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ABSTRACT

This paper presents a multilingual Automatic Speech Recognition (ASR) model
for three East African languages—Kinyarwanda, Swahili, and Luganda. The
Common Voice project’s African languages datasets were used to produce a cu-
rated code-switched dataset of 3,900 hours on which the ASR model was trained.
The work included validating the Kinyarwanda dataset and developing a model
that achieves a 17.57 Word Error Rate (WER) on the language. Across all three
languages, the Kinyarwanda model was finetuned and achieved a WER of 21.91
on the three curated datasets, with a WER of 25.48 for Kinyarwanda, 17.22 for
Swahili, and 21.95 for Luganda. The paper emphasizes the necessity of consid-
ering the African environment when developing effective ASR systems and the
significance of supporting many languages when developing ASR for languages
with limited resources.

1 INTRODUCTION

Significant improvements have occurred in speech technologies due to the advancement in the archi-
tectural design of deep learning models and the availability of large speech corpora. Specifically, the
current ASR models have shown impressive results in well-renowned languages for speech-to-text
tasks. Despite this, most low-resource languages do not have accurate speech recognizers. Many of
these languages have more than one million native speakers, some of whom have low literacy levels
and can benefit from speech technologies to access information.

To build a robust Automatic Speech Recognition (ASR) in Africa, one must take into account the
African context. Africa is linguistically rich with over 2000 languages, and given its history, there
are many cases of people speaking multiple languages. A person might speak a local language,
a regional language, and an administrative language which in most cases is a European language
(English, Fresh, Spanish, or Portuguese). People living in border areas might speak the language
of the neighboring region/country. This might cause a person to either switch languages within one
conversation, speak one language using his mother tongue, or to code-switch, thus requiring an ASR
capable of supporting multiple languages.

In this work, we created a multilingual ASR model for 3 of the most spoken east African language,
Kinyarwanda, Swahili, and Luganda. Using the common voice dataset, we curated and created the
dataset to accomplish the multi-language task. After training the model we achieved a Word Error
Rate (WER) of 21.91 in all 3 languages, with the WER of 25.48, 17.22, and 21.95 for each language
respectively.
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2 BACKGROUND

2.1 AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition (ASR) is a technology that enables computers to understand and tran-
scribe human speech (Gaikwad et al., 2010). This technology has a range of applications, such as
voice-controlled devices, transcription services, and accessibility tools for individuals with speech
impairments. The use of ASR technology has increased in recent years due to advances in machine
learning and the availability of large amounts of data for training.

ASR technology has its roots in signal processing, where engineers have long sought to develop
algorithms for extracting information from speech signals. It is well-known that the speech signal
not only conveys linguistic information (the message) but also a lot of information about the speaker
himself: gender (Rakesh et al., 2011), age (Drager, 2011), social, and regional origin (Walker, 2007),
health (Rosen et al., 2006), and emotional state (Polzin & Waibel, 1998) and, with relatively strong
reliability, his identity (Benzeghiba et al., 2007). With the advent of deep neural networks, the
performance of ASR models has improved significantly, using all attributes of speech to produce
a matching text. The deep neural network replaced the traditional Gaussian mixture for the acous-
tic likelihood evaluation while keeping all other components of the ASR hybrid model (Hinton
et al., 2012). Recently, there have been new breakthroughs in ASR modeling with speech commu-
nities transiting from hybrid modeling to end-to-end modeling, using a single network for the whole
speech-to-text process (Bahdanau et al., 2016).

In the early years of ASR modeling, building multilingual ASR systems was difficult since we
needed acoustic models with shared hidden layers (Ghoshal et al., 2013) (Heigold et al., 2013)
while ensuring each language has its lexicon and language model. The end-to-end models made the
process easier as it takes the union of all languages and tokenizes them which is further used for the
training of the ASR model (Cho et al., 2018) (Kim & Seltzer, 2018). However, multilingual ASR
models are always prone to mixing languages during recognition which is why some models defer to
conditioning on Language Identity (LID) as this guides the ASR model to generate the transcription
for the target language by reducing confusion from other languages (Kannan et al., 2019). The gain
of using LID is limited in end-to-end models, especially when streaming audio as it is not very
reliable.

Recent advances have presented new approaches to achieving remarkable success in performing
ASR tasks by using transformer models (Mohamed et al., 2019) (Radford et al., 2022). Chan et al.
(2016)’s Attention is used by the transformer model to identify important parts of the input sequence
or speech. This technique has allowed for the creation of more complex models that are more capa-
ble of performing language and speech tasks. Pairing this transformer model with semi-supervised
learning (SSL) techniques has also spurred the design of the Wav2Vec model (Schneider et al.,
2019) which converts audio signals into representations that then can be used in downstream tasks.
Wav2Vec is trained on large amounts of unlabeled audio data which makes its training methodol-
ogy important to languages that have less labeled data. Recently, conformer models (Gulati et al.,
2020b); combine convolutional neural network (CNN) components and transformers to capture lo-
cal and global dependencies in an audio sequence more efficiently than the stand-alone variants of
the individual models.

2.2 ASR ON AFRICAN LANGUAGES

The space of resource-constrained languages has seen a good amount of effort to create models that
can learn and perform well using small amounts of data, a few hours of annotated data in this case.
The ALFFA project is focused on distributing ready-to-use or ready-to-train Kaldi ASR systems and
associated corpora for sub-Saharan African languages. The ASR directory currently includes Kaldi
recipes for Amharic (Tachbelie et al., 2014), Swahili(Gelas et al., 2012), Hausa, and Wolof (Gauthier
et al., 2016). The issue of data availability has pushed many researchers to either collect their data
or use alternative data sources. Yılmaz et al. (2018) explore the creation and use of a Soap Opera
speech corpus to create ASR models for code-switching between five South African languages while
Doumbouya et al. (2021) used radio archives to create the West African Radio Corpus and the West
African Virtual Assistant Speech Recognition Corpus then used the first to train the West African
wav2vec. Mohamud et al. (2021) conducted a mobile application-based data collection project in
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which they tested the performance of self-supervised learning techniques on limited hours of three
languages, Wolof, Ga, and Somali. Ritchie et al. (2022) experienced with multilingual modeling as
well as semi-supervised learning for 15 African languages and found that a combination of SSL and
finetuning with the small available data will create robust models across the tested languages.

2.3 LANGUAGES

There are three major language families that represent the majority of languages spoken all over
Africa, Afroasiatic (Arabic, Hausa, Somali, Amharic ...etc.), Nilo-Saharan (Kanuri, Fur ... etc.), and
Niger-Congo (Igbo, Yoruba, and the Bantu family) as seen in figure 1.

Figure 1: Map of African language families (Commons, 2017)

The Bantu family contains the largest number of languages spoken in Africa, covering the largest
speech area of all other families. Swahili, Kinyarwanda, and Luganda are amongst the most spo-
ken language in East Africa, all are in the Bantu family of languages and uses the Latin alphabet.
Swahili is the largest of them, spoken by over 70 million people throughout East and Central Africa,
Kinyarwanda follows spoken by over 13 million people in Rwanda, Uganda, and the Democratic
Republic of Congo (DRC) and Luganda has over 6 million speakers in Uganda.

The ease of travel across the East African Community allows these three languages to be spoken
across the entire federation, adding a level of intermingling when spoken by people. This loose
use of the languages makes it hard to create and deploy a single language model in this region, as
speakers tend to move naturally across these languages, making the creation of multilingual systems
a must.

3 METHODOLOGY

3.1 DATA

The data we used was obtained and created using the Mozilla CommonVoice dataset. We used the
monolingual Common Voice datasets for Kinyarwanda, Luganda, and Swahili as baselines and we
combined the datasets to create the final multilingual dataset. The information in hours can be found
in table 1 below.

For Kinyarwanda, we found many issues in the recordings and the transcriptions by manually in-
specting the data and analyzing the high error values found in a baseline ASR model. Common voice
adds a validation step, allowing community members to validate whether a certain recording and its
transcriptions match. We found that this validation step does not affect the data and that the data
used for training, and testing the previous models had issues. To add a validation step, to remove
some of the bad transcriptions and recordings, we checked the number of words in the transcription
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Table 1: Monolingual datasets (hours)

Split Kinyarwanda Swahili Luganda

Train 1,284.8 48.59 102.1
Validate 24.3 16.7 20.1
Test 21.96 16.86 19.78

per second of the recording (Word Rate), to reject some of the noisy samples that were found using
manual inspection.

Using this method, words with over three words per second were rejected, as we found that the
average word rate of the dataset was 1.75 words per second and the human average speech rate is
160.6 words per minute (Pindzola et al., 1989), which is 2.7 words per second. This has resulted in
a smaller set of samples (see table 1) which when used to train a monolingual Kinyarwanda ASR
model1 achieved a WER of 17.57 which represents the SOTA model for the language. Adding a
step to normalize the apostrophes, commas, and full stops across the model predictions and actual
transcriptions, we were able to achieve a WER of 5.09.

Inspecting the data for this model, we found that some of the test samples are in Luganda, which
the model was successful in predicting. This was a motivation to explore the similarities between
Kinyarwanda and Luganda which led to the selection of the three languages we are studying in this
paper.

To create the multilingual dataset, we combined the three datasets. Each sample in the final dataset
had a random combination of random samples from the three datasets. This means that a sample can
have either multiple samples of a single language or randomized samples from the languages. The
data was created with a sampling rate of 16KHz, at a length of 10 to 20 seconds with 100ms pauses
between the random samples. The resulting dataset information can be found in table 2.

Table 2: Multilingual datasets (hours)

Split Full dataset Size (samples)

Train 3,013.7 796,971
Validate 601.23 158,042
Test 300.64 79,053

3.2 MODEL

For this work, we fine-tuned a pre-trained Conformer (Gulati et al., 2020a) based Kinyarwanda
Model 2 with CTC decoding (Graves et al., 2006) and BPE Tokenization (Wang et al., 2020). Con-
former uses a combination of convolution layers and self-attention to achieve better performance,
self-attention learning global features while convolution captures local relationships. Contextual
temporal classification (CTC) decoding was used to better capture the temporal information or the
alignment of the data without the need for segmenting input data. Byte pair encoding (BPE) tok-
enization is a type of tokenization technique that breaks down the text into smaller subword pieces
learned from text (Shibata et al., 1999). BPE tokenization is useful in cases where out-of-vocabulary
(OOV) exists and this technique has been used in a range of various NLP tasks, including speech
processing, neural machine translation, and language modeling (Shibata et al., 1999) (Kunchukuttan
& Bhattacharyya, 2016) (Choudhary et al., 2018) (Zhou et al., 2021).

1Available on Huggingface under the MbazaNLP community space: https://huggingface.co/
mbazaNLP/

2Kinyarwanda Conformer Model: https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_rw_conformer_ctc_large
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3.3 EVALUATION

To evaluate the performance of the models trained in this paper, we used the Word Error Rate (WER)
as a metric. The word error rate can be defined as the ratio of word insertions (I), substitutions (S),
and deletions (D) needed for the transcription to match the prediction to the total number of spoken
words (N) (Park et al., 2008).

WER =
Sword +Dword + Iword

Nword
(1)

We also evaluate using the Character Error Rate (CER) which refers to the ratio of character inser-
tions (I), substitutions (S), and deletions (D) needed for the transcription to match the prediction to
the total number of characters in the transcription (N)

CER =
Scharacter +Dcharacter + Icharacter

Ncharacter
(2)

For both of these values, we aim to reduce these ratios when evaluating our models.

4 EXPERIMENTS & RESULTS

Using the pre-trained Kinyarwanda conformer-based model, we finetuned the model on the proposed
dataset to evaluate the performance on the test split of the dataset and baseline dataset splits. The
Conformer model has 121 million parameters and is trained using NeMo Toolkit (Kuchaiev et al.,
2019) setting the hyperparameters as shown in the table 3. The tokens were created from the train-
ing set of the dataset using the sentence-piece (Kudo & Richardson, 2018) tokenization technique
resulting in 128 subtokens.

Table 3: Training Hyperparameters

Hyperparameter Value

Epoch 120
Batch Size 24
Tokenizer BPE
Optimizer AdamW
Learning Rate 2.0
Scheduler NoamAnnealing
Weight Decay 0
Mixed Precision 16fp
SpecAugment (Time Mask) 10sec
SpecAugment (Freq Width) 27Hz

The results evaluated on the test splits of the dataset are presented in table 4. Our result shows that
while we were not able to improve the WER for Kinyarwanda compared to the monolingual baseline
model, we can note that the CER is lower and our multilingual model is able to correctly predict at
the character level. Generally, the higher WER as compared to lower CER could be attributed to the
fact that the model has good performance at predicting. Missing a character greatly affects the WER
performance since the word has to be replaced.

In addition, inspecting audio samples that have higher WER, we have noticed that most of the
prediction errors happened due to noise in the background, unfinished audio samples, differences in
pronunciation, and our model either missing or adding an additional repeating letter.
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Table 4: Word and Character error rate on the test splits

Test Set WER CER

Code-Switched 21.91 6.38
Kinyarwanda 25.48 7.79
Swahili 17.22 5.96
Luganda 21.95 5.15

5 CONCLUSION

5.1 SUMMARY & DISCUSSION

In this work, we explored creating multilingual models for ASR across three East African languages,
Kinyarwanda, Swahili, and Luganda. We first explored validating and cleaning the Kinyarwanda
dataset available through the Common voice project, creating a model that achieves 17.57 WER on
Kinyarwanda. We then used this language and the monolingual datasets for the three languages to
create 3,900 hours of multilingual data that was then used to train a model that achieves a WER of
21.91 on the created dataset and 25.48 on Kinyarwanda, 17.22 on Swahili and 21.95 on Luganda.
We also evaluated the test set using CER and we were able to get 6.38 on the new dataset, 7.79 on
Kinyarwanda, 5.96 on Swahili, and 5.15 on Luganda. The results show that the model has better
performance at predicting character level.

5.2 FUTURE WORK

As we have seen with Kinyarwanda, improving the datasets will improve the model accuracy. These
improvements to the current datasets can include removing defunct recordings, perfecting the punc-
tuation, and using a tokenizer for each separate language. Connecting with native speakers of Lu-
ganda and Swahili will allow us to reproduce the error analysis and investigate the dataset more,
which requires collaboration with the East African research community. The models trained are
tested on the curated dataset, which is a limitation as we need to test the model in more natural mul-
tilingual and codeswitching situations. This can be explored by collecting speech data from actual
speakers that represent real human speech. We also plan to include other African languages, includ-
ing exploring the similarities between non-Bantu languages, for example, the connections between
Amharic and Arabic, and other similar situations in the region.

We also plan to extend the work, after allocating more resources, to include bigger models like
fine-tuning the Whisper model (Radford et al.), neural scoring as well as exploring semi-supervised
training on the large amounts of unlabelled data that is available through the radio, YouTube and
other open platforms.
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