, using
Gemma2 (9B), LLaMA 3.2 (3B), and OLMo2 (13B) with a fixed vision encoder (DINOv2 ViT-L).
The aim is to assess how representational capacity affects fine-grained multimodal alignment under
different contrastive objectives.

Language Backbone Vision Backbone Alignment Method Sugarcrepe Data Tasks
Replace (R) Add (A) Swap (S)

Gemma2 (9B) DINOv2 (ViT-L; 300M) Con 68.77 59.31 60.92
NegCon 87.52 98.89 84.44
Spread 89.66 98.89 84.44

Llama3.2 (3B) DINOv2 (ViT-L) Con 65.24 62.38 73.12
NegCon 84.54 92.61 75.93
Spread 89.43 95.74 82.44

OLMo2 (13B) DINOv2 (ViT-L) Con 65.86 59.21 62.28
NegCon 89.36 93.7 78.89
Spread 90.53 97.96 84.71

Table 4: Model Scaling Experiment. We report image-to-text Recall@1 scores across three visuo-linguistic
reasoning tasks with Sugarcrepe using language & vision backbones of increased scale—Gemma2 (9B), LLaMA
3.2 (3B), and OLMo2 (13B) for language, and DINOv2 (ViT-L) for vision—within our JAM framework.
Despite varying parameter counts, we observe no consistent trend of performance improvement with model size.
Spread loss performs robustly across all scales, suggesting that for fine-grained, low-data tasks, representational
alignment depends more on objective design than on model scale.

As shown in Table 4, scaling language models does not consistently improve performance. Spread
loss remains robust, but gains from larger models are minimal. This plateau likely reflects the
small training regime (200–1000 image–text pairs), which limits the gradient signal needed for
large models to leverage their capacity. Moreover, the fine-grained nature of spatial reasoning tasks
emphasizes precise local alignment (e.g., prepositions, swapped attributes), reducing the advantage
of broad generalist knowledge from web-scale pretraining. These results highlight the effectiveness
of task-specific Spread loss in capturing nuanced multimodal contrasts.

5 CONCLUSION / FUTURE DIRECTIONS

Through this framework, we provide empirical evidence and insight into the nature of representa-
tional convergence. We show that, despite originating from disjoint modalities and being trained
independently, unimodal representations can be aligned through post hoc joint autoencoding —
revealing a Platonic representation that supports cross-modal coherence. We propose a practical
model training recipe: the Joint Autoencoder Modulator (JAM), a Pareto-efficient framework for
building specialist multimodal models on top of frozen unimodal foundations. Our findings show
that post-hoc alignment via lightweight adaptation and structured supervision (i.e., Lspread) can rival
or even outperform generalist architectures in specialist settings. Looking forward, we see JAM as a
flexible testing ground for modality alignment under varying supervision regimes.

There are many directions for future work, including extending to domains that demand either highly
specific reasoning (e.g., legal, medical, scientific), scaling to larger datasets and models, as well
as exploring more sophisticated alignment approaches beyond our Spread loss. At larger scales, it
becomes interesting to also compare accuracy-efficiency tradeoffs versus other approaches such as
adapter-based and joint-training approaches. Additionally, studying these questions for more than
two modalities simultaneously can be interesting, such as for time series (47; 48; 49; 50).

REPRODUCIBILITY STATEMENT

For reproducibility of this work, we provide:

• Details of our data set-up through Fig. 1 and used datasets in Section 2, 4.

• Details of our utilized foundation models (i.e., pretrained backbones) and the methods for extracting
embeddings in Section 2, 4.
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• Details on our proposed model framework (JAM), loss functions for different alignment objectives,
and specific training configurations in Section 3, C.1, D.

• Details on statistical metrics for alignment tests experiments (Section 2) in Section B.
• Source code for running statistical metrics alignment test experiments and JAM architecture

experiments as supplemental materials.
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A IMPACT STATEMENT

Platonic Alignment: Escaping the Plato’s Cave.

Platonic Representation Hypothesis (1) suggests that vision and language models, though trained on
disjoint objectives and data, encode latent geometries that are mutually compatible. Our work turns
this philosophical and observational claim into practice: we escape Plato’s Cave by surfacing shared
structure from representations originally confined to separate unimodal worlds, while keeping every
pretrained unimodal backbones completely frozen.

Joint Autoencoder Modulator (JAM).

We propose JAM, a post-hoc adaptor for platonic alignment that:

• Preserves specialization – Modality-specific autoencoders reconstruct each latent space, guarding
task-relevant features.

• Enforces cross-modal coherence – Our novel spread loss couples the JAM framework, amplifying
the latent commonality predicted by the Platonic hypothesis.

• Light-weight framework – no end-to-end multimodal fine-tuning (nor pre-training); refer to D.2
that shows the lightweight structure of JAM.

Contributions.
• Platonic Alignment through Specialist Task Settings: We test the platonic alignment through both

statistical and model-training framework in specialist task settings which require more fine-grained
contextual understanding of the data.

• Revisiting multimodal training pipeline strategy: Our results show that aligning the frozen pretrained
backbones can rival with inherently multimodal models, charting a potential alternative strategy for
creating multimodal models for specialized task frameworks.

B STATISTICAL METRICS TO MEASURE PLATONIC ALIGNMENT

B.1 THEMATIC ANALYSIS OF STATISTICAL REPRESENTATION ALIGNMENT TESTS

We focus on the following four statistical metrics for testing Platonic alignment: Canonical Correlation
Analysis (CCA (51)) with linear and kernel (rbf kernel) PCA, Singular Value CCA (SVCCA (6)),
Centered Kernel Alignment (CKA (5)), and Centered Kernel Nearest Neighbors Alignment (CKNNA
(8; 1)).

The following are the thematic analyses that demonstrate our metrics selection strategy:

• Unsupervised and second-order: All four metrics are unsupervised and based on second-order
statistics (e.g., inner products or covariances), making them scale-invariant and naturally compara-
ble across modalities.

• Symmetricity: The symmetry property indicates that the metric treats the data points interchange-
ably, meaning d(x, y) = d(y, x)).

• Data-Driven (D) vs. Canonical (C):

13
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Table 5: Comparative analysis of statistical alignment metrics. All metrics are unsupervised and based on
second-order statistics.

Metric Property Description

Symmetric Data-Driven(D) vs. Canonical(C) Global(G) vs. Local(L) Batchable

CCA ✓ D G ✓

Learns projections to maximize
cross-view correlation. Sensitive
to high-dimensional data structure,
hence apply linear or kernel PCA be-
fore applying CCA.

SVCCA ✓ D G ✓
Applies SVD to smooth and com-
press representations before apply-
ing CCA.

CKA ✓ C G ✓
Compares original representations
using kernel alignment, invariant to
rotation and scale.

CKNNA ✓ C L ✓
A local variant of CKA restricted to
shared k-nearest neighbors; reveals
localized alignment structure.

– Data-Driven metrics (CCA, SVCCA) learn linear projections from the data that actively
mold one representation space to align with another. They measure the best-case alignment
achievable through adaptation.

– Canonical metrics (CKA, CKNNA) keep the input representations fixed and evaluate the
existing alignment structure as is, without transformation. They quantify inherent similarity
without retraining or reprojecting.

• Global (G) vs. Local (L):

– Global metrics (CCA, SVCCA, CKA) aggregate information across all sample pairs, capturing
holistic alignment patterns between entire distributions.

– Local metrics (CKNNA) focus on localized structure by comparing only mutual k-nearest
neighbors, revealing fine-grained neighborhood-level similarity that may be obscured globally.

• Batchable: A computational property that makes it feasible to compute in a reasonable time frame.

B.2 METRICS FORMULATION

Recall our glossary:
Table 6: Glossary of variables and symbols

Symbol Description
ΦV ,ΨV Vision (image) autoencoder (encoder, decoder)
ΦL,ΨL Language (text) autoencoder (encoder, decoder)

V Set of image embeddings (|V | = n, vi ∈ V, i = {1, . . . , n})
L Set of text embedding (i.e., LP ∪ LN ; |L| = 2n)
LP Set of positive text embeddings (|LP | = n, lPi

∈ LP )
LN Set of hard negative text embeddings (|LN | = n, lNi

∈ LN )
dinput, dlatent Input, Latent (i.e., bottleneck) dimension of autoencoder

li Element of L \ {lPi
} with anchor index i

CL(i) Set of similar context text embeddings
C̃L(i) Set of dissimilar context text embeddings (i.e., L \ CL(i))

Kernel preliminaries Let {(xi,yi)}ni=1 be paired samples: in our case, let xi be the images
and yi be the corresponding texts. A representation function fV : X → V ∈ Rd maps inputs to
feature vectors vi = fV (xi) in an RKHS (Reproducing Kernel Hilbert Space) H (52) equipped with
the inner-product kernel Kij = κ(vi, vj) = ⟨vi, vj⟩. Analogously fL maps yi to li with kernel
Lij = ⟨li, lj⟩. Center both kernels to remove mean effects via the centring matrix H = I − 1

n11
⊤:

K̄ = HKH, L̄ = HLH.
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B.2.1 CENTERED-KERNEL ALIGNMENT (CKA)

CKA (5) normalises the Hilbert–Schmidt Independence Criterion (HSIC) (53) between the centred
kernels:

HSIC(K,L) =
1

(n− 1)2
tr
(
K̄ L̄

)
, (4)

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) HSIC(L,L)
. (5)

Expanding the trace in Equation 4 shows that every pair (i, j) contributes a product of centered
similarities:

tr(K̄L̄) =

n∑
i=1

n∑
j=1

(
⟨vi, vj⟩ − Eℓ⟨vi, vℓ⟩

)(
⟨li, lj⟩ − Eℓ⟨li, lℓ⟩

)
. (6)

Because the denominator applies the same operation to each modality, CKA is scale-invariant and
bounded in [0, 1]; it therefore has advantage in measuring global geometric correspondence. However,
Equation 5 aggregates all pairwise relations, so even a small region of mis-aligned samples suppresses
the score which CKA can be too strict for measuring cross-modal cases.

B.2.2 CENTERED-KERNEL k-NN ALIGNMENT (CKNNA)

To focus on local structure, the authors in (8; 1) suggest a binary mask α(i, j) that selects only pairs
that are mutual k-nearest neighbours in both modalities:

α(i, j) = 1
[
vj ∈kNN(vi) ∧ lj ∈kNN(li) ∧ i ̸= j

]
. (7)

Using this mask, one can restrict the definition of alignment to bias more towards the local structure
through replacing the full HSIC trace by a masked cross-covariance.:

Alignlocal(K,L) =

n∑
i=1

n∑
j=1

α(i, j)
(
⟨vi, vj⟩ − Eℓ⟨vi, vℓ⟩

)(
⟨li, lj⟩ − Eℓ⟨li, lℓ⟩

)
(8)

=

n∑
i=1

n∑
j=1

α(i, j) K̄ij L̄ij . (9)

The final formulation of CKNNA becomes:

CKNNA(K,L) =
Alignlocal(K,L)√

Alignlocal(K,K) Alignlocal(L,L)
. (10)

Note that CKNNA can be fully recovered to CKA for k→n, since α(i, j)=1 for all i ̸=j.

Thus, CKA asks: “Are the two representations globally linearly related?”; whereas CKNNA captures:
“Do the two models agree locally (i.e., on each point’s neighbours)?”.

B.2.3 CCA (CANONICAL CORRELATION ANALYSIS)

Let X ∈Rdx×n and Y ∈Rdy×n be column-wise zero-centered feature matrices produced by two
representations (all means are removed so that covariance estimates are unbiased). Define sample
covariance blocks:

Σxx = 1
nXX⊤, Σyy = 1

nY Y⊤, Σxy = 1
nXY⊤. (11)

CCA searches for weight vectors w∈Rdx , v∈Rdy that maximise the Pearson correlation between
projected variables:

ρ = max
w,v

w⊤Σxyv√
w⊤Σxxw

√
v⊤Σyyv

(12)

s.t. w⊤Σxxw = 1, v⊤Σyyv = 1. (13)
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Using Lagrange multipliers we obtain the generalized eigenvalue problem:(
Σ−1

xxΣxyΣ
−1
yy Σyx

)
w = ρ2 w, v = ρ−1Σ−1

yy Σyxw, (14)

whose top k eigenvalues ρ1≥ρ2≥ . . .≥ρk are the canonical correlations. We report the maximum
canonical correlation value (obtained from the first canonical component) as an alignment score.

PCA-assisted CCA Since CCA method suffers from high-dimensionality data structures (54), we
first project each feature vectors onto its leading r principal components:

X̃ = P⊤
x X, Ỹ = P⊤

y Y, (15)

with Px ∈ Rdx×r (orthonormal) obtained from linear PCA or kernel PCA using an RBF kernel
κ(z, z′) = exp[−γ∥z − z′∥2]. CCA is then run on X̃, Ỹ , producing more stable correlations in
high-dimensional regimes. In our experiments, we used r = 50 (i.e., feature dimension = 50), and
k = 50 (i.e., number of canonical components = 50).

B.2.4 SVCCA (SINGULAR VECTOR CANONICAL CORRELATION ANALYSIS)

SVCCA (6) replaces the heuristic PCA cut-off with a data-dependent approach via SVD:

1. Compute SVDs: X = UxΣxV
⊤
x , Y = UyΣyV

⊤
y .

2. Retain the top rx, ry singular vectors explaining at least a fixed proportion η (e.g., 99%) of
variance:

X̂ = Σx,[1:rx]V
⊤
x,[1:rx]

, Ŷ = Σy,[1:ry ]V
⊤
y,[1:ry ]

.

3. Run linear CCA on (X̂, Ŷ ) to obtain canonical correlations {ρi}ki=1 with k = min(rx, ry).

The SVCCA score is reported using mean of these k correlations, SVCCA = 1
k

∑k
i=1 ρi, where we

report SVCCA score with k = 10.

B.3 SUPPLEMENTAL RESULTS FOR STATISTICAL ALIGNMENT TESTS

We describe the specific data pair set-up and provide results of statistical alignment tests for each
specific task (i.e., Replace, Add, and Swap cases) in Sugarcrepe data (20). In our experiments, we
reduced features dimension to 50 for CCA using linear and kernel PCA; for SVCCA, CKA, and
CKNNA, the features dimension was set to 10, and nearest neighbors k = 10 (same setting utilized
in (1)).

B.3.1 REPLACE TASK

• Match: V and L that are matching (i.e., correct correspondence)
• Easy Non-Match: V and L that have clear non-matching aspects

– Case 1: V = White-noise image embeddings, L = Same L from Match case
– Case 2: V = Same V from Match case, L = Text embeddings extracted from "The Great Gatsby" novel

• Hard Non-Match: V and L that are non-matching due to specific attribute, object, and relation
being replaced by incorrect text; hence the overarching context of this text is similar to correct
matching text, but only differ by the specific aspect. Thus, more fine-grained understanding is
required to discern that it is actually a non-matching text for the image.

Table 7: Replace Task: Statistical Alignment Test Results

Match Easy Non-Match Hard Non-Match
Model Pairs CCA (linear/kernel pca) CKA SVCCA CKNNA CCA CKA SVCCA CKNNA CCA CKA SVCCA CKNNA

Gemma2 & DINOv2 0.94 / 0.94 0.286 0.432 0.209 0.48 / 0.47 0.020 0.100 0.006 0.94 / 0.94 0.293 0.403 0.194
Llama3.2 & DINOv2 0.94 / 0.95 0.447 0.425 0.275 0.47 / 0.47 0.027 0.097 0.010 0.94 / 0.94 0.431 0.444 0.240
OLMo2 & DINOv2 0.95 / 0.95 0.439 0.505 0.287 0.47 / 0.47 0.028 0.102 0.008 0.95 / 0.95 0.422 0.482 0.252
Gemma2 & ResNet50 0.91 / 0.91 0.25 0.430 0.190 0.51 / 0.51 0.028 0.100 0.006 0.91 / 0.91 0.250 0.420 0.190
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B.3.2 ADD TASK

• Match: V and L that are matching (i.e., correct correspondence)
• Easy Non-Match: V and L that have clear non-matching aspects

– Case 1: V = White-noise image embeddings, L = Same L from Match case
– Case 2: V = Same V from Match case, L = Text embeddings extracted from "The Great Gatsby" novel

• Hard Non-Match: V and L that are non-matching due to specific attribute, object being added,
which leads to incorrect correspondence of reality

Table 8: Add Task: Statistical Alignment Test Results

Match Easy Non-Match Hard Non-Match
Model Pairs CCA CKA SVCCA CKNNA CCA CKA SVCCA CKNNA CCA CKA SVCCA CKNNA

Gemma2 & DINOv2 0.95 / 0.94 0.311 0.425 0.201 0.48 / 0.47 0.022 0.095 0.007 0.94 / 0.94 0.323 0.448 0.206
Llama3.2 & DINOv2 0.95 / 0.95 0.451 0.424 0.257 0.48 / 0.48 0.027 0.097 0.011 0.95 / 0.94 0.444 0.447 0.259
OLMo2 & DINOv2 0.94 / 0.94 0.448 0.491 0.269 0.47 / 0.47 0.028 0.097 0.009 0.94 / 0.94 0.448 0.481 0.265
Gemma2 & ResNet50 0.89 / 0.89 0.309 0.420 0.199 0.51 / 0.51 0.028 0.100 0.006 0.89 / 0.89 0.320 0.400 0.200

B.3.3 SWAP TASK

• Match: V and L that are matching (i.e., correct correspondence)
• Easy Non-Match: V and L that have clear non-matching aspects

– Case 1: V = White-noise image embeddings, L = Same L from Match case
– Case 2: V = Same V from Match case, L = Text embeddings extracted from "The Great Gatsby" novel

• Hard Non-Match: V and L that are non-matching due to specific attribute, object being swapped

Table 9: Swap Task: Statistical Alignment Test Results

Match Easy Non-Match Hard Non-Match
Model Pairs CCA CKA SVCCA CKNNA CCA CKA SVCCA CKNNA CCA CKA SVCCA CKNNA

Gemma2 & DINOv2 0.95 / 0.95 0.317 0.440 0.228 0.47 / 0.47 0.037 0.124 0.014 0.94 / 0.94 0.330 0.433 0.220
Llama3.2 & DINOv2 0.94 / 0.94 0.463 0.473 0.311 0.47 / 0.47 0.049 0.129 0.012 0.94 / 0.94 0.453 0.430 0.287
OLMo2 & DINOv2 0.95 / 0.94 0.466 0.462 0.312 0.480 / 0.48 0.05 0.130 0.012 0.94 / 0.94 0.455 0.511 0.276
Gemma2 & ResNet50 0.89 / 0.89 0.315 0.430 0.221 0.50 / 0.50 0.029 0.123 0.014 0.89 / 0.89 0.315 0.428 0.220

C SPREAD LOSS FORMULATION FOR MULTIMODAL FRAMEWORK

C.1 OUR FORMULATION OF SPREAD LOSS FOR MULTIMODAL REPRESENTATION LEARNING

Lspread =
1

2
[Lspread−VL + LLV] (16)

The formulation for VL direction is a weighted sum with α controlling the trade-off between context-
level alignment and intra-context contrast:

Lspread−VL = (1− α)LConCon + αLcontextNCE (17)

For α ∈ [0, 1], per-sample case of Lspread−VL is defined as:

Lspread−VL(ΦV , vi, B) = (1− α)LConCon(ΦV , vi, B) + αLcontextNCE(ΦV , vi, B) (18)

where

LConCon(ΦV , vi, B) = − 1

|CL(i)|
∑

cl∈CL(i)

log

(
σ(vi, cl)

σ(vi, cl) +
∑

c̃l∈C̃L(i)
σ(vi, c̃l)

)
, (19)

LcontextNCE(ΦV , vi, B) = − log

(
σ(vi, lPi)∑

cl∈CL(i) σ(vi, cl)

)
. (20)
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The overall loss Lspread−VL(ΦV , B) is computed by averaging over all (vi, lPi
, lNi

) ∈ B:

Lspread−VL(ΦV , B) =
1

|B|

|B|∑
i=1

Lspread−VL(ΦV , vi, B).

Recall that since hard-negative texts do not have correct corresponding images, the formulation for
LV direction omits hard-negative texts. So, it follows the standard LV loss in contrastive learning
scheme of CLIP models:

LLV(ΦL, B) = − 1

|B|

|B|∑
i=1

log
σ(lPi

, vi)∑N
j=1,j ̸=i σ(lPi

, vj)
(21)

C.2 SPREAD LOSS FORMULATION IN VISUAL REPRESENTATION LEARNING DOMAIN

Spread loss in vision representation learning domain (32) is constructed by a weighted sum of a
supervised contrastive loss (Lsup) (34) and a class-conditional InfoNCE loss (LcNCE) (15). The core
motivation is similar in our multimodal scheme: training encoder to produce representations of the
data by pulling together similar points (positive pairs) and pushing apart dissimilar points (negative
pairs).

Formally, let B be a batch of data from dataset D. Define the positive set:

P (i, B) = {x+ ∈ B \ {xi} : h(x+) = h(xi)}

and the negative set:
N(i, B) = {x− ∈ B \ {xi} : h(x−) ̸= h(xi)},

where h(x) denotes the class label of x and a(xi) be an augmentation of xi. Define the similarity
(i.e., cosine similarity) with temperature hyperparameter τ > 0:

σf (x, x
′) = exp

(
f(x)⊤f(x′)

τ

)
.

For α ∈ [0, 1], the per-sample spread loss is defined as:

Lspread(f, xi, B) = (1− α)Lsup(f, xi, B) + αLcNCE(f, xi, B), (22)

where

Lsup(f, xi, B) = − 1

|P (i, B)|
∑

x+∈P (i,B)

log

(
σf (xi, x

+)

σf (xi, x+) +
∑

x−∈N(i,B) σf (xi, x−)

)
, (23)

LcNCE(f, xi, B) = − log

(
σf (xi, a(xi))∑

x+∈P (i,B) σf (xi, x+)

)
. (24)

The overall loss Lspread(f,B) is computed by averaging over all xi ∈ B:

Lspread(f,B) =
1

|B|
∑
xi∈B

Lspread(f, xi, B).

Lsup encourages intra-class clustering by pulling together same-class samples, while LcNCE repels
within-class samples except for augmentations. Their combination spreads same-class points while
preserving instance-level attraction, promoting more structured representation spaces.

C.3 SIDE-BY-SIDE COMPARISON

Intuition. LConCon pulls an image toward all texts that share its visual context (analogous to
class-level clustering, performed by Lsup), while LcontextNCE pushes it away from other texts inside
that context except its primary caption (analogous to instance discrimination, performed by LcNCE).

Table 10 summarizes the symbols used in the Spread loss in vision domain (left column) and their
direct counterparts in our our multimodal formulation (right column). The first row clarifies that the
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Table 10: Notation Comparison of Spread Loss in Vision vs. Multimodal Domain (Ours)

Symbol Vision Spread Multimodal Spread (Ours)
Encoders f(·) ΦV (·), ΦL(·)
Anchor xi (i.e., image) vi = ΦV (xi)

Positives P (i) same class CL(i) = {lPi
, lNi

} (i.e., similar context texts)

Negatives N(i) diff. class C̃L(i) = L \ CL(i)

Similarity σ(x, x′) σ(v, l)

Table 11: "Objective" view of each loss term.

Loss Anchor Positives Negatives Goal
Lsup xi same class other classes intra-class cohesion

LConCon vi CL(i) C̃L(i) cross-modal cohesion

LcNCE xi a(xi) other P (i) instance sharpening

LcontextNCE vi lPi CL(i)\{lPi} context sharpening

visual setting relies on a single encoder f(·), whereas the multimodal variant distinguishes between an
image encoder ΦV and a text encoder ΦL. Subsequent rows pair up the anchor, positive, and negative
sets, making it explicit that class labels in the visual domain translate to visual contexts (collections
of captions). Finally, the similarity function retains the same softmax-temperature structure; only the
argument types differ (image-image vs. image–text).

Table 11 presents the four loss terms from an objective-driven perspective. Each row identifies the
loss and breaks down its optimization goal into four parts: the anchor being updated, the positive
samples it should align with, the negatives it should separate from, and the broader motivation behind
this push-pull dynamic. This format highlights a consistent analogy: Lsup clusters images by class,
while our LConCon clusters images with all captions from the same visual context. In contrast,
LcNCE and LcontextNCE act as sharpening losses, refining clusters by contrasting a specific positive
— an augmentation for vision case and a primary caption for our multimodal case — against hard
negatives.

D MODEL ANALYSIS & TRAINING CONFIGURATION

D.1 PRETRAINED UNIMODAL BACKBONES

LM
Model Size # Layers Dim

Gemma2 2B 26 2304
9B 42 3584

Llama3.2 1B 16 2048
3B 32 4096

OLMo2 7B 32 4096
13B 40 5120

VM
Model Size # Layers Dim

DINOv2 (SSL) 86M (ViT-B) 12 768
300M (ViT-L) 12 1024

MAE (SSL) 86M 12 768

Swav (SSL) 23M 50 2048

Swin (Sup) 88M 50 2048

ViT (Sup) 86M 12 768

ResNet50 (Sup) 23M 50 2048

Table 12: Configuration of pretrained unimodal models used in experiments. For MAE, we used ViT as backbone
architecture. For Swav and Swin, we used RestNet50 as backbone architecture.
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D.2 JAM (JOINT AUTOENCODER MODULATOR) FRAMEWORK

We experiment JAM (Joint Autoencoder Modulator) framework with 3 hidden layers with dimension
size 512, bottleneck/latent layer with dimension size 256, drop out ratio of 0.1, batch size of 32, and
SwiGLU activation. With this architecture, Table 13 shows the model analysis of JAM attached to
each pretrained unimodal backbones.

With the extracted unimodal features (language and vision, respectively) data, for each task setting,
we use 70-15-15 train/validation/test splits. For each task, we train our Joint Autoencoder Modulator
(JAM) with all the loss schemes (Lspread, Lcon, LNegCon) for 100 epochs with a batch size of
32, using data seeds 5, 42, and 55. The reported scores are the average of recall scores across
different seeds. Both autoencoders are optimized jointly using AdamW (39) with gradient clipping
(1.0) and a cosine annealing scheduler. We initialize the logit scaling parameter in log-space as
log(1/0.07), following the common CLIP (15) initialization strategy. During training, the effective
scale is recovered via exponentiation, allowing the model to start with sharper similarity distributions
and learn an appropriate temperature dynamically. The reconstruction loss is weighted by a linearly
decaying factor λ(t), decreasing from 1.0 to 0.1 over training epochs to gradually emphasize the
alignment objective. Every five epochs, we compute image-to-text Recall@1 on the validation set,
applying early stopping if no improvement is observed for five consecutive validations. We evaluate
on two retrieval settings: (1) binary choice between the positive and its hard negative (standard
evaluation scheme in fine-grained task setting (20; 31)), and (2) a 5-way choice including three
additional distractors.

Pretrained Backbone JAM Parameters (M) JAM FLOPs (G)
Gemma2 (2B) 11.55 2.39
Gemma2 (9B) 16.20 3.31

Llama3.2 (1B) 10.55 2.06
Llama3.2 (3B) 18.31 3.81

OLMo2 (7B) 18.31 3.81
OLMO2 (13B) 21.82 4.58

DINOv2 (ViT-B) 7.26 1.40
DINOv2 (ViT-L) 8.90 1.72

Table 13: JAM framework analysis attached to pretrained backbones

E FURTHER RESULTS
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Language Backbone Vision Backbone Alignment Method Replace Task Add Task Swap Task

(Model Size) (Model Size) for JAM Recall@1 (binary) Recall@1 (5-way) Recall@1 (binary) Recall@1 (5-way) Recall@1 (binary) Recall@1 (5-way)

Gemma2 (2B) MAE (SSL) Con 58.55 50.33 56.37 50.46 63.73 49.29
NegCon 77.62 69.38 89.15 80.16 70.81 58.63
Spread 89.09 71.16 94.35 84.98 79.05 58.63

Gemma2 (2B) Swav (SSL) Con 68.08 62.34 65.25 54.41 62.60 59.21
NegCon 83.31 76.53 95.20 91.63 80.75 67.04
Spread 88.88 76.98 95.83 90.64 81.01 67.70

Gemma2 (2B) Swin (Sup) Con 64.94 58.17 56.87 50.66 62.91 59.52
NegCon 85.07 78.35 96.39 91.66 77.93 70.92
Spread 85.16 79.01 97.87 92.22 80.32 71.46

Gemma2 (2B) ViT (Sup) Con 60.78 54.74 60.79 55.05 59.37 52.28
NegCon 86.06 75.89 96.31 92.50 59.21 49.58
Spread 86.35 75.26 95.37 89.62 82.31 67.72

Gemma2 (9B) DINOv2 (ViT-L; 300M) Con 68.77 63.95 59.31 54.58 60.92 51.85
NegCon 87.52 84.33 98.89 93.14 84.44 69.69
Spread 89.66 83.34 98.89 96.30 84.44 73.38

Llama3.2 (1B) MAE (SSL) Con 67.82 54.48 61.08 55.33 61.19 54.68
NegCon 82.92 74.09 94.16 84.80 76.77 68.26
Spread 86.23 74.96 96.85 92.03 80.47 68.67

Llama3.2 (1B) Swav (SSL) Con 65.94 58.97 68.12 62.93 75.39 68.03
NegCon 92.37 83.91 92.12 87.48 78.62 71.84
Spread 88.63 79.24 98.94 94.75 83.29 69.99

Llama3.2 (1B) Swin (Sup) Con 70.59 63.60 69.70 63.48 75.39 68.03
NegCon 86.01 83.05 93.89 88.39 69.11 63.45
Spread 87.24 76.69 94.72 94.16 77.62 68.84

Llama3.2 (1B) ViT (Sup) Con 66.81 57.49 64.50 60.70 64.87 59.79
NegCon 82.81 77.15 93.16 90.57 74.50 63.18
Spread 87.56 76.13 97.38 92.23 74.23 57.79

Llama3.2 (3B) DINOv2 (ViT-L) Con 65.24 59.14 62.38 57.9 73.12 65.18
NegCon 84.54 82.66 92.61 88.16 75.93 70.27
Spread 89.43 82.48 95.74 91.25 82.44 76.77

OLMo2 (7B) MAE (SSL) Con 66.88 57.37 68.12 56.98 58.36 51.85
NegCon 86.39 74.57 93.05 88.33 71.94 60.62
Spread 83.05 77.84 96.39 90.64 79.32 64.52

OLMo2 (7B) Swav (SSL) Con 66.38 61.12 67.38 62.58 63.75 58.65
NegCon 88.18 83.31 92.12 88.50 82.23 69.98
Spread 93.27 85.63 98.43 93.70 81.01 72.81

OLMo2 (7B) Swin (Sup) Con 65.35 59.45 70.82 63.79 55.67 50.85
NegCon 89.40 86.70 95.28 89.35 73.66 71.96
Spread 91.32 82.11 97.87 94.72 80.16 70.81

OLMo2 (7B) ViT (Sup) Con 70.56 64.79 69.98 58.86 69.15 60.36
NegCon 84.61 80.77 94.16 87.86 81.74 67.30
Spread 89.25 81.01 98.43 95.18 76.49 66.44

OLMo2 (13B) DINOv2 (ViT-L) Con 65.86 68.68 59.21 62.52 62.28 52.12
NegCon 89.36 82.68 93.7 91.66 78.89 67.57
Spread 90.53 83.18 97.96 92.42 84.71 69.69

Table 14: Image-to-Text Retrieval Results of Joint Autoencoder Modulator (JAM) for Vision-Language Compo-
sitionality with wider set of pretrained backbones.

F COMPUTE SYSTEMS/RESOURCES

All experiments were conducted in either set-ups: Apple Macbook Pro (M2 chip) or NVIDIA RTX
3080. We utilized NVIDIA RTX 3080 system for language models’ feature extraction and M2 chip
system for vision models’ feature extraction. Running our JAM framework is done in both set-ups.
Finetuning CLIP model is conducted in NVIDIA RTX 3080 system.
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