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Quantization-Guided Training for Compact TinyML Models
Anonymous Author(s)

ABSTRACT
We address the methodology to train and quantize deep neural net-
works (DNNs) in order to produce compact models while maintain-
ing algorithmic accuracy. In this paper, we propose a Quantization
Guided Training (QGT) method to guide DNN training towards op-
timized low-bit-precision targets, and reach extreme compression
levels below 8-bit precision. Unlike standard quantization-aware
training (QAT) approaches, QGT uses customized regularization to
encourage weight values towards a distribution that maximizes ac-
curacy while reducing quantization errors. We validate QGT using
state-of-the-art model architectures (MobileNet, ResNet) on vision
datasets. We also demonstrate the effectiveness with an 81KB tiny
model for person detection down to 2-bit precision (representing
17.7x size reduction), while maintaining an accuracy drop of only
3% compared to a floating-point baseline.

1 INTRODUCTION
Deep neural networks (DNNs) have been at the core of many ap-
plication breakthroughs [1–4]. They are transitioning from the
cloud to the edge because of privacy issues, the need for real-time
responses, and lack of network connectivity. One of the main chal-
lenges to enable efficient DNN inference is the ever-increasing
number of parameters. Over the past decade, the number of DNN
parameters has gone from millions to billions and is projected to
reach 1 trillion parameters within the next decade.

To bring these applications (computer vision, natural language
processing, and anomaly detection) to the edge and closer to the
data source, we need to reduce the compute and memory footprints
of DNN inference. Through quantization, parameters for DNN
can be transformed into a lower bit-precision to support a smaller
memory footprint and lower power consumption. For example,
quantization algorithms can convert DNN parameters from 32-bit
floating-point (FP32) to 8 or lower bit-precisions with minimal loss
of accuracy.

This paper presents the Quantization Guided Training (QGT)
method to tackle the problem of producing compact models while
maximizing accuracy for a given model size. The term “guided” here
refers to the training ability to adaptively nudge the model weights
towards a more compression-tolerant optimum in the solution
space of model parameters. Our philosophy is based on the notion
that low-bit precision training represents training with additional
dimensions presented by the bit-precision of the model parameters.
Therefore, the DNN solution space can be significantly larger and
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Figure 1: Comparison of DNN training methods and opti-
mized histogramofweight values. (a) standard quantization-
aware training (QAT), (b) proposed quantization-guided
training (QGT).

more complex, and consequently, methods are needed to guide the
search during training to arrive at a more near-optimal low-bit
precision solution.

Fig. 1 shows a high-level diagram of our proposed QGT method
compared to a traditional QAT method. Using regularizers attached
to the model graphs, QGT helps nudge weight values closer to
quantized bins to reduce quantization errors. Such a result in DNN
solution space epitomizes QGT’s ability to guide low-bit-precision
training. Our approach is fundamentally different from current
Quantization Aware Training (QAT) methods in that we directly
influence DNN training through regularizer terms added to the loss
terms. Rather than perturbing the training byweight approximation
[5] or quantization noise [6], QGT influences the loss function by
penalizing solutions that do not quantize well.

Fig. 1 also shows example histograms of weight values for a
DNN layer. It is evident that the shape and distribution of the
weight values are different betweenQAT andQGT approaches. QGT
trained parameters are clustered around the bins defined by the
respective regularizers. In this paper, we describe the QGT method
to guide the DNN parameter values to these desired distributions.

The research area in DNN quantization, particularly in training
methodology, is gaining momentum and moving at a very fast pace.
To the best of our knowledge, we offer the following contributions
in this paper:

• A novel training methodology using regularization terms
added directly to DNN loss function to guide training to-
wards low quantization error.

• Experimental results on state-of-the-art models on image
classification tasks to demonstrate the effectiveness of QGT.
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• A example use case for QGT for visual wakeup application,
with results for tiny ML models at low bit-precision.

The rest of this paper is organized as follows: In Section 2 we
discuss similar approaches and the motivation for our approach.
In Section 3 we provide the details of the QGT method. Section 4
presents some results based on image classification tasks, including
a visual wakeup case study using a person detection model. We
describe the research impact of QGT, and finally, in Section 5, we
present conclusions to our current work.

2 RELATEDWORK
Many model compression methods deal with efficient parameteri-
zation, wherein model architectures are configured with a smaller
number of parameters [7–9]. Similar methods to lower parame-
ter count include fine-tuning steps such as pruning [10, 11], spar-
sity training [12] and weight sharing [13] that remove individual
weights and reduce both memory footprint and inference time of
the model. Other approaches include knowledge distillation [14]
that trains a compressed model using a teacher-student pair. Other
hybrid approaches include the Lottery Ticket method [15] that com-
bines architecture search, sparsity training, and pruning to arrive
at a compressed model.

Quantization, on the other hand, is a different compression
method to lower the bit-precision for DNN parameters. Most quan-
tization approaches are post-training quantization (PTQ) [5, 16,
17], where the DNN parameter values are assigned to quantized
bins without re-training. Compared to quantization-aware train-
ing (QAT), PTQ is not as optimal because optimizations through
training allow for a more comprehensive search of parameter val-
ues to achieve the best DNN accuracy. With QAT, the weights are
quantized during training and the gradients are approximated with
the straight-through estimator (STE). However, QAT approaches
[5, 6, 18] requires explicit use of fake-nodes to the model graph to ac-
count for the rounding effects of quantization. Such an approach is
laborious as it requires a considerable manual effort that is bespoke
for each model.

Our proposed QGT method uses regularizers applied to the loss
function to train using weight values, with the desired distribution
and with low quantization errors. There is no dependence on the
use of STE gradient approximation which may impact model con-
vergence rate. Using regularizers, QGT can enforce properties such
as clustering of weight values into quantized bins. QGT extends
earlier efforts [19, 20] with refinements in training hyperparame-
ters and regularizers to explicitly enforces weight values toward
the desired sparsity and clustering targets.

3 QUANTIZATION GUIDED TRAINING
This section presents the detailed formulation of QGT. QGT, like
other QAT approaches, is a tensor-level algorithm. It can be applied
to all or any subset of the model parameters and can accommodate
both fixed- and mixed-precision computational graphs. While we
describe QGT in the context of symmetric and asymmetric quanti-
zation schemes for their prevalence and presentation clarity in this
paper, we stress that QGT can accommodate other more specialized
quantizers, including the powers-of-two quantizer [19, 20].

QGT is based on the premise that suitable model-parameter-
based loss terms can be used as proxies for the quantized model
performance. This is quite advantageous as it allows for retrofitting
nearly any model-training pipeline into a QGT one with minimal
overhead by adding these terms as regularizers. We refer to the
proxy parameter-based losses used in QGT as quantization-error
losses. Note that the term “error” here refers to the deviation of the
model parameter from its dequantized version and should not be
confused with the loss of the quantized model.

Since quantization-error terms are purely parameter-based, they
can be regarded as regularizers. This is not just a semantic dis-
tinction and has an important implication. Regularizer-based ap-
proaches are computationally more economical for the reason that
regularizers are computed only once for each batch, irrespective
of the size of the batch. Another main advantage of QGT being a
regularizer-based approach from the perspective of model train-
ing is that parameter-based loss functions have much more stable
gradients. Therefore, even though quantization-error terms do not
precisely capture the quantized model performance, by the virtue
of producing more steady back-propagated gradients, they result in
a more stable training than approaches that rely on the direct back-
propagation of the quantized-model loss gradients. Standard QAT
approaches using gradients approximated with straight-through
estimator (STE) [5, 6, 18] are examples of training with quantized
model loss. As such, model convergence using QAT may be suscep-
tible to the variability of the model losses due to quantization, and
potentially slower.

(a) PTQ (b) QAT (c) QGT

Figure 2: Illustrations of (a) PTQ, (b) standard QAT and (c)
QGT in model parameter space. Since the QGT loss is a com-
bination of both task and quantization-error losses, the op-
timization trajectory can be guided towards an optimal so-
lution without hard constraints.

Having discussed the main idea behind QGT at a high level, we
next present the mathematical formulation of QGT. We start by
showing why quantization-error terms are reasonable proxies for
the quantized model loss. We use the symbol w to denote model
parameters and w𝑞 for their dequantized counterparts. Mathemati-
cally, the quantizer, Q, is an operator that acts on w, and has the
pseudo-inverse D. This pseudo-inverse is, in fact, the dequantizer
in the case of familiar quantizers. From this perspective, perfor-
mance drop due to quantization can ultimately be attributed to the
fact that Q fails to be an invertible transform, i.e., DQ ≠ I. The
composite operatorDQ mapsw to its dequantized counterpart,w𝑞 .
As illustrated in Fig. 2, the set of tensors that coincide with their
corresponding dequantized tensors form a subspace in the space
of model parameter w. Within this subspace, the operator DQ

2020-11-30 16:46. Page 2 of 1–6.
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becomes an identity operator, making the subspace a quantization-
invariant subspace. The degree to which model parameters deviate
from the quantization-invariant subspace correlates with the quan-
tized model performance. QGT leverages this operator to obtain a
distance from the quantization-invariant subspace.

Mathematically, it is most convenient to quantify this distance
from the quantization-invariant subspace using the 𝐿2 norm:

LQ,w = | |w𝑞 −w| |2 , (1)
where w𝑞 = D(q) with q = Q(w) being the quantized weight.
Note that w𝑞 is of the same type as w (i.e., FP32), whereas, the
quantized tensor, q is the one in the desired representation such as
4-bit fixed-point. To directly relate this 𝐿2 loss term to the quantizer,
one can write:

LQ,w = | | (DQ − I)w| |2 . (2)
QGT co-optimizes the loss terms LQ,w (one for each model

parameter tensor) alongside the original model loss,L, in the course
of training. The full training loss under QGT is:

LQGT = L +
∑
𝑖

𝜆𝑖LQ𝑖 ,w𝑖
. (3)

At the first glance, it may seem that QGT is just a Lagrange multi-
pliers formulation of the same constrained optimization central to
standard QAT approaches. The reason that this is not the case is
that 𝜆𝑖 parameters are not optimized and are treated as hyperpa-
rameters. Intuitively, they control how far the model can deviate
from the quantization-invariant subspace when searching for a
QGT-optimal solution. It is for this reason that we used the term
co-optimization, and, as shown in Fig. 2c, why QGT is not a con-
strained optimization. In a sense, QGT offers a Pareto optimization
search with 𝜆 parameters furnishing a scalarization.

This formulation of QGT offers an important advantage: Since
𝜆𝑖 parameters control the distance from the quantization-invariant
subspace, it is possible to interpolate between an unconstrained
training, which is effectively the same as PTQ as one always has
to quantize at the end, and one akin to that of a standard QAT
approach during training. This is illustrated in Fig. 3. When QGT’s
𝜆 parameters are small, QGT essentially reduced to PTQ. On the
other hand, when 𝜆 parameters are large, one effectively ends up
with a hard QAT approach with constrained model space search. It
is when 𝜆 parameters are neither too small to be able to nudgemodel
parameters, nor too large to overwhelm the task performance QGT
becomes distinct from PTQ and QAT approaches. This flexibility is
particularly useful when starting with a pre-trained model in cases
where training is computationally too expensive or in situations
where the model tends to get stuck when trained under a hard QAT
approach. This also implies that QGT can be used as a fine-tuning
augmented PTQ approach.

Let us see how QGT can alleviate some of the main shortcomings
of PTQ and standard QAT approaches: The main issue with PTQ
is that, as conveyed in Fig. 2a by the shading, there is no guar-
antee that the projection of the most task-optimal point onto the
quantization-invariant subspace is also the most task-loss optimal
point within the subspace. Thus, one may see significant improve-
ment in performance with even a little fine tuning, which QGT

Figure 3: QGT, depending on the 𝜆 parameters, can serve as
either PTQ (𝜆 = 0 – the red curve) or a standard QAT (𝜆 ≫ 1
– the blue curve).

offers. As for standard QAT approaches, constraining the optimiza-
tion to the quantization-invariant subspace may take considerably
longer to converge or, worse, get stuck. This issue becomes more
pronounced at lower-bit representations where the quantization-
invariant subspace shrinks significantly. Clearly, a less constrained
optimization such as the one that QGT involves may find an off-
subspace shortcut to the optimal point and evade getting stuck.

Any QAT approach without adequate training convergence pro-
duces a quantized model with sub-optimal performance, and QGT
is no exception. The aspect that is specific to QGT, however, is that
the quantized model performance is similar but not exactly the
same as the model under training. The reason for this is that, as
can be seen in Fig. 2c, it is only at convergence that the training
trajectory in the model parameter space lands on the quantization-
invariant subspace. This aspect allows for utilizing QGT not only
as a versatile and flexible QAT approach, but also as an efficient
fine-tuning-augmented PTQ technique by training for a few epochs.

4 RESULTS AND ANALYSIS
In this section, we present experimental results to evaluate the
effectiveness of QGT on image detection tasks. We benchmark our
results by comparing accuracy versus model size, with the goal
to minimize overall accuracy loss. We first examine QGT from its
ability to train models for standard benchmarks such as ImageNet
and its variants. Then, we examine QGT from an application de-
velopment for a visual wakeup system. Our design goal is to reach
below 100KB in model size.

For evaluation, we used a workflow [21] that builds upon a
TensorFlow-based framework to implement all of our training and
quantization approaches. Once trained, we can then compile and
generate either a native binary that can run independently or with
a TFLite runtime. This workflow allows quick evaluation on em-
bedded processor because the compiler targets optimal code for
target hardware.

4.1 Benchmark Experiments
Table 1 presents the results of a number of QGT experiments for var-
ious architectures. Note that the main purpose of these experiments
is to evaluate QGT’s utility on small and large architectures in the
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context of a range of tasks. We used the asymmetric quantizer in all
of the experiments. We have specifically focused on four- and two-
bit results as the performance of higher-bit post-train-quantized
models (i.e., 8 and 16) are often close to that of their original floating-
point models. In the experiments, the quantizer was applied, both,
in per-tensor and per-channel (for convolutional and depth-wise
convolutional layers) fashions. We do not apply QGT to biases and
the trainable parameters (𝛽 and 𝛾 – see [22]) of the batch normal-
ization layers. The reported top-1 accuracies were computed based
on the dequantized weights with activations kept at four-byte float-
ing point. Since the asymmetric quantization requires retaining
slope and intercept, the sizes of per-channel-quantized models are
slightly larger than their per-tensor counterparts quantized at the
same bit-widths.

Model Accuracy
(% top-1)

Δ
Accuracy
(% top-1)

Size
(MB)

Δ
Size

Reduction

Bit
Precision

MobileNetV1∗
ImageNet

70.4 - 4.25 - FP32
68.2 -2.2 0.53 8x 4

ResNet50
ImageNet

72.8 - 98 - FP32
70.1 -2.7 12.25 8x 4

MobileNetV1†
ImageNette
(grayscale)

79.1 - 3.3 - FP32
72.3 -6.8 0.41 8x 4
77.3 -1.8 0.45 7.3x 4 p.c.

MobileNetV1†
ImageNette

(RGB)

81.2 - 3.3 - FP32
78.9 -2.3 0.45 7.3x 4 p.c.

69.5 -11.7 0.25 13.2x 2 p.c.

ResNet50‡
Eight Classes

87 - 94 - 32
84 -3.0 11.75 8x 4

Table 1: Comparison of the FP32 and QGT-compressed per-
formance and model sizes for a number of image classifi-
cation tasks. The abbreviation “p.c.” stands for per-channel.
∗ 𝛼 = 1.0 and input size of (224, 224). †† 𝛼 = 0.5 input
size of (128, 128). ‡ Classification on an eight-class subset of
the COCO-2014 dataset (person, bicycle, car, motorcycle, air-
plane, bus, train, truck).

The results in Table 1 suggest that QGT is able to effectively
compress small and large DNN architectures regardless of the task /
dataset complexity. We show that 4-bit bit-precision achieve signifi-
cant compression (7-8×) while reducing only 1-3% drop in accuracy.
We note that per-channel quantization provides higher accuracy
than its per-tensor counterparts, at the same bit-precision targets.
At 2-bit precision target, our early results are not conclusive as the
solution space might require a more comprehensive search, or the
model architecture might reach its capacity for the task / dataset.

To see why QGT, in spite of the simplicity of its formulation
is so effective, it is instructive to take a closer compare the his-
tograms of a model parameters trained under QGT against those of
its base floating-point version. Fig. 4 presents several histograms
(from the 27 convolutional kernels plus the final dense layer) of
the MobileNetV1 model trained on the ten-class ImageNette task.
The salmon-color histogram is the 4-bit per-tensor asymmetric de-
quantized trained model under QGT, and the pale blue histograms

Figure 4: Comparison of kernel histograms of MobileNet V1
with 𝛼 = 0.5 trained on the 10-class ImageNette dataset with
(salmon) and without QGT (pale blue) at convergence. The
bottom left histogram is the kernel of the dense layer.

is that of the base floating point model. We make a number of im-
portant observations: First and perhaps most obviously, since the
model trained under 4-bit asymmetric per-tensor QGT, we end up
with the binning of the dequantized weight tensor entries into 24

bins. Second, in most cases, it appears that the trained model under
QGT converges to distributions that closely resemble their base-
model counterparts. This seems to be the case when the weight
histogram shape retains the bell shape of its initialization. This, per-
haps, can be attributed to the fact that such tensors lack a subset of
entries with oversized relevance to inference entailing large gradi-
ents that bring about homogeneous distortion. Third and related to
the earlier point, the dequantized weight tensor histogram deviates
significantly when the floating-point weight histogram is rather too
distorted compared to its originally initialized distribution. These
observations further bolster the flexibility and effectiveness of QGT.

4.2 Wakeup Systems
Wakeup systems are good example applications that can best bene-
fit from QGT trained models. With a low-cost compute platform,
savings in memory footprint becomes important to support the
limited on-chip memory and processing capability. Furthermore,
wakeup systems are always on, and as such, low power consump-
tion and low false alarms are critical requirements. For this paper,
we focus on a computer vision use case of identifying whether
a person is present in the image or not. Applications for such a
person detection model include surveillance/security in entryways
and passenger detection for in-vehicle use.
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In our study, we focus on the MobileNet (V1 and V2) architecture.
Person detection models for visual wakeup systems have been pre-
viously reported at 8-bit precision at 208KB usingMobilenetV1 with
depth multiplier 0.25, and 290KB using MobilenetV2 with depth
multiplier 0.35 [23]. Typical edge processors / microcontrollers
for wakeup systems have extremely limited on-chip memory (100-
320KB SRAM) and flash storage (up to 1MB). The DNN model
parameters and associated inference code have to fit in memory
buffer, with sufficient allocation for buffers for input/output data.
In this paper, we push the envelope further to achieve a smaller
DNN footprint to support additional models that can be processed
concurrently.

To train the MobileNet models using QGT, we leverage the
COCO-2014 dataset for sample labeled images for person and non-
person categories, much like the Visual Wakeup dataset [23]. Fig.
5 show example images for small and large pixel on target person
object (0.5% and 10% of the image, respectively). We evaluated the
dataset for images with a minimal of approximate 100 vertical pix-
els on the person object, which is roughly 10% of the VGA sized
images in COCO-2014. This is done to match our camera resolu-
tion (160×120) at the anticipated target distance to objects in our
application use. Specifically, when the VGA sized image is resized
to our camera resolution during training, we need to make sure
there is physically enough texture and shape information.

(a) Small person object below 0.5% of image (b) Large person objects above 10% of image

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 All
Largest

(c) Histogram person objects sizes - normalized area,
largest instance (blue) and all instances (gray) containing
person

Figure 5: Sample COCO-2014 images for (a) small and (b)
large person size, with normalized distribution in dataset
(123,287 total, 66,608 with at least one person).

As shown in Fig. 5c, over 60% of the positive images contain a
largest instance of a person that is smaller than 10% of the image.
With a size threshold of 10%, over 60% of the images containing
a person have to be excluded. From this, we train our MobileNet
models with assigned labels (person / non-person), while addressing
class imbalance [24] between the two classes by undersampling the

non-person images and adjusting the operating thresholds of the
final classification layer.

We evaluate the person detection models trained with QGT
with different target bit precision to demonstrate the effectiveness
of training methodology. Our goal is show the size reduction at
low bit-precision, with minimal drop in accuracy. We selected the
MobileNet (V1 and V2) architecture, with 0.25 depth multiplier for
comparison purposes.

We first established a baseline floating point (FP32) model trained
to convergence. We use PTQ to quantize the baseline FP32 model
to 4bit and 2bit precision. Then we train the models with a sweep
of QGT lambda hyperparameter (see Section 3), also with 4-bit
and 2-bit target. We explored both per-tensor and per-channel
quantization schemes with QGT. Since per-channel provided better
compression ratio and for clarity-sake, we show only per-channel
results. In our experiments, we found that bias tensors are more sen-
sitive to quantization, and as such, we left bias tensors untouched.
Since bias tensors are small with respect to number of tensor ele-
ments, the overall impact to memory footprint is negligible. Finally,
we do fold in the batch-norm layer to evaluate the model accuracy
and memory size. The sizes are calculated based on packing weight
values, since there are no standard formats for sub 8-bit models.

Table 2 shows the accuracy and size comparisons for the person
detection model. We note that the accuracy levels at 4bits and 2bits
(90.3% and 87.3%, respectively) for MobileNetV2 are only within
0.1 and 3% drop from the FP32 baseline. When comparing to PTQ
results at 1% and 22% drop, respectively, we find that QGT can help
maintain accuracy with training for lower bit-precision. Similar
general trend is observed for MobileNetV1. As a reference, earlier
result from [23] on person detection model was 85% at 250KB size
with 8-bit precision.

Model Accuracy
(%)

Δ
Accuracy

(%)

Size
(KB)

Δ
Size

Reduction

Method,
Precision

MobileNet
V1

(𝛼 = 0.25)

88.7 - 834 - FP32
72.2 -16.5 123 6x PTQ, 4bit
52.7 -36.0 73 11.4x PTQ, 2bit
87.9 -0.8 123 6x QGT, 4bit
82.0 -6.7 73 11.4x QGT, 2bit

MobileNet
V2

(𝛼 = 0.25)

90.4 - 1440 - FP32
89.1 -1.3 133 10.8x PTQ, 4bit
68.4 -22.0 81 17.7x PTQ, 2bit
90.3 -0.1 133 10.8x QGT, 4bit
87.3 -3.1 81 17.7x QGT, 2bit

Table 2: Quantization results for person detector tiny mod-
els, showing superior QGT results over PTQ and baseline for
accuracy and size.

From a memory size perspective, QGT offers 17× smaller foot-
print compared to the FP32 baseline, and a 3× compression com-
pared to the aforementioned 8-bit results [23]. From a processing
latency perspective, we are working with a number of hardware
accelerators / SoC that supports sub 8bit processing (proprietary
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info). As a reference for this paper, on ARM A72 processor (Rasp-
berry Pi4), we measured approximately 246 fps (frames per second)
for the MobileNet V1 model. We ran on 8-bit configuration because
the A72 processor does not have sub 8-bit acceleration support. In
general, we see a ~5× latency improvements with 8-bit versus FP32
inferences.

4.3 Analysis
In this subsection, we offer additional insights on QGT based on
our DNN training experiences and results.

Impact of learning rate. We evaluate QGT over DNNs with
increasing depth and number of parameters. Our training results
show the QGT’s 𝜆 hyperparameter that governs quantization-error
losses acts as an dynamic learning rate that is dependent to bit-
precision. As such, QGT regulates learning in tandem with the
global learning rate hyperparameter. One interpretation is that
bit-precision is coupled with the learning capacity of the DNN
(i.e., higher bit-precision can afford higher learning capacity, but
at the cost higher memory footprint). In a sense, QGT regularizers
is related to dynamic learning rate schedulers such as AdaGrad
[25]. When we train with QGT, we can govern QGT’s 𝜆 and global
learning rate hyperparameters to guide training towards an optimal
solution space. That is, we can choose to train slowly to closely con-
verge, or we can choose higher learning rate to move fast through
the model parameter space. Future work will further explore the
theoretical underpinnings of QGT regularization, with evaluations
on larger datasets and deeper models.

Impact of training time. Most published research on model
compression do not point out convergence speed. Admittedly, this
aspect is very much depended on task and model complexity. Train-
ing time is also a function of available hardware allocated for train-
ing. Newer studies such as [26, 27] are starting to consider training
time as a part of the greener AI efforts to reduce carbon footprint.
With QGT, we have the additional 𝜆 hyperparameters that, in the-
ory, can better reduce training time and guarantee convergence
(see Section 3) with a guided search. Future work will include a
more comprehensive study on training time.

Impact on model size and capacity. Limited on-chip mem-
ory will be a major constraint in deploying DNN models such as
MobileNet on constrained edge processors. Results in our study
using QGT to train and quantized models show that deployment of
tiny vision models are possible, with sizes well below 100KB. To
reach such model sizes at such low bit-precision, guided training
approaches are important tools for the tiny ML community. Fu-
ture studies can address model capacity to further explore hybrid
bit-precision amongst the layers of the DNN.

5 CONCLUSION
We show that guided training maintains performance in high quan-
tization regime. We validated our proposed Quantization Guided
Training (QGT) works with a variety of deep neural networks and
datasets, using a number of quantization schemes. Our method can
be applied to hybrid methods with mixed bit-precision to achieve
extreme compression ratio at low bit-precision. QGT imposes a soft
DNN training constraint and can be used with other training-aware
approaches, e.g. QAT (quantization aware training) and PTQ (post

training quantization), and weight pruning. We also demonstrate
the effectiveness with QGT trained model at 2-bit precision for
visual wakeup application.
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