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Abstract—Few-shot learning recognizes unlabeled samples
from new classes using only a few of samples. Many re-
cently proposed approaches have made progress based on meta-
learning. However, current methods often overlook the cate-
gory information within the query set and thus the obtained
prototype is always unreliable. To tackle this issue, we design
a Semantic-guided Diffusion Prototypical Network (SDPN) to
generate representative prototypes for few-shot classification.
Specifically, we leverage self-supervised learning to pre-train
the feature extractor, thus obtaining accurately visual features.
Furthermore, we introduce a semantic-guided diffusion process
that aims to generate semantic features of the query set from
random noise for a new task. Then, we introduce a visual-
semantic fusion strategy that involves the alignment of semantic
features with visual features to obtain representative prototypes
that correspond to each image. We perform comprehensive
experiments on minilmageNet and tieredlmageNet datasets, and
the results demonstrate that SDPN achieves enhancements in
comparison to state-of-the-art methods.

Index Terms—Few-shot Learning, Diffusion Model, Meta-
learning, Prototypical Network, Multi-modal

I. INTRODUCTION

Deep learning techniques typically require substantial anno-
tated data for training a model in order to achieve satisfactory
performance for different computer vision tasks. Nevertheless,
in practical applications, collecting such an extensive variety of
labeled datasets is impractical and costly. Consequently, few-
shot learning (FSL), which adapts to novel classes by training
a model using a group of base classes with limited labeled
data, has become an important research task. It is similar to
the nature of human learning, where individuals can rapidly
learn novel concepts based on limited samples [1].

Generally, FSL methods can be classified into three types:
metric-based, meta-learning-based, and semantic-based meth-
ods. These methods all use the episode mechanism in the
few-shot classification (FSC) task. The objective of FSC is
to categorize unlabeled samples (the query set) using limited
labeled samples (the support set). Metric-based methods [2],
[3], [4] learn a task-agnostic embedding that can be used
to calculate the distance between samples. Meta-learning
methods [5], [6] handle the FSL problem with a two-step
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learning process that involves meta-training and meta-testing.
Specifically, the learning model will be trained with numerous
independent supervised FSC tasks to learn how to adapt to
novel tasks during the meta-training stage. Afterwards, the
model is tested on a new unseen task during the meta-testing
stage. Semantic-based methods [7] aim to extract meaning-
ful features from the label information and combine visual
and semantic features into a representative prototype with
limited samples. To improve the accuracy of classification,
some methods pre-train feature extractors on base classes to
extract discriminative feature representations. Chen et al. [§]
introduced an additional pre-training step to greatly enhance
the accuracy of FSC tasks. This indicates that applying pre-
training is critical for obtaining representative prototypes for
FSC tasks.

Substantial advancements have been achieved in FSC tasks
by minimizing the cross-entropy loss of base class labels in the
pre-training and meta-learning stages. However, the optimized
model can only solve the FSC tasks of base class, but cannot
generalize well to novel classes. Furthermore, the majority of
current approaches rely on a single modality, which ignores
the benefits of combining multiple modalities, such as visual
data and semantic information, for enhancing the performance
of FSC. Recently, some methods [9], [10] have been proposed
to generate more representative prototypes by combining the
support set’s visual and semantic features. Nevertheless, they
did not consider the relationship between the semantic and
visual modality of the query sample since its label is not
available in the FSC tasks. In fact, the human perceptual sys-
tem possesses a distinctive mechanism for visual perception,
which can identify semantic information of new categories and
promote the learning of new categories using prior knowledge.
Therefore, it is necessary to design a new model that can
effectively combine and utilize semantic and visual features
of the query set to improve prototype representation.

This paper introduces the Semantic-guided Diffusion Pro-
totypical Network (SDPN) for few-shot classification. The
SDPN employs a semantic-guided diffusion process to gener-
ate semantic features of the query set. Then, it combines these
semantic features with visual features to create more accurate
prototypes for few-shot classification. There are three stages
that make up the proposed SDPN, which include pre-training,



forward diffusion, and reverse diffusion. The feature extractor
is trained on base classes via self-supervised learning during
the pre-training stage, which can help extract more representa-
tive features. In the forward diffusion stage, for the support set,
we utilize CLIP [11] to extract the features of class labels as
semantic features, and obtain the images’ visual features from
the pre-trained feature extractor. We employ meta-learning on
the support set to execute a generative process that smoothly
transforms visual features into semantic features. In the reverse
diffusion stage, we reconstruct the semantic features specific
to the query set by iteratively denoising on a random noise.
Finally, we fuse visual and semantic features of the support
set and query set to generate accurate query prototypes and
support prototypes based on the fusion strategy. We predict
the label of the query sample by measuring the similarities
between each query prototype and support prototype. The
primary contributions of our paper are as follows:

o We use self-supervised learning to train the feature ex-
tractor in the pre-training stage, with the goal of acquiring
high-quality visual features of samples.

o We propose a semantic-guided diffusion process that can
generate semantic features of the query set by condition-
ing random noise on a limited sample of a given new
task.

o We design a fusion strategy that combines the semantic
and visual features to obtain representative prototypes of
samples.

o We perform comprehensive experiments on two challeng-
ing benchmarks, minilmageNet [12] and tieredImageNet
[13], to verify the performance of our framework.

II. RELATED WORKS

A. Few-shot Learning

Few-shot learning (FSL) aims to effectively adapt novel
tasks using a few of labeled data. Representative FSL ap-
proaches include three types: metric-based, meta-learning-
based and semantic-based methods. Specifically, Metric-based
methods [2], [4], [12] learned a shared feature space, measur-
ing the similarity between samples using a specific distance
measure, such as Cosine similarity distance, Earth Mover
distance and Euclidean distance. Snell et al. [2] introduced
the prototypical network, a method that learns a metric space
can be used to obtain a prototype of each class, computing
the Euclidean distance between features of each category.
The meta-learning-based methods [5], [6] aim to learn an
initial parameter of the model, in which the learner samples
a series of training tasks from the base class for training and
further adapted to novel FSC tasks. Finn et al. [5] designed a
framework known as MAML, which learns an initialization
parameter of the base-learner in order to enable quicker
adaptation to novel tasks. Semantic-based methods [9], [10]
explore how to combine visual and semantic features for FSC
tasks. They demonstrated that using semantic features, such as
class names, can capture more accurate characteristics of the
classes. Xing et al. [9] introduced a method that integrates

visual and textual modalities by calculating an adjustable
mixture coefficient.

B. Contrastive Language-Image Pre-training

The Contrastive Language-Image Pre-training (CLIP) [11]
aims to provide the models with better semantic understanding
and generalization capabilities through contrastive learning
between language and image modalities. It has achieved
remarkable results in image classification, visual question
answering and semantic segmentation. In FSC tasks, the CLIP
extracts semantic features of the support set, which helps
improve the performance of FSL models. Gao et al. [14]
designed the CLIP-Adapter, which enhances the frozen CLIP
model for downstream FSC tasks by incorporating a multi-
layer perceptron (MLP) and integrating language knowledge
into the output. Zhang et al. [15] proposed Tip-Adapter, a
nonparametric adaptive method of CLIP, which can extract
knowledge from pre-trained CLIP with less data in FSC tasks.
In our work, we utilize CLIP as the text encoder to extract
semantic features from the samples without additional training
parameters.

C. Diffusion Model
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Fig. 1. The diffusion processes.

Diffusion models [16], [17] generate data by simulating a
Gaussian diffusion process, which includes both the forward
and reverse process. The overall diffusion process is illustrated
in Fig. 1. The forward process iteratively adds noise to the
image xg ~ g(«) through T times of accumulation to obtain
rg, T1,..., 7. As the number of iterations approaches
infinity, the generated sequence of samples tends towards a
Gaussian distribution, and it can also be regarded as a Markov
process:

Q(xt\ﬂit—ﬂ = N(xﬁ\/l_ﬁtxt—laﬂtl) (D

T

Q($1:T|$t) = HQ(xt\xt—l) 2

t=1

where {8 € (0,1)}/_, is a variance schedule. In this process,
as t increases, x; becomes closer to the noise.

By contrast, the reverse process is the denoising inference
process of diffusion. We reconstruct the original image x
from the standard Gaussian distribution zp ~ AN (0, I).
Since the reversed distribution ¢ (2¢_1|x:) is not computable,
the diffusion model to predict such a reversed distribution,
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(b) Diffusion Process

Fig. 2. The overall structure of the SDPN. The framework includes three stages, where the forward diffusion generates the semantic features based on visual
features on the support set. Then the reverse diffusion generates the semantic features of the query set. Afterwards, the fusion strategy combines the visual

and semantic features of the sample.

po (z1—1|zt) , as in (3), where the parameter of the generation
process is denoted as 6.

T
po (Xor) = p(ar) [[po (@eolze) 3)
t=1
where
po (weoalw) = N (zi-1;po (20,1),071) )
1 11—«
o (nt) = —= | @0 \/litée (@) ] )
— oy
where oy = 1— 0, and oy = HiT:1 «a; , N is a Gaussian

distribution, p is the mean and o is the variance. The primary
objective of the training process is to minimize the mean
square error (MSE) between the predicted €y and the actual
noise € [18], as shown in (6):

E—¢€p (\/ axo + V1 —&tat)

2

Ly = Eiage (6)
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Fig. 3. The pre-training process.

Then, we can sample from Gaussian noise z; and gradually
denoise it to generate the image x:

1 1—0415

Ty — €6 (x4, 1)
v V1—a

Choi et al. [18] added conditions into the dependent variable
of Denoising Diffusion Probabilistic Models (DDPM) [16],
resulting in the generation of high-quality and great-diversity
images. Moreover, the diffusion model’s sampling strategy has
allowed it to be utilized in various downstream tasks, including
translation from image to image and generation from text
to image, achieving overwhelming performance. Therefore,
inspired by using additional information to generate class-
specific images, we propose a Semantic-guided Diffusion Pro-
totypical Network (SDPN), which comprehensively analyzes
image and label information in FSC tasks to generate class-
specific prototypes.

Ti_1 +oie (7)

III. METHOD

This section provides a brief overview of our proposed
Semantic-guided Diffusion Prototypical Network, and then
describe each stage in details.

A. Method Overview

For few-shot classification, we typically partition the base
dataset into two sets: the base classes, denoted as C}, and the
novel classes, denoted as C,,, where C, N C,, = &. For an N-
way K-shot FSC task, there are two sets of samples used: i) the
support-set, which has N classes and K samples per class, and
ii) the query-set, which has Q unlabeled samples per class. The
i-th N-way K-shot problem be denoted as T; = {5, Q}, which
includes the support set S and the query set Q. Meanwhile,
the objective of FSC is to accurately categorize the query set
by utilizing limited samples. The proposed Semantic-guided
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Fig. 4. The attention maps of CAN [4], GLFA [19] and our proposed SDPN based on CAM [20]. We randomly select five images from the minilmageNet

dataset [12].

Diffusion Prototypical Network (SDPN) includes three stages,
which are pre-training, forward diffusion and reverse diffusion,
as shown in Fig. 2. Specifically, we train the feature extractor
using a set of base classes to predict rotated angles of an image
to improve feature representation during the pre-training stage.
During the forward diffusion stage, the SDPN is trained with
the support set, which generates diffused semantic features by
using the ground-truth (GT) label. During the reverse diffusion
stage, we add random noise into the reverse diffusion process
to generate the query set’s semantic features. Afterwards, we
fuse the samples’ semantic and visual features to generate
more representative prototypes, enhancing the classification
accuracy.

B. Pre-training

We introduce an auxiliary rotation loss to train the features
extractor fy that encodes the visual information for FSC tasks.
More precisely, we rotate the image using four angles, i.e.,
0°,90°,180° and 270°, and fo predicts the rotation angles of
these rotated images via the auxiliary rotation loss, as shown
in Fig. 3. The auxiliary rotation loss [21] is defined as:

1 G F
Lr = minaﬁzzl(fé(xi,j)7y) (®)

i=1 j=1

where G represents the number of input samples and F' = 4
denotes the four rotation angles. The x; ; indicates the i-th
sample with the rotation angle j, and [ (-) stands for the
cross-entropy loss.

C. Semantic-guided Diffusion

Due to the particularity of the FSC task, we need to obtain
the semantic features of the sample and improve the accuracy
and reliability of the prototype by fusing visual and semantic
features. However, the labels of the query set are not acces-
sible, so we propose a semantic-guided diffusion process in
forward diffusion and reverse diffusion stage. During forward
diffusion, for the support set, we use the noise scheduler to add
noise to semantic feature wg of to generate the noisy feature
wg, and compute the prototype vg via averaging the visual
features. Additionally, we input the noisy feature w§ and the
prototype vg into the semantic-guided diffusion module, which
generates the diffused semantic vector wg. The goal is to
generate the denoised semantic features of the support set by
minimizing the simplified variational lower bound Lp:

we = \apwg +\/1— ae 9)

ws = tg (wg,vs) (10)

Lp = ’ws —tg (\/ arwg +\/ 1 —O7t€,vs)

Here, tg (-, -) is achieved by the transformer model [24], which

2

(1)

is utilized to obtain the diffused semantic vector wg.

In reverse diffusion, for a new FSC task, we input both vg
and random noise ¢ to the learned semantic-guided diffusion
process, which generates the diffused semantic feature wg_l
of the query set.



TABLE I

COMPARISON TO PREVIOUS STUDIES ON MINIIMAGENET [12] AND TIEREDIMAGENET [13]

Method Type Backbone MinilmageNet TiredImagenet
5-way I-shot | 5-way 5-shot | 5-way I-shot | 5-way 5-shot
MetaOpt [6] Optimization | ResNet-12 | 65.64 £ 0.20 | 78.72 £ 0.15 | 68.50 £ 0.92 | 80.60 + 0.71
CAN [4] Metric ResNet-12 | 63.85 +£0.48 | 79.44 £ 0.34 | 69.89 + 0.51 | 84.23 £ 0.37
Meta-Baseline [8] Metric ResNet-12 | 63.17 £ 0.23 | 79.26 £ 0.17 | 68.62 + 0.27 | 83.29 + 0.18
FEAT [3] Metric ResNet-12 | 66.78 £ 0.20 | 82.05 + 0.14 | 70.80 + 0.23 | 84.79 £ 0.16
AM3-PNet [22] Metric ResNet-12 | 65.21 £ 0.30 | 75.20 £ 0.27 | 67.23 +0.34 | 78.95 + 0.22
SAPENet [23] Metric ResNet-12 | 66.41 £ 0.20 | 82.76 + 0.14 | 68.63 + 0.23 | 84.30 £ 0.16
GLFA [19] Metric ResNet-12 | 67.25 £ 0.36 | 82.80 + 0.30 | 72.25 + 0.40 | 86.37 + 0.27
SDPN (Ours) Metric ResNet-12 | 67.32 £ 0.22 | 83.52 + 0.21 | 72.75 + 0.20 | 85.15 +0.32
After T iterations, we obtain the final semantic feature oo —e— 5-Shot
o0 —e— 1-Shot

wg = tg (vg, ) of the query set, where ¢ is standard Gaussian
variable given by ¢ ~ N(0, I).

D. Prototype Generation

First, we use pre-trained feature extractor to obtain visual
features. Then, we compute visual prototypes v,, by averaging
the support set’s visual features for each class.

1

- (12)

Z fo(aj),n = 1,...,N

S
(wjvyj)esn

where S,, represents a subset of S that includes samples from
n different classes. Then, the semantic features w,, are denoted
as label embedding extracted from CLIP [11]. Finally, we
construct the final prototypes by combining v,, with w,, based
on the fusion strategy, which is denoted by:

Pn = Ay + (1=XNwp,m = 1,...,N (13)

To infer the labels of the query set, we measure the
Euclidean distance between ¢; and p,,.

d(gi;pn) = llgi—vnllyi = 1,....NKqg (14

PG = nlg) = —rb n=1,...,N
SN exp(—d(gi,pn)) s

where g; denotes the i-th query prototype, v,, represents visual
prototype of the n-th support set and y; represents the predicted
label of the i-th query sample.

Accordingly, the overall loss function of the SDPN uses a
weighted loss strategy:

Q
L(p) =Y [logp (y"[a%, ) + BLp]

i=1

(16)

where @) represents the number of samples for each query set,
[ represents the hyperparameter of the feature extractor.
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Fig. 5. Accuracy for different values of A.
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Fig. 6. Accuracy for different values of S.

IV. EXPERIMENT

We compared the SDPN to related state-of-the-art methods
to evaluate its performance on two publicly available datasets,
namely minilmagenet [12] and tieredlmagenet [13]. Further-
more, the ablation studies are performed on minilmagenet [12]
to assess the performance of each stage.

A. Datasets and Evaluation Metric

The minilmagenet [12] is a part of the ImageNet dataset
[25]. Tt includes 100 categories, and each category contains a



total of 600 images. It was divided into 64, 16, 20 classes for
training, validation and test.

The tieredImagenet [13] is a part from the ImageNet dataset
[25], consisting of 608 categories, and each category contains
a total of 1200 images. It was divided into 20, 6, 8 classes for
training, validation and test.

B. Implementation Details

We utilize the ResNetl2 as the feature extractor which is
consistent with the majority of previous studies [3], [4], [6].
The features are obtained by taking an average of the outputs
from the final residual block. Our semantic-guided diffusion
network is based on the transformer [24]. For minilmageNet
[12], we perform training with 100 epochs, setting the batch
size to 128. Moreover, the learning rate decays every 25
epochs. For tieredlmageNet [13], we used batch size of 128
and ran 100 epochs. Meanwhile, the learning rate decays at
epoch 20 and 60. The studies were conducted using a PyTorch
3.9 framework on an NVIDIA GeForce RTX 3080 GPU.

TABLE II
ABLATION STUDY OF DIFFERENT MODULES
Module
1-shot 5-shot
Pre | Rotate | SGN
X X X 4942 + 0.78 | 68.20 + 0.66
v X X 63.17 £ 0.23 | 79.26 = 0.17
v v X 64.27 £ 0.13 | 81.96 = 0.32
v v v 67.32 £ 0.22 | 83.52 £ 0.21
TABLE III

ABLATION STUDY OF SEMANTIC EMBEDDING

1-shot
66.55 + 0.36
67.32 + 0.22

5-shot
81.90 + 0.55
83.52 + 0.21

Semantic Extractor
Word2Vec [26]
CLIP [11]

C. Results

We perform numerous experiments on minilmageNet [12]
and tieredImageNet [13]. Table I shows the results when com-
paring our proposed SDPN to the existing FSC approaches.
Here, all methods employ the ResNetl2 architecture as the
backbone. Overall, the SDPN achieves competitive perfor-
mance to existing methods. In the 5-way 1-shot and 5-way
5-shot settings, our SDPN surpasses GLFA [19] by 0.07%
and 0.72% respectively on minilmageNet [12]. The SDPN
performs better than the metric-based method SAPENet [23]
by 4.12% and 0.85% respectively on tieredlmageNet [13]. Fur-
thermore, the SDPN performs better than the semantic-based
method AM3-PNet [22] by 2.11% and 8.32% respectively on

minilmageNet [12]. In contrast to AM3-PNet [22], which only
extracts word embeddings for category labels in the support
set, our method utilizes the semantic information of the
support set and query set. This enables a better understanding
of the data and results in enhanced classification performance.

D. Ablation Study

To explore the performance of overall framework, we per-
form comprehensive experiments using the minilmageNet [12]
dataset under the 5-way setting.

a) The effects of different modules: We analyze the
effects of various combinations of three modules. The results
show that each of the three modules designed in SDPN are
effective, as demonstrated in Table II.

b) The effects of Semantic Embedding: In our experi-
ments, we utilize CLIP [11] to extract semantic features. We
train our model with Word2Vec [26] and CLIP as the Semantic
Embedding, and the corresponding results are presented in
Table III. Here, the CLIP model is trained using a dataset of
400 million pairs consisting of images and their corresponding
text titles. In addition, Word2Vec is a model for efficient
training of word vectors.

c) The influence of the hyperparameters: Fig. 5 describes
the results obtained by varying the hyperparameter A\, which
represents the hyperparameter of the fusion strategy when
combining the visual prototype and semantic prototype. The
analysis indicates that A = 0.4 can achieve best performance
in the 1-shot and 5-shot settings for minilmageNet. Fig. 6
presents the results of various values on hyperparameter /3,
which represents the loss weight of the diffusion process. The
analysis indicates that 5 = 0.45 can achieve best performance
in the 1-shot and 5-shot settings for minilmageNet. The red
line and blue line represent distinct settings of 5-shot and 1-
shot, respectively.

E. Visualization

To prove the performance of SDPN, we employ CAM
[20] to generate attention maps for representative classes. By
examining the attention maps generated by CAN [4], GLFA
[19], and SDPN, as depicted in Fig. 4. In particular, it indicates
that SDPN can identify the regions that are more significant
and relevant. For the example image from the malamute class,
the SDPN can capture more meaningful information than both
CAN [4] and GLFA [19].

F. Conclusion

In this work, we introduce a Semantic-guided Diffusion
Prototypical Network for FSC tasks, which consists of three
stages, i.e., pre-training, forward diffusion and reverse diffu-
sion. The pre-training stage improves the reliability of the
feature extractor via self-supervised learning by using auxiliary
rotation loss. The forward diffusion stage learns to transform
the visual features into semantic features of the support set.
The reverse diffusion stage generates the query set’s semantic
features by conditioning random noise on a limited sample of a
given new task, which generates representative support proto-
types and query prototypes. Numerous experiments conducted



on two benchmark datasets achieve competitive performance
compared to related methods in FSC tasks.

Although our method obtains satisfactory performance in
few-shot learning, it faces a few limitations, such as the
computational complexity of hyperparameter optimization.
We need to optimize different hyperparameters for different
datasets. Furthermore, noise sensitivity and higher inter-class
similarity can limit performance in few-shot classification. In
our future work, we will concentrate on executing adaptive
hyperparameter optimization and improving the robustness to
noise. In addition, we aim to improve our method to promote
inter-class distinction and integrate prompt learning to enhance
the effectiveness of our model.
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