
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEQUENTIAL-PARALLEL DUALITY
IN PREFIX-SCANNABLE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern neural sequence models are designed to meet the dual mandate of
parallelizable training and fast sequential inference. Recent developments
have focused on various models, such as Gated Linear Attention (GLA) and
Mamba, that achieve such “sequential-parallel duality.” This raises a natural
question: can we characterize the full class of neural sequence models that support
near-constant-time parallel evaluation and linear-time, constant-space sequential
inference? We begin by describing a broad class of such models, state space
models, as those whose state updates can be computed using the classic parallel
prefix scan algorithm with a custom associative aggregation operator. We then
define a more general class, Prefix-Scannable Models (PSMs), by relaxing the
state aggregation operator to allow arbitrary (potentially non-associative) functions
such as softmax attention. This generalization unifies many existing architectures,
including element-wise RNNs (e.g., Mamba) and linear transformers (e.g.,
GLA, Mamba2, mLSTM), while also introducing new models with softmax-like
operators that achieve O(1) amortized compute per token and log(N) memory for
sequence length N . We empirically evaluate such models on illustrative language
modeling and canonical synthetic tasks, including state tracking and associative
recall. Empirically, we find that PSMs retain the functional effectiveness of
transformer-based architectures while matching the inference efficiency of state
space models and in some cases exhibiting better length generalization than either.

1 INTRODUCTION

Transformers have revolutionized sequence processing by enabling parallelizable training over
the sequence dimension (Vaswani et al., 2017)—unlike classic recurrent neural networks (RNNs)
(Elman, 1990; Jordan, 1986; Hochreiter & Schmidhuber, 1997), which require sequential training;
and by handling arbitrary-length sequential dependencies with a constant parameter count—unlike
convolutional neural networks, which, while parallelizable over sequence elements, require
more parameters to capture longer-range dependencies (Gehring et al., 2017; Oord et al., 2016;
Kalchbrenner et al., 2016; Dauphin et al., 2017). However, transformers suffer from two fundamental
limitations: first, their computational and memory complexities scale quadratically with sequence
length (Vaswani et al., 2017; Katharopoulos et al., 2020), which is particularly problematic during
inference; second, they have limited expressivity, i.e., there are computations they struggle to learn
to perform (Hahn, 2020; Bhattamishra et al., 2020a;b; Merrill & Sabharwal, 2023; Irie et al., 2023;
Merrill et al., 2024; Grazzi et al., 2025; Strobl et al., 2024; Siems et al., 2025; Movahedi et al., 2025).

A body of research in neural sequence modeling has focused on developing architectures that address
the primary shortcomings of transformers. In particular, recent years have seen the introduction of
diverse models that target the inference time complexity problem. In these models, the inference
compute requirement is linear in time and constant in memory, just like in classic RNNs, while
retaining transformer-like parallelizability during training. Such models include element-wise
recurrent models, which are derived by simplifying either fully recurrent neural networks (Hochreiter
& Schmidhuber, 1997) (e.g. Quasi RNNs (Bradbury et al., 2017) or SRU (Lei et al., 2018); see also
(Qin et al., 2023; Li et al., 2018; Balduzzi & Ghifary, 2016; Mozer, 1989) or linear time-invariant
dynamical systems (e.g. Mamba (Gu & Dao, 2024))—at the cost of sacrificing expressivity (Merrill
et al., 2020; Grazzi et al., 2025). Another model family has been derived from linear transformers
(Katharopoulos et al., 2020) and fast weight programmers (Schmidhuber, 1992; Irie et al., 2021),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

including Gated Random Feature Attention (Peng et al., 2021), DeltaNet (Schlag et al., 2021; Yang
et al., 2024b), RetNet (Sun et al., 2023), GLA (Yang et al., 2024a), mLSTM in xLSTM (Beck et al.,
2024), Mamba2 (Dao & Gu, 2024), and versions of RWKV (Peng et al., 2025).

These models share the fundamental property of sequential-parallel duality (SPD)—training is
parallelizable over sequence elements, while inference is sequential and its inference time complexity
is linear. This raises a natural question: What is the class of neural sequence models that can be
evaluated in parallel in nearly constant depth, and sequentially in nearly constant space?

In this work we aim to characterize the family of models exhibiting SPD. In particular, we show that
these models are computable using the classic parallel prefix scan algorithm (Blelloch, 1990; Martin
& Cundy, 2018) with a choice of associative aggregation operator that is specific to each model. We
define a broader model class, which we call Prefix-Scannable Models (PSMs), by generalizing the
aggregation operator used in prefix scan computation. By construction, this family subsumes all
existing SPD-compatible models with associative state updates. More generally, it enables the design
of novel models with non-associative aggregation rules, whose per-token inference cost remains
amortized O(1) with memory scaling O(log(N)) in sequence length N . An alternate view is that
PSMs are a strict generalization of RNNs: they move beyond affine state updates to support general
token mixing operations—including Transformer-style self-attention over local chunks—giving rise
to a novel model belonging to the PSM family, which we call Transformer-PSM.

We probe Transformer-PSM in our experiments using small but illustrative tasks: next-token
prediction on WikiText-103 (Merity et al., 2017) and synthetic algorithmic tasks that test precise
state tracking and retrieval (Merrill et al., 2024; Grazzi et al., 2025; Li et al., 2025; Arora et al.,
2024). We find that Transformer-PSMs inherit certain advantages of both Transformers and State
Space Models. They preserve the associative recall capability of Transformers, whilst exhibiting
an impressive ability to track state. Furthermore, by varying the “chunk” size by which we break up
a sequence of tokens, we can alter the asymptotics of a PSM from SSM-like to Transformer-like—a
notion we make precise in our discussion on Sequential-Parallel Duality, which we empirically
demonstrate on WikiText-103. In summary,

1. We define the SPD family of sequence models and unify modern linear RNNs as those with
state computable by the prefix scan algorithm with a custom choice of associative aggregator.

2. We derive a strict generalization thereof, the Prefix Scannable Models (PSMs), that admit
general state aggregation functions, such as softmax attention, whilst preserving parallel
training in O(N) compute and O(logN) memory bound at inference.

3. We instantiate Transformer-PSM and evaluate its abilities for state tracking, associative
recall, and language modeling, using canonical sequence modeling benchmarks.

2 SEQUENCE MODELS AND SEQUENTIAL–PARALLEL DUALITY

Here we formally define sequence models and sequential–parallel duality, and provide examples.
For more details on conventions, we refer to Appendix A. Throughout, let A be a finite alphabet of
tokens and a0:n−1 ∈ An an input sequence of length n. Let M be a latent space containing the state
of a sequence model. For example, for an RNN, this is the space of the hidden state vector. First, for
the sequential view, we define causal sequence models by introducing state dynamics and inference.

Definition 2.1 (State kernel). A state kernel is a map U : M×A → M with an identity element
e ∈ M. It induces a state sequence s−1 = e, st = U(st−1, at) for t ≥ 0. We denote by m(n) the
memory required to store sn−1.

Definition 2.2 (Inference module). An inference module is a map F : M×A → R|A| producing
a distribution ŷt = F (st−1, at) over the next token.

Definition 2.3 (Sequence model). A pair (U,F) comprising a state kernel and an inference module
is called a causal sequence model (or simply, sequence model). The model’s memory bound m(n)
is required to evaluate U and F once the state sn−1 is available.

Second, to formalize parallel training, we define a parallel training circuit for sequence models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 2.4 (Parallel circuit family). A parallel circuit family for a sequence model (U,F) is a uni-
form family of circuits

{
Cn

}
n≥1

such that, for all a ∈ An and all t < n,
[
Cn(a)

]
t
= F

(
st−1, at

)
,

where st−1 is the state (Def. 2.1). The model’s compute bound T (n) is the size of the circuit Cn.

The circuit corresponds to the training graph: every token can be processed simultaneously provided
sufficient parallel hardware. Together, the sequential and parallel views and their tradeoffs will
characterize the Sequential–Parallel Duality (Def. 2.5).

Definition 2.5 (Sequential–Parallel Duality SPD
(
T (n), m(n)

)
). A sequence model (U,F) is said

to satisfy SPD
(
T (n), m(n)

)
if the following two conditions hold:

1. Parallel training. There exists a uniform circuit family {Cn}n≥1 of depth Õ(1) and size
T (n) that realises all token-wise predictions (Def. 2.4).

2. Sequential inference. Given st−1, the pair (st, ŷt) =
(
U(st−1,at), F (st−1,at)

)
is

computable by a depth-Õ(1) circuit using at most m(n) working memory.

As illustrative examples, we discuss the following sequence models in light of SPD.

Vanilla Transformer: SPD-(n2, n). Training computes all n2 attention scores in parallel with
circuit depth O(1) and work T (n) = Θ(n2). At inference, each new token requires attending to and
storing all n past keys/values, yielding m(n) = Θ(n) memory.

Fully recurrent RNN: no SPD. A strict RNN (e.g. LSTM, GRU) updates its hidden state through a
chain of length n. Because each step depends on the previous one, there is no sub-linear-depth circuit
that simultaneously computes every output. Such networks therefore fall outside the SPD framework.

As a preview of our results: we will additionally derive the following characterization.

Prefix–Scannable and Related Models: SPD-(n, 1) and SPD-(n, log(n)). Modern RNN architec-
tures that admit a Blelloch-style scan (discussed in Sec. 3) for their state update have compute bound
T (n) = Θ(n), parallel depth Θ(log n), and memory bound m(n) = Θ(log n) or m(n) = Θ(1),
depending on whether the state size grows logarithmically or remains constant. We therefore write
SPD-(n, log n) or SPD-(n, 1), both of which strictly improve on the Transformer’s linear memory
latency while retaining fully parallelisable training.

3 PREFIX–SCANNABLE MODELS

Next, we define a broad family of models that obtain a sequential-parallel duality of SPD-(n, log(n)).
This family consists of sequence models whose training graph can be expressed by a Blelloch prefix
scan (see the caption in Fig. 1) over chunk representations, followed by an independent chunk-local
prediction head. The Blelloch scan takes a sequence of tokens or chunks and an aggregation operator,
and computes prefixes where the aggregator is applied over the first n tokens; it computes all
prefixes in Θ(n) work and Θ(log n) parallel depth. We refer to Alg. 1 in Sec. 3.3 for the full
upsweep/downsweep algorithms. We call these Prefix–Scannable Models (PSMs). To understand the
topic further we first give a brief overview of the classic parallel prefix scan.

Blelloch Scan. Let M be a set with a binary operator Agg : M×M→M and identity e ∈ M.
Given a0, . . . , an−1 ∈ M, the exclusive prefix at index t is Pt := a0 Agg a1 Agg · · · Agg at−1 (with
P0 = e). The Blelloch prefix–scan computes all Pt in O(log n) parallel steps via a perfect binary
tree: (i) an upsweep reduces adjacent pairs bottom-up until the root aggregates the whole sequence;
(ii) a downsweep propagates prefixes top-down, using stored intermediate values so that every leaf
receives its Pt. When the binary operator Agg is associative, the final prefix array is identical to
what a left-to-right sequential loop would compute. If Agg is not associative, the result is still well
defined—the tree fixes a unique parenthesisation (see discussion in Appendix E)—but it may differ
from the purely left-nested order used by sequential recurrence. We refer to this upsweep–downsweep
as the static (training) algorithm (Alg. 1), and to the left-to-right procedure as the online (inference)
algorithm (Alg. 2), which reproduces the same tree parenthesisation. In the next section we define
Prefix Scannable Models (PSMs) by instantiating the static scan with a general choice of Agg.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FINA FINAL FIGURE (v1)

(a) Upsweep

x[0] x[1] x[2] ... x[7]...

x[0] x[0:1] x[2] x[0:7]x[0:3] x[4] x[4:5] x[6]

In
pu

t
O

ut
pu

t

(b) Downsweep

O
ut

pu
t

In
pu

t x[0] x[0:1] x[2] x[0:7]x[0:3] x[4] x[4:5] x[6]

e x[0] x[0:1] x[0:6]e

e

Inactive Token Active Token Chunk IdentityeSummary Token

... ...

Figure 1: An illustration of the Blelloch parallel scan used to compute prefix states in Prefix-
Scannable Models (PSMs). Here the input has 16 tokens grouped into 8 chunks {x[0], . . . ,x[7]}
(see (a) bottom), and the goal is to produce prefix states {e,x[0],x[0:1], . . . ,x[0:6]}, where x[i:j]
aggregates all tokens from chunks i to j, and e is the identity. (a) In the upsweep, chunks are
aggregated along a binary tree through a series of chunk aggregation operations (solid arrows),
producing intermediate values and some of the final prefix states (e.g., x[0:1],x[0:3]). (b) In the
downsweep, the missing prefix states are filled in by propagating values backward: x[0:7] is reset to
e, and copy (dotted arrows) and aggregation (solid arrows) operations complete the sequence. When
each chunk is treated as an atomic element, this recovers the classic Blelloch scan.

3.1 MODEL DESCRIPTION

Definition 3.1 (Prefix–Scannable Model). Fix a chunk length c ≤ n and partition a sequence a0:n−1

into r = n/c disjoint chunks Ci = (aic, . . . ,a(i+1)c−1). A Prefix–Scannable Model (PSM) is
specified by three learnable modules with depth O(1):

Enc : Ac → M, Aggθ : M×M → M, Infϕ : M×Ac → Ac,

and an identity element e ∈ M.

1. Chunk encoding xi = Enc(Ci) for i = 0, . . . , r − 1.

2. Prefix state {si}i∈[r] = BlellochScan
(
{xi}i∈[r],Aggθ, e

)
.

3. Chunk prediction ŷic:(i+1)c−1 = Infϕ(si−1,Ci).

Note that, in terms of notation, we have si = x[0:i] defined in Fig. 1. We discuss the asymptotics
of the PSM model depending on both n and c in Appendix C. For now, we derive the following
immediate complexity corollary with asymptotics depending on the leading order term n, and focus
on discussing its connections to recently proposed efficient sequence models. Proposition 3.2 follows
from properties of the parallel and streaming versions of the Blelloch scan.

Proposition 3.2. Every Prefix–Scannable Model is in the class SPD-(n, log n). That is, its training
work is Θ(n) with parallel depth Õ(1), while online inference runs in O(1) amortised time and
O(log n) memory per token.

Proof Sketch. The static Blelloch scan over n chunk encodings costs linear work and Θ(log n)
depth (Alg. 1). The streaming evaluation replaces that scan by the online algorithm of Alg. 2,
whose Theorem 3.5 and Corollary 3.6 show O(1) amortised work and O(log n) state. The chunk-local
Infϕ adds constant overhead.

3.2 MODERN RNN LAYERS FIT ONE AFFINE SCAN

To relate PSMs to recent models, this section shows that a broad family of recent fast-inference layers
(Table 1) are all PSM’s. Their state kernel can be expressed as specializations of a single associative
affine state-update template. This enables SPD-(n, 1) complexity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Representative examples of recently proposed layer types that cast into the affine state-update
template (Eq. (B.1)). The same associative aggregator (E,f)⊕ (E′,f ′) 7→ (E ◦E′,f +E ▶ f ′)
is shared by all, and therefore, they are all in SPD-(n, 1) by Theorem B.3.
Model family Et ▶ st−1 ft Gate / operator

Linear Attention (Katharopoulos et al., 2020) st−1 vtk
⊤
t identity I

DeltaNet (Schlag et al., 2021) st−1(I − βtktk
⊤
t) βtvtk

⊤
t projector

Gated DeltaNet (Yang et al., 2025) αtst−1(I − βtktk
⊤
t) βtvtk

⊤
t projector

RetNet (Sun, 1995) γst−1 vtk
⊤
t scalar gate γ

mLSTM (Beck et al., 2024) ftst−1 itvtk
⊤
t scalar gate ft

Gated RFA (Peng et al., 2021) gtst−1 (1− gt)vtk
⊤
t scalar gate gt

S4 / S6 (Gu et al., 2022) e−αt⊙ st−1 B ⊙ (vt1
⊤) diagonal gate

Mamba (Gu & Dao, 2024) Ā(xt)st−1 B̄(xt)xt diagonal gate
GLA (Yang et al., 2024a) 1α⊤

t ⊙ st−1 vtk
⊤
t diagonal gate

Definition 3.3 (Affine recurrence). Let (M,+, 0) be an additive group and ▶: R × M → M a
fixed bilinear action of a monoid (R, ◦, I) on M. A layer is said to have an affine state update if its
hidden state obeys

st = Et ▶ st−1 + ft, s−1 = 0, (3.1)
where (Et,ft) ∈ R ×M are (learnable) functions of the current chunk xt. That is Et := Eθ(xt)
and ft := fθ′(xt) for learnable functions Eθ and fθ′ .

The models in Table 1 all satisfy this affine state update template and all share the following
associative aggregator. For proof see Appendix B.

Lemma 3.4. (Associative Affine Aggregator) Define for (Ei,fi) ∈ R×M

(E2,f2)⊕ (E1,f1) =
(
E2◦E1, f2 +E2 ▶ f1

)
, e = (I, 0).

Then (R×M,⊕, e) is a monoid—⊕ is associative with identity e—and

(Et,ft)⊕ · · · ⊕ (E0,f0) =
(
Ēt, st

)
,

where st is the state given by Eq. (B.1) and Ēt is an auxiliary variable.

Once written in the affine update form, their binary operator is associative, hence each layer is a
Prefix–Scannable Model with SPD-(n, 1) complexity. For formal theorem and proof see Theo-
rem B.3. Importantly, we can instantiate Def. 3.1 with associative aggregators capturing learnable
function families like linear dynamical systems and Gated Linear Attention. Further discussion and
the corresponding theorems can be found in Appendix B.1. Next, we turn to general PSM’s, which
enables new (non-associative) aggregators, most notably softmax attention.

3.3 BEYOND AFFINE STATE RECURRENCE: PSMS WITH GENERAL AGGREGATION

The parallel prefix–scan computes per-position prefixes with O(n) work and O(log n) depth when
the binary operator is associative (Blelloch, 1990). We generalize this view to non-associative
operators (e.g., softmax attention). For a longer discussion with extensive proofs, see Appendix E.

The key issue is parenthesisation: for a non-associative Agg, different groupings of
x0 Agg x1 Agg · · · Agg xt−1 produce different values. The Blelloch scan resolves this by fixing
a single full binary tree (upsweep/downsweep), hence a unique parenthesisation. Let

Agg : M×M → M, identity e ∈ M, (3.2)

with no associativity assumption unless stated. Define πBlelloch as the binary-tree parenthesisation
induced by the static scan. The static Blelloch scan (Alg. 1) computes, for every t,

st = (x0 Agg x1 Agg · · · Agg xt−1) evaluated under πBlelloch.

This matches the sequential left-to-right recurrence when Agg is associative; otherwise it is still
well-defined value for the fixed tree. The work is O(n), and depth is O(log n).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

x[0] x[1] x[0] x[1] x[0] x[1] x[0] x[1]x[2] x[2] x[2] x[3]

x[0:1]

Inactive Token Active Token

FINAL FINAL FIGURE (v1)

x[0:1] x[0:1] x[2:3]x[0:1]

x[0:3]

Figure 2: An illustration of the autoregressive state computation of “Transformer-PSM” (Sec. 4) at
inference time. Here the model uses a chunk size of 2. From left to right, a single new token is fed
to the model at a time. Two first figures: when predicting tokens in chunk x[2], the model only
requires tokens from the prefix state x[0:1] and those within x[2]. Third figure: predicting tokens in
chunk x[3] requires the prefix state x[0:1], and chunks x[2] and x[3]. Last figure: once all tokens in
chunk x[3] are processed, a new prefix state x[0:3] is computed, which is later used to predict tokens
in x[4], and so on. Prefix state si corresponds to si = x[0:i].

Online binary counter (inference). The online variant (Alg. 2) maintains at most one root per
block size 2k; inserting xt performs the usual binary carry with Agg. The current prefix is the most
significant bit (MSB) → least significant bit (LSB) fold of occupied roots. This reproduces exactly
πBlelloch for each t while using O(log n) memory.

Algorithm 1: STATICBLELLOCHSCAN

Input:
(
{xi},Aggθ, e

)
: Array of encoded

chunks q[x1 ...xr−1] with r = 2k (power
of two) chunks; operator Agg with identity
e

Output: Exclusive prefixes written back into q

1 Representation. Store the complete binary tree in
the usual heap layout T [1 .. 2n− 1]:

1. leaves T [n+ i]← q[i] for i = 0, . . . , r− 1;

2. an internal node v has children 2v and
2v+1.

Upsweep (reduction). for v ← n− 1 down to 1
do in parallel

T [v]← Agg
(
T [2v], T [2v + 1]

)
Downsweep (prefix propagate). Allocate P [];
set P [1]← e ; // root gets identity

2 for v ← 1 to n− 1 do in parallel
3 P [2v]← P [v];
4 P [2v + 1]← Agg

(
P [v], T [2v]

)
5 Write back. for i← 0 to n− 1 do in parallel
6 q[i]← P [n+ i]

Algorithm 2: BINARYCOUNTERUPDATE

Input: (root,x,Aggθ, e): Stream of encoded
chunks x0, . . . ,xr−1; operator Agg with
identity e

Output: Prefix value pt for each t (Blelloch
parenthesisation)

1 State:
2 root[k] stores the root of the current block of

size 2k or is empty initialise all to empty.

3 for t← 0 to r − 1 do
4 carry ← xt

5 k ← 0
6 while root[k] ̸= empty do
7 carry ← Agg

(
root[k], carry

)
8 root[k]← empty
9 k ← k+1

10 root[k]← carry; // place merged
tree

11 p← e
12 for k ← ⌊log2(t+1)⌋ down to 0 do
13 if root[k] ̸= empty then
14 p← Agg(p, root[k])

15 emit p

Together, the static and online scans yield PSMs in SPD(n, log n): linear work for training and loga-
rithmic memory for streaming inference. (See Fig. 2 for the chunked Transformer-PSM inference.)
We obtain the following correctness and complexity analysis. We defer proofs to Appendix E

Theorem 3.5. Let pt be the value emitted at time t by Alg. 2. Then pt equals the exclusive prefix
returned by the static Blelloch scan, regardless of whether Agg is associative.

Corollary 3.6. After t+1 chunks Alg. 2 stores at most ⌈log2(t+1)⌉ root values; hence the worst–case
space usage is O(log n).

Work. Inserting a new element touches exactly the trailing 1–bits of t; the expected number of such
bits is 2, so the amortised number of Agg calls per element is constant.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Together, Theorem 3.5 and Corollary 3.6 show that the online binary–counter scan is an opti-
mal–space, streamable realisation of the Blelloch parenthesisation, extending prefix–scan techniques
to non–associative operators without increasing asymptotic cost in time. This flexibility enables
a larger class of prefix–scannable models: sequence models whose per–token state update is any
binary operator that admits O(log n) space O(1) time online evaluation via the mechanism above.
We provide further analytical details of PSMs in Appendix C.

3.4 TRANSFORMER-PSM

In this section we instantiate Enc, Agg, Inf to concretely define the Transformer-PSM architecture
that we use to run our empirics in Sec. 4 to validate our theoretical predictions. The model is uniquely
specified by the following three modules.

Encoder (Enc): This is a simple embedding layer that transforms discrete vocabulary tokens into
continuous vectors, implemented as a standard nn.embedding layer.

Aggregation (Aggθ). A GPT-2 style Transformer (hidden dim d, H heads, L layers) with a bidi-
rectional attention mask, GPTb

θ : Rd×2c → Rd×2c. Given two chunk states xi, xj ∈ Rd×c, define
token-concat [xi |xj] ∈ Rd×2c and the right-half slice RH(Y) := Y [: , c : 2c] ∈ Rd×c. We write

Aggθ(xi, xj) := RH
(
GPTb

θ([xi |xj])
)
∈ Rd×c.

Inference (Infϕ). A GPT-2 style Transformer (hidden dim d, H heads, L layers) with a causal mask,
GPTc

ϕ : Rd×2c → Rd×2c. Given a prefix state st−1 ∈ Rd×c and a token chunk Enc(Ct) ∈ Rd×c,

Inf(st−1,xt) := RH
(
GPTc

ϕ([st−1 |Enc(Ct)])
)
∈ Rd×c,

which we interpret as per-token logits for Ct[1 :] (next-token prediction within the chunk). Once the
three modules are defined, we train Transformer-PSM with Alg. 3 and inference with Alg. 4.

Algorithm 3: Transformer-PSM
Training (static scan over chunks)
Input: Sequence of tokens a0:n,

Enc,Aggθ, Infϕ, chunk size c
Output: Predictions ŷ0:n

1 r ← n/c; // number of
chunks

2 for i← 0 to r do in parallel
3 xi ← Enc

(
aic:(i+1)c−1

)
4 {si}ri=0 ←

STATICBLELLOCHSCAN
(
{xi},Aggθ, e

)
; // Alg. 1

5

6 for i← 0 to r do in parallel
7 ŷic:(i+1)c−1 ←

Infϕ
(
si−1, aic:(i+1)c−1

)

Algorithm 4: Transformer-PSM Inference
(binary-counter scan)
Input: Streamed tokens at, Enc,Aggθ, Infϕ, chunk size c
Output: Streaming predictions ŷt

1 State:
2 root[k]← empty for all k (cf. Alg. 2)
3 buf← [] ; // collects current chunk

4 for each at do // token index t = 0, 1, . . .
5 append at to buf;
6 if |buf| = c then // completed one chunk
7 x← Enc(buf);
8 s←

BINARYCOUNTERUPDATE(root,x,Aggθ, e);
// Alg. 2

9 ŷt−c+1:t ← Infϕ(s,buf);
10 clear buf;

4 EXPERIMENTAL RESULTS

The main goal of our experiments is to evaluate and explore the capabilities and properties of
Transformer-PSM (Sec. 3.4). For this, we conduct experiments on representative sequence learning
tasks: a synthetic algorithmic task requiring state-tracking (Sec. 4.1), a synthetic task for associative
recall, and language modeling (Sec. 4.3). Each experiment was conducted on a single NVIDIA V100-
32GB GPU. All experiments were implemented using the PyTorch framework (Paszke et al., 2019).

4.1 STATE TRACKING S5

The S5 state tracking problem (Merrill et al., 2024; Kim & Schuster, 2023; Li et al., 2025) is the
formal version of the “permute cups and balls” challenge, where a sequence of permutations is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

18 42 66 90 114 138 162
Sequence Length

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e
GPT2 Transformer
Mamba
Transformer-PSM

Figure 3: Error rate on the state tracking S5 task.
After training on sequences with lengths up to
18, Transformer-PSM generalizes to more than
160 tokens, far beyond Transformer and Mamba.

128 256 512
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
 R

at
e T-PSM c32

T-PSM c64
SWT c32
SWT c64
Mamba

Figure 4: Error rate on MQAR of Transformer-
PSM (T-PSM), Sliding Window Transformer
(SWT) and Mamba. Evaluated lengths are in-
distribution.

composed, with the objective of tracking the resulting permutation at each time step. Problems as
diverse as tracking finite state automata and evaluation of boolean expressions can be reduced to this
task. Naturally, as the sequence of permutations lengthens, this task becomes increasingly difficult
for a constant-depth model that has a constant budget for sequential computation. Indeed, the S5

state tracking task is NC1 complete (Barrington, 1986). It is known to be difficult for both standard
Transformers and linear RNNs such as Mamba (Merrill et al., 2024; Grazzi et al., 2025).

We train from scratch on sequences of length 4 to 18 in a curriculum and subsequently evaluate
on lengths up to 180 to test for length generalization. We generate 100,000 sequences per length
and train for 20 epochs for each of three different models: (1) a standard GPT2 model with 12
layers, 12 heads, 768 hidden dimensions; (2) a 370M-parameter Mamba model with 48 layers and
a 1024-dimensional hidden state; (3) Transformer-PSM with (d = 768, H = 1, L = 1) for Agg,
(d = 768, H = 1, L = 1) layer for Inf, and chunk size c = 1. All models are trained with Adam
with dropout 0.1, weight decay 0.01, learning rate 10−4.

Fig. 3 shows the results. We find that whilst Mamba slightly outperforms GPT2, the new T-PSM has
remarkably low error rate even for sequences significantly longer than those observed during training,
showing that these models exhibit strong length generalization for state tracking tasks.

4.2 MULTI QUERY ASSOCIATIVE RECALL (MQAR)

In Associative Recall, the task is to recall whatever value followed a key earlier in a given sequence.
MQAR extends this task to multiple such key-value pairs to increase the memory demand (Arora
et al., 2023). While constant state size recurrent models struggle with this task, a 2-layer transformer
excels by solving it perfectly. To gauge where on this spectrum our model falls, we train different
models on MQAR for 64 epochs with vocabulary size 8192 and 8 key-value pairs. In the typical
setting of this task, sequences are constructed in a way that a key is queried shortly after it appears
for the first time; here we do not use such a bias and sample queries uniformly, which makes the task
harder than the standard setting.

Here we instantiate Transformer-PSM with (d = 256, H = 1, L = 2) Agg, (d = 256, H = 1, L = 2)
Inf. We also use a learnable linear projection to compress the chunks instead of taking the right
half. The chunk size is 32 or 64. For comparison, we include both Mamba and Sliding Window
Transformer (SWT) baselines (Beltagy et al., 2020; Zaheer et al., 2020). The SWT is a GPT2 model
with (d = 256, H = 1, L = 4), where we use a sliding window size of 32 or 64.

Fig. 4 shows the results. Here all the evaluation lengths are in the training distribution. We find that
T-PSM with a chunk size of 64 achieves the perfect accuracy like the full context transformer, while
reducing its chunk size to 32 yields performance degradation on a long length (512). Mamba fails in
our setting; unlike in prior work (Arora et al., 2024; Okpekpe & Orvieto, 2025), our setting is harder
due to our uniform query sampling as discussed above.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

32 64 128 256
Chunk size

22.5

23.0

23.5

24.0

24.5

Ev
al

ua
tio

n
Pe

rp
le

xi
ty

Transformer-PSM
GPT-2 Transformer
Mamba

Figure 5: Evaluation perplexity of Transformer-
PSM with varying chunk sizes on WikiText-103

0 10000 20000 30000 40000
Token index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
pe

r t
ok

en
 (s

)

Transformer-PSM
Mamba
GPT-2 Transformer

Figure 6: Inference time per token for
Transformer-PSM and GPT-2 Transformer

4.3 LANGUAGE MODELING ON WIKITEXT-103 WITH TRANSFORMER-PSM

Here we evaluate perplexity on the WikiText-103 dataset (Merity et al., 2017). We benchmark
Transformer-PSM (d = 768, H = 12, L = 1) Agg, (d = 768, H = 12, L = 11) Inf, by varying the
self-attention chunk size from 32 to 256 tokens and measuring test perplexity against the vanilla
GPT-2 (base) baseline with a context size of 512 trained from scratch. As shown in Fig. 5, as the
chunk size grows, perplexity falls gracefully from 24.12 at 32 tokens to 22.45 at 256 tokens—closely
approaching vanilla GPT-2’s perplexity of 22.28—demonstrating that larger chunks recover nearly
full-context modeling power while preserving our model’s linear-time inference. For reference, we
also include a baseline for Mamba trained from scratch at 130m parameters, 768 hidden dimension,
trained for 10 epochs with the same optimizer hyperparameters achieving a ppl of 24.7.

Next, we measure per-token latency over 40,000 WikiText-2 tokens for our model versus a 4-layer,
4-head, 256-dimensional GPT-2 baseline. We train Transformer-PSM (d = 768, H = 4, L = 2)
Agg, (d = 768, H = 4, L = 2) Inf, thus keeping the parameter count identical to the baseline. As
shown in Fig. 6, GPT-2’s inference cost grows linearly with context length (O(n) per token) with
KV cache, inflating latency from ≈ 0.002s at the start to ≈ 0.04s by token 40,000. In contrast, our
Transformer-PSM design reuses 64-token chunk summaries, leading to a O

(
2n + n

32 log(n/64)
)

inference cost (as discussed in Eq. (C2) in Appendix D), keeping per-token time below ≈ 0.008s.
For reference, we also include inference time measurement for a Mamba model with 4 layers, 256
hidden dimension, with an average inference time per token of ≈ .006s.

5 DISCUSSION AND CONCLUSION

Discussion. We give a concise conceptual view of parallelisable, inference-efficient sequence models
via prefix scannability, unifying many closely related models developed under different names. Our
results deepen the link between prefix-scan algorithms and efficient sequence models, extending the
design space beyond prior work (Martin & Cundy, 2018).

This algorithmic lens offers a framework for analysing and designing future models. For exam-
ple, concurrent work on “log linear attention” (Guo et al., 2025) also fits this view, proposing a
linear-attention mechanism with log n memory, structured state, and an efficient chunkwise-parallel
primitive.

Conclusion. We formalise sequential–parallel duality: models that train in parallel yet decode
sequentially. Recent efficient sequence models exhibit this duality and achieve linear-time inference.
We characterise them as instances of the classic parallel prefix-scan with a model-specific operator,
motivating and analysing the broader class of parallel scannable models (PSMs). In particular, we go
beyond existing examples of PSMs by defining and empirically studying a novel sequence model
based on non-associative aggregators. Our experiments suggest that such model may have benefits in
length generalization for some tasks, and opens avenues of exploring this design space in light of
specific applications. Overall, this provides an insightful unification of efficient sequence models,
that cannot be found in any prior work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide proofs in Appendix B and relevant background for all theoretical results in Sec. 2 and Ap-
pendix A. For experiments, we detail the training protocols in Sec. 4, and algorithm implementations
in Sec. 3.4. All datasets are publicly available, and we follow established preprocessing procedures.
We will release all code and scripts in a public GitHub repository upon acceptance.

REFERENCES

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. In Int.
Conf. on Learning Representations (ICLR), 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. In Proc. Int.
Conf. on Machine Learning (ICML), New York City, NY, USA, June 2016.

David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. In Symposium on the Theory of Computing, 1986.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Extended
long short-term memory. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
Vancouver, Canada, December 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
Preprint arXiv:2004.05150, 2020.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers to
recognize formal languages. In Proc. Conf. on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7096–7116, Virtual only, November 2020a.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Proc. Conf. on Computational Natural Language
Learning (CoNLL), pp. 455–475, Virtual only, November 2020b.

Guy E Blelloch. Prefix sums and their applications. Technical report, School of Computer Science,
Carnegie Mellon University Pittsburgh, PA, USA, 1990.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. In Int. Conf. on Learning Representations (ICLR), Toulon, France, April 2017.

Kyunghyun Cho, Çağlar Gülçehre, Bart van Merriënboer, Dzmitry Bahdanau, Fethi Bougares Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Proc. Int. Conf. on Machine Learning (ICML), Vienna, Austria,
July 2024.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proc. Int. Conf. on Machine Learning (ICML), pp. 933–941, Sydney,
Australia, August 2017.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In Proc. Int. Conf. on Machine Learning (ICML), pp. 1243–1252,
Sydney, Australia, August 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Riccardo Grazzi, Julien Siems, Jörg KH Franke, Arber Zela, Frank Hutter, and Massimiliano Pontil.
Unlocking state-tracking in linear rnns through negative eigenvalues. In Int. Conf. on Learning
Representations (ICLR), Vancouver, Canada, April 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
Conference on Language Modeling (COLM), 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In Int. Conf. on Learning Representations (ICLR), Virtual only, April 2022.

Han Guo, Songlin Yang, Tarushii Goel, Eric P Xing, Tri Dao, and Yoon Kim. Log-linear attention.
Preprint arXiv:2506.04761, 2025.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear transform-
ers with recurrent fast weight programmers. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), Virtual only, December 2021.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. Practical computational power of linear
transformers and their recurrent and self-referential extensions. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), Sentosa, Singapore, 2023.

Michael I Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. In Proc.
Conf. of the Cognitive Science Society, pp. 531–546, Amherst, MA, USA, August 1986.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. Preprint arXiv:1610.10099, 2016.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Proc. Int. Conf. on Machine
Learning (ICML), Virtual only, July 2020.

Najoung Kim and Sebastian Schuster. Entity tracking in language models. In Proc. Association for
Computational Linguistics (ACL), Toronto, Canada, July 2023.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. In Proc. Conf. on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4470–4481, Brussels, Belgium, November 2018.

Belinda Z Li, Zifan Carl Guo, and Jacob Andreas. (How) do language models track state? Preprint
arXiv:2503.02854, 2025.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(IndRNN): Building a longer and deeper RNN. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pp. 5457–5466, Salt Lake City, UT, USA, June 2018.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In Int.
Conf. on Learning Representations (ICLR), Vancouver, Canada, April 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Int. Conf. on Learning Representations (ICLR), Toulon, France, April 2017.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics (TACL), 11:531–545,
2023.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
formal hierarchy of RNN architectures. In Proc. Association for Computational Linguistics (ACL),
pp. 443–459, Virtual only, July 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In
Proc. Int. Conf. on Machine Learning (ICML), Vienna, Austria, July 2024.

Sajad Movahedi, Felix Sarnthein, Nicola Muca Cirone, and Antonio Orvieto. Fixed-point RNNs:
From diagonal to dense in a few iterations. Preprint arXiv:2503.10799, 2025.

Michael C. Mozer. A focused backpropagation algorithm for temporal pattern recognition. Complex
Systems, 3(4):349–381, 1989.

Destiny Okpekpe and Antonio Orvieto. Revisiting associative recall in modern recurrent models. In
First Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models, 2025.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. Preprint arXiv:1609.03499, 2016.

Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning library. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 8026–8037, Vancouver,
Canada, December 2019.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, et al. RWKV-7" goose" with expressive dynamic state
evolution. Preprint arXiv:2503.14456, 2025.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for
sequence modeling. In Proc. Advances in Neural Information Processing Systems (NeurIPS), New
Orleans, LA, USA, December 2023.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers are secretly fast weight
programmers. In Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. Deltaproduct: Improving state-tracking in linear rnns via householder products. Preprint
arXiv:2502.10297, 2025.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics
(TACL), 12:543–561, 2024.

Ron Sun. Robust reasoning: integrating rule-based and similarity-based reasoning. Artificial
Intelligence, 75(2):241–295, 1995.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. Preprint
arXiv:2307.08621, 2023.

Leslie G Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4(3):348–355,
1975.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008, Long Beach, CA, USA, December 2017.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proc. Int. Conf. on Machine Learning (ICML),
Vienna, Austria, July 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), Vancouver, Canada, December 2024b.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving Mamba2 with
delta rule. In Int. Conf. on Learning Representations (ICLR), Vancouver, Canada, April 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A Preliminaries and Depth Conventions 15

B Additional Proofs 15

B.1 Modern RNN Layers Fit One Affine Scan . 15

B.2 Examples of Prefix-Scannable Sequence Models 16

C Analytical Details of Chunking in Prefix Scannable Models 18

D Computational complexity of PSMs 18

E Beyond Affine State Recurrence, PSM’s with General Aggregation: Further Details 19

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PRELIMINARIES AND DEPTH CONVENTIONS

Depth conventions. Throughout this paper we restrict attention to causal sequence models whose
training and inference graphs can be executed, in the Random–Access Machine (RAM) model with
unbounded fan-out gates, at depth (measured by the longest path of synchronous operations)

O
(
polylog n

)
, abbreviated Õ(1).

Whether the hidden polylog factor is log n or (log n)2 hinges on the chosen primitive set—for
instance, treating GEMM and softmax as unit-time kernels versus expanding them into arithmetic
gates. Classical fully recurrent networks such as LSTMs (Hochreiter & Schmidhuber, 1997) and
GRUs (Cho et al., 2014), whose forward pass has depth Θ(n) and therefore admits no sub-linear
parallel schedule, fall outside this scope.

Our focus is on polynomial separations between the principal model families: standard Transformers,
prefix-scannable models (as we will define in Sec. 3), and linear recurrent RNNs. Unless a
logarithmic factor is essential to the argument, we suppress it with the tilde notation. To characterize
our example models, we need to specify how their depth is counted, i.e., in the model of computation:
How tall is their training circuit?

Transformer. A single self–attention head executes the composite map (Q,K,V) 7→
softmax

(
QK⊤/

√
d
)
V , where d denotes the key/query head dimension. In a Random–Access

Machine with unbounded fan-out gates, the pointwise linear projections xW have depth 1, but the
n × n matrix multiply QK⊤ and every row-wise softmax (vector sum + normalisation) require a
parallel reduction of n numbers. Using a binary tree this costs Θ(log n) depth.1 Hence, an L–layer
Transformer has depth D(n) = Θ(L log n). If one treats the GEMM and softmax kernels as unit-time
primitives, this is often reported as “constant depth,” but strictly speaking it is Õ(1) (polylogarithmic).

Mamba, Gated Linear Attention, RWKV. The expensive step is a parallel scan that produces the
running state. Its depth is Θ(log n), and the pointwise gating around it adds O(1). Stacking Lagg

such layers gives D(n) = Θ
(
Lagg log n

)
.

B ADDITIONAL PROOFS

B.1 MODERN RNN LAYERS FIT ONE AFFINE SCAN

To relate PSMs to recent models, this section shows that a broad family of recent fast-inference layers
(Table 1) are all specializations of a single affine state-update template, i.e. their state kernel can be
expressed as an affine bilinear function. This enables SPD-(n, 1) complexity.

Definition B.1 (Affine recurrence). Let (M,+, 0) be an additive group and ▶: R ×M → M a
fixed bilinear action of a monoid (R, ◦, I) on M. A layer is said to have an affine state update if its
hidden state obeys

st = Et ▶ st−1 + ft, s−1 = 0, (B.1)
where (Et,ft) ∈ R ×M are (learnable) functions of the current chunk xt. That is Et := Eθ(xt)
and ft := fθ′(xt) for learnable functions Eθ and fθ′ .

The models in Table 1 all satisfy this affine state update template and all share the following
aggregator, which is associative.

Lemma B.2. (One associative operator, Affine aggregator) Define for (Ei,fi) ∈ R×M

(E2,f2)⊕ (E1,f1) =
(
E2◦E1, f2 +E2 ▶ f1

)
, e = (I, 0).

Then (R×M,⊕, e) is a monoid—⊕ is associative with identity e—and

(Et,ft)⊕ · · · ⊕ (E0,f0) =
(
Ēt, st

)
,

where st is the state given by Eq. (B.1) and Ēt is an auxiliary variable.
1There are sub-logarithmic circuits for exact matrix multiply (e.g. Valiant, 1975), but they are very wide and

rarely exploited in ML practice; logn therefore matches realistic GPU / TPU kernels.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Straightforward verification using the action axioms; full details in Appendix B.

Once written in that form, their binary operator is associative, hence each layer is a Prefix–Scannable
Model with SPD-(n, 1) complexity.

Theorem B.3. Every layer that satisfies Def. B.1 is a Prefix–Scannable Model with chunk size c = 1,
encoder Enc, aggregator Agg, and inference module Inf defined as

xi = Enc(Ci) = (Ei,fi)

for i = 0, . . . , r − 1 with the aggregator of Lemma B.2.

Agg(x2,x1) := (E2,f2)⊕ (E1,f1)

We define Inf(si−1,Ci) to be the function that takes states and current token and outputs predictions.
Hence these models admits training work Θ(n), parallel depth Θ(log n), and online inference cost
O(1) time and O(1) memory per token: the layer is in SPD-(n, 1).

Proof. Apply the static Blelloch scan to the pairs (Ei,fi) using ⊕ to obtain every prefix in O(n) work
and O(log n) depth. Lemma B.2 ensures the scan outputs the correct state st, which the inference
head may consume chunk-wise. During streaming inference, the online left to right scan maintains
the same prefixes with constant work and constant additional memory because ⊕ is associative.

Table 1 shows a catalogue of affine layers. Note that the affine form absorbs normalisation variables
common in linear Transformers (e.g. running scalars/vectors zt; typically running sum of keys
(Katharopoulos et al., 2020) or related variables (Beck et al., 2024)) by enlarging the state vector and
treating the auxiliary variable as just another coordinate updated affinely. The proof of Theorem B.3
requires no change.

B.2 EXAMPLES OF PREFIX-SCANNABLE SEQUENCE MODELS

In the following, we present two families of models whose parallel circuits can be obtained as the
computation of a Blelloch parallel scan. In fact, it suffices to show that for all family of architectures
that are affine in their state, there exists an associative operator ⊕ that defines a monoid over which
the Blelloch parallel scan operates.

One type of prefix-scannable models are linear time invariant dynamical systems.

Definition B.4 (LTI Linear Dynamical System). A linear time invariant system is defined by four
matrices (A,B,C,D) ∈ Rd×d defining

st+1 = Ast +Bxt (B.2)
yt = Cst +Dxt (B.3)

Here s0 = 0 is the initial state, and st is the state at time t ∈ Z+. xt ∈ Rd is the input at time t.

Definition B.5 (Associative Operator for Affine State Monoid). For each timestep, let gt be an
augmented pair gt := (Et,ft) := (A,Bxt) where Et ∈ Rd×d is a matrix and ft ∈ Rd is a vector.
We define an associative operator ⊕ as

(E2,f2)⊕ (E1,f1) = (E2E1,f2 +E2f1) (B.4)

To demonstrate that a sequence model is Prefix Scannable, we must verify two properties. Firstly,
that the operator ⊕ applied to all the gi over all timesteps computes the state. Secondly that, ⊕ is
associative.

Lemma B.6. Let Gt be the augmented pair equal to ⊕ applied to the sequence of augmented pairs
g1, ..., gT . Then

Gt = (Et,ft)⊕ ...⊕ (E1,f1) = (At,

t−1∑
k=0

At−1−kBxk) (B.5)

Secondly for any inputs gi, gj , gk we have (gi ⊕ gj)⊕ gk = gi ⊕ (gj ⊕ gk)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Proof by induction for the equality and straightforward computation for associativity.

We have base case.
(E2,f2)⊕ (E1,f1) = (A2,Bx2 +ABx1) (B.6)

Apply definitions to see this is true for general t.

Proof of associativity.

g1, g2, g3 we have (g3 ⊕ g2)⊕ g1 = g3 ⊕ (g2 ⊕ g1)

g3 ⊕ (g2 ⊕ g1) = (A,Bx3)⊕ (A2,Bx2 +ABx1) = (A3,Bx3 +ABx2 +A2Bx1) (B.7)

= (A2,Bx3 +ABx2)⊕ (A,Bx1) = (A,Bx3)⊕ (A,Bx2)⊕ (A,Bx1) (B.8)
= (g3 ⊕ g2)⊕ g1 (B.9)

Another type of prefix-scannable models are linear transformers and their gated variants.

Definition B.7. Gated Linear Attention (GLA) is defined with a states s1, ..., sT ∈ Rp×d, inputs
x1, ...,xT , gating function r : Rd → R, keys k1, ...,kT , kernel map ϕ : Rd → Rp

st = r(xt)⊙ st−1 + ϕ(kt)v
T
t (B.10)

(B.11)

We observe that GLA has an affine state recurrence.

Lemma B.8. Let Et ∈ R be a scalar that can be computed from xt. Let ft ∈ Rp×d be a matrix that
can be computed from xt. Then the GLA state recurrence is an affine function of the form

st = Etst−1 + ft (B.12)
(B.13)

In particular, let gt = (Et,ft) be an augmented pair, and let ⊕ be an operator defined as

(E2,f2)⊕ (E1,f1) = (E2E1,f2 +E2f1) (B.14)

Then ⊕ is associative, and st = gt ⊕ ...⊕ g1.

Proof. Proof by induction for the equality and straightforward computation for associativity.

First we prove st = gt ⊕ ...⊕ g1 by induction. Consider the base case.

g2 ⊕ g1 = (r(x2), ϕ(k2)v
T
2)⊕ (r(x1), ϕ(k1)v

T
1) (B.15)

= (r(x2)⊙ r(x1), ϕ(k2)v
T
2 + r(x2)⊙ ϕ(k1)v

T
1) (B.16)

= (r(x2)⊙ r(x1), s2) (B.17)

Then assuming the identity holds at timestep t− 1

gt ⊕ (r(xt−1)⊙ ...⊙ r(x1), st−1) = (B.18)

(r(xt)⊙ ...⊙ r(x1), r(xt)⊙ st−1 + ϕ(kt)v
T
t) (B.19)

as desired.

Then we also check associativity.

g3 ⊕ (g2 ⊕ g1) = g3 ⊕ (r(x2)⊙ r(x1), ϕ(k2)v
T
2 + r(x2)⊙ ϕ(k1)v

T
1) (B.20)

= (r(x3)⊙ r(x2)⊙ r(x1), ϕ(k3)v
T
3 + r(x3)⊙ ϕ(k2)v

T
2 + r(x2)⊙ r(x2)⊙ ϕ(k1)v

T
1) (B.21)

= (r(x3)⊙ r(x2), ϕ(k3)v
T
3 + r(x3)⊙ ϕ(k2)v

T
2)⊕ g1 (B.22)

= (g3 ⊕ g2)⊕ g1 (B.23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C ANALYTICAL DETAILS OF CHUNKING IN PREFIX SCANNABLE MODELS

Here we summarize the analytical details of PSMs (Def. 3.1). The model state of a PSM after
t chunks is the Blelloch prefix defined to be st = AggBlelloch

θ (a0:at), and the model outputs
ŷt = Infϕ

(
st−1, Ct

)
. The same state sequence {st} can be produced online with O(log t) memory

by replacing the static scan with the binary-counter scan of Alg. 2. The corresponding O(log t)-
parallel depth training algorithm and O(log t)-memory online decoding algorithm can be found in
Alg. 3 and Alg. 4, respectively. Note that both parallel loops and the STATICBLELLOCHSCAN have
depth O(log t), dominated by the static Blelloch scan, so the whole training pass admits efficient
batch execution.

The model has the following properties:

Sequential–parallel duality. Alg. 3 and Alg. 4 produce identical state sequences {st} (Theorem 3.5),
so a PSM trained with the static scan can be evaluated online with logarithmic memory.

Model family. Choosing Aggθ to be associative recovers known scan-friendly models as a strict
subset of PSMs; non-associative choices (e.g. a Transformer block) enlarge the design space while
retaining online decodability.

Complexities. Training: For sequences of length n, chunks of size c, we have O(n) work,
O(log(n/c)) depth. Online inference: O(c) amortised work per token and O(c log(n/c)) mem-
ory after n/c chunks.

Further details about the computational complexity are detailed below in Appendix D.

D COMPUTATIONAL COMPLEXITY OF PSMS

Let

• n – sequence length,

• c – chunk size (n = c·num_chunks),

• Lagg – number of Transformer layers in Aggθ,

• Linf – number of Transformer layers in Infϕ,

• ds and dx – hidden widths of the two modules (held constant).

Throughout we count one forward–backward pass as a single “time unit” and use the usual
dense-attention cost O(L ℓ2d) for a length-ℓ Transformer block with L layers. Only the scaling with
n, c, Lagg, Linf is retained; constant factors in ds, dx are suppressed.

Training (static Blelloch scan). The three parallel loops of Alg. 3 give

Ttrain = O
(
cnLagg + cnLinf

)
, Strain = O

(
cnLinf + cnLagg

)
. (C1)

Depth is O
(
Linf + log(n/c)Lagg

)
. because the static Blelloch scan dominates parallel runtime. Total

nonparallel runtime is linear in sequence length O(cnLagg + cnLinf). Additional factor of c comes
from c2 dense attention for n/c chunks.

Online inference (binary-counter scan). Each new chunk incurs

1. one Infϕ call ⇒ cost O(Linf c
2), and

2. at most log(n/c) calls to Aggθ per chunk ⇒ amortised cost O(Lagg).

Hence, for the whole length-n stream, we make n calls to Inf and n
c calls to Agg. The space at

inference is to store the kv-cache for the c tokens in Inf and the log(n/c) chunks of c tokens in Agg

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Tinfer = O
(
ncLinf + ncLagg

)
, Sinfer = O

(
cLinf + c log(n/c)Lagg

)
. (C2)

Per-token latency. Dividing (C2) by n gives

O
(
cLinf + cLagg

)
work and O(log n) space, confirming constant-time amortised decoding under fixed c.

Remarks.

• When c = Θ(1) (token-wise chunks) both training and inference are linear in n with
constant memory for Infϕ and logarithmic memory for Aggθ.

• For larger c the quadratic self-attention of Infϕ over each chunk dominates work.

• If Aggθ is associative, we may swap the static and online scans without affecting costs; thus
SSMs and gated linear attention inherit (C1)– (C2) as special cases.

E BEYOND AFFINE STATE RECURRENCE, PSM’S WITH GENERAL
AGGREGATION: FURTHER DETAILS

The prefix–scan (a.k.a. parallel prefix) is fundamental to many parallel algorithms. When the binary
operator is associative, the classic Blelloch scan (Blelloch, 1990) computes, in O(n) work and
O(log n) depth, the same left–to–right prefix values that a sequential loop would produce. This
section extends the view to non–associative operators such as those expressible by softmax attention.

But, there is a challenge with non-associativity: the numerical results of straightforward parallel and
sequential versions would differ since parenthesisation differs, challenging our duality. Parenthesisa-
tion here means the explicit placement of parentheses that fixes which two elements are combined
first when evaluating a long chain of binary operations. For instance,

aAgg bAgg cAgg d may be grouped as ((aAgg b)Agg c)Agg d or aAgg (bAgg (cAgg d)),

and when Agg is not associative the two expressions generally differ. The Blelloch algorithm removes
this ambiguity by committing to a single, fixed parenthesisation: the full binary tree generated by its
upsweep and downsweep. All variants we describe—static and online—evaluate exactly that same
tree, guaranteeing identical results even for non-associative operators.

We first review the static tree formulation, then present an online variant that realises exactly the same
parenthesisation while using only O(log n) memory. Throughout, let

Agg : M×M → M, identity element e ∈ M, (A1)

be an arbitrary binary operator. No associativity assumption is required unless stated.

First, we introduce the static Blelloch scan which is a “parallel” training over sequence elements.
Then we introduce the online binary counter scan which is the “sequential” inference over sequence
elements that computes prefixes with the same parenthesisation. The runtime required to run the
static Blelloch scan is T (n) = O(n), whereas the amount of space required during the online binary
counter scan is m(n) = O(log(n)). Taken together this analysis gives us PSMs in SPD-(n, log(n))
i.e linear compute during training and nearly linear space during inference.

Static Blelloch Scan (Alg. 1). Alg. 1 is agnostic to Eq. (A1), that is, it is valid for any operator. When
Agg is not associative, however, the output for index t no longer equals the sequential recurrence
st = Agg(at, st−1). Instead, it is the unique value obtained by applying Agg along the fixed
binary–tree parenthesisation imposed by the algorithm. The next subsection shows how to realise the
same parenthesisation online with logarithmic space.

Online Binary–Counter Scan (Alg. 2). The online variant processes the stream a0, . . . , an−1 left to
right while maintaining a binary counter of complete mini–trees. At time t (0–indexed) the binary

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

expansion of t+1 reveals which block sizes 2k are present. There is at most one mini–tree (its
root value) per block size, hence at most ⌈log2(t+1)⌉ roots in memory. Inserting a new element is
identical to adding 1 to a binary counter: each trailing 1 bit triggers a merge with Agg and a carry
to the next bit. Aggregating the occupied roots from most- to least-significant bit (MSB→LSB)
reproduces the value that the static Blelloch tree would hold after processing the same prefix.

We obtain the following correctness and complexity analysis.

Proposition E.1. After processing t+1 elements (t≥ 0), every non–empty root[k] equals the
aggregate of the most–recent 2k tokens xt−2k+1, . . . ,xt, and (t+1) is divisible by 2k.

Proof. By induction on t. The base case t=0 is immediate. For the inductive step, the carry chain
merges two adjacent blocks of size 2k precisely when bit k flips from 1 to 0 in the binary counter.
The merged value therefore covers the 2k+1 most recent tokens and is stored at position k+1, where
divisibility holds. Untouched positions keep their invariant.

Theorem 3.5. Let pt be the value emitted at time t by Alg. 2. Then pt equals the exclusive prefix
returned by the static Blelloch scan, regardless of whether Agg is associative.

Proof. By Proposition E.1 the occupied roots partition the first t+1 tokens into blocks whose sizes
are decreasing powers of two when listed MSB → LSB. This is exactly the leaf order of the perfect
binary tree used by the static algorithm. Each block’s internal value was constructed by the same
sequence of merges as in that tree; aggregating the blocks left–to–right therefore reproduces the tree’s
evaluation order and thus its numeric result.

Corollary 3.6. After t+1 chunks Alg. 2 stores at most ⌈log2(t+1)⌉ root values; hence the worst–case
space usage is O(log n).

Proof. The binary representation of t+1 contains at most ⌊log2(t+1)⌋+1 bits, and there is at most
one root per bit.

Work. Inserting a new element touches exactly the trailing 1–bits of t; the expected number of such
bits is 2, so the amortised number of Agg calls per element is constant.

Together, Theorem 3.5 and Corollary 3.6 show that the online binary–counter scan is an opti-
mal–space, streamable realisation of the Blelloch parenthesisation, extending prefix–scan tech-
niques to non–associative operators without increasing asymptotic cost in time. This flexibility
enables a larger class of prefix–scannable models: sequence models whose per–token state update
is any binary operator that admits O(log n) space O(1) time online evaluation via the mechanism
above. We provide further analytical details of PSMs in Appendix C.

20

	Introduction
	Sequence Models and Sequential–Parallel Duality
	Prefix–Scannable Models
	Model Description
	Modern RNN Layers Fit One Affine Scan
	Beyond Affine State Recurrence: PSMs with General Aggregation
	Transformer-PSM

	Experimental Results
	State Tracking S5
	Multi Query Associative Recall (MQAR)
	Language Modeling on WikiText-103 with Transformer-PSM

	Discussion and Conclusion
	Preliminaries and Depth Conventions
	Additional Proofs
	Modern RNN Layers Fit One Affine Scan
	Examples of Prefix-Scannable Sequence Models

	Analytical Details of Chunking in Prefix Scannable Models
	Computational complexity of PSMs
	Beyond Affine State Recurrence, PSM's with General Aggregation: Further Details

