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Abstract

Transient thermal analysis is widely used in many science and engineering ar-
eas such electronic package design, engine design and manufacturing. High-
dimensional simulations are very expensive to run. Here we propose a machine
learning model consisting of a pre-trained convolutional neural network (CNN), a
transformer encoder and a multilayer perceptron (MLP) to predict the temperature
field of 3D printed part. We use the low convolution layers of ResNet34 to extract
low level geometry features from the CAD file, and transformer encoder to capture
the long-range dependencies between layer-wise geometry features. The MLP then
takes the transformer output as input and predicts the temperatures at any given
locations and time. The results show the model can accurately predict the thermal
history in 3D printing process on different geometries. Our model is also very
efficient, runing 1~2 orders of magnitude faster than the simulation on which it is
trained, without requiring the complicated pre-processing steps in transient thermal
analysis including material property steup, mesh generation and refinement, and
defining the boundary conditions and dynamic loading in every time step.

1 Introduction

Transient thermal analysis is essential in various engineering and scientific fields because it shows
how the temperature distribution evolves over time in structures and systems as it plays an important
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role in their performance. Transient thermal analysis has been widely used in industries such as
aerospace, automobile and consumer electronics. For example, in CPU and GPU design, it helps
in predicting and mitigating the overheating issues that lead to component failure. However, high
accuracy simulation results often requires fine time and spatial discretization which could be extremely
computationally expensive. For example, simulations for 3D printing process aiming to capture the
temperature rise and drop in millisecond scale could take days or even weeks.

In recent years, machine learning-based approaches have been introduced in finite element modeling
(FEM) to approximate the expensive FEM solutions [1,2]. These surrogate models can provide rapid
predictions of system behavior in scenarios such as engineering optimization where the finite element
analysis (FEA) need to be performed many times with different design parameter combinations.In this
paper, a machine learning model consisting of convolutional neural network (CNN), a transformer,
and a multilayer perceptron is proposed for the transient thermal analysis of metal 3D printing process.
Unlike the conventional subtractive manufacturing, metal 3D printing technique uses high-power
laser or electron beam to fuse every layer of powder particles selectively and form a near-net-shape
part in a layer-by-layer manner. Due to its capability to produce complex geometries with unique
mechanical properties, this technique has gained increasing attention and has been widely used.
Modeling the temperature evolution through the manufacturing process is very important to avoid
build failures and ensure build quality. However, transient thermal simulations for 3D printing are
usually expensive and time-consuming for part-scale model because of the incompatible spatial scale
between laser or electron beam (um) and the part (cm) to be simulated.

Graph neural networks have been applied to solve a variety of challenging and complex physics with
mesh-based and particle-based simulators [3,4]. However, for high-dimensional and high-resolution
transient simulations, the message-passing used to pass dynamics between mesh edges or particles in
every time steps can be expensive under fine mesh configuration with thousands of time steps. As an
emerging approach that seamlessly integrate data and physics, Physics-informed neural networks
(PINNs) embed the partial differential equation (PDE) into the neural network as a part of the loss
function [5]. Due to its versatility, PINNs have been applied to solve forward and inverse problems
in fluid mechanics [6], solid mechanics [7] and heat transfer [8]. Even though hard constraints can
be imposed to PINNs using penalty method and augmented Lagrangian method [9], PINNs are not
a good choice for transient thermal simulation with changing boundary conditions and simulation
domain. For example, in 3D printing, the part is built in a layer-by-layer manner. Once a new layer is
formed, the simulation domain is modified while the new heat convection boundary should be applied
on the newly formed layer. It would be very hard for PINNSs to solve such problems. Recurrent neural
network is designed for sequences of data, and is well-suited for transient thermal simulation tasks.
Mozaffar et al [10, 11] proposed a recurrent neural network (RNN) structure with a Gated Recurrent
Unit formulations for high-dimensional thermal history in 3D printing processes with variations in
geometry, build dimensions, build strategy and laser parameters. This model could only performs on
very simple geometry with very limited number of layers because of the RNN’s incapability with
long sequences.

In this paper, We propose a machine learning-based model for transient thermal simulation for 3D
printing process at part level. The part geometry’s effect on heat transfer through the whole process
is considered by pre-trained convolution neural network and a transformer model. The remaining
content of this paper is organized as follows. In Section 2] the similarities between transient thermal
simulation and NLP tasks are discussed. In Sectoon [3| data prepartion and generation of the dataset
for model training and evaluation are presented. In Section |4} the proposed model architecture is
given. In Section [5] temperature profiles predicted by the proposed model are compared with ground
truth.

2 Problem description

2.1 Governing equations of the simulation

The governing equation solved in transient thermal simulation for metal 3D printing process is:
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where T is the temperature, ¢ is the time, p is the density of the material, c is the heat capacity and
k is the thermal conductivity. @ is the volumetric heat input for each layer. The elements for the
layer to be built are activated and then the volumetric heat input is applied on this element layer.
3D-printed parts usually has a scale of centimeter and are divided into thousands of layers in the
building. The real building takes a few hours or even days while its high-resolution simulation with
thousands of time steps can take up to days to run.

2.2 Similarities between NLP task and transient thermal modeling

In this section, the intriguing parallels between Natural Language Processing (NLP) tasks and
transient thermal simulation are explained. While seemingly distinct fields, both domains share a
fundamental characteristics - the dynamic interplay of sequence vectors over time.

Transient thermal modeling: Transient thermal simulation is primarily concerned with comprehend-
ing how temperature evolves and fluctuates over time. At each discrete time step within the simulation,
boundary conditions and dynamic loading parameters are meticulously defined before running the
simulation. Importantly, the thermal profile established in preceding time steps have a significant
influence on the temperatures encountered in the current step. This intricate interdependence between
sequences of load and boundary conditions highlights the inherently temporal nature of transient
thermal modeling. Moreover, similar to context in NLP, the geometry of the simulation domain also
influences the temperature profiles in profound ways. The shape and dimensions of the domain dictate
how the heat is conducted. For example, different geometric shapes can offer varying conduction
pathways for heat transfer. This will be discussed in detail in Section

NLP tasks: In NLP tasks such as sentimental analysis and language translation, the sequence
and context of words within a given text carry substantial importance. Much like the transient
thermal system, the order in which words are encountered in a sentence, paragraph, or document
can drastically alter the meaning and interpretation. Context, built upon previous words and phrases,
plays a pivotal role in discerning the intent and sentiment behind language. The parallel becomes
even more evident when We consider the dynamic nature of NLP tasks. Just as transient thermal
modeling dynamically adjusts boundary conditions and loading at each time step, NLP models adapt
to changing contexts as they process language. Each word encountered is akin to a step in time,
with the embedded vector representations capturing the linguistic nuances of the past, shaping the
understanding of the present, and influencing the predictions of the future.

In essence, the varying boundary conditions and dynamic loading in each time step of transient
thermal modeling find a curious reflection in the embedded vectors used in NLP. Both domains
illustrate the profound importance of temporal context in interpreting and modeling complex systems.
By recognizing these similarities, we gain valuable insights into how the principles of one field
can inform and inspire advancements in the other, paving the way for interdisciplinary synergy and
innovation.

2.3 Long-range dependencies in transient thermal modeling

In the 3D printing process, the part is built in a layer-by-layer fashion. Every layer is melted by
a high-power laser beam and fused with the previous layers. This process is repeated many times
to build the part from bottom to top, and usually takes days or weeks for part in centimeter scale.
The previously deposited part serve as the cooling channels to dissipate heat from top layers to the
build tray. For part 1 and part 2 in Figure [I{a), even though their top parts are identical, different
temperature profiles of the top layers (layer #1000) are expected since they have different bottom
geometries. The cooling channel for Part 1 is a solid block which is able to dissipate more heat
than Part 2 the cooling channels of which are three thin columns. In transient thermal analysis, this
effect on the temperature field can be easily captured since the finite element analysis solves the PDE
step by step. High-resolution transient thermal simulations for the 3D printing process usually have
thousands of time steps and take days or even weeks to run due to its high spatial and temporal scale.
Machine learning models such as Recurrent Neural Network (RNN) and Long-short term memory
(LSTM) [12] shown in Figure[T(b) could be used for transient thermal analysis. However, sequence
to sequence (seq2seq) models are not able to handle such long sequences with over thousands of time
steps. The transformer architecture [13] that was proposed in 2017 and revolutionized the NLP tasks
relies on self-attention mechanism, and allows the model to capture dependencies and relationships
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Figure 1: Long-range dependencies in transient thermal simulation

between words in a sentence regardless of their position. We use the transformer in our model in
hope that the model could learn the geometric change on heat conduction in 3D printing even though
the layers that may affect the heat transfer are far in distance and have a very long time span.

2.4 Transformer encoder

Large language models can be categorized into encoder-only and decoder-only by its architecture.
We only used the decoder of the transformer model for time profile prediction. Encoder-only large
language models such as BERT [14] enable it to consider both left and right contexts when encoding
tokens. Encoder-only models focus on encoding inputing sequences into rich contextual embeddings
while decoder-only models such as GPT3 [15] only consider the left context window and are used to
generate output sequence tokens autoregressively. The simulation task of interest needs the complete
sequences that contains geometry, boundary conditions and thermal load for temperature prediction.
Therefore, the transformer encoder is used in the proposed model.

3 Data collection

Unlike images for computer vision and text data for NLP, collecting simulation data is very challeng-
ing. Firstly, due to the high-dimensional and large-scale characteristics of the simulation data, the
data collection process for scientific simulations is less cost-effective and readily accessible compared
to gathering images or text from the Internet. Simulations may run for extended periods, limiting
the speed at which data can be generated and imposing time constraints on collecting sufficient
quantities of data for machine learning tasks. The simulation data could be overwhelming, requiring
substantial computational resources and storage capacity. Furthermore, engineering simulations are
often domain-specific. For example, the collected stress data cannot be used to train a model for
transient thermal simulator. Moreover, simulations frequently encompass a wide range of parameters
and boundary conditions, leading to an exponentially growing dataset space that is difficult to explore
comprehensively.

As high-quality public data is not readily available, we have employed our proprietary GPU-based
FEM simulation software [16] to execute simulations on various geometries and acquire the necessary
dataset for training our model. It is impractical to sample every node temperature from the simulation,
given that the node count typically reaches millions, and the transient thermal simulation for 3D print-
ing processes entails thousands of time steps. For each geometry, the sliced layer-wise cross sections
are taken as 224 x 224 gray scale images. we adopted two distinct data sampling approaches as shown
in Figure[2} First, we sampled specific nodes and tracked their temperature variations over time, with
the intention of enabling the model to learn the temporal evolution of temperature profiles. Secondly,
at selected time intervals, we comprehensively sampled the temperature of every node within the
simulation, aiming to facilitate the model’s grasp of spatial temperature distributions at specific
time points. For each node, the collected data pair format is < (x,y,z,time) | temperature>.
The first element in the pair will be mapped to higher dimensional space and concatenate with the
geometry vector while the second element is the ground truth.
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Figure 2: Collect data from simulation

4 Model

4.1 Model architecture

In contrast to finite element simulation which discretizes the geometry into elements, our model
utilizes sliced layer-wise images as input for geometry processing. Rather than processing a vast
number of elements, this approach is cost-effective and highly efficient while also accounting for the
geometry influence on heat transfer. As shown in Figure[3] We firstly process each sliced layer-wise
image with the pre-trained ResNet34 [17], and extract the feature map from its conv4 layers for
low-level geometry features. We apply a max-pool operation on the feature map and obtain a 2048 x
1 embedding vector for each layer. We adopt the positional encoding in neural radiance fields (NeRF)
[18] to map the 4 x 1 query vector (x, y, z, time) to a higher dimensional space to better fit the high
frequency temperature variation (See the thermal history in Fig. [2). The encoding function is:

v(p) = (sin(2°mp), cos(2°7p), ..., sin( 2L~ 1p)) )

Where L is frequency number. We use L = 32 in this model, and map the 4 x 1 query vector into
256 x 1, and concatenate with the layer-wise geometry embedding vector. The transformer processes
the layer-wise embedding vectors and the multilayer perceptron takes the averaged output from
transformer, and predict the temperature at (x, y, z, time).

2L=1p), cos(

4.2 Model training

We collected a dataset which contains the pairs < (x,y,z,time) | temperature> for a variety
of geometries and the geometry’s layer-wise images. 640,000 pairs were used to train the model on a
machine with 4 NVIDIA A100 GPUs. The model training process has 50 epochs which takes 48
hours. We used the AdamW optimizer and applied dropout for regularization.

5 Results

We test the performance of the proposed model on different geometries, and compared the results to
FEM-based simulation ground truth. We also calculate the accuracy of temperature predictions. For
each node, if the relative difference between predicted temperature and ground truth falls within the
threshold 7 = 5 x 1072, the prediction is considered as correct; Otherwise, it is regarded as incorrect.
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Figure 3: Model architecture

Our main findings are that the proposed model is able to produce high-quality temperature profile
at unseen time steps, while being significantly faster than the GPU-based ground truth simulation
software, and simplify the simulation workflow.

While our model boasts a parameter count three orders of magnitude larger than those utilizing RNN
and LSTM units, the comparison of performance metrics, RMSE and accuracy, highlights our model’s
superiority over its counterparts (see Table[T). In Figure 5] the predicted profile of the complex
geometries at steps unseen at training stage could match the ground truth with acceptable variance.
The spatial temperature distribution is reasonable while the magnitude difference is acceptable.

Table 1: The transformer model achieves better performance than models with RNN and LSTM

Models 4 Parameters RMSE (x10~3) _ocUracy
T 2T
CNN + RNN(base) + MLP 378,113 103.34 0.09 0.18
CNN + RNN(large) + MLP 1,051,649 82.94 0.14 0.36
CNN + LSTM(base) + MLP 1,312,769 71.55 041 0.53
CNN + LSTM(large) + MLP 3,414,017 59.08 0.51 0.63
CNN + Transformer + MLP 113,335,297 9.48 0.79 091

Table 2] presents the simulation time by FEM-based simulation software and the inference time by our
proposed model on different geometries. The time step number of transient thermal simulation for
3D printing depends on the part’s layer number which makes the FEM-based simulation extremely
time-consuming. A distinguishing feature of our model is its ability to predict temperature at any
given step without prior knowledge of the temperature profile from preceding steps. The inference
time for any step is at the scale of seconds. For the temperature evolution of the entire part, our model
exhibits a prediction speed approximately 10~15 times faster.
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Figure 4: The temperature profile for the compressor case

Table 2: The performance of our model on different geometries

Geometry # layers  # time steps  Simulation time Inference time
Compressor 750 15,000 1 hour 15 mins 4 mins
Turbine blade 2,574 51,480 2 hours 8 mins 11 mins
Air Bracket 1,550 31,000 6 hours 10 mins 32 mins

6 Conclusion

We presented a data-driven model for transient thermal simulation with CNN, the transformer model,
and multilayer perceptron. Because of the similarities between NLP and transient thermal modeling,
the decoder of transformer is employed to process the layer-wise embedding vectors of the 3D
printed part. The model We proposed has outstanding performance on the dataset collected from
high-resolution simulations. The model has a inference time 1~2 orders of magnitude faster than the
FEM-based simulation running on GPU. We are planning to make the code and dataset open in the
public domain.
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