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ABSTRACT

We introduce a constrained optimization framework for training transformers that behave like opti-
mization descent algorithms. Specifically, we enforce layerwise descent constraints on the objective
function and replace standard empirical risk minimization (ERM) with a primal-dual training scheme.
This approach yields models whose intermediate representations decrease the loss monotonically
in expectation across layers. We apply our method to both unrolled transformer architectures and
conventional pretrained transformers on tasks of video denoising and text classification. Across
these settings, we observe that constrained transformers achieve stronger robustness to perturbations
and maintain higher out-of-distribution generalization, while preserving competitive in-distribution
performance.

1 INTRODUCTION

Unrolling arises from the observation that iterations of descent algorithms of some optimization problems perform
operations that are analogous to those of individual layers of a neural network (Gregor and LeCun, 2010; Monga
et al., 2021). From this observation, an extensive literature has emerged in which neural networks are trained to solve
optimization problems, with corresponding descent algorithms used as guidance for architecture design (Yang et al.,
2022; De Weerdt et al., 2023; Yang et al., 2021; Xie et al., 2023; Hershey et al., 2014; Frecon et al., 2022). E.g., descent
algorithms for sparse reconstruction involve a linear map and a nonnegative projection motivating the use of a neural
network made up of linear maps and ReLU nonlinearities to learn solutions of sparse reconstruction problems (Gregor
and LeCun, 2010).

In the case of transformers (Vaswani et al., 2017), unrolling has gained traction as a tool to interpret attention mechanisms
(Yang et al., 2022; Yu et al., 2023; Ramsauer et al., 2020; De Weerdt et al., 2024; Von Oswald et al., 2023). These
works present different energy functions and provide theoretical results showing that the update rules, which closely
resemble a transformer’s forward pass, exhibit descent properties. Beyond this theoretical value, (De Weerdt et al.,
2023) and (Yu et al., 2023) train unrolled transformers that are interpretable and parameter-efficient. When training
these models, however, the behavior of these networks is non-monotonic along the iterates, which is inconsistent with
the behavior expected of an optimizer. There are two reasons for this. Firstly, there is no guarantee that the learned
parameters will satisfy the conditions under which the models minimize the energy. Secondly, training an unrolled
architecture inherently induces a bilevel problem, which the unrolled architecture is not designed to take into account.

In this paper, we draw from the unrolling literature to argue that it may be advantageous to train transformers that
behave like descent algorithms. We do so by imposing descent constraints on the output of each layer. Specifically, the
first contribution of this paper is that:

[C1] We formulate a constrained learning problem in which the output of each layer of a transformer is required to
reduce the expected loss by a given factor relative to the cost of the output of the previous layer (Section 2).

It is important to point out that our use of the term unrolling is not identical to the more common use of unrolling to
refer to a learned parameterization that solves an optimization problem. We use unrolling here to refer to an arbitrary
learning problem in which we explore the merit of forcing the layers of the transformer to behave like steps of an
optimization descent algorithm.

We discuss training algorithms for constrained transformers in Section 3. These algorithms train transformers in the
dual domain where we leverage small duality gap results drawn from the constrained learning literature (Chamon et al.,
2023; Chamon and Ribeiro, 2020). This is our second contribution:
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Figure 1: Layerwise descent improves OOD robustness. Left: Test loss at each layer (lower is better). Constrained
RoBERTa exhibits monotonic descent, unlike the unconstrained baseline. Right: Out-of-distribution accuracy under
increasing embedding perturbation levels γ (higher is better). As γ grows, the constrained model degrades more
gracefully and retains higher accuracy. Setting: RoBERTa (L = 24) trained on IMDb, training γ = 0.2.

[C2] We develop a dual training algorithm for constrained unrolled transformers. We show that incorporating
descent constraints ensures asymptotic convergence–in the number of layers–to a near-optimal value of the
statistical loss. We also provide theoretical guarantees that constrained transformers maintain descent behavior
and exhibit out-of-distribution (OOD) generalizability under distribution shifts (Section 3).

We expect the incorporation of descent constraints to yield trained transformers that respond better to perturbations of
the input data. This is because it is a hallmark of descent algorithms that they do respond better to perturbations and
existing results have shown that incorporating descent constraints in neural networks does result in learned solutions
that are less sensitive to perturbations (Hadou et al., 2024b). In this paper, we find that transformers trained with descent
constraints share this property. Our next two contributions are to demonstrate the value of adding constraints in two
application domains where data perturbations arise naturally:

[C3] We consider video denoising, where the goal is to learn a transformer for vision (Yang et al., 2022; De Weerdt
et al., 2023; Dosovitskiy et al., 2021) that recovers a video sequence from noisy observations. We show that
training with descending constraints results in models that are more robust to OOD levels of noise, as measured
by the root mean squared error (RMSE) of the reconstructed videos (Section 4).

[C4] We investigate text classification problems with perturbed embeddings, in which users query a language model
with embeddings perturbed with varying levels of Gaussian noise (Fukuchi et al., 2017). We observe that the
reduction of classification accuracy as the degree of perturbation increases is smaller in transformers trained
with descent constraints (Section 5).

An instance of this robustness to perturbations is illustrated in Figure 1. A text classifier (RoBERTa) trained with
empirical risk minimization (ERM) exhibits a non-monotonic loss pattern along its layers, maintaining a high loss until
the last few layers, with a spike at the 19th layer. The constrained version of this model, trained to enforce monotonic
descent constraints, exhibits a smoother decreasing pattern. When measuring the accuracy under OOD perturbations,
we observe that the constrained model’s accuracy decays more gracefully than its unconstrained counterpart.

1.1 RELATED WORK

Algorithmic unrolling and the learning-to-optimize framework. There exists a vast literature in algorithmic unrolling,
in which a neural network learns to approximate the solution of an optimization algorithms (Monga et al., 2021). Since
the original LISTA (Gregor and LeCun, 2010), subsequent works have obtained remarkable improvements in speed
and performance (Liu et al., 2019a; Chen et al., 2018; Aberdam et al., 2020) and unrolling has been applied to learn
approximations of a variety of optimization algorithms (Hershey et al., 2014; Sprechmann et al., 2015; Wang et al.,
2015).

Other unrolled neural networks. Beyond traditional unrolling, a new line of research has emerged that uses unrolling
as a theoretical tool to interpret a variety of neural network architectures and layers, such as graph neural networks
(GNNs) (Yang et al., 2021; Hadou et al., 2024a; Hadou and Ribeiro, 2025), recurrent neural networks (RNNs) (Luong
et al., 2021), ReLU nonlinearities (Xie et al., 2023), and other feedforward architectures (Frecon et al., 2022).
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Unrolled transformers. The first work to show an unrolling of an attention layer is (Ramsauer et al., 2020). The
first full unrolling of a transformer layer with attention and a nonlinearity is attributed to (Yang et al., 2022). This is
extended by (De Weerdt et al., 2023) for video reconstruction with a LISTA nonlinearity instead of ReLU. The work in
(Yu et al., 2023) is a different unrolling that interprets the transformer as a process of denoising and compressing tokens.

Transformers as optimizers. Simultaneously, the community has explored other perspectives of transformers as
optimizers. One such view is that transformers are in-context learners (Dong et al., 2024; Oswald et al., 2023; Li et al.,
2023; Olsson et al., 2022; Ahn et al., 2023; Dai et al., 2022), which may explain large language model’s abilities to
generalize to tasks not seen during training via examples provided during inference (Brown et al., 2020).

Constrained learning and constrained unrolling. Constrained learning theory provides a framework for training
neural networks subject to constraints (Chamon et al., 2023; Hounie et al., 2023) and has been a useful tool in various
domains (Moro and Chamon, 2024). In the context of unrolling, (Hadou et al., 2024b;a) have proposed training unrolled
networks with descent constraints and demonstrated that constrained models exhibit more robustness to perturbations
and better out-of-distribution generalization.

Differential privacy. Additive Gaussian perturbations are common in Differential Privacy (DP) for neural networks
(Dwork and Roth, 2014; Dwork et al., 2006; Yu et al., 2022). One method to train private models is to perturb the
gradients during training (Abadi et al., 2016), which gives (ϵ, δ)-DP. Another approach, closer to our experimental case,
is to perturb inputs directly, known as local-DP. This mechanism ensures end-to-end user privacy but leads to even
worse O(

√
nϵ, δ) privacy (Fukuchi et al., 2017) and thus requires more noise for the same privacy level. Other DP

works also study perturbing token embeddings (Yu et al., 2022; Feyisetan et al., 2020; Feyisetan and Kasiviswanathan,
2021; Bollegala et al., 2023).

2 CONSTRAINED UNROLLED TRANSFORMERS

A transformer is a layered architecture that processes a sequence of T vectors xt ∈ RN grouped in the matrix
X = [x1, . . . ,xT ] ∈ RN×T to represent the entire vector sequence. The input to each transformer layer is a matrix
Xl−1 = [xl−1,1, . . . ,xl−1,T ] ∈ RN×T and the output is another matrix Y = [y1, . . . ,yT ] ∈ RN×T , both of which
are also sequences with the same dimensions as X. The first component of a transformer layer is an attention operation
whose output is a matrix Z given by

Zl = VlXl × sm
[ (

QlXl−1

)T (
KlXl−1

) ]
= VlXl−1 × sm(Al). (1)

In (1), the matrix Zl = [zl1, . . . , zlT ] ∈ RD×T represents a sequence of vectors zlt ∈ RD with dimension D typically
much smaller than N . The matrices Ql,Kl,Vl ∈ RD×N are called query, key, and value matrices and are trainable
parameters. The matrix Al := (QlXl−1)

T (KlXl−1) is a linear attention matrix and the operation sm(Al) acts
separately on rows of A so that if B = sm(A) we have blut = exp(alut)/

∑T
t=1 exp(alut).

The second operation in a transformer involves matrices Wl ∈ RN×D and Ul ∈ RN×N as trainable parameters and
a pointwise nonlinear function σ and entails the processing of the time series Zl with a linear perceptron that also
includes a residual connection of the layer’s input vector Xl−1,

Φl(X;T) = Yl = σ
[
WlZl +UlXl−1

]
. (2)

The sequence Yl = Φl(X;T) is the output of layer l. A transformer is defined by L recursive applications of (1)–(2)
by making the output of layer l the input to layer l + 1, i.e., Xl+1 = Yl. The input to layer 1 is the given sequence
X0 = X and the output of the transformer is the output of layer L, YL = ΦL(X;T). We write the output of layer l as
a function Φl(X;T) of the input sequence X and the trainable tensor T which groups the matrices Ql, Kl and Vl of
(1) as well as the matrices Wl and Ul of (2) for all layers l.

Consider now a loss function f(X,Φ(X;T)) dependent on the input and output values of the transformer. It is
customary to seek parameters T∗

U that minimize the average loss,

T∗
U = argmin

T
E
[
f
(
X, Φ(X;T)

) ]
. (3)

In prior contributions, it has been observed that transformers can be interpreted as iterative descent algorithms that solve
optimization problems (Yang et al., 2022; De Weerdt et al., 2023; Yu et al., 2023; Ramsauer et al., 2020). In this paper,
we draw inspiration from this idea and argue that it may be advantageous to train transformers that behave like iterative
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descent algorithms. Formally, we consider a stepsize schedule 0 < αl < 1 and propose to train transformers that solve
the constrained learning problem,

T∗ = argmin
T

E
[
f
(
X, Φ(X;T)

) ]
,

subject to E
[
f
(
X, Φl(X;T)

) ]
≤ (1− αl)E

[
f
(
X, Φl−1(X;T)

) ]
, ∀l. (4)

The purpose of the constraints in (4) is to force the optimal transformer T∗ to have layers that reduce the statistical loss
f progressively. Since this is a property of descent algorithms, we say that T∗ is an unrolled transformer. We point out,
however, that this is not an exact analogy to the standard use of the term unrolling which involves the use of neural
networks or transformers to solve optimization problems (Monga et al., 2021; De Weerdt et al., 2023)—rather than
encouraging a transformer to descend like optimization algorithms do.

3 TRAINING OF CONSTRAINED UNROLLED TRANSFORMERS

Problem (4) involves finding the transformer parameters T∗ that minimize the loss function f subject to the descent
constraints. This formulation is a nonconvex constrained problem, which is usually difficult to solve directly. Rather,
we resort to the dual problem, constructed through the Lagrangian function,

L(T,λ) = E
[
f(X,Φ(X;T))

]
+

L∑
l=1

λlE
[
f
(
X,Φl(X;T)

)
− (1− αl)f

(
X,Φl−1(X;T)

)]
, (5)

where the vector λ ∈ RL
+ collects the Lagrangian multipliers. The dual problem is then defined as

D̂∗ = max
λ

min
T

L̂(T,λ), (6)

where L̂ is the empirical Lagrangian function, evaluated over M realizations of X. The max-min problem in (6) can be
viewed as a sequence of regularized ERM problems, solved sequentially, differing only in the choice of Lagrangian
multipliers. There is empirical evidence that a high-quality local minimum for such unconstrained problems can be
attained using stochastic gradient descent (Zhang et al., 2016; Arpit et al., 2017). The Lagrangian multipliers, which act
as regularization parameters in this view, are updated using projected gradient ascent to maximize the dual function,
since the latter is concave. Solving the dual problem then entails alternating between minimization with respect to
T and maximization over λ (Chamon and Ribeiro, 2020; Fioretto et al., 2021), leading to the primal-dual procedure
described in Algorithm 1.

Although classical duality theory (Boyd and Vandenberghe, 2004) indicates that nonconvex constrained programs may
exhibit non-zero duality gaps, recent results show that, in training deep neural networks, this duality gap is typically
small (Chamon et al., 2023). We include these results in the following theorem to keep our discussions self-contained.
Theorem 1 (Constrained Learning Theorem (Chamon et al., 2023)). Let (T∗,λ∗) be a stationary point of (6) and P ∗

denote the optimal value of the statistical loss function in (4). Under Assumptions 1 - 5 (see Appendix A.1), it holds, for
some constant ρ, that

|P ∗ − D̂∗| ≤ Cν + ρ ζ(M, δ), and

E
[
f
(
X,Φl(X;T∗)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ), ∀l,

with probability 1− δ each, and with ρ = max{∥λ∗∥, ∥λ̄∗∥}, where λ̄∗ is the optimal multiplier of the statistical dual
problem. Moreover, ν and ζ(M, δ) are the expressivity parameter and the sample complexity, respectively, and C is a
Lipschitz constant.

The theorem affirms that (6) yields near-optimal near-feasible solutions to (4) and can replace it. This result stems
from the fact that the functional version of (4) exhibits zero duality gap. When we optimize over an expressive
parameterized class, we incur an optimality loss that amounts to the expressivity parameter ν. However, there is
theoretical evidence that ν can be made arbitrary small in deep neural networks (Ryu et al., 2019; Graikos et al., 2022)
and also in transformers (Yun et al., 2020). The second source of error is the empirical approximation of the Lagrangian
function, quantified by the sample complexity ζ(M, δ), and can be reduced by increasing the sample size M .

Theorem 1, however, makes it challenging to conclude converges guarantees, since it provides only high-probability
near-feasibility guarantees. That is, even though (4) requires each layer to enforce descent in f , the near-feasible
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Algorithm 1 Primal-dual Training Algorithm for Constrained Unrolled Transformers

1: Inputs: number of epochs, batch size M , step sizes η1, η2 > 0
2: Initialize: T,λ = {λℓ}Lℓ=1
3: for each epoch do
4: for each batch of samples X = {X(m)}Mm=1 do
5: Execute the forward pass Φ(X(m);T) according to (1) and (2) for all m
6: Compute the Lagrangian L̂(T,λ)
7: Primal update: T = T− η1∇TL̂(T,λ)
8: Dual update: λ =

[
λ+ η2∇λL̂(T,λ)

]
+

9: end for
10: end for
11: Return T∗ = T.

solution satisfies each constraint with probability 1 − δ. The probability that all L constraints are satisfied is then
(1− δ)L. For large L, this probability could be small, implying that this theorem alone is insufficient to establish the
required layerwise descent and convergence guarantees.

In Theorem 2, we show that the constrained unrolled transformer, obtained by (6), converges asymptotically–in the
number of layers–to the optimal value of the statistical loss.
Theorem 2 (Convergence Guarantees). Given a constrained unrolled transformer T∗, which satisfies Theorem 1, and a
functional minimizer Y∗ of the statistical loss. Let αl = α, for all l. Then, under Assumption 6 (see Appendix A.2), it
holds that

lim
l→∞

min
k≤l

E
[
f
(
X, Φk(X;T∗)

)
− f

(
X,Y∗) ] ≤ 1

α

(
ζ(M, δ) +

Cδν

1− δ

)
a.s. (7)

Theorem 2 states that the constrained unrolled transformer is guaranteed to attain the optimal performance up to an
error that is controlled by the step size α, the sample size M and the expressivity of the model class ν. The proof
proceeds by showing that, despite the aforementioned probabilistic constraint violations, the sequence of layer losses
forms a supermartingale and converges infinitely often to a sub-optimal region, characterized by the bound. The full
proof of Theorem 2 is relegated to Appendix A.2. The sample complexity controls the failure probability δ, and for
sufficiently large M , we can keep δ arbitrary small and eliminate the second term of the bound. Moreover, large α,
which corresponds to aggressive reductions, shrinks the size of the sub-optimal region and provides tighter guarantees.
Although this result holds asymptotically, our numerical results demonstrate that we can achieve the same performance
of a good local minimizer of (3) in a finite number of layers.

Imposing layerwise constraints endows transformers with monotone-descent inductive biases. Such descent properties
provide classical optimization methods with stability under perturbations and generalization across problem instances.
By aligning the transformer’s layer-to-layer dynamics with these properties, the transformer maintains comparable
performance under distribution shifts. The following corollary and theorem formalize this effect and establish OOD
generalization guarantees for transformers trained with descent constraints.
Corollary 3. Let T∗ be a constrained unrolled transformer trained on a data distribution Dx. Then, for any shifted
distribution Dx′ that satisfies Assumption 7 (see Appendix A.3), it holds with probability 1− δ, for all l:

ED′
x

[
f
(
X,Φl(X;T∗)

)]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ) + Cτ, (8)

where τ = d(Dx, Dx′) + d(Dx′ , Dx), and d(·, ·) is a bounded asymmetric distance metric.

Theorem 4 (Out-of-Distribution Guarantees). Let Ŷ∗ be a functional minimizer of the statistical loss evaluated on Dx′ .
Then, the constrained unrolled transformer trained on Dx satisfies

lim
l→∞

min
k≤l

EDx′

[
f
(
X,Φk(X;T∗)

)
− f

(
X, Ŷ∗)] ≤ 1

α

(
ζ(M, δ) + Cτ +

Cδν

1− δ

)
. (9)

The proofs are in Appendices A.3 and A.4. Corollary 3 states that a constrained unrolled transformer trained on one
distribution continues to satisfy the descent constraints under a shifted distribution Dx′ up to an additional error that is
proportional to the distance between the two distributions. Then, it follows that the constrained unrolled transformer
converges to the optimal of the statistical loss evaluated on Dx′ up to the same additional error bound, as formalized in
Theorem 4.
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The assumptions under which our theoretical results hold are readily achievable in practice (see Appendix A.1).
However, the feasibility assumption is not widely guaranteed, as it requires the constrained problem (4) to be strictly
feasible. To enforce this condition, we consider a resilient constrained learning relaxation, as proposed in (Hounie et al.,
2023), wherein we introduce an additive slack variable u ∈ RL

+ into the constraints and augment the loss function f
with a quadratic penalty term β

2 ∥u∥
2
2. This transforms the saddle point problem into the regularized formulation:

max
λ

min
T,u

L̂(T,λ) + β

2
∥u∥22 − u⊤λ.

Solving this regularized problem is equivalent to solving (4) via Algorithm (1) with a weight decay factor of 1− 1
β

applied to the dual update; see Appendix A.5 for more details.

4 VIDEO DENOISING

We now consider a problem of video denoising, which is to reconstruct a sequence of signals X = [x0, . . . ,xT ] from
noisy measurements X̃ = [x̃0, . . . , x̃T ], where x̃t = xt + ϵt, for all t, and ϵt ∼ N (0, σ2I). The goal is to minimize
the reconstruction loss f(X,Φ(X̃;T)) = 1

T ∥X−Y∥2F , where Y = Φ(X̃;T) is the output sequence. Our experiment
setup follows the denoising experiments in De Weerdt et al. (2023) and Luong et al. (2021). We train and evaluate our
models on the CUHK Avenue Lu et al. (2013), UCSD Anomaly Detection Mahadevan et al. (2010) and ShanghaiTech
Campus Luo et al. (2017) datasets. Refer to Appendix B for more details.

In-distribution (ID) and out-of-distribution (OOD) evaluation. In light of Theorem 4, which provides OOD
generalization guarantees for models trained to satisfy descent constraints, we aim to contrast the performance of
constrained and unconstrained models under distribution shifts. To accomplish this, we train denoisers with perturbation
level γtrain, and evaluate on testing perturbations γ ∈ [0.0, 1.0]. We refer to the testing perturbation levels γ ≤ γtrain

as ID, and to larger perturbations as OOD. Noisy signals X̃ are generated with σ = γ · σx, where σx is the standard
deviation of the clean data X.

Architectures. We train three transformer architectures. The first is a standard pretrained Vision Transformer (ViT)
(Dosovitskiy et al., 2021). The other two are symmetric transformers from the unrolling literature: Deep Unfolded
Sequential Transformer (DUST) (De Weerdt et al., 2023) and Unrolled Transformer (UT) (Yang et al., 2022). All
models follow the formulation in (1) and (2), except that in DUST and UT, the learnable parameters of the attention
layers are tied, i.e., Ql = Kl = Vl = D ∈ RD×N , for all l. The key difference between DUST and UT lies in the
choice of nonlinearities: DUST employs a soft-threshold nonlinearity, while UT uses ReLU. Notably, in DUST, the
parameter D is interpreted as an overcomplete dictionary to create sparse reconstructions of video frames. Consequently,
the dimensions satisfy N < D, marking a significant architectural deviation from conventional transformers, where
attention matrices are low-rank projections. We defer further discussion about DUST and UT, along with additional
implementation details, to Appendix C.

Training. We train each model under two settings: i) without constraints via the ERM formulation in (3), and
ii) with descent constraints as specified in (4), employing a constant schedule αl = α. To prevent the model
from trivially satisfying the constraints by increasing the initial value of f(·), we include an additional constraint
f(X,Φ1(X̃;T)) ≤ (1−α)f0, where f0 is a fixed reference value. The unconstrained models are trained using ADAM,
and the constrained ones are trained via Algorithm 1. For each dataset and each transformer architecture, we run
experiments with different numbers of layers L ∈ {3, 5, 7} and varying levels of perturbations. Here we present the
results obtained for γtrain = 0.13 by selecting the best run across all values of L, and leave additional results for other
training perturbations to Appendix B.4. All runs share the hyperparameters selected via a grid search, including the step
size α, the reference value f0, the learning rates η1, η2, and the resilience coefficient β.

Out-of-Distribution RMSE. Figure 2 reports results at training perturbation level γtrain = 0.13, where the best L
for each model is selected based on validation RMSE. We observe that in five out of nine cases, constrained models
outperform their unconstrained counterparts. Notably, on UCSD, all constrained models show a consistently lower
RMSE score for values of γ ≥ 1. In three cases, constrained models have comparable performance. Finally, in one case
(UT-Avenue), OOD performance is slightly degraded.

In-Distribution tradeoff. The OOD curves of Figure 2 also allow us to analyze the tradeoff between ID and OOD
performance. One noteworthy case is UT on ShanghaiTech, where constrained UT trades off a higher ID reconstruction
error for lower error at higher perturbation levels, with an inflection point around γ = 0.75. In general, constrained
models show slight to no degradation in RMSE relative to unconstrained ones. These results suggest that descent
constraints improve robustness with little to no sacrifice in ID performance.
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Figure 2: Video denoising error vs. test perturbation γ (RMSE ↓ , lower is better). Columns are datasets, rows
are architectures. Solid lines are constrained models; dashed lines are unconstrained. Each plot shows RMSE over
increasing test perturbation levels (γ). All models were trained with perturbation γtrain = 0.13.

Increasing depth influences OOD performance Finally, we show the effects of increasing the number of layers in
Figure 3. As we train deeper models, we observe an decrease in RMSE for higher test γ , an effect that is not present in
unconstrained models under the same settings. This is consistent with our theory: as the number of layers increases, the
unrolled models converge to the optimal of the statistical loss under shifted distributions.

5 TEXT CLASSIFICATION WITH PERTURBED EMBEDDINGS

Our second use case is text classification in the presence of input noise. The task is to minimize negative cross-entropy,
f(X̃,q,Φ(X̃;T)) = −

∑C
c=1 qc logψ(Φ(X̃;T))c. Here, X̃ are perturbed token embeddings as in the previous task,

q ∈ RC are class labels and ψ(·)c is the c-th component of a readout layer, ψ(·) : RN → [0, 1]C . We consider two
different language understanding tasks: IMDb sentiment classification (Maas et al., 2011) and Multi-Genre Natural
Language Inference (MNLI) from the GLUE benchmark (Wang et al., 2019).

Architectures. We adapt two pretrained language models, DistilBERT (Sanh et al., 2020) (L = 12) and RoBERTa (Liu
et al., 2019b) (L = 24) and one unrolled transformer, UT (Yang et al., 2022). For MNLI, we omit RoBERTa due to the
high computational cost. The architecture of the classifiers is identical to (1) and (2), except for the addition of a readout
layer ψ(·), implemented as a single linear layer followed by a softmax nonlinearity. This readout is shared across all
transformer layers to extract a label prediction from intermediate outputs’ representations. The input to the readout is
the [CLS] token for DistilBERT, and the average pooling of the output vectors of Yl for unrolled transformer.

Training. As in video, we train unconstrained models with ERM, whereas constrained models are trained with our
primal-dual algorithm under constant descent schedule, initialized from a reference value f0. The hyperparameters are
the same as specified above. In this case, constrained models proved more sensitive to dual hyperparameters, therefore
we tuned each individually and report their best runs. For a fair comparison, we run the same number of unconstrained
runs and report its best as well. The experiment setting is γtrain = 0.8, and L ∈ {3, 5, 7, 9}. We present summarized
results on additional values of training perturbation in Appendix B.4.
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Figure 3: Effects of descent constraints on the OOD performance of (Left) unconstrained DUST and (Right) constrained
DUST trained on UCSD with training γ = 0. Deeper constrained models show improved OOD performance, while
increasing depth does not benefit unconstrained models.
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rows are architectures. Solid lines denote constrained models; dashed lines denote unconstrained. Each plot shows
accuracy over increasing test perturbation levels (γ). All models were trained with perturbation γtrain = 0.8.

Out-of-Distribution Accuracy. We observe a notable improvement in OOD robustness for DistilBERT and RoBERTa
models on IMDb, as ilustrated in Figure 4. The gap between constrained and unconstrained is larger for RoBERTa,
suggesting that the benefits of descent constraints are more significant with larger models. Constrained UT runs show
comparable behavior to unconstrained runs. In general, the effects of constraints in MNLI are less pronounced. We
hypothesize that the relatively shorter text lengths in MNLI could make it harder for Gaussian perturbations to induce
meaningful distributional shifts.

Preserved in-distribution accuracy. In Figure 4, the accuracies at lower perturbation levels are the in-distribution
performance. In all scenarios, we observe comparable results between constrained and unconstrained settings. In some
cases, such as DistilBERT-IMDb, a marginal tradeoff between ID and OOD performance is observed.

Effect of training perturbation. In addition to the OOD analysis on fixed γtrain, we explore the effect of different
training perturbations for DistilBERT on IMDb in Figure 5. On the left plot, we observe that increasing γtrain improves
robustness at high perturbation levels for constrained models at a slight tradeoff for reduced performance at low test
perturbations γ. For unconstrained models, the tradeoff is not as favorable. On the right plot, we observe smoother
descent patterns on the error rate for constrained models.
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Figure 5: Language Classification OOD Accuracy and layerwise error rates of the constrained and unconstrained
DistilBERT trained on the IMDb dataset. Constrained DistilBERT achieves higher OOD accuracy and exhibits
monotonic descent behavior across layers for various perturbation levels.

Differential Privacy. This robust classifier is of interest in the context of local differential privacy. By degrading more
smoothly to various levels of input perturbation, our model can support different degrees of privacy as required by a
user at inference time, with less performance degradation than training only on perturbed inputs. A more thorough
exploration of the application of our method to differential privacy is a promising future work direction.

6 CONCLUSIONS

This work presented a framework for training unrolled transformers by imposing descent constraints on the intermediate
outputs of the model. We developed a dual training algorithm for constrained transformers and showed that descent
constraints ensure layerwise convergence to a near-optimal value of the statistical loss. We showed theoretically
that our unrolled transformers retain their descent properties under distribution shifts, and that this enables improved
out-of-distribution generalization. This was verified empirically with various transformer-based architectures in video
denoising and language classification with perturbed embeddings. In the case of language, this robust transformer can
be applied to support varying levels of local Differential Privacy at inference time for a better utility tradeoff.
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A MATHEMATICAL PROOFS

In this Appendix, we present the theoretical aspects of our approach, including proofs to our theorem and corollaries.

A.1 CONSTRAINED LEARNING THEOREM

The Constrained Learning Theorem (CLT) characterizes the duality gap in constrained learning problems. Such
problems are highly non-convex, and in general, nonconvex constrained problems lack guarantees of zero duality gap.
However, CLT establishes that constrained learning problems exhibit small duality gap due to the high expressivity of
neural networks.

Theorem 1 (CLT (Chamon et al., 2023)). Let (T∗,λ∗) be a stationary point of (6) and P ∗ denote the optimal value of
the statistical loss function in (4). Under Assumptions 1 - 5, it holds, for some constant ρ, that

|P ∗ − D̂∗| ≤ Cν + ρ ζ(M, δ), and

E
[
f
(
X,Φl(X;T∗)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ), ∀l,

with probability 1− δ each, and with ρ = max{∥λ∗∥, ∥λ̄∗∥}, where λ̄∗ = argmaxλ g(λ) is the optimal multiplier
of the statistical dual function. Moreover, ν and ζ(M, δ) are the expressivity parameter and the sample complexity,
respectively, and C is a Lipschitz constant.

We refer the reader to (Chamon et al., 2023) for detailed proofs and discussions. In the following, we state the
assumptions under which the theorem holds.

Assumption 1. The loss function f is C-Lipschitz continuous and bounded.

Assumption 2. Let Φl ∈ Pl be a model with l unrolling layers and parametrization T. Denote the convex hull of Pl

as P̄l := conv(Pl). Then, for every Φ̄ ∈ P̄l and every l, there exist a parametrization T such that

E
[ ∥∥Φl(X;T)− Φ̄(X)

∥∥
F

]
≤ ν, (10)

for any ν > 0.

Assumption 3. Let Y denote the domain of the transformer’s output. The set Y is either (i) finite, as in classification
tasks, or (ii) compact, in which case the descent constraints are uniformly continuous with respect to the total variation
topology for every Φ̄ ∈ P̄L. Moreover, the conditional distributions X|Y are nonatomic.

Assumption 4. There exists ζ(M, δ) ≥ 0 that is monotonically decreasing with the number of realizations M , for
which it holds, for all l, with probability 1− δ,∣∣∣E[f(X,Φl(X;T)

)]
− Ê

[
f
(
X,Φl(X;T)

)] ∣∣∣ ≤ ζ(M, δ), (11)

where Ê denotes the sample mean.

Assumption 5. There exists a parametrization of L layers, Φ ∈ PL, that is strictly feasible, i.e.,

E
[
f
(
X,Φl(X;T)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T)

)]
≤ −Cν − ξ, (12)

Ê
[
f
(
X,Φl(X;T)

)]
− (1− αl) Ê

[
f
(
X,Φl−1(X;T)

)]
≤ −ξ, (13)

for all l, with ξ > 0.

These assumptions are readily satisfied in practical settings. Assumption 1 induces Lipschitz continuity and holds
for a wide class of loss functions, including ℓ1 and ℓ2 norms. Assumption 2 invokes the universal approximation
theorem, which ensures that the parametrization is sufficiently rich to approximate any function Φ̄ up to a factor ν. This
property has been established for transformers in (Yun et al., 2020) and is the core reason that zero duality gap holds
for constrained learning. Assumption 3 requires the transformer’s output to be bounded, which can be guaranteed by
restricting the input domain to a compact set and using bounded learnable parameterization. Additionally, it requires
the conditional probabilities to be nonatomic. Assumption 4 imposes a mild assumption on the sample complexity,
allowing us to replace statistical expectations with sample means. The strict feasibility condition in Assumption 5 can
also be achieved by appropriately adjusting the design parameter αl or using resilient constrained learning (Hounie
et al., 2023).
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A.2 PROOF OF THEOREM 2

Consider a probability space (Ω,F , P ), where Ω is a sample space, F is a sigma algebra, and P : F → [0, 1] is a
probability measure. We define a random variable X : Ω → R and write P ({ω : X(ω) = 0}) as P (X = 0) to keep
equations concise. We also define a filtration of F as {Fl}l>0, which can be thought of as an increasing sequence of
σ-algebras with Fl−1 ⊂ Fl. We assume that the outputs of the unrolled layers Yl are adapted to Fl, i.e., Yl ∈ Fl, for
all l.

A stochastic process Xk is said to form a supermartingale if E[Xk|Xk−1, . . . , X0] ≤ Xk−1. This inequality implies
that given the past history of the process, the future value Xk is not, on average, larger than the latest one. In the
following, we restate Theorem 2 before we provide a proof that uses a supermartingale argument similar to proofs of
convergence of stochastic descent algorithms. We follow a similar line of reasoning to that in (Hadou et al., 2024b).

In our analysis, we consider a functional minimizer, ϕ∗ : RN×T → RN×T , of the statistical loss:

ϕ∗ = argmin
ϕ

E
[
f(X, ϕ(X) )

]
. (14)

We evaluate the optimality of our constrained unrolled transformers by comparing the statistical loss they achieve with
the optimal value E

[
f
(
X, ϕ∗(X)

)]
. In Theorem 2, we argue that this difference is guaranteed to vanish asymptotically–

in the number of layers–falling below a small threshold that depends on the sample complexity, the stepsize and the
expressivity of the transformers. Theorem 2 holds under the following condition:

Assumption 6. The loss function f is C-Lipschitz continuous in its second argument, and there exists a parametrization
T with l layers that satisfies

E
[
∥Φl(X;T)− ϕ(X)∥F

]
≤ ν, ∀l (15)

for some ν > 0 and any ϕ : RN×T → RN×T .

The Lipschitz continuity assumption is standard in the analysis of convergence. The second part of the assumption
refers to the universal approximation of transformers, which has been established in (Yun et al., 2020). Under these
assumptions, we can prove the convergence guarantees of the constrained unrolled transformers as follows.

Theorem 2 (Convergence Guarantees). Given a constrained unrolled transformer T∗, which satisfies Theorem 1, and
a functional minimizer ϕ∗ as in (32), whose output for a given input X is denoted by Y∗ = ϕ∗(X). Then, under
Assumption 6, it holds that

lim
l→∞

min
k≤l

E
[
f
(
X, Φk(X;T∗)

)
− f

(
X,Y∗) ] ≤ 1

α

(
ζ(M, δ) +

Cδν

1− δ

)
, a.s.

with αl = α, for all l.

Proof. Let Al ∈ Fl be the event that the descent constraint in (4) at layer l is satisfied, and denote the output of layer l,
Φl(X;T∗), as Yk. By the total expectation theorem, we have

E
[
f(X,Yl)− f(X,Y∗)

]
= P (Al)E

[
f(X,Yl)− f(X,Y∗) |Al

]
+ P (Ac

l )E
[
f(X,Yl)− f(X,Y∗) |Ac

l

]
,

(16)

with P (Al) = 1− δ. The first term on the right-hand side is the expectation conditioned on the descent constraint being
met, which is bounded above according to Theorem 1. The second term represents the complementary event Ac

l ∈ Fl,
and is also bounded above:

E
[
f(X,Yl)− f(X,Y∗)

]
= E

[
|f(X,Yl)− f(X,Y∗)|

]
≤ C E

[
∥Yk −Y∗∥F

]
= C E

[
∥Φk(X;T∗)− ϕ∗(X)∥F

]
≤ Cν,

(17)

where ∥ · ∥F is the Frobenius norm. The first equality is true since f(X,Y∗) ≤ f(X,Y) by definition. The two
inequalities follow from Assumption 6: the first inequality is a direct application of the Lipschitz continuity and the
second one of the universal approximation property. Thus,

E
[
f(X,Yl)− f(X,Y∗)

]
≤ (1− δ)(1− α) E

[
f(X,Yl−1)− f(X,Y∗)

]
+ (1− δ)ζ(M, δ) + Cδν,

(18)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

almost surely. We let Zl = E
[
f(X,Yl) − f(X,Y∗)

]
, a random variable with a degenerate distribution, and η =

1
α

(
ζ(M, δ) + Cδν

1−δ

)
. We then convert (18) a supermartingale inequality:

E
[
Zl | Fl−1

]
≤ (1− δ)(1− α) Zl−1 + (1− δ)ζ(M, δ) + Cδν

= (1− δ) Zl−1 − (1− δ)
(
αZl−1 − ζ(M, δ)− Cδν

1− δ

)
= (1− δ) Zl−1 − (1− δ)

(
αZl−1 − αη

)
.

(19)

The goal of the rest of the proof is to show that with growing l, Zl almost surely and infinitely often achieves values
less that η, i.e.,

lim
l→∞

min
k≤l

{Zk} ≤ η a.s. (20)

Equation (20) restates (7) using simplified notation. To this end, we introduce two auxiliary sequences:

βl := Zl · 1{Zbest
l > η},

γl := α (Zl − η) · 1{Zbest
l > η},

(21)

where Zbest
l = mink≤l{Zk} tracks the best-so-far value observed up to step l, and 1{.} is an indicator function. Since

η is nonnegative, it follows that βl ≥ 0 and γl ≥ 0, for all l.

The sequence βl mirrors the values of Zl while the best-so-far value Zbest
l remains above the threshold η. Once Zbest

l
falls below η, the indicator function becomes zero and βl remains zero for all subsequent steps. Similarly, the sequence
γl holds the values of α(Zl − η) only as long as Zbest

l is above η, and also vanishes thereafter.

We now invoke the supermartingale convergence theorem (Robbins and Siegmund, 1971, Theorem 1) to show that βl
converges almost surely and the sequence γl is summable, which will facilitate the proof of (20). To apply this theorem,
we first need to verify that the sequence βl forms a supermartingale.

A sequence βl is a supermartingale if the conditional expectation given the past is upper bounded by the most recent
value, i.e., E[βl | Fl−1] ≤ βl−1. The conditional expectation can be written as

E
[
βl | Fl−1

]
= E

[
βl | Fl−1, βl−1 = 0

]
P (βl−1 = 0) + E

[
βl | Fl−1, βl−1 ̸= 0

]
P (βl−1 ̸= 0), (22)

splitting the expectation into two cases: βl−1 = 0 and βl−1 ̸= 0. When βl−1 = 0, (21) implies that the indicator
function is zero and Zbest

l−1 ≤ η. In turn, βk = 0 and γk = 0, for all k ≥ l − 1. Hence, the first term in (22) is zero,

E
[
βl | Fl−1, βl−1 = 0

]
= (1− δ)(βl−1 − γl−1) = 0. (23)

When βl−1 ̸= 0, the conditional expectation follows from the definition in (21),

E
[
βl | Fl−1, βl−1 ̸= 0

]
= E

[
Zl · 1{Zbest

l > η} | Fl−1, βl−1 ̸= 0
]

≤ E
[
Zl | Fl−1, βl−1 ̸= 0

]
≤ (1− δ) Zl−1 − (1− δ)

(
αZl−1 − αη

)
= (1− δ)(βl−1 − γl−1).

(24)

In the first equality, we plugin (21). The first inequality holds because the indicator function is either zero or one and
the second inequality is a direct application of (19). The last equality results from that fact that the indicator function
1{Zbest

l > η} is one since βl−1 ̸= 0, which implies that βl−1 = Zl−1 and γl−1 = α(Zl−1 − η). Combining the results
of (23) and (24), we find that

E
[
βl | Fl−1

]
≤ (1− δ)(βl−1 − γl−1)

[
P (βl−1 = 0) + P (βl−1 ̸= 0)

]
= (1− δ)(βl−1 − γl−1).

(25)

Hence, βl forms a supermartingale. By the supermartingale convergence theorem, (25) implies that (i) βl converges
almost surely, and (ii)

∑∞
l=1 γl is almost surely summable (i.e., finite). When the latter is written explicitly, we get

∞∑
l=1

(
αZl − αη

)
· 1{Zbest

l > η} <∞, a.s., (26)
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Since γl ≥ 0, for all l, (26) implies that the limit inferior and limit superior collapse to zero,

lim inf
l→∞

(
αZl − αη

)
· 1{Zbest

l > η} = 0, a.s. (27)

Equation (27) is true if either there exist a sufficiently large l such that Zbest
l ≤ η to set the indicator to zero or it holds

that
lim inf
l→∞

(
αZl − αη

)
= 0, a.s. (28)

which is equivalent to having supl infm≥l Zm = η. Hence, there exists some large l where Zbest
l ≤ supl infm≥l Zm,

which leads to the same upper bound. This proves the correctness of (20) and completes the proof.

A.3 PROOF OF COROLLARY 3

The proof of Corollary 3 is adapted from (Hadou et al., 2024b) and is included here for completeness. The corollary
holds under the following assumption:
Assumption 7. There exists a non-negative asymmetric distance d(·, ·) between the input distribution Dx and the OOD
distribution D′

x such that
EDx

[
f
(
X,Φl(X;T∗)

) ]
− ED′

x

[
f
(
X,Φl(X;T∗)

) ]
≤ Cd(Dx, D

′
x)

uniformly over the second argument with C being a Lipschitz constant.
Corollary 3. Let T∗ be a constrained unrolled transformer trained on a data distribution Dx. Then, for any shifted
distribution Dx′ that satisfies Assumption 7, it holds with probability 1− δ, for all l:

ED′
x

[
f
(
X,Φl(X;T∗)

)]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ) + Cτ, (29)

where τ = d(Dx, Dx′) + d(Dx′ , Dx), and d(·, ·) is a bounded asymmetric distance metric.

Proof. We start by adding and subtracting the following two quantities EDx

[
f
(
X,Φl(X;T∗)

)]
and (1 −

ϵ)EDx

[
∥∇f(yl−1;x)∥2] from the quantity we seek to evaluate, i.e., we get

ED′
x

[
f
(
X,Φl(X;T∗)

) ]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

) ]
= ED′

x

[
f
(
X,Φl(X;T∗)

)]
− EDx

[
f
(
X,Φl(X;T∗)

)]
+ (1− αl)

[
EDx

[
f
(
X,Φl−1(X;T∗)

) ]
− EDx′

[
f
(
X,Φl−1(X;T∗)

)] ]
+ EDx

[
f
(
X,Φl(X;T∗)

)]
− (1− αl) EDx

[
f
(
X,Φl−1(X;T∗)

) ]
.

(30)

The right-hand side consists of three terms that can be bounded above with positive quantities according to Assumption
7 and Theorem 1. Therefore, the descent constraints under the new distribution Dx′ can be bounded above by

ED′
x

[
f
(
X,Φl(X;T∗)

) ]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

) ]
≤ Cd(D′

x, Dx) + C(1− αl)d(Dx, D
′
x) + ζ(M, δ)

≤ Cd(D′
x, Dx) + Cd(Dx, D

′
x) + ζ(M, δ).

(31)

Notice that this inequality holds with probability 1− δ since the upper bound in Theorem 1 also holds with the same
probability. This completes the proof.

A.4 PROOF OF COROLLARY 4

We evaluate the OOD generalizability of the constrained unrolled transformers by comparing their performance to that
of a functional minimizer of the statistical loss under the shifted distribution, i.e.,

ϕ̂∗ = argmin
ϕ

EDx′

[
f(X, ϕ(X) )

]
, (32)

where ϕ : RN×T → RN×T maps X to Y.

Corollary 4 (Out-of-Distribution Generalization). Let ϕ̂∗ be a functional minimizer of the statistical loss evaluated on
Dx′ and map input X to an estimation Ŷ∗. Then, the constrained unrolled transformer trained on Dx satisfies

lim
l→∞

min
k≤l

EDx′

[
f
(
X,Φk(X;T∗)

)
− f

(
X, Ŷ∗)] ≤ 1

α

(
ζ(M, δ) + Cτ +

Cδν

1− δ

)
. (33)

Proof. The proof of this corollary proceeds identically to that of Theorem 2 (see Appendix A.2), except it is initialized
with the inequality in Corollary 3.
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A.5 RESILIENT CONSTRAINED LEARNING

Resilient constrained learning (Hounie et al., 2023) aims to find an optimal relaxation of the constraints to ensure the
feasibility of the learning problem. to this end, it introduces a slack variable u ∈ RL

+ and reformulates the constrained
training problem in (4) as

T∗ = argmin
T,u

E
[
f
(
X, Φ(X;T)

) ]
+ h(u),

subject to E
[
f
(
X, Φl(X;T)

) ]
≤ (1− αl)E

[
f
(
X, Φl−1(X;T)

) ]
+ ul, ∀l, (34)

where h(·) is a convex relaxation cost, e.g., an ℓ2 norm. Similarly to (4), we tackle (34) in the dual domain by defining
the corresponding Lagrangian function as

L̂R(T,λ,u) = L̂(T,λ) + β

2
∥u∥22 − u⊤λ, (35)

where L̂ is the Lagrangian of the original problem. In (35), we choose the cost function h to be the ℓ2 norm, i.e.,
h(u) = β

2 ∥u∥
2
2. The associated dual problem becomes

D̂∗
R = max

λ
min
T,u

L̂(T,λ) + β

2
∥u∥22 − u⊤λ. (36)

The optimal slack variable can be obtained by taking the derivative of the objective L̂R and equating it to zero. This
results in u∗(λ) = 1

βλ, and, in turn, the dual problem reduces to

D̂∗
R = max

λ
min
T

L̂(T,λ)− 1

2β
∥λ∥22. (37)

Problem (37) is a regularized variant of the empirical dual problem in (6), and can be solved with the same optimization
scheme: alternating between minimizing with respect to T and maximizing over λ. The gradient with respect to T
remains unchanged, resulting in the same primal update as in Algorithm 1. However, the gradient with respect to λ now
includes a regularized term, − 1

βλ, modifying the dual update to

λ =

[(
1− 1

β

)
λ+ η2∇λL̂(T,λ)

]
+

. (38)

This formulation is analogous to applying weight decay in updating the Lagrangian multipliers and serves to stabilize
their growth. In our experiments, we employ either the update rule in (38) or directly solve (36) via automatic
differentiation, depending on the problem setting.
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B EXPERIMENTAL DETAILS

B.1 COMMON IMPLEMENTATION DETAILS FOR SECTIONS 4 AND 5

Training setting. The goal of both experiments is to compare the behavior of constrained and unconstrained models
under different settings. One setting is comprised of a model, a dataset, a perturbation level γ, and a depth L.

Hyperparameters. The common hyperparameters to tune are β, η1, η2, α and f0. The hyperparameter search method
differs in video and language, detailed in the next sections.

Optimizers. Unconstrained training uses one ADAM optimizer. Constrained training uses two ADAM optimizers, one
for the neural network parameters and another one for optimizing the dual variables. We implement resilient constrained
learning in video as presented in the original work (Hounie et al., 2023). For the language experiment, we use the
weight decay formulation of resilience. However, as was noted in Section 3, both formulations are equivalent.

Compute platform. The video experiments were distributed between three machines: one machine has a single
NVIDIA GeForce RTX 3080 Ti GPU, two of the machines have two NVIDIA GeForce RTX 3090 cards. The language
experiments were run exclusively in the machines with two GPUs.

Relevant libraries. All of our experiments are implemented using PyTorch, version 2.6 for video and 2.7 for language.
Additionally, the language experiment uses HuggingFace Datasets and Pytorch Lightning.

B.2 VIDEO DENOISING IMPLEMENTATION DETAILS

Models. We considered three models: UT, DUST, and ViT. While we generally follow the implementation from
(De Weerdt et al., 2023), we make some minor simplifications to DUST and UT, which may make our results not
directly comparable to theirs. These changes are explained in Appendix C To adapt ViT to the denoising task, we
discard the classifier head, directly take each layer’s output and interpret it as a reconstruction. It is worth noting
that ViT processes each frame separately, while DUST and UT are natively designed to process sequences of patches.
However, we reiterate that the goal of our experiments is not to compare performance across models, but rather contrast
the constrained and unconstrained versions of each. Therefore, this difference is not significant for our purposes.

Splits and data processing. We reuse the preprocessing from (Luong et al., 2021), which consists of grayscaling,
resizing to 160x160, and creating 16x16 patches. Vision Transformer uses its own out-of-the box processor on each
frame.

Initialization. Dual variables and resilience slacks are initialized to zero. Model weight initialization in video uses a
Discrete Cosine Transform for DUST and UT (Luong et al., 2021). ViT is initialized to pretrained weights.

Metrics. For a set of ground-truth images {Yi}Ni=1 and their reconstructions {Ŷi}Ni=1, the root mean squared error

(RMSE) is defined as RMSE =
√

1
N

∑N
i=1∥Ŷi −Yi∥22. At test time, we evaluate RMSE under different perturbation

levels, γ ∈ {0.01, 0.05, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0, 1.5}. In the forthcoming extended results, we summarize model
performance across different distribution shifts, we report the mean RMSE across perturbation levels.

Primal warmup. We train for an epoch without activating constraints as we empirically observed this aids with the
stability of constrained training

Resilience restarts. After every epoch, we clamp the resilience slacks to zero. We empirically observe that initial
relaxations tend to be high and then converge slowly. Restarting the slacks after every epoch helps converge to tighter
feasible solutions more quickly.

Hyperparameter tuning. We perform a single hyperparameter search for each model with training perturbation
γ = 0.15 and reuse the results for every setting. We fix η1 = 3× 10−4, except for runs of DUST-Avenue with L = 9,
which use η1 = 8× 10−6. Table 1 shows the results of the hyperparameter search.

Table 1: Dual hyperparameters used for each model in the video denoising task.

Model α f0 β η2

DUST 6.50 3.10× 106 0.75 2.78× 10−4

UT 5.50 5.30× 105 0.78 3.20× 10−4

ViT 0.44 2.02× 102 0.71 3.00× 10−4
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Table 2: Dual hyperparameters for the best run of each model in the language task.

Model Dataset L γ α f0 β η2

DistilBERT IMDB 12 1.00 0.774 1.00 1.07 3.83× 10−2

MNLI 12 1.00 0.774 1.00 1.99 1.51× 10−2

UT IMDB 3 0.80 0.900 0.90 3.45 2.80× 10−2

MNLI 3 0.00 0.900 0.90 1.98 9.12× 10−2

B.3 LANGUAGE EXPERIMENT SETUP.

Splits and data processing. We rely on the standard train and test splits for each dataset. For the case of MNLI, there
is a single step of preprocessing where we combine the premise and hypothesis into a single instance.

Models. We considered two models, a pretrained DistilBERT and UT. UT takes as input the same word embeddings as
DistilBERT.

Initialization. Dual variables and resilience slacks are initialized to zero. UT uses Xavier initialization. DistilBERT is
initialized to pretrained weights.

Metric. In language, we report the prediction accuracy, Acc(x,y) = 1
M

∑M
i=1 1

{
xi = yi

}
, where M is the number

of samples, x is the true vector of classes, and y is the predicted classes. To summarize, we estimate the AUC of the
accuracies at different perturbation levels.

Hyperparameter tuning. For constrained training, we performed a Bayesian hyperparameter search with five runs per
experimental setting. To maintain a fair comparison, unconstrained training was executed five times with different seeds,
and we report the best result. This choice was motivated by observing a higher sensitivity of constrained experiments to
dual hyperparameters compared to the video experiments. For brevity, Table 2 only lists hyperparameters corresponding
to the best-performing run for each combination of dataset, model, and number of layers. In all settings, we fixed
η1 = 10−5.

B.4 EXTENDED RESULTS FOR VIDEO AND LANGUAGE

Constraints Improve OOD Performance Across Settings. In Section 4 and 5 we analyzed ID and OOD distribution
for runs with a particular training perturbation. In Tables 3 and 4, we provide a summary of the complete suite
of experiments for language and video experiments respectively. Note that RoBERTa-MNLI were omitted due
to computational limitations. We can appreciate that in most settings, training with descent constraints increases
performance when compared to unconstrained runs with the same settings. In many cases, these differences are
significant. For instance, constrained DUST on the Avenue dataset with L = 5 and γ = 0.15, has an average RMSE
of 14.72, while unconstrained is 28.269, a 71% reduction. On the language side, we find a similar result: constraints
either improve or attain comparable AUC when compared across settings.

We also observe that a small number of constrained runs have very high RMSE, such as DUST with 7 layers on the
ShanghaiTech dataset results in an RMSE above 131. The reason for these anomalies is challenges with primal-dual
convergence. These results highlight the importance of carefully choosing the dual parameters and verifying training
finalizes at a feasible solution.

Monotonic Descent Behavior. In Figure 6, we observe that constrained DUST trained on the UCSD dataset exhibits a
monotonically decreasing loss f across the layers. This effect persists consistently for models with different depths. In
contrast, the descent behavior is absent in the unconstrained counterparts. Similar patterns were observed for other
models and datasets. We note that due to the choice of the reference value f0, the initial energy in some constrained
runs may be higher than that of the unconstrained ones.

Different Tradeoffs in Video Denoising. Figure 7 shows three more examples where, with the same settings,
constrained models achieve a better tradeoff between in-distribution and OOD reconstruction quality. In two of
them (UT and ViT), we see constrained models trading off reconstruction quality at low levels of noise for better
OOD performance. In the case of constrained DUST, however, we see a higher reconstruction quality compared to
unconstrained in low-perturbation settings, and this difference gradually decreases with more test noise.

Non-uniform Effect of Perturbation. Figure 8 shows constrained and unconstrained OOD accuracy curves for UT
and DistilBERT. In DistilBERT, as the perturbation level increases, the OOD accuracy of the constrained model slightly
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Table 3: Average test RMSE over perturbations: Constrained vs Unconstrained (all settings)

Avenue Shanghaitech UCSD
L γtrain Constr Unconstr. Constr Unconstr. Constr Unconstr.

DUST

3

0.00 21.145 19.679 19.290 19.357 19.165 19.323
0.09 16.976 17.139 16.175 15.952 14.856 14.974
0.11 16.054 16.410 15.377 15.444 14.166 14.167
0.13 15.409 15.878 17.452 14.838 13.562 13.505
0.15 14.765 15.264 13.781 14.276 12.970 12.934

5

0.00 17.650 21.072 18.643 19.174 17.517 19.469
0.09 15.599 20.344 15.018 15.259 14.362 14.443
0.11 15.848 20.960 13.633 12.463 105.767 20.965
0.13 18.057 22.368 13.231 13.738 13.240 13.257
0.15 14.724 28.269 12.410 18.636 12.642 12.840

7

0.00 16.179 19.370 131.102 19.233 14.448 19.396
0.09 28.916 36.374 132.968 14.754 13.040 25.968
0.11 14.885 25.883 138.362 13.470 22.551 20.503
0.13 14.515 63.309 13.106 13.502 12.365 62.931
0.15 14.330 30.617 11.986 13.065 12.024 23.470

UT

3

0.00 16.770 16.180 17.691 18.471 15.074 15.353
0.09 14.098 14.639 14.381 15.026 12.938 13.481
0.11 13.523 14.063 13.618 13.783 12.770 13.293
0.13 13.196 13.481 13.432 15.538 11.996 12.871
0.15 12.377 13.110 12.952 15.306 11.342 12.442

5

0.00 16.464 14.786 17.705 18.601 15.227 15.675
0.09 13.828 15.084 14.977 13.988 13.394 12.923
0.11 13.228 13.961 14.258 12.638 12.283 12.784
0.13 12.701 13.631 13.498 11.540 12.144 12.360
0.15 12.398 13.214 12.728 11.832 10.815 11.643

7

0.00 16.609 14.979 14.626 16.817 15.047 12.361
0.09 13.962 13.819 16.286 13.567 12.818 11.953
0.11 16.731 14.005 13.606 13.300 13.092 11.849
0.13 12.553 13.357 18.531 12.735 11.155 11.534
0.15 12.232 12.996 12.726 12.316 10.577 11.768

ViT 12

0.00 11.577 12.124 11.577 12.124 21.308 21.793
0.09 7.595 7.582 7.538 8.008 16.349 17.037
0.11 7.219 7.495 7.387 7.240 16.638 18.515
0.13 7.094 7.138 7.021 7.351 23.186 23.482
0.15 6.953 6.865 6.650 6.889 12.695 14.632
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Table 4: OOD Accuracy AUC values for all language classification settings.

IMDB MNLI
Model L γtrain Constr. Unconstr. Constr Unconstr.

UT

3

0.0 1.719 1.707 0.892 0.887
0.2 1.719 1.714 0.902 0.896
0.4 1.723 1.720 0.914 0.909
0.6 1.731 1.728 0.921 0.920
0.8 1.740 1.735 0.930 0.926
1.0 1.736 1.731 0.935 0.933

5

0.0 1.680 1.680 0.889 0.882
0.2 1.686 1.687 0.902 0.894
0.4 1.702 1.706 0.913 0.909
0.6 1.714 1.718 0.924 0.918
0.8 1.727 1.729 0.930 0.927
1.0 1.739 1.740 0.933 0.931

7

0.0 1.673 1.672 0.889 0.885
0.2 1.679 1.685 0.901 0.895
0.4 1.696 1.695 0.915 0.911
0.6 1.712 1.714 0.922 0.919
0.8 1.726 1.724 0.929 0.925
1.0 1.736 1.733 0.932 0.931

9

0.0 1.672 1.670 0.890 0.885
0.2 1.680 1.676 0.902 0.893
0.4 1.697 1.693 0.914 0.909
0.6 1.711 1.711 0.923 0.920
0.8 1.724 1.724 0.928 0.929
1.0 1.734 1.733 0.932 0.930

DistilBERT 12

0.0 1.583 1.608 1.052 1.064
0.2 1.592 1.586 1.091 1.096
0.4 1.653 1.602 1.162 1.153
0.6 1.677 1.660 1.253 1.227
0.8 1.738 1.704 1.328 1.322
1.0 1.789 1.745 1.408 1.405

RoBERTa 24

0.0 1.797 1.651 N/A N/A
0.2 1.789 1.702 N/A N/A
0.4 1.785 1.642 N/A N/A
0.6 1.778 1.708 N/A N/A
0.8 1.828 1.719 N/A N/A
1.0 1.874 1.824 N/A N/A

increases, an effect also present on the IMDb dataset, as shown in Section 4. This effect is not uniform across settings,
however, as we see that in UT the gap between constrained and unconstrained is largest when training with γ = 0.

Infeasible Solutions Leads to Low Performance. In Figure 9 we present a failure mode where the constrained model
failed to converge to a feasible solution, resulting in the constrained model having very low performance across all
noise regimes. As mentioned previously, this is is an example that highlights the importance of hyperparameter tuning
for the dual problem and verifying that constrained models are feasible at the end of training.
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Figure 6: Evolution of the loss function f for unconstrained and constrained DUST models with different numbers
of layers: 3, 5, and 7 from left to right. All models are trained on the UCSD dataset with no input perturbations.
Constrained DUST exhibits monotonic descent behavior while the unconstrained model does not.
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Figure 7: RMSE vs test perturbation plots for constrained and unconstrained models in three select video denoising
settings. The first is UT-ShanghaiTech with L = 7, train γ = 0.09, the second is ViT-UCSD with L = 12 and training
γ = 0.13, and the third is DUST-Avenue with L = 7 and training γ = 0.15.

C UNROLLED NEURAL NETWORKS

In this Appendix, we discuss the literature on unrolled neural networks, our relationship to unrolling, and implementation
details of the unrolled architectures used in the experiments of Sections 4 and 5

C.1 ALGORITHMIC UNROLLING AND UNROLLED NEURAL NETWORKS

Algorithmic unrolling began with the seminal work by Gregor & Lecun for learning fast approximations of sparse
coding (LISTA), which showed that a significant speedup can be accomplished by training a neural network to imitate
the optimal representation of ISTA. A vast literature has focused on improving the efficiency and convergence of
LISTA-like algorithms, for instance, (Liu et al., 2019a).

Since then, a new type of unrolling literature has emerged (Yang et al., 2022; De Weerdt et al., 2023; Yang et al., 2021;
Xie et al., 2023; Hershey et al., 2014; Frecon et al., 2022) where neural networks are interpreted as optimizers that
settle on an equilibrium point of an energy function. An unrolled network minimizes a problem of the form

H⋆(W) = argmin
H

E [g(X,H)] , (39)

where g(·) is the energy function, H is an optimization variable, and X is data. The network Φ(X;W) unrolls problem
(39) by iteratively decreasing g along its layers. The general method to prove unrolling is to interpret the forward pass
as a gradient step, proximal method, or some other descent method,

Hk+1(W) = Hk(W)− ηΓg,H(W), (40)

where ΓH(D) is a descent direction of g with respect to H. The goal of unrolling is then to find a g function such that
Γg,H(D) makes this equation also satisfy
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Figure 8: Accuracy OOD plots for two select language experiment settings. The first plot row is UT-IMDB, the second
plot row is DistilBERT-MNLI. The plot columns are training γ levels. Each plot shows constrained and unconstrained
OOD Accuracy curves for each setting. The plot colors represent the training perturbation level.
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Figure 9: Example of an infeasible constrained model. The setting is DUST on the ShanghaiTech dataset, L = 7,
training γ = 0.11. The left plot shows the OOD PSNR values for constrained and unconstrained models, and the right
plot shows the test loss of the models at each intermediate layer’s representation. The constrained model failed to
converge to a monotonically decreasing solution.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Hk+1(W) = ϕ(H,X;W), (41)

where ϕ is the forward pass of a neural network, such as a transformer. The motivation is to elucidate the behavior of
the neural network, as it is said that the function g explains the forward pass of the architecture. For example, consider
unrolling the following problem, which results in a ReLU layer:

min
H(W)

1

2
Tr[H⊤WH] +

1

2
∥H∥22 + ψ(H), ψ(u) =

{
+∞ if u < 0

0, otherwise
(42)

unrolls into Hk+1 = ReLU[WsHk], with the symmetric matrix Ws = (1− α)I − η
2 (W2 +W⊤

2 ), as shown in (Xie
et al., 2023).

Training unrolled models. Training an unrolled neural network is given by the following bilevel optimization problem:

W∗ = argmin
W

E[f(X,H∗(W))], (43)

s.t. H∗(W) = argmin
H

E[g(X,H;W)], (44)

where f is a training objective and g is an auxiliary objective function that guides the evolution of the representation H
and encourages desirable internal structure, such as sparsity, cross-correlation, etc.

Relation to our method. As we have explained in Section 2, we draw inspiration from the idea of neural network
unrolling, but what we call unrolling in this paper is a different method, since we don’t design and train neural networks
to solve optimization problems, but rather encourage existing architectures to descend on an objective via constraints
during training. For standard unrolled transformers, such as DUST and UT, our training method can be seen as solving
the bilevel problem (43) and (44). The constraints we impose in Section 3 encourage descent on (43). Since the unrolled
model is designed to be a descent algorithm of g(·), its forward pass should descend on 44, by construction.

C.2 TRANSFORMER UNROLLING

Consider the energy function given by g(X,W) = g1(X,W) + g2(X,W), with

g1(X;W) = −
T∑

t=1

T∑
u=1

exp {−1

2
∥Wxt −Wxu∥2}+

1

2

T∑
t=1

∥Wxt∥22, (45)

g2(X,W2) =
1

2
Tr{X⊤W2X}+ 1

2
∥X∥2F + φ(X) (46)

where W ∈ Rd×n is a matrix of learnable parameters. This function consists of a sum of scaled distances between the
vectors of the sequence X and the norm of the projected vectors.

Consider the following recursion that describes a symmetric transformer with shared weights,

Zk+1 = Xk × sm
[
(W1Xk)

⊤(W1Xk)
]
, (47)

Xk+1 = ReLU (WsZk+1) , (48)

for k ∈ [1,K], with Ws a symmetric weight matrix as in (42). Equation (47) is a softmax self-attention layer with a
single projection matrix Wl

1 shared between keys, queries, and values, i.e., Ql = Kl = Vl for all l, noting that the
value parameters cancel out from the previous layer. This Equation corresponds to the unrolling of (45). In the next
section, we will elaborate on the part of the proof from (Yang et al., 2022) that shows how to derive an attention-like
structure from this function.

Equation (48) is a linear transformation parameterized by W2, followed by a residual connection and a ReLU
nonlinearity. As mentioned in the previous section, this form of ReLU with symmetric weights corresponds to the
unrolling of (46).

With this definition of g(·), (Yang et al., 2022) show that Equations (47) and (48) are a descent algorithm for problem
(39). The proof involves showing that both steps sequentially result in an inexact gradient descent direction of
g1(·) + g2(·).
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C.2.1 DERIVATION OF SOFTMAX SELF-ATTENTION

In (Yang et al., 2022), Theorem 3.1 shows how to derive unrollings for a family of attention structures. Here we present
this theorem for the concrete case of self-attention, using our notation. We provide an extended version of their proof
for completeness.
Theorem 1 (Theorem 3.1 from (Yang et al., 2022)). Replace Y = WX, and consider g1(Y) as in (45). Let

βi = exp

{
− 1

2

∥∥∥y(k)
i

∥∥∥2}, and let Y(k) represent any fixed value for Y. Then the update rule

y
(k+1)
i =

∑n
j=1βj exp

{
y
(k)⊤
i y

(k)
j

}
y
(k)
j∑n

j=1 βj exp
{
y
(k)⊤
i y

(k)
j

} , ∀i, (49)

satisfies g1
(
Y(k+1)

)
≤ g1

(
Y(k)

)
with equality iff Y(k) is a stationary point of g1.

Replacing Y = WX in (45), we have

g1(Y) =

T∑
t=1

T∑
u=1

exp {−1

2
∥yt − yu∥2}+

1

2
∥Y∥2F . (50)

The proof relies on a graph over the tokens, but we will consider the special case of a fully connected graph G = (V, E),
Let G = (V, E) a fully connected graph over the tokens, with Laplacian L = D−A = BTB, where B ∈ Rm×n is the
incidence matrix Consider the surrogate energy function

g̃1 (Y,Γ) =
∑

u,v∈E

1

2
γu,v∥yu − yv∥2 +

1

2
∥Y∥2F . (51)

Proposition B.2 in (Yang et al., 2022) shows how a majorization-minimization algorithm that decreases g̃1 also decreases
g1. The proof relies on Lemma 3.2 in (Yang et al., 2021). Here we focus on the proof of decreasing g̃.
Theorem 2 (Theorem B.2 from (Yang et al., 2022)). Consider updating g̃1 using a gradient step with step size η and
Jacobi preconditioner D−(t):

Y(t+1) = Y(t) − ηD−(t)
∂g̃1

(
Y,Γ(t)

)
∂Y

∣∣∣∣∣∣
Y=Y(t)

, (52)

where

D(t) =
∂2g̃1

(
Y,Γ(t)

)
∂Y2

∣∣∣∣∣∣
Y=Y(t)

, (53)

and η ≤ 1, it follows that g̃1
(
Y(t+1)

)
≤ g̃1

(
Y(t)

)
.

And the update rule in (52) can be written as

y(t+1)
u = (1− η)y(t)

u + η

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

}
y(t)
v

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

} , ∀u. (54)

The weights are given by the diagonal matrix Γ with entries Γii = γuv, ∀ ei = (u, v) ∈ E . The γuv correspond to the
reweighting coefficients in a minimization-algorithm,

γ(t)u,v =
d(− exp{− 1

2∥yu − yv∥2})
d( 12∥yu − yv∥2)

(55)

= exp{−1

2
∥y(t)u − y(t)v ∥2} (56)

= exp{y(t)
⊤

u y(t)v }βuβv, βu = exp{−1

2
∥y(t)u ∥2} (57)
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Let L̃ = BTΓB the reweighted Laplacian (note that Γ ∈ Rm×m is a diagonal matrix with entries γuv for every arc
(u, v) ∈ E , and that γuu = e0 = 1. The reweighted energy can be written as:

g̃1(Y) = Trace
[
YT L̃Y

]
+ ∥Y∥2F (58)

Then its derivative and Hessian are given by

∂g̃(Y)

∂Y
= L̃Y +Y (59)

∂2g̃(Y)

∂Y2
= L̃+ I. (60)

Note that the reweighted Laplacian has entries

L̃uv =

{∑
v′ ̸=u γuv′ if u = v

−γuv if u ̸= v
(61)

So the Jacobi preconditioner is the diagonal of the Hessian of g̃, with entries

[D]uu =
∑
v ̸=u

γuv + 1 (62)

=
∑
v∈V

γuv − γuu + 1 (63)

=
∑
v∈V

γuv (64)

the equalities coming from adding and subtracting γuu = e0 = 1.

Also note that, considering the two cases of L̃, we have

[L̃Y]u =
∑
v′ ̸=u

γuv′yu −
∑
v∈V

γuvyv (65)

The first term coming from the case where u = v, and the second term is the sum of all the other cases where u ̸= v.
Replacing this into (52) (and dropping (t) in the right hand side for brevity) we have

Y(t+1) = Y − ηD−1L̃Y − ηD−1Y (66)

The update rule for the vector of node u, substituting (65) and (64), becomes
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y(t+1)
u = yu − η

∑
v′ ̸=u γuv′yu −

∑
v∈V γuvyv∑

v∈V γuv
− η

1∑
v∈V γuv

yu (67)

= yu − η

∑
v′ ̸=u γuv′∑
v∈V γuv

yu − η
γuu∑
v∈V γuv

yu + η

∑
v∈V γuvyv∑
v∈V γuv

(68)

= yu − η(

∑
v∈V γuv∑
v∈V γuv

)yu + η

∑
v∈V γuvyv∑
v∈V γuv

(69)

= (1− η)yu + η

∑
v∈V γuvyv∑
v∈V γuv

(70)

= (1− η)yu + η
βu

∑
v∈V exp {−yT

uyv}βvyv

βu
∑

v∈V exp {yT
uyv}βv

(71)

= (1− η)yu + η

∑
v∈V exp {yT

uyv}βvyv∑
v∈V exp {yT

uyv}βv
(72)

which is (54). This completes the proof of Theorem 2. Note that convergence requires that α ≤ 1/L(t), with L(t) the
Lipschitz constant of the gradient of D−(t)(̃Y,Γ(t)), but L(t) = 1.

Proof of Theorem 1. With η = 1 the yu term vanishes, replacing the summation over all vertices with the vertex
indices, and setting the temperature parameters to βu = 1 for all u ∈ V , Equation 72 becomes (49). By Theorem 2, this
update rule decreases g̃(·).
Furthermore, Proposition B.2 in (Yang et al., 2022) shows how a majorization-minimization algorithm that decreases g̃1
also decreases g1. The proof relies on Lemma 3.2 in (Yang et al., 2021).

SSA Reparametrization. If we replace back yu = Wxu in (49), we have, in matrix form,

WX(k+1) = WX(k) · sm
[ (

WX(k)
)⊤ (

WX(k)
) ]
, (73)

where we see that W cancels out on both sides, leading to what we call symmetric softmax attention without a V
matrix.

C.3 DEEP UNFOLDED SEQUENTIAL TRANSFORMER (DUST)

Leveraging the transformer unrolling seen in the previous section, Deep Unfolded Sequential Transformer (DUST)
(De Weerdt et al., 2023) derives an architecture for video processing by unrolling the function

min
H

E
[ T∑
t=1

(
1
2∥xt −ADht∥22 + λ1∥ht∥1

)
︸ ︷︷ ︸

LISTA loss

]
+ λ2 g1(H,D), (74)

where g1 is the symmetric attention energy as in Equation (45), X is a sequence of video frames as defined in Section 4,
D ∈ RD×N is the feature dictionary, A ∈ Rm×D, m≪ D is the measurement matrix, H ∈ RN×T is called the sparse
code, and λ1 and λ2 are regularization parameters. Unrolling this problem results in a symmetric softmax attention
layer followed by a LISTA layer. The g function is composed of three components: the objective f , ℓ1 terms to promote
sparsity, and the cross-correlation term g1. With this structure, DUST aims to learn a sparse reconstruction H of the
dictionary features D that also takes into account the cross-correlation of elements in the sequence.

The DUST architecture is

H(k+1/2) = λ2H
(k) softmax(H(k)⊤D⊤DH(k)), (75)

H
(k+1)
t = ϕλ1

c

(
UH

(k+1/2)
t +VX

)
, (76)
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for all k ∈ [1,K]. Here, the proximal operator ϕγ(u) = sign(u)max(0, |u|−γ) is called the soft-thresholding function,
and c is related to the Lipschitz constant of the gradient of X− The index (k + 1/2) denotes an intermediate step.

In (De Weerdt et al., 2023), U,V,D, c, λ1 and λ2 are learnable parameters. The matrices U and V are initialized as
U = I − 1

cD
⊤A⊤AD, and V = 1

cD
⊤A⊤, while the dictionary D is initialized to the Discrete Cosine Transform

(DCT) and updated during training as well.

Alternate execution of the updates (75) and (76) is guaranteed to reduce the objective of (74) leveraging the same
Alternate Minimization results from (Yang et al., 2022).

C.4 IMPLEMENTATION ADAPTATIONS FROM DUST

We make the following departures from the original paper’s implementation:

No compressed sensing. The experiments of (De Weerdt et al., 2023) include compressed sensing tasks. In these
experiments, the measurement matrix A that compresses the signal into a lower dimensional space. This matrix is
included in the unrolling of the LISTA layer to account for this signal compression. Since we only work with the
denoising task, we set A = I in our architecture.

Coupled LISTA weights. We keep the coupling of U and V within each layer instead of learning them, motivated by
results from the LISTA literature that suggest the coupling of these matrices is necessary for convergence (Chen et al.,
2018).

Disabling some learnable parameters. In our implementation, the only trainable parameter is D for unconstrained
DUST and Dl for all l in constrained DUST. We fix the learnable parameters to λ1 = 0.9, λ2 = 0.25, as we observed
the learnable parameters resulted in trivial satisfaction of our descent constraints (by making one term have zero weight).
Preliminary experiments suggested this came with little impact to performance for unconstrained runs.

Decoupled Layerwise Dictionaries. Although (Liu et al., 2019a) advocates parameter coupling across layers, we
maintain distinct dictionaries D for each layer in constrained models, as we empirically observed this improves
performance.
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