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Fig. 1. Single-photon 3D imaging systems measure a spatio-temporal volume containing photon counts (left) that include ambient light, noise, and photons

emitted by a pulsed laser into the scene and reflected back to the detector. Conventional depth estimation techniques, such as log-matched filtering (center

left), estimate a depth map from these counts. However, depth estimation is a non-convex and challenging problem, especially for extremely low photon

counts observed in fast or long-range 3D imaging systems. We introduce a data-driven approach to solve this depth estimation problem and explore deep

sensor fusion approaches that use an intensity image of the scene to optimize the robustness (center right) and resolution (right) of the depth estimation.

Sensors which capture 3D scene information provide useful data for tasks

in vehicle navigation, gesture recognition, human pose estimation, and

geometric reconstruction. Active illumination time-of-flight sensors in par-

ticular have become widely used to estimate a 3D representation of a scene.

However, the maximum range, density of acquired spatial samples, and

overall acquisition time of these sensors is fundamentally limited by the min-

imum signal required to estimate depth reliably. In this paper, we propose a

data-driven method for photon-efficient 3D imaging which leverages sensor

fusion and computational reconstruction to rapidly and robustly estimate

a dense depth map from low photon counts. Our sensor fusion approach

uses measurements of single photon arrival times from a low-resolution

single-photon detector array and an intensity image from a conventional

high-resolution camera. Using a multi-scale deep convolutional network,

we jointly process the raw measurements from both sensors and output a

high-resolution depth map. To demonstrate the efficacy of our approach, we

implement a hardware prototype and show results using captured data. At

low signal-to-background levels, our depth reconstruction algorithm with

sensor fusion outperforms other methods for depth estimation from noisy

measurements of photon arrival times.
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1 INTRODUCTION

3D imaging systems provide scene information crucial for a diverse

range of applications, including autonomous vehicles, robotic vi-

sion, 3D object modeling, gesture recognition, pose tracking, scene

understanding, segmentation, localization and mapping, and remote

sensing. Depth sensors using the time-of-flight (ToF) principle are

among the most popular choices with pulsed systems being most

suitable for long-range outdoor applications [Horaud et al. 2016;

Koskinen et al. 1992].

Pulsed ToF or light detection and ranging (LIDAR) systems often

employ a co-axially aligned laser diode and single-photon detector.

The laser emits a short pulse, usually on the order of hundreds of

picoseconds or a few nanoseconds, and the detector timestamps the

arrival of photons reflected back by the scene. Thus, for a single

emitted pulse or a sequence of pulses, the detector records a tem-

poral histogram of photon counts. A 3D spatio-temporal volume

containing raw photon counts is then acquired by either scanning

the laser-detector pair, using an array of these pairs, or using a

hybrid approach of scanning and arraying.

Robustly estimating depth from raw photon counts acquired with

pulsed ToF systems in low-flux scenarios is a major challenge [Mc-

Carthy et al. 2013; Pawlikowska et al. 2017]. When only a few signal
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photons arrive at the detector, ambient photons and noise contami-

nate these measurements (see Fig. 1). With non-negligible amounts

of ambient photons, the depth estimation problem becomes non-

convex [Shin et al. 2015]. To address these challenges, a number

of heuristic algorithms have recently been proposed to process

noisy photon counts with as few as a single photon measured per

pixel [Kirmani et al. 2014; Rapp and Goyal 2017; Shin et al. 2015,

2016]. However, such approaches make several restrictive simplify-

ing assumptions and require many user-defined parameters, reduc-

ing their effectiveness when applied to harsh and diverse imaging

conditions observed in the wild.

Inspired by recent successes of data-driven approaches in other

communities, we adopt a deep learning approach to photon-efficient

3D imaging. We show that this approach is flexible enough to adapt

to different imaging scenarios and that it intuitively allows for sen-

sor fusion, for example with a high-resolution intensity image, to

optimize the estimated scene depth. Specifically, we develop and

train a convolutional neural network (CNN) that robustly estimates

depth from raw photon counts measured with pulsed ToF systems.

Our contributions include

• a CNN architecture for estimating a depth map from single-

photon sensor measurements;

• a sensor fusion model that improves the depth estimation by

jointly processing raw photon counts and measurements of a

regular camera with the CNN;

• an end-to-end approach for guided depth upsampling with

the proposed sensor fusion model, improving the resolution

of the estimated depth maps;

• validation of the proposed reconstruction techniques on a

novel single-photon imaging system, which captures 256×256

single-photon measurements at 20Hz.

Overview of System Tradeoffs. All 3D imaging systems that use

active illumination make tradeoffs between image resolution, scan-

ning speed, and light efficiency. Long-range scanning, for example,

can be achieved by concentrating all available energy of the light

source to a single point, which is sequentially scanned over the scene

with slow acquisition rates [McCarthy et al. 2013; Pawlikowska et al.

2017]. The light source can also be diffused over the entire scene,

enabling fast but short-range 3D imaging with array detectors [Kolb

et al. 2009]. Hybrid systems use line sensors with line-scanned

illumination to achieve a balanced tradeoff between range and scan-

ning speed [Achar et al. 2017; O’Toole et al. 2015]. In principle, our

algorithms apply to all of these systems, but we experimentally

demonstrate them with a hybrid line-scanned system that achieves

a moderate resolution and scanning speed for ranges up to a few

meters.

2 RELATED WORK

Time-of-flight Imaging. 3D imaging systems based on the time-

of-flight principle generally use either amplitude-modulated contin-

uous wave (AMCW) or pulsed illumination. AMCW systems often

suffer from phase-unwrapping artifacts and are typically limited

to short or medium ranges, making them most suitable for indoor

applications. Pulsed systems are often superior for long-range 3D

imaging outdoors because, for a given power budget, they can con-

centrate all available energy of the light source both spatially and

temporally, enabling more accurate ranging with faster acquisition

times in the presence of strong ambient light. An overview of these

technologies can be found in the surveys by Koskinen et al. [1992],

Kolb et al. [2009], and Horaud et al. [2016].

Pulsed systems typically consist of a short duration light source

paired with a detector, such as an avalanche photodiode (APD) or a

single-photon avalanche diode (SPAD) [Dautet et al. 1993; Renker

2006]. Whereas linear-mode APDs have demonstrated robust per-

formance in commercial LIDAR systems, SPADs are an emerging

platform for photon-efficient 3D imaging, operating in a highly

sensitive single-photon counting mode with improved timing pre-

cision [McCarthy et al. 2013; Pawlikowska et al. 2017; Tobin et al.

2017]. SPADs can also be used in low-flux regimes for intensity

estimation [Altmann et al. 2017]. Our prototype uses a linear array

of 256 SPADs [Burri et al. 2016] and a pulsed laser. We augment

our system with a conventional high-resolution camera and explore

novel sensor fusion algorithms that improve robustness, precision,

and resolution of estimated depth maps compared to state-of-the-art

algorithms [Kirmani et al. 2014; Rapp and Goyal 2017; Shin et al.

2015, 2016].

Sensor Fusion in 3D Imaging. Fusing depth and RGB (or mono-

chrome) images has emerged as a popular method for improving

depth estimates, especially due to the prevalence of cameras which

can simultaneously capture RGB and depth (RGB-D) images. Sen-

sor fusion approaches have been proposed to improve 3D map-

ping procedures with RGB-D cameras [Henry et al. 2012], perform

segmentation and tracking [Bleiweiss and Werman 2009], and per-

form upsampling of the low-resolution depth image using a high-

resolution intensity image captured from a similar viewpoint. Diebel

and Thrun [2006] use Markov Random Fields to model the relation-

ship between a depth and RGB image and perform upsampling on

the depth image.

Image-guided depth upsampling has also been proposed using a

joint bilateral filter [Kopf et al. 2007] and an iterative refinement ap-

proach with bilateral filtering [Yang et al. 2007]. Another approach

extends the bilateral upsampling technique to use a multi-lateral

filter which better accounts for noise in the depth data [Chan et al.

2008]. Park et al. [2011] demonstrate a framework for depth upsam-

pling using nonlocal means filtering along with an edge-weighting

scheme using high-resolution features from an RGB image. Finally,

Ferstl et al. [2013] model depth as piecewise affine surfaces using

Total Generalized Variation regularization; they then recover the

upsampled depth by solving a convex optimization problem. An

overview of additional sensor fusion approaches for AMCW systems

can be found in the survey by Kolb et al. [2009].

More recently, image-guided depth upsampling has been dis-

cussed in the context of deep neural networks. In particular, Hui et

al. [2016] use a multiscale approach for this task, where a learned

downsampling operator is used to pass an intensity image to a

depth-upsampling network at multiple scales. Li et al. [2016] use

two subnetworks to extract features from the guidance image and

the depth image. The features are then concatenated and mapped
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to the output image by a third subnetwork. Their approach also ex-

tends to other guidance-based image reconstruction methods, such

as flash and no-flash image reconstruction [Petschnigg et al. 2004].

Although Marco et al. [2017] and Su et al. [2018] do not use sensor

fusion, they also recently showed that an end-to-end learning ap-

proach can optimize the quality of depth maps for AMCW systems.

Similar to some of these methods, we employ a deep learning ap-

proach to depth estimation, where features from the intensity image

are used at multiple scales to inform denoising and upsampling

of the depth map; however, our approach is the first to model the

full pipeline from raw measurements of single-photon detectors to

estimated depth maps in an end-to-end fashion. Our methods are

thus unique in tailoring deep sensor fusion to long-range pulsed

time-of-flight imaging systems.

3 MODELING SINGLE-PHOTON IMAGING SYSTEMS

In this section, we outline an image formation model for the single-

photon detectors and pulsed laser used in our prototype system. We

also use this model to generate training data for the CNN discussed

in the following sections.

3.1 Image Formation Model

Consider a light source that emits a short pulse at t = 0 with

temporal shape д (t), and an object at some distance z. The object

reflects light back to an idealized detector, which counts photon

arrivals over bins of duration ∆t . Ignoring noise, ambient light,

and radial falloff effects, the number of detected photons τ at time

interval n is

τ [n] =

∫ (n+1)∆t

n∆t
(д ∗ f )

(

t −
2z

c

)

dt , (1)

where f models the temporal uncertainty of the detector and c is

the speed of light. This model assumes single bounce light transport,

and ignores multiply scattered light for simplicity.

Single-photon detectors, such as single-photon avalanche diodes

(SPADs), approximate ideal photon detectors [O’Connor and Philips

1984; Renker 2006], but have a non-zero dark count d (number of

false detections), and incoming photons are detected with probabil-

ity η ∈ [0, 1]. For SPADs, f is related to the jitter of the underlying

time-stamping mechanism and is usually on the order of tens to a

few hundred picoseconds.

The number of photons measured by a SPAD in response to N

illumination periods of a light pulse is represented by a temporal

histogram

hm [n] ∼ P (N (ηγτ [n] + ηa + d)) , (2)

where a is the number of ambient photons and the scalar γ mod-

els attenuation factors including radial falloff and reflectance. The

measurements are thus modeled as a Poisson process P with a

time-varying arrival function.

While this image formation model is insightful and widely used

(e.g. [O’Toole et al. 2017; Rapp and Goyal 2017; Shin et al. 2015,

2016]), it makes several assumptions. First, after detecting an event,

a SPAD must be reset or quenched before another event can be

detected. We assume that this dead time is smaller or equal to the

time between successively fired pulses. Second, the incident photon

flux is assumed to be low, such that the effect of spurious charge

carriers in the SPAD that could affect later events is minimized.

This low-flux regime allows the detection of photon events to be

modeled as being independent between pulses. Third, for a set of N

illumination periods, the SPAD detects a random number k ≤ N of

photons that follows a binomial distribution. Under the Poisson limit

theorem, the measurements are well-approximated by a Poisson

distribution as given by Equation (2).

4 ROBUST DEPTH ESTIMATION

4.1 Background

Using the probabilistic model for the measured photon counts, a

maximum likelihood estimate for the target depth, given as the time-

delay of the illumination pulse, can be derived [Shin et al. 2015].

The estimated time delay is calculated as p∗∆t , where p∗ is given

by

argmax
p≥0

∑

n

log (ηγτ [n − p] + ηa + d) · hm[n], (3)

and consists of determining the position of maximum correlation

between the measurements hm and a filter matched to the log of

the photon arrival function. In practice, this estimate is unsuitable

because it requires knowledge of γ , which may not be available.

Further, the problem is non-convex when the noise terms a andd are

non-zero. However, in the case of zero noise, the estimate reduces

to applying a log-matched filter and determining the maximum

correlation position:

argmax
p≥0

∑

n

log (τ [n − p]) · hm[n]. (4)

This problem is convex as ∆t → 0 in the common case when

the measured illumination pulse д ∗ f can be approximated by a

log-concave function, such as a Gaussian.

While the log-matched filter method for depth estimation is gen-

erally applicable when operating in a high signal-to-background

(SBR) photon count regime, it produces poor results when oper-

ating at photon-efficient levels where only a few signal photons

are detected among many background detections. Photon-efficient

techniques for depth estimation thus produce an output ĥ which

approximates a ground truth quantity h: a set of measurement his-

tograms where all detection events corresponding to background

sources have been removed, and only detections corresponding to

photon arrivals from the signal source remain. Once all background

photons have been censored, a log-matched filter can be applied to

estimate depth. A convex spatial prior may also be used to enforce

spatial smoothness in the final depth estimate.

Background censoring techniques, however, rely on heuristic

methods such as superpixel clustering [Rapp and Goyal 2017], identi-

fying discrete, sparse depth clusters in a histogram of depthmeasure-

ments [Shin et al. 2016], or using a rank-ordered mean filter [Abreu

et al. 1996; Shin et al. 2015]. Such methods can also require scene-

dependent parameter tuning or iterative computations to produce

an acceptable result.

While recent photon censoring methods have enabled photon-

efficient imaging at single photon levels, the difficulty of accounting

for background photon counts in the analytical estimate and the use

of heuristic methods motivates a data-driven approach. Learning to
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Fig. 2. Illustration of the convolutional neural network architecture. The denoising branch (left) takes as input the 3D volume of photon counts and processes

it at multiple scales using a series of 3D convolutional layers. The resulting features from each resolution scale are concatenated together and optionally

concatenated with additional features from an intensity image in a sensor fusion approach. A further set of 3D convolutional layers regresses a normalized

illumination pulse, censoring the background photon events. A differentiable argmax operator is used to localize the time of flight of the estimated illumination

pulse and determine the depth. In the image-guided upsampling branch (right), we adopt the approach of Hui et al. [2016]. The network predicts high-frequency

differences between an upsampled low-frequency depth map and the high-resolution depth map using multi-scale guidance from high-frequency features of

the intensity image. The entire network is trainable end-to-end for depth estimation and upsampling from raw photon counts and an intensity image.

censor noisy photons from the data yields improved non-iterative

estimates of h without scene-dependent parameter tuning (given

that the training data is consistent with the observation). As a result,

significant improvements in depth estimates can be obtained at

lower SBR levels as shown in the following.

4.2 Depth Estimation with a CNN

Motivated by the flexibility and strong performance of convolutional

neural networks (CNNs) in denoising and reconstruction tasks, we

design an architecture for the depth estimation problem. The CNN

(illustrated in Figure 2) receives as input the 3D volume of raw

photon counts hm and produces a 2D depth image as output.

The structure of the network is inspired by state-of-the-art ar-

chitectures for the task of semantic segmentation wherein object

classifications are assigned to each pixel of an output image [Lin et al.

2017; Peng et al. 2017]. The depth estimation problem is analogous

to the semantic segmentation problem in that the network should

output one of many possible discrete depth values, as opposed to

class values, for each pixel. Recent performance improvements for

the semantic segmentation task have come through processing the

input at multiple resolution scales, and then fusing the separate

outputs together to produce the final estimate. We adopt a similar

multi-scale approach.

Unlike the task of semantic segmentation, the input to the net-

work consists of a large measurement volume (256 × 256 × 1536

for our hardware prototype), and we optimize a different objective

function tailored to the depth estimation problem. Given the size

of the input measurement volume, the number of convolutional

layers and filters is limited in order to keep memory requirements

practical during training and inference. We also consider the di-

mensionality of convolutional filters in the context of the depth

estimation problem. A 2D convolutional filter would slide across

the input spatial dimensions while spanning the sizeable length of

the temporal dimension. To reduce the filter memory required and

to better exploit temporal spatial correlations in the data, we use

3D convolutional filters.

The depth-estimation network incorporates an objective func-

tion which results in a two-step depth estimation process, similar

to other approaches [Rapp and Goyal 2017; Shin et al. 2015, 2016].

The network first estimates the denoised histogram ĥ, and the final

depth is produced by a peak fitting step which reports the bin index

of the maximum value of ĥ. While a deeper network might be able

to directly learn this two-step procedure, we find that our network

achieves satisfactory performance with practical computation and

memory requirements by directly modeling h. Further, our objec-

tive function for depth estimation is fully differentiable, and so the

process is trainable using conventional gradient backpropagation

techniques.

The objective function for the denoising step is given as the

Kullback-Leibler (KL) divergence at each spatial position between

the output of the network and a normalized version of h. This loss

function can be written for each spatial position k as

DKL(h
(k )
, ĥ

(k )) =
∑

n

h
(k )[n] log

h
(k )[n]

ĥ(k )[n]
, (5)

where ĥ is the output of the final 3D convolutional layer after a

softmax nonlinearity, which causes ĥ to sum to unity and values

outside the location of the illumination pulse to tend to zero. Note

that this expression is equivalent to cross-entropy up to an additive

constant; however, the term cross-entropy sometimes implies that

the ground truth class (or bin index) has probability equal to 1. In

our problem, the network should have multiple non-zero outputs

for bins within the estimated area of the illumination pulse.
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We also introduce a term for total variation (TV) spatial regular-

ization on the output depth image which improves denoising per-

formance, especially in the low SBR case where few signal photons

are detected. As the regularizer should be applied to the estimated

2D depth, we apply a differentiable, or łsoft,ž argmax operator to ĥ

to find the approximate value of the maximum bin index through a

simple weighted sum calculation

soft argmax
(

ĥ
(k )

)

=

∑

n

n · ĥ(k )[n]. (6)

The complete loss function used to train the network for depth

estimation is thus given as

L(h, ĥ) =
∑

k

DKL(h
(k )
, ĥ

(k )) + λTV TV
(

soft argmax(ĥ)
)

, (7)

where λTV is a non-negative scalar that determines the magnitude

of the regularizer loss.

4.3 Evaluation

We evaluate the CNN on a set of measurements simulated from the

Middlebury stereo dataset [Scharstein and Pal 2007]. Details on the

training dataset and procedure can be found in Appendices A and B.

A summary of these simulations is shown in Table 1. We report

the root-mean-square error (RMSE) values averaged across 8 Middle-

bury test scenes over a number of simulated signal and noise levels

for log-matched filtering, the method of Shin et al. [2016], Rapp

and Goyal [2017], and our CNN. For signal-to-background ratios

greater or equal to 1, the reconstruction from Shin et al. provides

accurate results, but as the SBR decreases further, the quality sharply

decreases and the reconstruction exhibits a large depth bias due to

the background photon censoring step. The log-matched filtering

results consistently degrade with decreasing SBR. While Rapp and

Goyal’s method [2017] performs well across all levels, our methods

(i.e. with the intensity image) show improvements in certain cases

in the simulated depth estimation and upsampling results and for

the captured results as shown in the following sections. In particu-

lar, Rapp and Goyal’s method incorporates spatial regularization to

encourage smoothness; however, in some circumstances, this comes

at a cost of smoothing over edges or fine details which the CNN ap-

proaches correctly reconstruct. We also show that performance can

be improved in certain cases by fine-tuning the network on specific

signal and SBR levels as shown in Table 1. Additional quantitative

and qualitative results are included in the supplemental document.

Our method also requires no user-defined parameters at runtime,

resulting in improved performance where differing object depths

and ambient illumination significantly alter spatially-local SBRs.

This is particularly relevant for scenes captured with our hardware

prototype and for longer-range scenes, where SBR levels change

dramatically at different object distances. We characterize the sen-

sitivity of Rapp and Goyal’s method to an input SBR parameter in

the supplementary document and find that for an SBR mismatch

of a factor of 5 from the nominal value, RMSE on the Middlebury

scenes becomes worse than our approach with the intensity image

for SBRs < 0.5.

Table 1. Quantitative comparison of several depth estimation techniques

for varying photon counts of signal and background (BG); the signal-to-

background ratio (SBR) is indicated. All results are reported as average

root-mean-square error (RMSE) over the test set containing 8 scenes. We

show results for our CNN trained on a large range of signal and background

ratios (A) and fine-tuned at each specific level (B). Using an intensity image

with the CNN further improves the depth map. For the most challenging

setting of 2 signal photons with 50 background photons, the RMSE of our

method with the intensity image (A) outperforms other methods.

Avg. Avg. BG LM Shin Rapp Ours w/o Ours w/ Ours w/

Photons (SBR) Filter [2016] [2017] Intensity (A) Intensity (A) Intensity (B)

10 2 (5) 0.513 0.0350 0.0170 0.0250 0.0189 0.0143

5 2 (2.5) 1.167 0.0662 0.0177 0.0317 0.0193 0.0218

2 2 (1) 2.416 0.1922 0.0190 0.0395 0.0248 0.0267

10 10 (1) 0.833 0.0392 0.0172 0.0293 0.0199 0.0176

5 10 (0.5) 1.879 0.0647 0.0168 0.0348 0.0206 0.0189

2 10 (0.2) 3.741 1.8484 0.0209 0.0464 0.0273 0.0336

10 50 (0.2) 1.757 0.5998 0.0177 0.0292 0.0217 0.0169

5 50 (0.1) 3.520 3.3772 0.0195 0.0375 0.0224 0.0438

2 50 (0.04) 5.763 4.5452 0.0384 0.0838 0.0264 0.1416

5 DEEP SENSOR FUSION OF RAW PHOTON COUNTS
AND INTENSITY IMAGE

Features from a high-resolution intensity image can be used jointly

with raw photon counts to improve the robustness of depth recon-

struction and to inform upsampling of low-resolution depth maps.

In the following sections, we explore using an intensity image for

improved depth estimation and end-to-end training of the network

for depth estimation and image-guided depth upsampling.

5.1 Sensor Fusion for Depth Estimation

Incorporating the intensity image into the depth estimation process

gives distinct intuitive advantages: values of the intensity image

indicate howmuch background noise can be expected at each spatial

location, facilitating an adaptive denoising approach, and at high

levels of background light, gradient information in the intensity

image provides a strong signal for the structure of the reconstructed

depth image.

We can therefore slightly modify the architecture described in the

previous section to incorporate features from the intensity image,

as shown in Figure 2. Our method is partly inspired by the general

strategy of Li et al. [2016] who use a fusion network to process

concatenated image features from two 2D images of differing imag-

ing modalities. Our case, however, requires fusion of both 2D and

3D image features. The fusion step is performed by repeating the

intensity image features along the temporal dimension of the 3D

volume of photon counts, and concatenating it as an additional 3D

feature volume. Intuitively, this allows the subsequent 3D convo-

lutional filters to incorporate information from spatial structures

in the intensity image features as they are translated across the

temporal dimension. The combined features are processed with 3D

convolutions in the last layers of the network. We demonstrate that

this sensor fusion approach leads to improved depth estimation.

The intensity image can also be used for upsampling the estimated

depth image.
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Fig. 3. Comparison of reconstruction techniques for measurements simulated with an average of 2 signal photons and 50 background photons per pixel. The

proposed deep sensor fusion approach achieves the lowest error and more accurately reconstructs the geometry of thin structures and depth discontinuities.

Depth estimation using the CNN without the intensity image exhibits artifacts in low-intensity regions and where large intensity variations occur. Note that

the depth estimation errors of Shin’s method are out of the bounds of the colormap used for the other subfigures; we colorize these two figures in a different

depth scale as indicated.

Fig. 4. Closeup views of ground truth depth and depth reconstructions

from Rapp and Goyal [2017] and the proposed CNN with and without the

intensity image (images cropped from indicated areas in Figure 3). The

measurements are simulated with an average of 2 signal photons and 50

background photons per pixel.

5.2 Guided Depth Upsampling

Recent approaches for image-guided upsampling of depth images

based on deep convolutional networks have exhibited state-of-the-

art performance for this task [Hui et al. 2016; Li et al. 2016]. These

approaches use a set of 2D convolutional layers to initially process

the high-resolution intensity and low-resolution depth image, then

process features from each image together while progressively up-

sampling the intermediate features to produce a high-resolution

output depth map.

We explore the task of joint depth estimation and upsampling and

adopt the approach of Hui et al. [2016] for image guided upsampling.

However, instead of using clean depth images as input, we use the

imperfect, low-resolution depth map from the depth-estimation

network, given by soft argmax(ĥ). The resulting architecture is fully

differentiable and can thus be jointly trained for depth estimation

and upsampling.

To perform the upsampling, features from the intensity image are

concatenated with features from the depth image at multiple reso-

lution scales. The network predicts high-frequency differences be-

tween a bicubicly-upsampled low-pass-filtered depth image and the

ground-truth high-resolution depth image. The final high-resolution

image is reconstructed by adding the predicted high-frequency fea-

tures to the low-pass-filtered depth image after bicubic upsampling.

A diagram of the upsampling network is included in Figure 2 and

illustrates the multi-scale approach. Intuitively, the approach of split-

ting the low and high-frequency components allows the network to

focus explicitly on reconstructing high-resolution edge features.

The network is trained end-to-end for depth estimation and

guided upsampling using the following loss function.

Lup(h, ĥ, zh, ẑh) =
∑

k

λup∥zh
(k ) − ẑ

(k )

h
∥1 + DKL(h

(k )
, ĥ

(k )). (8)

Here we follow Hui et al. [2016] and penalize differences between

the predicted high-frequency features from the upsampling net-

work, ẑh, and the ground truth high-frequency differences between

the upsampled output of the depth-estimation network and the

ground truth high-resolution depth image, zh. We also retain the

KL divergence loss from the depth-estimation network which we

find improves performance. The relative weighting between the loss

functions is tuned using λup.

5.3 Evaluation

We evaluate the performance of the trained depth-estimation net-

work with sensor fusion and the jointly-trained upsampling network

on the simulated measurements from the Middlebury test scenes.

Details on the training procedure for each network can also be found

in Appendix B.
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Fig. 5. Qualitative comparison of guided depth upsampling algorithms for łReindeerž scene. In the columns, we show the measurements along with the

estimated upsampled depth maps using different depth estimation and upsampling techniques: low-resolution depth estimation with Rapp and Goyal [2017]

and a pre-trained network for guided upsampling [Hui et al. 2016], depth estimation with the proposed CNN and bicubic upsampling, depth estimation

with the proposed CNN and pre-trained guided upsampling, and the proposed end-to-end trained network for depth estimation and guided upsampling.

Ground truth depth and intensity images are shown as well as the output of an oracle, which is computed by downsampling the ground truth depth map

and feeding that into the guided upsampling network. The rows compare the following settings of average signal photons / average background photons /

signal-to-background ratio per pixel: 10/2/5 and 2/50/0.04.

Average RMSE values for depth estimation with sensor fusion

are shown in Table 1. Including the intensity image into the denois-

ing process yields increased performance compared to the depth-

estimation network without sensor fusion, suggesting that the sen-

sor fusion provides significant quantitative gains in terms of the

accuracy of depth reconstruction. We also show that fine-tuning on

each individual noise level yields some improvement; however, train-

ing across a range of noise levels appears to improve in-painting abil-

ity. This is manifest by more accurate and spatially-consistent depth

estimates in areas where few or no signal photons are recorded,

resulting in better performance at the lowest SBR levels.

Qualitative results are shown in Figure 3 with closeup results

shown in Figure 4 for two test scenes simulated with an average

of 2 signal photons and 50 background photons per pixel. We also

report the root-mean-square error (RMSE) values for each image.

The conventional log-matched filtering approach produces a noisy

result, and the method of Shin et al. [2016] produces out-of-range

depth estimates for this extremely high noise level. Rapp and Goyal’s

approach [2017] demonstrates good performance, but depth values

can be smeared at discontinuous boundaries or thin structures may

not be completely reconstructed. The proposed depth estimation

approach without the intensity image recovers thin structures better

than other approaches, but exhibits artifacts, especially in regions

with low intensity values. Finally, the proposed deep sensor fusion

approach manages to accurately reconstruct the depth, even in

challenging cases such as at object boundaries or for thin structures.

We also evaluate the jointly-trained upsampling method for the

case of 8× upsampling (from 64 × 64 to 512 × 512) for a variety

of signal and background photon counts. Results from the jointly-

trained upsampling network are compared to low-resolution depth

estimates generated with Rapp and Goyal [2017] and upsampled

with the upsampling network, bicubic upsampling of the depth-

estimation network output, and a naive case: using pre-trained

Table 2. Quantitative comparison of upsampling methods for varying signal

and background photon counts. An average root-mean-square error (RMSE)

across the 8 test scenes is reported. The end-to-end trained CNN demon-

strates improved error figures compared to using a pre-trained upsampling

network on the output of Rapp and Goyal [2017], bicubic upsampling of

the depth-estimation network output, or using the pre-trained upsampling

network on the output of the depth-estimation network. The RMSE for

a signal oracle is also given, where a pre-trained upsampling network is

applied to a clean, low-resolution depth map.

Avg. Avg. BG Rapp + Proposed + Proposed + Proposed

Photons (SBR) Upsample CNN Bicubic Upsample CNN End-to-end

10 2 (5) 0.0510 0.0407 0.0433 0.0394

5 2 (2.5) 0.0514 0.0435 0.0462 0.0406

2 2 (1) 0.0543 0.0503 0.0531 0.0476

10 10 (1) 0.0483 0.0407 0.0437 0.0386

5 10 (0.5) 0.0505 0.0431 0.0460 0.0404

2 10 (0.2) 0.0601 0.0488 0.0520 0.0458

10 50 (0.2) 0.0511 0.0403 0.0435 0.0375

5 50 (0.1) 0.0576 0.0430 0.0469 0.0394

2 50 (0.04) 0.0731 0.0508 0.0554 0.0464

Signal Oracle 0.0137

depth estimation and upsampling networks without any joint train-

ing. Qualitative results are shown in Figure 5. For the method of

Rapp and Goyal [2017], the initial low-resolution depth estimate

fails to preserve many structures and edges, and these are not recov-

ered after upsampling. The bicubic upsampling fails to reconstruct

sharp edges in the high-resolution image. For the naive case, noisy

edges remaining after the denoising and appear overly jagged after

the upsampling. After jointly training the depth estimation and

upsampling networks, the results show crisp edges and mitigate the

artifacts exhibited by the naive approach. Finally, we show a com-

parison to an oracle, which shows the upsampling output from the

ground-truth low-resolution depth image. Additional comparisons

of denoising and upsampling using a retrained version of the model

presented by Hui et al. [2016] are included in the supplement.
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50mm Nikon lens
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35mm Nikon lens

8.5mm c-mount lens
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(Thorlabs AC508-075-A-ML)
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(a) photo of setup (b) imaging optics (c) illumination optics

Fig. 6. Single-photon imaging prototype. (a) Photo of the prototype, showing both the imaging optics (bottom) and illumination optics (top). The illumination

and imaging optics are aligned in a rectified setup to perform energy-efficient epipolar scanning [Achar et al. 2017; O’Toole et al. 2015]. (b) Illustration of the

imaging optics (not shown to scale). A dichroic shortpass filter reflects light above 500 nm to a PointGrey vision camera, and transmits light of all remaining

wavelengths through a 450 nm laser line filter and onto a 1D array of 256 SPAD pixels. The galvo mirror angle controls the scanline imaging the scene. (c)

Illustration of the illumination optics (not shown to scale). A cylindrical lens creates a vertical laser line, and the galvo mirror determines the position of this

laser line within the scene.

Quantitative results for the upsampling reconstructions are shown

in Table 2, which reports RMSE values for a range of simulated signal

and noise levels. Our approach outperforms Rapp and Goyal [2017]

with upsampling, bicubic upsampling, and the naive approach in

the joint depth estimation and upsampling task.

6 PROTOTYPE SYSTEM

6.1 Hardware

Our prototype 3D imaging system, shown in Figure 6(a), consists of

synchronization electronics, off-the-shelf optical and optomechani-

cal components, a standard vision camera, a picosecond laser, and a

linear array of 256 SPADs (LinoSPAD [Burri et al. 2016]).

The system has two optical paths: one for generating a laser line

source (Fig. 6(c)), and another for focusing the scene’s response

onto the LinoSPAD (Fig. 6(b)). We chose this design in order to

combine single-photon sensing with epipolar scanning [Achar et al.

2017; O’Toole et al. 2015], an energy-efficient imaging technique

that sequentially illuminates and images the scene one scanline

at a time. We position the illumination optics directly above the

imaging optics in a rectified stereo configuration as required by

epipolar imaging. The laser line and sensor focus on a common

vertical epipolar scanline, and a pair of galvo mirrors controls the

lateral position of the scanline.

The illumination module consists of a 450 nm picosecond laser

(ALPHALAS PICOPOWER-LD-450-50), a galvo mirror (Thorlabs

GVS012), and a set of lenses (as specified in Figure 6(c)). A cylindrical

lens spreads the collimated laser light along the vertical direction.

The laser operates at a pulse repetition rate of 25MHz with a peak

power of 450mW and average power of 0.5mW.

The sensing module consists of a 1D SPAD array, a PointGrey

camera (GS3-U3-23S6C-C), a second galvo mirror (Thorlabs GVS012)

to control the imaging position of the LinoSPAD, and a set of lenses

that simultaneously focus an image of the scene onto the camera sen-

sor and LinoSPAD (see Fig. 6(b)). A dichroic shortpass filter (Edmund

Optics #69-214) passes light above 500 nm to the camera sensor, and

wavelengths below 500 nm to the LinoSPAD. Furthermore, a 450 nm

laser line filter (Thorlabs FB450-10) reduces the amount of ambient

light that reaches the LinoSPAD.

A National Instruments data acquisition device (NI-DAQ USB-

6343) provides synchronization signals for the galvos, SPAD, and

camera sensor. The NI-DAQ sends a 25MHz clock signal to the

SPAD, and the SPAD passes through the 25 MHz clock to trigger the

laser. The NI-DAQ also provides acquisition trigger signals to the

SPAD and camera, and sends a synchronized sawtooth waveform

pattern to the galvos to scan the mirrors. The system captures results

at 256 × 256 resolution at either a 20Hz or 5Hz scan rate. The

scanning speed provides a tradeoff between exposure time or signal

strength, and the acquisition speed of the system.

The LinoSPAD is limited to acquiring data with only 64 of 256

pixels at a time. As a result, by scanning at 256 × 256 resolution, the

effective per-pixel exposure time is a maximum 64
2562
=

1
1024 of the

total acquisition time of each frame. For example, at 20Hz, the per-

pixel acquisition time is approximately 50 µs. Additionally, memory

latency limits the maximum number of time-stamped photon events

that can be read out from the LinoSPAD for a given scan rate. A

maximum of 8 time-stamped events can be recorded per pixel at

20Hz, and 32 time stamps at 5Hz. From the time stamps, we gen-

erate sparse histograms containing 1536 bins, where each bin has

a resolution of 26 ps. We measure the full width at half maximum

(FWHM) of the system to be approximately 440 ps.

6.2 Calibration

The calibration involves three steps: calibrating the time stamps

generated by the LinoSPAD, aligning the laser line and LinoSPAD

array of pixels, and computing the projective transformation to

align the image captured by the camera and LinoSPAD sensors

The LinoSPADgenerates time-stamped events that are non-uniformly

distributed in time. Following the instructions fromO’Toole et al. [2017]

and Lindell et al. [2018], the raw photon time stamps from the

LinoSPAD are processed such that all time bins are uniform in

length and aligned so that the time bin corresponding to time 0 (the

onset of the illumination pulse) is the same across all pixels.
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Fig. 7. Reconstruction results for four scenes: checkerboard, elephant, lamp, and bouncing ball. From left-to-right: the SPAD measurements consist of a 3D

representation of the 256 × 256 × 1536 spatio-temporal volume; the intensity image as captured by a regular camera sensor; a depth map reconstructed with

the log-matched filter; a depth map recovered with the method proposed by Shin et al. [2016]; Rapp and Goyal [2017]; the CNN without an intensity image;

the CNN with the intensity image; the CNN with the intensity image for guided upsampling.

Physically aligning the laser line with the LinoSPAD involves ro-

tating the cylindrical lens, rotating the LinoSPAD, and adjusting the

galvo mirrors such that all LinoSPAD pixels detect the laser illumina-

tion. We then choose mirror positions at the two extreme scanning

positions that maximize the signal detected by the LinoSPAD, and

linearly interpolate the mirror positions to determine intermediate

scanning locations.

Registration of the high-resolution camera image to the LinoSPAD

image involves acquiring and detecting the features of a checker-

board pattern. A projective transformation aligns the two images

together. While this procedure does not explicitly account for radial

distortions, the distortions are consistent for both images because

the LinoSPAD and camera sensors image the scene through the

same objective lens.

6.3 Implementation Details

The camera images and time-stamped measurements from the pro-

totype are passed to the CNN in order to estimate depth. Measure-

ments are processed with the same model parameters as used for the

simulated results. Since the 3D volume of photon counts captured

by the LinoSPAD is large (256× 256× 1536) and a limited amount of

memory is available on a single GPU for processing, we process the

input in 64× 64 resolution patches with a stride of 32 to produce the

full resolution output image. Each image patch takes approximately

5 s to process, and so the full frame (8 × 8 image patches) requires

approximately 320 s of processing time.

7 RESULTS

We qualitatively test the performance of the CNN on measurements

captured with the prototype system. Figure 7 includes four scenes

referred to as checkerboard, elephant, lamp, and bouncing ball. We

capture at 20Hz for the first three scenes under office lighting, and

the last scene at 5Hz outdoors under indirect sunlight. The depth

range for all scenes shown in Figure 7 is approximately 2m; the

supplementary document includes additional results that range up

to approximately 4m. All 3D measurement visualizations in the

figures are generated using the Chimera renderer [Pettersen et al.

2004]. As suggested in Figure 8, the system tests the capabilities of

the proposed CNN under extreme low-flux scenarios, where few

signal photons ever reach the sensor.

In the checkerboard scene, the low reflectivity of the dark squares

significantly reduces the number of photons detected by the SPAD.

As a result, all methods that do not use the intensity image exhibit

artifacts or fail to accurately recover depth in these regions. By

taking the intensity image into account, we demonstrate more reli-

able depth estimation. For this scene, the average number of signal

photons detected per pixel is 0.95, and the average SBR per pixel is

1.1. Note also that we use the calibration chart to determine the pro-

jective transformation that aligns the intensity image to the SPAD

measurements.
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Fig. 8. Photon counts per pixel for the prototype system operating at 20Hz.

The plot shows the number of measured signal photons reflecting off a

white, diffuse surface at different distances from the system, and the average

counts associated with background sources (ambient light and dark noise)

under office lighting. The number of signal photons detected by the SPAD

closely approximates the inverse square law. Note that measurements above

the black line correspond to measurements where the SBR is greater than 1.

The elephant has moderately-low reflectivity, but can be reliably

reconstructed with the proposed CNN. The average signal photons

detected per pixel is 0.43, and the average SBR is 0.50. This particular

scene also highlights a limitation of the epipolar imaging setup for

time-of-flight imaging; because the illumination and imaging optics

are not co-located, certain regions within the field of view of the

camera are not directly illuminated by the laser. For example, the

manifestation of these shadows in the depth map can be seen in the

result of Shin et al. [2016]. Our fusion technique demonstrates an

ability to in-paint depth values in these regions of the scene.

The mechanical arm of the lamp contains a number of struc-

tures with high-frequency in depth. Note also that the lamp itself is

turned on, significantly increasing the number of ambient photons

detected by the SPAD sensor. The average signal photons detected

per pixel is 0.40, and the average SBR per pixel is 0.35. While all

three CNN reconstruction procedures reconstruct the lamp fairly

reliably, taking the intensity image into account produces cleaner

depth maps. Moreover, the upsampling procedure recovers addi-

tional high-frequency features (near the top of the lamp) within this

lamp scene.

In the bouncing ball scene, a styrofoam ball bounces down the

stairs under indirect sunlight. As indicated in the SPAD measure-

ment volume, the strong contribution of sunlight results in saturated

measurements (i.e., 32 time-stamped photons detected per pixel), re-

sulting in an extremely low SBR value. The saturation also prevents

a direct calculation of the SBR for the scene. Despite the strong

ambient contribution, the CNN reconstruction procedures are ca-

pable of reconstructing accurate depth maps. The reconstruction

procedure breaks down, however, for distances too far away from

the camera (approaching 3m).

Note that these scenes have some artifacts at the bottom and top

of the image. This is a result of some misalignment between the

laser illumination and sensor, causing fewer photons to be detected

in this region.

8 DISCUSSION

In summary, we propose a deep sensor fusion approach to 3D imag-

ing and show robust 3D reconstruction with very few photons

returning from a laser. Compared to other methods of depth estima-

tion from raw photon measurements, our approach demonstrates

improved performance at the lowest SBR levels and qualitative

improvements in reconstructing measurements captured with a

hardware prototype.

The depth estimation model is trained only on simulated photon

measurements from an RGB-D dataset. Although the simulated mea-

surements ignore multipath effects and make other approximations,

the trained network generalizes well to measurements captured with

the hardware prototype without any alteration. While we demon-

strate depth reconstruction in simulation and for captured results

for a range of low SBR levels, the network may require retraining

in the case of substantially different noise levels.

We apply the network directly to the output of the hardware

prototype, and can accurately reconstruct depth for a number of

indoor scenarios and for a limited range outdoors. The maximum

range of the prototype is limited by the number of returning photons

from the laser. A plot of the relationship between photons and

distance is shown in Figure 8. For a distance of 2m the SPAD records

less than 1 photon per scan position on average. Non-negligible

dark counts from the LinoSPAD also contribute to a decreased SBR

at all ranges.

The laser used for the prototype has a relatively low average

power (1 mW), and diffusing it into a line further reduces the pho-

ton flux returning to the sensor. Other systems using energy efficient

epipolar scanning have used continuous-wave amplitude modulated

lights sources with average powers of 500 mW, enabling consider-

ably increased range [Achar et al. 2017]. Alternatively, concentrating

the laser illumination on a single point could potentially improve

range at the cost of scan speed. Indeed, recent systems have re-

covered depth maps at a range of over 200 m using a low average

power (∼1 mW) laser, a low-noise SPAD sensor, long exposures, and

a point-wise scanning approach [Tobin et al. 2017]. Pawlikowska

et al. [2017] use a SPAD and pulsed laser at ∼800 m range under

what appears to be direct sunlight. Their measurements capture

0.07 to 46 signal photons per pixel with SBR of 13 to 25. Our results

contain similar signal photon levels and even lower SBR levels; in

such long-range situations with low photon flux, our approach may

be equally applicable.

The reconstructed depth estimates from our system are also up-

sampled with guidance from the captured high-resolution intensity

image. Jointly training the depth estimation and upsampling net-

works shows an increase in performance over applying upsampling

to state-of-the-art depth estimation techniques or using separately

trained depth estimation and upsampling networks. This approach

for upsampling may be especially useful in the case of SPAD sensor

arrays, which capture images at lower resolutions of 32 × 32 or

64 × 64 pixels.

Finally, we comment on the tradeoffs of depth estimation with

our data-driven approach compared to the approach of Rapp and

Goyal [2017]. While our approach essentially relies on the neural

network to learn the image formation model and noise statistics,

these are explicitly incorporated into Rapp and Goyal’s approach

along with well-chosen heuristics. Our approach appears to better

preserve fine structural details in simulation and for captured re-

sults, though Rapp and Goyal’s method achieves improved RMSE in
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simulation at high-resolutions with its spatially-aware smoothing

and averaging techniques. However, incorporating sensor fusion

into methods like that of Rapp and Goyal, is not straightforward.

The proposed approach illustrates how data-driven models can be

applied to depth estimation and we show a method of sensor fusion

with an intensity image which improves results.

8.1 Future Work

Although our system currently operates at a range limited to within

several meters, a number of methods could be used to improve the

maximum range. Using a higher-power laser directly corresponds

to an increase in range. Alternatively, a SPAD sensor with lower

dark count rates could be used to increase the SBR. Another option

is to focus the laser illumination to a point rather than a line, and

to increase the scan speed of the laser. For the case where the laser

point and laser line scan the same area over the same time interval,

the pointwise scanning mechanism results in greater peak power

with a shorter exposure time over which background photons are

integrated. A disadvantage to such an approach is the more compli-

cated alignment procedure between the fast scanning illumination

source and the sensor. Finally, other imaging modalities, such as

radar, could be incorporated into the sensor fusion algorithm.

Our learned approach to depth estimation can potentially also be

extended for higher-level computer vision tasks. While we demon-

strate coupling the depth estimation framework with image guided

upsampling, additional tasks such as object classification or detec-

tion could also be trained end-to-end.

9 CONCLUSION

A fast-scanning, robust, photon-efficient depth imaging system has

broad applications for 3D modeling, gesture and pose recognition,

and for robotics and autonomous vehicles. In this work we demon-

strate a depth sensing method that can potentially lead to improved

3D sensing through a marked increase in photon efficiency. Our

robust, fast-scanning method demonstrates that using a photon-

efficient method can alleviate limitations which force a tradeoff

between range, frame rate, or resolution. We also demonstrate the

value of a learned approach for depth estimation and sensor fusion

for improving robustness and accuracy; such an approach may be

useful for other low or high-level vision tasks involving 3D sensing.
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Fig. 9. Top: histograms of depth values demonstrated in the NYU v2 dataset

(for training and validation) and the Middlebury dataset (for testing). Bot-

tom: example intensity image and depth map pairs from the dataset.
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APPENDIX A SIMULATING MEASUREMENTS

To learn depth estimation and sensor fusion, we simulate SPAD

measurements for a variety of scenes and illumination conditions

using RGB-D images from the NYU v2 dataset captured with the

Microsoft Kinect sensor [Silberman et al. 2012]. From the RGB-D

images, we estimate the average photon detection parameters of

Equation (2) and simulate the SPAD measurements by sampling the

corresponding inhomogeneous Poisson process. For the intensity

images used in sensor fusion, we estimate luminance from the RGB

images.

The detection parameters of Equation (2) are described by the

average number of photons arriving during each time bin from

the illumination pulse (which depends on the time of flight and

pulse width) plus the average number of photons arriving uniformly

over time due to ambient illumination or dark counts. For each

spatial location in an RGB-D image, the arrival rate function of

the illumination pulse is given by calculating the time of flight

and accounting for attenuation due to radial falloff and reflectance.

The reflectance values of each scene are estimated using intrinsic

decomposition [Chen and Koltun 2013], and we use the blue channel

of the reflectance to be consistent with the blue (550 nm) laser used

in the hardware prototype. Modeling the reflectance of the scene

helps to account for non-Lambertian effects and spectral differences

between the SPAD measurements and the intensity image.

Luminance calculated from the RGB image is used to simulate

the number of background photons detected from ambient illumi-

nation throughout the scene. The luminance image also serves as

the intensity image for sensor fusion. Dark counts are added to the

number of background counts using a dark image captured from

our hardware prototype. The detection parameters are scaled to

achieve a given signal and background level. We simulate the SPAD

measurement histograms with 1024 bins, a bin size of 80 ps, and

a detected illumination pulse with a full width at half maximum

(FWHM) of 400 ps.

To vary the signal and background levels across the dataset, we

simulate an average of 2, 5, 10, and 20 signal photons detected per

pixel, with 5, 10, 20, and 30 times as many background photons at

each signal level. A total of 13,500 measurements are produced for

training and 2,800 for validation using the NYU v2 dataset. Fine-

tuning at specific noise levels, as described in Table 1, is accom-

plished by training on a re-generated version of this dataset where

all measurements are simulated at the corresponding noise level. We

also simulate measurements on a test set of 8 scenes from the Mid-

dlebury dataset [Scharstein and Pal 2007] for comparison to other

reconstruction methods. Histograms of the depth distributions in

training, validation, and test sets are shown in Figure 9.

APPENDIX B TRAINING THE CNN

We train the depth estimation CNNs with and without the intensity

image each for 4 epochs using Adam [Kingma and Ba 2014], a learn-

ing rate of 10−4 and a learning rate decay of 0.9 applied after each

epoch. We set the regularization strength to 10−5. Training takes

approximately 24 hours on an NVIDIA Titan X GPU. This network

is used to process both the simulated and captured measurements.

For depth estimation without guided upsampling, the intensity im-

age is downsampled to be the same spatial resolution as the photon

counts before input to the network. Results are also presented for

fine-tuning the network on individual noise levels in Table 1. In

this case, training is conducted for an additional 2 epochs with a

learning rate of 10−4.

For the simulated upsampling experiments, we train the network

for 8× upsampling by initializing all layers with the pre-trained

weights from the denoising network and the pre-trained upsam-

pling network of Hui et al. [2016]. We fine-tune the network jointly

for two epochs of our training dataset, upsampling random 32×32

resolution crops of the input depth image to 256×256 resolution.

Training uses stochastic gradient descent with a momentum of 0.9

and a learning rate of 10−5. To upsample the measurements cap-

tured with the hardware prototype, we truncate layers of the 8×

upsampling network to form a 2× upsampling network [Hui et al.

2016] and downsample the intensity image by 2× for input into

the denoising branch. The amount of upsampling is limited by the

resolution of the vision camera (1920 × 1200), which is further re-

duced when the captured image is transformed and cropped to the

field of view scanned by the LinoSPAD. The 2× upsampling net-

work is trained on 32×32 image crops using the same procedure

as the 8× upsampling network. For both upsampling networks, the

regularization parameter used is λup = 0.1.
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