
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A CONSTRAINED OPTIMIZATION PERSPECTIVE OF UNROLLED
TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a constrained optimization framework for training transformers that behave like opti-
mization descent algorithms. Specifically, we enforce layerwise descent constraints on the objective
function and replace standard empirical risk minimization (ERM) with a primal-dual training scheme.
This approach yields models whose intermediate representations decrease the loss monotonically
in expectation across layers. We apply our method to both unrolled transformer architectures and
conventional pretrained transformers on tasks of video denoising and text classification. Across
these settings, we observe that constrained transformers achieve stronger robustness to perturbations
and maintain higher out-of-distribution generalization, while preserving competitive in-distribution
performance.

1 INTRODUCTION

Unrolling arises from the observation that iterations of descent algorithms of some optimization problems perform
operations that are analogous to those of individual layers of a neural network (Gregor and LeCun, 2010; Monga
et al., 2021). From this observation, an extensive literature has emerged in which neural networks are trained to solve
optimization problems, with corresponding descent algorithms used as guidance for architecture design (Yang et al.,
2022; De Weerdt et al., 2023; Yang et al., 2021; Xie et al., 2023; Hershey et al., 2014; Frecon et al., 2022). E.g., descent
algorithms for sparse reconstruction involve a linear map and a nonnegative projection motivating the use of a neural
network made up of linear maps and ReLU nonlinearities to learn solutions of sparse reconstruction problems (Gregor
and LeCun, 2010).

In the case of transformers (Vaswani et al., 2017), unrolling has gained traction as a tool to interpret attention mechanisms
(Yang et al., 2022; Yu et al., 2023; Ramsauer et al., 2020; De Weerdt et al., 2024; Von Oswald et al., 2023). These
works present different energy functions and provide theoretical results showing that the update rules, which closely
resemble a transformer’s forward pass, exhibit descent properties. Beyond this theoretical value, (De Weerdt et al.,
2023) and (Yu et al., 2023) train unrolled transformers that are interpretable and parameter-efficient. When training
these models, however, the behavior of these networks is non-monotonic along the iterates, which is inconsistent with
the behavior expected of an optimizer. There are two reasons for this. Firstly, there is no guarantee that the learned
parameters will satisfy the conditions under which the models minimize the energy. Secondly, training an unrolled
architecture inherently induces a bilevel problem, which the unrolled architecture is not designed to take into account.

In this paper, we draw from the unrolling literature to argue that it may be advantageous to train transformers that
behave like descent algorithms. We do so by imposing descent constraints on the output of each layer. Specifically, the
first contribution of this paper is that:

[C1] We formulate a constrained learning problem in which the output of each layer of a transformer is required to
reduce the expected loss by a given factor relative to the cost of the output of the previous layer (Section 2).

It is important to point out that our use of the term unrolling is not identical to the more common use of unrolling to
refer to a learned parameterization that solves an optimization problem. We use unrolling here to refer to an arbitrary
learning problem in which we explore the merit of forcing the layers of the transformer to behave like steps of an
optimization descent algorithm.

We discuss training algorithms for constrained transformers in Section 3. These algorithms train transformers in the
dual domain where we leverage small duality gap results drawn from the constrained learning literature (Chamon et al.,
2023; Chamon and Ribeiro, 2020). This is our second contribution:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

0 5 10 15 20
Layer

0.1

0.2

0.3

0.4

0.5
Te

st
 L

os
s

Layerwise Loss

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

OOD Accuracy

Constrained
Unconstrained

Figure 1: Layerwise descent improves OOD robustness. Left: Test loss at each layer (lower is better). Constrained
RoBERTa exhibits monotonic descent, unlike the unconstrained baseline. Right: Out-of-distribution accuracy under
increasing embedding perturbation levels γ (higher is better). As γ grows, the constrained model degrades more
gracefully and retains higher accuracy. Setting: RoBERTa (L = 24) trained on IMDb, training γ = 0.2.

[C2] We develop a dual training algorithm for constrained unrolled transformers. We show that incorporating
descent constraints ensures asymptotic convergence–in the number of layers–to a near-optimal value of the
statistical loss. We also provide theoretical guarantees that constrained transformers maintain descent behavior
and exhibit out-of-distribution (OOD) generalizability under distribution shifts (Section 3).

We expect the incorporation of descent constraints to yield trained transformers that respond better to perturbations of
the input data. This is because it is a hallmark of descent algorithms that they do respond better to perturbations and
existing results have shown that incorporating descent constraints in neural networks does result in learned solutions
that are less sensitive to perturbations (Hadou et al., 2024b). In this paper, we find that transformers trained with descent
constraints share this property. Our next two contributions are to demonstrate the value of adding constraints in two
application domains where data perturbations arise naturally:

[C3] We consider video denoising, where the goal is to learn a transformer for vision (Yang et al., 2022; De Weerdt
et al., 2023; Dosovitskiy et al., 2021) that recovers a video sequence from noisy observations. We show that
training with descending constraints results in models that are more robust to OOD levels of noise, as measured
by the root mean squared error (RMSE) of the reconstructed videos (Section 4).

[C4] We investigate text classification problems with perturbed embeddings, in which users query a language model
with embeddings perturbed with varying levels of Gaussian noise (Fukuchi et al., 2017). We observe that the
reduction of classification accuracy as the degree of perturbation increases is smaller in transformers trained
with descent constraints (Section 5).

An instance of this robustness to perturbations is illustrated in Figure 1. A text classifier (RoBERTa) trained with
empirical risk minimization (ERM) exhibits a non-monotonic loss pattern along its layers, maintaining a high loss until
the last few layers, with a spike at the 19th layer. The constrained version of this model, trained to enforce monotonic
descent constraints, exhibits a smoother decreasing pattern. When measuring the accuracy under OOD perturbations,
we observe that the constrained model’s accuracy decays more gracefully than its unconstrained counterpart.

1.1 RELATED WORK

Algorithmic unrolling and the learning-to-optimize framework. There exists a vast literature in algorithmic unrolling,
in which a neural network learns to approximate the solution of an optimization algorithms (Monga et al., 2021). Since
the original LISTA (Gregor and LeCun, 2010), subsequent works have obtained remarkable improvements in speed
and performance (Liu et al., 2019a; Chen et al., 2018; Aberdam et al., 2020) and unrolling has been applied to learn
approximations of a variety of optimization algorithms (Hershey et al., 2014; Sprechmann et al., 2015; Wang et al.,
2015).

Other unrolled neural networks. Beyond traditional unrolling, a new line of research has emerged that uses unrolling
as a theoretical tool to interpret a variety of neural network architectures and layers, such as graph neural networks
(GNNs) (Yang et al., 2021; Hadou et al., 2024a; Hadou and Ribeiro, 2025), recurrent neural networks (RNNs) (Luong
et al., 2021), ReLU nonlinearities (Xie et al., 2023), and other feedforward architectures (Frecon et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Unrolled transformers. The first work to show an unrolling of an attention layer is (Ramsauer et al., 2020). The
first full unrolling of a transformer layer with attention and a nonlinearity is attributed to (Yang et al., 2022). This is
extended by (De Weerdt et al., 2023) for video reconstruction with a LISTA nonlinearity instead of ReLU. The work in
(Yu et al., 2023) is a different unrolling that interprets the transformer as a process of denoising and compressing tokens.

Transformers as optimizers. Simultaneously, the community has explored other perspectives of transformers as
optimizers. One such view is that transformers are in-context learners (Dong et al., 2024; Oswald et al., 2023; Li et al.,
2023; Olsson et al., 2022; Ahn et al., 2023; Dai et al., 2022), which may explain large language model’s abilities to
generalize to tasks not seen during training via examples provided during inference (Brown et al., 2020).

Constrained learning and constrained unrolling. Constrained learning theory provides a framework for training
neural networks subject to constraints (Chamon et al., 2023; Hounie et al., 2023) and has been a useful tool in various
domains (Moro and Chamon, 2024). In the context of unrolling, (Hadou et al., 2024b;a) have proposed training unrolled
networks with descent constraints and demonstrated that constrained models exhibit more robustness to perturbations
and better out-of-distribution generalization.

Differential privacy. Additive Gaussian perturbations are common in Differential Privacy (DP) for neural networks
(Dwork and Roth, 2014; Dwork et al., 2006; Yu et al., 2022). One method to train private models is to perturb the
gradients during training (Abadi et al., 2016), which gives (ϵ, δ)-DP. Another approach, closer to our experimental case,
is to perturb inputs directly, known as local-DP. This mechanism ensures end-to-end user privacy but leads to even
worse O(

√
nϵ, δ) privacy (Fukuchi et al., 2017) and thus requires more noise for the same privacy level. Other DP

works also study perturbing token embeddings (Yu et al., 2022; Feyisetan et al., 2020; Feyisetan and Kasiviswanathan,
2021; Bollegala et al., 2023).

2 CONSTRAINED UNROLLED TRANSFORMERS

A transformer is a layered architecture that processes a sequence of T vectors xt ∈ RN grouped in the matrix
X = [x1, . . . ,xT ] ∈ RN×T to represent the entire vector sequence. The input to each transformer layer is a matrix
Xl−1 = [xl−1,1, . . . ,xl−1,T ] ∈ RN×T and the output is another matrix Y = [y1, . . . ,yT ] ∈ RN×T , both of which
are also sequences with the same dimensions as X. The first component of a transformer layer is an attention operation
whose output is a matrix Z given by

Zl = VlXl × sm
[ (

QlXl−1

)T (
KlXl−1

) ]
= VlXl−1 × sm(Al). (1)

In (1), the matrix Zl = [zl1, . . . , zlT ] ∈ RD×T represents a sequence of vectors zlt ∈ RD with dimension D typically
much smaller than N . The matrices Ql,Kl,Vl ∈ RD×N are called query, key, and value matrices and are trainable
parameters. The matrix Al := (QlXl−1)

T (KlXl−1) is a linear attention matrix and the operation sm(Al) acts
separately on rows of A so that if B = sm(A) we have blut = exp(alut)/

∑T
t=1 exp(alut).

The second operation in a transformer involves matrices Wl ∈ RN×D and Ul ∈ RN×N as trainable parameters and
a pointwise nonlinear function σ and entails the processing of the time series Zl with a linear perceptron that also
includes a residual connection of the layer’s input vector Xl−1,

Φl(X;T) = Yl = σ
[
WlZl +UlXl−1

]
. (2)

The sequence Yl = Φl(X;T) is the output of layer l. A transformer is defined by L recursive applications of (1)–(2)
by making the output of layer l the input to layer l + 1, i.e., Xl+1 = Yl. The input to layer 1 is the given sequence
X0 = X and the output of the transformer is the output of layer L, YL = ΦL(X;T). We write the output of layer l as
a function Φl(X;T) of the input sequence X and the trainable tensor T which groups the matrices Ql, Kl and Vl of
(1) as well as the matrices Wl and Ul of (2) for all layers l.

Consider now a loss function f(X,Φ(X;T)) dependent on the input and output values of the transformer. It is
customary to seek parameters T∗

U that minimize the average loss,

T∗
U = argmin

T
E
[
f
(
X, Φ(X;T)

) ]
. (3)

In prior contributions, it has been observed that transformers can be interpreted as iterative descent algorithms that solve
optimization problems (Yang et al., 2022; De Weerdt et al., 2023; Yu et al., 2023; Ramsauer et al., 2020). In this paper,
we draw inspiration from this idea and argue that it may be advantageous to train transformers that behave like iterative

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

descent algorithms. Formally, we consider a stepsize schedule 0 < αl < 1 and propose to train transformers that solve
the constrained learning problem,

T∗ = argmin
T

E
[
f
(
X, Φ(X;T)

) ]
,

subject to E
[
f
(
X, Φl(X;T)

) ]
≤ (1− αl)E

[
f
(
X, Φl−1(X;T)

) ]
, ∀l. (4)

The purpose of the constraints in (4) is to force the optimal transformer T∗ to have layers that reduce the statistical loss
f progressively. Since this is a property of descent algorithms, we say that T∗ is an unrolled transformer. We point out,
however, that this is not an exact analogy to the standard use of the term unrolling which involves the use of neural
networks or transformers to solve optimization problems (Monga et al., 2021; De Weerdt et al., 2023)—rather than
encouraging a transformer to descend like optimization algorithms do.

3 TRAINING OF CONSTRAINED UNROLLED TRANSFORMERS

Problem (4) involves finding the transformer parameters T∗ that minimize the loss function f subject to the descent
constraints. This formulation is a nonconvex constrained problem, which is usually difficult to solve directly. Rather,
we resort to the dual problem, constructed through the Lagrangian function,

L(T,λ) = E
[
f(X,Φ(X;T))

]
+

L∑
l=1

λlE
[
f
(
X,Φl(X;T)

)
− (1− αl)f

(
X,Φl−1(X;T)

)]
, (5)

where the vector λ ∈ RL
+ collects the Lagrangian multipliers. The dual problem is then defined as

D̂∗ = max
λ

min
T

L̂(T,λ), (6)

where L̂ is the empirical Lagrangian function, evaluated over M realizations of X. The max-min problem in (6) can be
viewed as a sequence of regularized ERM problems, solved sequentially, differing only in the choice of Lagrangian
multipliers. There is empirical evidence that a high-quality local minimum for such unconstrained problems can be
attained using stochastic gradient descent (Zhang et al., 2016; Arpit et al., 2017). The Lagrangian multipliers, which act
as regularization parameters in this view, are updated using projected gradient ascent to maximize the dual function,
since the latter is concave. Solving the dual problem then entails alternating between minimization with respect to
T and maximization over λ (Chamon and Ribeiro, 2020; Fioretto et al., 2021), leading to the primal-dual procedure
described in Algorithm 1.

Although classical duality theory (Boyd and Vandenberghe, 2004) indicates that nonconvex constrained programs may
exhibit non-zero duality gaps, recent results show that, in training deep neural networks, this duality gap is typically
small (Chamon et al., 2023). We include these results in the following theorem to keep our discussions self-contained.
Theorem 1 (Constrained Learning Theorem (Chamon et al., 2023)). Let (T∗,λ∗) be a stationary point of (6) and P ∗

denote the optimal value of the statistical loss function in (4). Under Assumptions 1 - 5 (see Appendix A.1), it holds, for
some constant ρ, that

|P ∗ − D̂∗| ≤ Cν + ρ ζ(M, δ), and

E
[
f
(
X,Φl(X;T∗)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ), ∀l,

with probability 1− δ each, and with ρ = max{∥λ∗∥, ∥λ̄∗∥}, where λ̄∗ is the optimal multiplier of the statistical dual
problem. Moreover, ν and ζ(M, δ) are the expressivity parameter and the sample complexity, respectively, and C is a
Lipschitz constant.

The theorem affirms that (6) yields near-optimal near-feasible solutions to (4) and can replace it. This result stems
from the fact that the functional version of (4) exhibits zero duality gap. When we optimize over an expressive
parameterized class, we incur an optimality loss that amounts to the expressivity parameter ν. However, there is
theoretical evidence that ν can be made arbitrary small in deep neural networks (Ryu et al., 2019; Graikos et al., 2022)
and also in transformers (Yun et al., 2020). The second source of error is the empirical approximation of the Lagrangian
function, quantified by the sample complexity ζ(M, δ), and can be reduced by increasing the sample size M .

Theorem 1, however, makes it challenging to conclude converges guarantees, since it provides only high-probability
near-feasibility guarantees. That is, even though (4) requires each layer to enforce descent in f , the near-feasible

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 Primal-dual Training Algorithm for Constrained Unrolled Transformers

1: Inputs: number of epochs, batch size M , step sizes η1, η2 > 0
2: Initialize: T,λ = {λℓ}Lℓ=1
3: for each epoch do
4: for each batch of samples X = {X(m)}Mm=1 do
5: Execute the forward pass Φ(X(m);T) according to (1) and (2) for all m
6: Compute the Lagrangian L̂(T,λ)
7: Primal update: T = T− η1∇TL̂(T,λ)
8: Dual update: λ =

[
λ+ η2∇λL̂(T,λ)

]
+

9: end for
10: end for
11: Return T∗ = T.

solution satisfies each constraint with probability 1 − δ. The probability that all L constraints are satisfied is then
(1− δ)L. For large L, this probability could be small, implying that this theorem alone is insufficient to establish the
required layerwise descent and convergence guarantees.

In Theorem 2, we show that the constrained unrolled transformer, obtained by (6), converges asymptotically–in the
number of layers–to the optimal value of the statistical loss.
Theorem 2 (Convergence Guarantees). Given a constrained unrolled transformer T∗, which satisfies Theorem 1, and a
functional minimizer Y∗ of the statistical loss. Let αl = α, for all l. Then, under Assumption 6 (see Appendix A.2), it
holds that

lim
l→∞

min
k≤l

E
[
f
(
X, Φk(X;T∗)

)
− f

(
X,Y∗) ] ≤ 1

α

(
ζ(M, δ) +

Cδν

1− δ

)
a.s. (7)

Theorem 2 states that the constrained unrolled transformer is guaranteed to attain the optimal performance up to an
error that is controlled by the step size α, the sample size M and the expressivity of the model class ν. The proof
proceeds by showing that, despite the aforementioned probabilistic constraint violations, the sequence of layer losses
forms a supermartingale and converges infinitely often to a sub-optimal region, characterized by the bound. The full
proof of Theorem 2 is relegated to Appendix A.2. The sample complexity controls the failure probability δ, and for
sufficiently large M , we can keep δ arbitrary small and eliminate the second term of the bound. Moreover, large α,
which corresponds to aggressive reductions, shrinks the size of the sub-optimal region and provides tighter guarantees.
Although this result holds asymptotically, our numerical results demonstrate that we can achieve the same performance
of a good local minimizer of (3) in a finite number of layers.

Imposing layerwise constraints endows transformers with monotone-descent inductive biases. Such descent properties
provide classical optimization methods with stability under perturbations and generalization across problem instances.
By aligning the transformer’s layer-to-layer dynamics with these properties, the transformer maintains comparable
performance under distribution shifts. The following corollary and theorem formalize this effect and establish OOD
generalization guarantees for transformers trained with descent constraints.
Corollary 3. Let T∗ be a constrained unrolled transformer trained on a data distribution Dx. Then, for any shifted
distribution Dx′ that satisfies Assumption 7 (see Appendix A.3), it holds with probability 1− δ, for all l:

ED′
x

[
f
(
X,Φl(X;T∗)

)]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ) + Cτ, (8)

where τ = d(Dx, Dx′) + d(Dx′ , Dx), and d(·, ·) is a bounded asymmetric distance metric.

Theorem 4 (Out-of-Distribution Guarantees). Let Ŷ∗ be a functional minimizer of the statistical loss evaluated on Dx′ .
Then, the constrained unrolled transformer trained on Dx satisfies

lim
l→∞

min
k≤l

EDx′

[
f
(
X,Φk(X;T∗)

)
− f

(
X, Ŷ∗)] ≤ 1

α

(
ζ(M, δ) + Cτ +

Cδν

1− δ

)
. (9)

The proofs are in Appendices A.3 and A.4. Corollary 3 states that a constrained unrolled transformer trained on one
distribution continues to satisfy the descent constraints under a shifted distribution Dx′ up to an additional error that is
proportional to the distance between the two distributions. Then, it follows that the constrained unrolled transformer
converges to the optimal of the statistical loss evaluated on Dx′ up to the same additional error bound, as formalized in
Theorem 4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

The assumptions under which our theoretical results hold are readily achievable in practice (see Appendix A.1).
However, the feasibility assumption is not widely guaranteed, as it requires the constrained problem (4) to be strictly
feasible. To enforce this condition, we consider a resilient constrained learning relaxation, as proposed in (Hounie et al.,
2023), wherein we introduce an additive slack variable u ∈ RL

+ into the constraints and augment the loss function f
with a quadratic penalty term β

2 ∥u∥
2
2. This transforms the saddle point problem into the regularized formulation:

max
λ

min
T,u

L̂(T,λ) + β

2
∥u∥22 − u⊤λ.

Solving this regularized problem is equivalent to solving (4) via Algorithm (1) with a weight decay factor of 1− 1
β

applied to the dual update; see Appendix A.5 for more details.

4 VIDEO DENOISING

We now consider a problem of video denoising, which is to reconstruct a sequence of signals X = [x0, . . . ,xT ] from
noisy measurements X̃ = [x̃0, . . . , x̃T ], where x̃t = xt + ϵt, for all t, and ϵt ∼ N (0, σ2I). The goal is to minimize
the reconstruction loss f(X,Φ(X̃;T)) = 1

T ∥X−Y∥2F , where Y = Φ(X̃;T) is the output sequence. Our experiment
setup follows the denoising experiments in De Weerdt et al. (2023) and Luong et al. (2021). We train and evaluate our
models on the CUHK Avenue Lu et al. (2013), UCSD Anomaly Detection Mahadevan et al. (2010) and ShanghaiTech
Campus Luo et al. (2017) datasets. Refer to Appendix B for more details.

In-distribution (ID) and out-of-distribution (OOD) evaluation. In light of Theorem 4, which provides OOD
generalization guarantees for models trained to satisfy descent constraints, we aim to contrast the performance of
constrained and unconstrained models under distribution shifts. To accomplish this, we train denoisers with perturbation
level γtrain, and evaluate on testing perturbations γ ∈ [0.0, 1.0]. We refer to the testing perturbation levels γ ≤ γtrain

as ID, and to larger perturbations as OOD. Noisy signals X̃ are generated with σ = γ · σx, where σx is the standard
deviation of the clean data X.

Architectures. We train three transformer architectures. The first is a standard pretrained Vision Transformer (ViT)
(Dosovitskiy et al., 2021). The other two are symmetric transformers from the unrolling literature: Deep Unfolded
Sequential Transformer (DUST) (De Weerdt et al., 2023) and Unrolled Transformer (UT) (Yang et al., 2022). All
models follow the formulation in (1) and (2), except that in DUST and UT, the learnable parameters of the attention
layers are tied, i.e., Ql = Kl = Vl = D ∈ RD×N , for all l. The key difference between DUST and UT lies in the
choice of nonlinearities: DUST employs a soft-threshold nonlinearity, while UT uses ReLU. Notably, in DUST, the
parameter D is interpreted as an overcomplete dictionary to create sparse reconstructions of video frames. Consequently,
the dimensions satisfy N < D, marking a significant architectural deviation from conventional transformers, where
attention matrices are low-rank projections. We defer further discussion about DUST and UT, along with additional
implementation details, to Appendix C.

Training. We train each model under two settings: i) without constraints via the ERM formulation in (3), and
ii) with descent constraints as specified in (4), employing a constant schedule αl = α. To prevent the model
from trivially satisfying the constraints by increasing the initial value of f(·), we include an additional constraint
f(X,Φ1(X̃;T)) ≤ (1−α)f0, where f0 is a fixed reference value. The unconstrained models are trained using ADAM,
and the constrained ones are trained via Algorithm 1. For each dataset and each transformer architecture, we run
experiments with different numbers of layers L ∈ {3, 5, 7} and varying levels of perturbations. Here we present the
results obtained for γtrain = 0.13 by selecting the best run across all values of L, and leave additional results for other
training perturbations to Appendix B.4. All runs share the hyperparameters selected via a grid search, including the step
size α, the reference value f0, the learning rates η1, η2, and the resilience coefficient β.

Out-of-Distribution RMSE. Figure 2 reports results at training perturbation level γtrain = 0.13, where the best L
for each model is selected based on validation RMSE. We observe that in five out of nine cases, constrained models
outperform their unconstrained counterparts. Notably, on UCSD, all constrained models show a consistently lower
RMSE score for values of γ ≥ 1. In three cases, constrained models have comparable performance. Finally, in one case
(UT-Avenue), OOD performance is slightly degraded.

In-Distribution tradeoff. The OOD curves of Figure 2 also allow us to analyze the tradeoff between ID and OOD
performance. One noteworthy case is UT on ShanghaiTech, where constrained UT trades off a higher ID reconstruction
error for lower error at higher perturbation levels, with an inflection point around γ = 0.75. In general, constrained
models show slight to no degradation in RMSE relative to unconstrained ones. These results suggest that descent
constraints improve robustness with little to no sacrifice in ID performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0

20

40

R
M

SE
Avenue Shanghaitech

D
U

ST
UCSD

0

20

40

R
M

SE U
T

0.0 0.5 1.0 1.5
Test Perturbation Level

0

20

40

R
M

SE

0.0 0.5 1.0 1.5
Test Perturbation Level

0.0 0.5 1.0 1.5
Test Perturbation Level

ViT

Constrained
Unconstrained

Figure 2: Video denoising error vs. test perturbation γ (RMSE ↓ , lower is better). Columns are datasets, rows
are architectures. Solid lines are constrained models; dashed lines are unconstrained. Each plot shows RMSE over
increasing test perturbation levels (γ). All models were trained with perturbation γtrain = 0.13.

Increasing depth influences OOD performance Finally, we show the effects of increasing the number of layers in
Figure 3. As we train deeper models, we observe an decrease in RMSE for higher test γ , an effect that is not present in
unconstrained models under the same settings. This is consistent with our theory: as the number of layers increases, the
unrolled models converge to the optimal of the statistical loss under shifted distributions.

5 TEXT CLASSIFICATION WITH PERTURBED EMBEDDINGS

Our second use case is text classification in the presence of input noise. The task is to minimize negative cross-entropy,
f(X̃,q,Φ(X̃;T)) = −

∑C
c=1 qc logψ(Φ(X̃;T))c. Here, X̃ are perturbed token embeddings as in the previous task,

q ∈ RC are class labels and ψ(·)c is the c-th component of a readout layer, ψ(·) : RN → [0, 1]C . We consider two
different language understanding tasks: IMDb sentiment classification (Maas et al., 2011) and Multi-Genre Natural
Language Inference (MNLI) from the GLUE benchmark (Wang et al., 2019).

Architectures. We adapt two pretrained language models, DistilBERT (Sanh et al., 2020) (L = 12) and RoBERTa (Liu
et al., 2019b) (L = 24) and one unrolled transformer, UT (Yang et al., 2022). For MNLI, we omit RoBERTa due to the
high computational cost. The architecture of the classifiers is identical to (1) and (2), except for the addition of a readout
layer ψ(·), implemented as a single linear layer followed by a softmax nonlinearity. This readout is shared across all
transformer layers to extract a label prediction from intermediate outputs’ representations. The input to the readout is
the [CLS] token for DistilBERT, and the average pooling of the output vectors of Yl for unrolled transformer.

Training. As in video, we train unconstrained models with ERM, whereas constrained models are trained with our
primal-dual algorithm under constant descent schedule, initialized from a reference value f0. The hyperparameters are
the same as specified above. In this case, constrained models proved more sensitive to dual hyperparameters, therefore
we tuned each individually and report their best runs. For a fair comparison, we run the same number of unconstrained
runs and report its best as well. The experiment setting is γtrain = 0.8, and L ∈ {3, 5, 7, 9}. We present summarized
results on additional values of training perturbation in Appendix B.4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40
0

10

20

30

40

50

60
Te

st
 R

M
SE

Unconstrained
L = 3
L = 5
L = 7

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Constrained
L = 3
L = 5
L = 7

Test Perturbation ( )

Figure 3: Effects of descent constraints on the OOD performance of (Left) unconstrained DUST and (Right) constrained
DUST trained on UCSD with training γ = 0. Deeper constrained models show improved OOD performance, while
increasing depth does not benefit unconstrained models.

0.0 0.5 1.0 1.5 2.0

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

DistilBERT

0.0 0.5 1.0 1.5 2.0

0.6

0.7

0.8

0.9

RoBERTa

0.0 0.5 1.0 1.5 2.0
0.76

0.78

0.80

0.82

0.84

0.86

IM
DB

UT

Constrained
Unconstrained

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

DistilBERT

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.40

0.42

0.44

0.46

0.48

M
NLI

UT

Figure 4: Text classification accuracy vs. test perturbation (Accuracy ↑, higher is better). Columns are datasets,
rows are architectures. Solid lines denote constrained models; dashed lines denote unconstrained. Each plot shows
accuracy over increasing test perturbation levels (γ). All models were trained with perturbation γtrain = 0.8.

Out-of-Distribution Accuracy. We observe a notable improvement in OOD robustness for DistilBERT and RoBERTa
models on IMDb, as ilustrated in Figure 4. The gap between constrained and unconstrained is larger for RoBERTa,
suggesting that the benefits of descent constraints are more significant with larger models. Constrained UT runs show
comparable behavior to unconstrained runs. In general, the effects of constraints in MNLI are less pronounced. We
hypothesize that the relatively shorter text lengths in MNLI could make it harder for Gaussian perturbations to induce
meaningful distributional shifts.

Preserved in-distribution accuracy. In Figure 4, the accuracies at lower perturbation levels are the in-distribution
performance. In all scenarios, we observe comparable results between constrained and unconstrained settings. In some
cases, such as DistilBERT-IMDb, a marginal tradeoff between ID and OOD performance is observed.

Effect of training perturbation. In addition to the OOD analysis on fixed γtrain, we explore the effect of different
training perturbations for DistilBERT on IMDb in Figure 5. On the left plot, we observe that increasing γtrain improves
robustness at high perturbation levels for constrained models at a slight tradeoff for reduced performance at low test
perturbations γ. For unconstrained models, the tradeoff is not as favorable. On the right plot, we observe smoother
descent patterns on the error rate for constrained models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y
Dataset: IMDB | Model: DistilBERT

Training Perturbation
0.2
0.6
1.0
Constraint Type
Constrained
Unconstrained

(a) OOD Accuracy

0 1 2 3 4 5
Layers

0.1

0.2

0.3

0.4

0.5

Er
ro

r R
at

e

Dataset=IMDB | Model=DistilBERT

(b) Error rate over layers

Figure 5: Language Classification OOD Accuracy and layerwise error rates of the constrained and unconstrained
DistilBERT trained on the IMDb dataset. Constrained DistilBERT achieves higher OOD accuracy and exhibits
monotonic descent behavior across layers for various perturbation levels.

Differential Privacy. This robust classifier is of interest in the context of local differential privacy. By degrading more
smoothly to various levels of input perturbation, our model can support different degrees of privacy as required by a
user at inference time, with less performance degradation than training only on perturbed inputs. A more thorough
exploration of the application of our method to differential privacy is a promising future work direction.

6 CONCLUSIONS

This work presented a framework for training unrolled transformers by imposing descent constraints on the intermediate
outputs of the model. We developed a dual training algorithm for constrained transformers and showed that descent
constraints ensure layerwise convergence to a near-optimal value of the statistical loss. We showed theoretically
that our unrolled transformers retain their descent properties under distribution shifts, and that this enables improved
out-of-distribution generalization. This was verified empirically with various transformer-based architectures in video
denoising and language classification with perturbed embeddings. In the case of language, this robust transformer can
be applied to support varying levels of local Differential Privacy at inference time for a better utility tradeoff.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
Learning with Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 308–318. Association for Computing Machinery, 2016. ISBN 978-
1-4503-4139-4. doi: 10.1145/2976749.2978318. URL https://dl.acm.org/doi/10.1145/2976749.
2978318.

Aviad Aberdam, Alona Golts, and Michael Elad. Ada-LISTA: Learned Solvers Adaptive to Varying Models, 2020.
URL http://arxiv.org/abs/2001.08456.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement preconditioned
gradient descent for in-context learning. Advances in Neural Information Processing Systems, 36:45614–45650,
2023.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan
Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep networks. In
International conference on machine learning, pages 233–242. PMLR, 2017.

Danushka Bollegala, Shuichi Otake, Tomoya Machide, and Ken-ichi Kawarabayashi. A Neighbourhood-Aware
Differential Privacy Mechanism for Static Word Embeddings. In Findings of the Association for Computational
Linguistics: IJCNLP-AACL 2023 (Findings), volume abs/23, pages 65–79. Association for Computational Linguistics,
2023. ISBN 9798891760189. URL https://doi.org/10.18653/v1/2023.findings-ijcnlp.7.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, 2020.
URL http://arxiv.org/abs/2005.14165.

Luiz Chamon and Alejandro Ribeiro. Probably approximately correct constrained learning. Advances in Neural
Information Processing Systems, 33:16722–16735, 2020.

Luiz F. O. Chamon, Santiago Paternain, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained learning with
non-convex losses. IEEE Trans. Inf. Theor., 69(3):1739–1760, March 2023. ISSN 0018-9448. doi: 10.1109/TIT.
2022.3187948. URL https://doi.org/10.1109/TIT.2022.3187948.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical Linear Convergence of Unfolded ISTA and Its
Practical Weights and Thresholds. In Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/hash/
cf8c9be2a4508a24ae92c9d3d379131d-Abstract.html.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt learn in-context?
language models implicitly perform gradient descent as meta-optimizers. arXiv preprint arXiv:2212.10559, 2022.

Brent De Weerdt, Yonina C Eldar, and Nikos Deligiannis. Designing transformer networks for sparse recovery of
sequential data using deep unfolding. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

Brent De Weerdt, Yonina C Eldar, and Nikos Deligiannis. Deep unfolding transformers for sparse recovery of video.
IEEE Transactions on Signal Processing, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao
Chang, Xu Sun, Lei Li, and Zhifang Sui. A Survey on In-context Learning. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 1107–1128. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.64. URL
https://aclanthology.org/2024.emnlp-main.64/.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

10

https://dl.acm.org/doi/10.1145/2976749.2978318
https://dl.acm.org/doi/10.1145/2976749.2978318
http://arxiv.org/abs/2001.08456
https://doi.org/10.18653/v1/2023.findings-ijcnlp.7
http://arxiv.org/abs/2005.14165
https://doi.org/10.1109/TIT.2022.3187948
https://proceedings.neurips.cc/paper_files/paper/2018/hash/cf8c9be2a4508a24ae92c9d3d379131d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/cf8c9be2a4508a24ae92c9d3d379131d-Abstract.html
https://aclanthology.org/2024.emnlp-main.64/
https://openreview.net/forum?id=YicbFdNTTy


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. 9(3–4):211–407, 2014. ISSN
1551-305X, 1551-3068. doi: 10.1561/0400000042. URL https://www.nowpublishers.com/article/
Details/TCS-042.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in Private Data
Analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, pages 265–284. Springer, 2006. ISBN
978-3-540-32732-5. doi: 10.1007/11681878_14.

Oluwaseyi Feyisetan and Shiva Kasiviswanathan. Private release of text embedding vectors. In Yada Pruksachatkun,
Anil Ramakrishna, Kai-Wei Chang, Satyapriya Krishna, Jwala Dhamala, Tanaya Guha, and Xiang Ren, editors,
Proceedings of the First Workshop on Trustworthy Natural Language Processing, pages 15–27. Association for
Computational Linguistics, 2021. doi: 10.18653/v1/2021.trustnlp-1.3. URL https://aclanthology.org/
2021.trustnlp-1.3/.

Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe. Privacy- and Utility-Preserving Textual Analysis
via Calibrated Multivariate Perturbations. In Proceedings of the 13th International Conference on Web Search and
Data Mining, WSDM ’20, pages 178–186. Association for Computing Machinery, 2020. ISBN 978-1-4503-6822-3.
doi: 10.1145/3336191.3371856. URL https://dl.acm.org/doi/10.1145/3336191.3371856.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and Michele Lombardi.
Lagrangian duality for constrained deep learning. In Machine learning and knowledge discovery in databases.
applied data science and demo track: European conference, ECML pKDD 2020, Ghent, Belgium, September 14–18,
2020, proceedings, part v, pages 118–135. Springer, 2021.

Jordan Frecon, Gilles Gasso, Massimiliano Pontil, and Saverio Salzo. Bregman Neural Networks. In Proceedings of
the 39th International Conference on Machine Learning, 2022.

Kazuto Fukuchi, Quang Khai Tran, and Jun Sakuma. Differentially Private Empirical Risk Minimization with Input
Perturbation. In Akihiro Yamamoto, Takuya Kida, Takeaki Uno, and Tetsuji Kuboyama, editors, Discovery Science,
pages 82–90. Springer International Publishing, 2017. ISBN 978-3-319-67786-6. doi: 10.1007/978-3-319-67786-6_
6.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as plug-and-play priors.
Advances in Neural Information Processing Systems, 35:14715–14728, 2022.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, page 399–406, Madison, WI, USA, 2010.
Omnipress. ISBN 9781605589077.

Samar Hadou and Alejandro Ribeiro. Unrolled graph neural networks for constrained optimization, 2025. URL
https://arxiv.org/abs/2509.17156.

Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro. Stochastic unrolled federated learning, 2024a. URL
https://arxiv.org/abs/2305.15371.

Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro. Robust stochastically-descending unrolled networks.
Trans. Sig. Proc., 72, 2024b. doi: 10.1109/TSP.2024.3489223. URL https://doi.org/10.1109/TSP.
2024.3489223.

John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep Unfolding: Model-Based Inspiration of Novel Deep
Architectures, 2014. URL http://arxiv.org/abs/1409.2574.

Ignacio Hounie, Alejandro Ribeiro, and Luiz F. O. Chamon. Resilient constrained learning. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 71767–71798. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
e32349fe7e3cd4f9ef598c2b7b7a31f4-Paper-Conference.pdf.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as Algorithms:
Generalization and Stability in In-context Learning. In Proceedings of the 40th International Conference on Machine
Learning, pages 19565–19594. PMLR, 2023. URL https://proceedings.mlr.press/v202/li23l.
html.

11

https://www.nowpublishers.com/article/Details/TCS-042
https://www.nowpublishers.com/article/Details/TCS-042
https://aclanthology.org/2021.trustnlp-1.3/
https://aclanthology.org/2021.trustnlp-1.3/
https://dl.acm.org/doi/10.1145/3336191.3371856
https://arxiv.org/abs/2509.17156
https://arxiv.org/abs/2305.15371
https://doi.org/10.1109/TSP.2024.3489223
https://doi.org/10.1109/TSP.2024.3489223
http://arxiv.org/abs/1409.2574
https://proceedings.neurips.cc/paper_files/paper/2023/file/e32349fe7e3cd4f9ef598c2b7b7a31f4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e32349fe7e3cd4f9ef598c2b7b7a31f4-Paper-Conference.pdf
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: Analytic weights are as good as learned weights
in LISTA. In International Conference on Learning Representations, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019b. URL http:
//arxiv.org/abs/1907.11692.

Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal Event Detection at 150 FPS in MATLAB. pages 2720–2727,
2013. URL https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Lu_
Abnormal_Event_Detection_2013_ICCV_paper.html.

Weixin Luo, Wen Liu, and Shenghua Gao. A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN
Framework. pages 341–349, 2017. URL https://openaccess.thecvf.com/content_iccv_2017/
html/Luo_A_Revisit_of_ICCV_2017_paper.html.

Huynh Van Luong, Boris Joukovsky, and Nikos Deligiannis. Designing Interpretable Recurrent Neural Networks for
Video Reconstruction via Deep Unfolding. 30:4099–4113, 2021. ISSN 1057-7149, 1941-0042. doi: 10.1109/TIP.
2021.3069296. URL https://ieeexplore.ieee.org/document/9394770/.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning Word
Vectors for Sentiment Analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150.
Association for Computational Linguistics, 2011. URL https://aclanthology.org/P11-1015/.

Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly detection in crowded scenes. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1975–1981, 2010. doi:
10.1109/CVPR.2010.5539872. URL https://ieeexplore.ieee.org/document/5539872.

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm Unrolling: Interpretable, Efficient Deep Learning for
Signal and Image Processing. 38(2):18–44, 2021. ISSN 1558-0792. doi: 10.1109/MSP.2020.3016905. URL
https://ieeexplore.ieee.org/document/9363511/.

Viggo Moro and Luiz FO Chamon. Solving differential equations with constrained learning. arXiv preprint
arXiv:2410.22796, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez,
Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack
Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context Learning and Induction Heads, 2022. URL
http://arxiv.org/abs/2209.11895.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev, Andrey
Zhmoginov, and Max Vladymyrov. Transformers Learn In-Context by Gradient Descent. In Proceedings of
the 40th International Conference on Machine Learning, pages 35151–35174. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/von-oswald23a.html.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler, Lukas Gruber,
Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks is all you need. arXiv preprint
arXiv:2008.02217, 2020.

H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.
In Optimizing Methods in Statistics, pages 233–257. Academic Press, January 1971.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-play methods
provably converge with properly trained denoisers. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pages 5546–5557. PMLR, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT: Smaller,
faster, cheaper and lighter, 2020. URL http://arxiv.org/abs/1910.01108.

P. Sprechmann, A. M. Bronstein, and G. Sapiro. Learning Efficient Sparse and Low Rank Models. 37(9):1821–1833,
2015. ISSN 1939-3539. doi: 10.1109/TPAMI.2015.2392779. URL https://ieeexplore.ieee.org/
abstract/document/7010964.

12

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Lu_Abnormal_Event_Detection_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Lu_Abnormal_Event_Detection_2013_ICCV_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Luo_A_Revisit_of_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Luo_A_Revisit_of_ICCV_2017_paper.html
https://ieeexplore.ieee.org/document/9394770/
https://aclanthology.org/P11-1015/
https://ieeexplore.ieee.org/document/5539872
https://ieeexplore.ieee.org/document/9363511/
http://arxiv.org/abs/2209.11895
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
http://arxiv.org/abs/1910.01108
https://ieeexplore.ieee.org/abstract/document/7010964
https://ieeexplore.ieee.org/abstract/document/7010964


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.
ISBN 9781510860964.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklasson, Nicolas
Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al. Uncovering mesa-optimization
algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding, 2019. URL http://arxiv.org/abs/
1804.07461.

Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep Networks for Image Super-Resolution
with Sparse Prior. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 370–378. IEEE, 2015.
ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.50. URL http://ieeexplore.ieee.org/document/
7410407/.

Xingyu Xie, Qiuhao Wang, Zenan Ling, Xia Li, Guangcan Liu, and Zhouchen Lin. Optimization Induced Equilibrium
Networks: An Explicit Optimization Perspective for Understanding Equilibrium Models. 45(3):3604–3616, 2023.
ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3181425. URL https://ieeexplore.ieee.org/abstract/
document/9793682.

Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang, Zengfeng Huang, and
David Wipf. Graph neural networks inspired by classical iterative algorithms. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 11773–11783. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/yang21g.html.

Yongyi Yang, David P Wipf, et al. Transformers from an optimization perspective. Advances in Neural Information
Processing Systems, 35:36958–36971, 2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat
Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang. Differentially Private Fine-tuning of
Language Models, 2022. URL http://arxiv.org/abs/2110.06500.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin Haeffele, and Yi Ma.
White-box transformers via sparse rate reduction. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 9422–9457. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
1e118ba9ee76c20df728b42a35fb4704-Paper-Conference.pdf.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Are transformers universal
approximators of sequence-to-sequence functions? In International Conference on Learning Representations, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

13

http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://ieeexplore.ieee.org/document/7410407/
http://ieeexplore.ieee.org/document/7410407/
https://ieeexplore.ieee.org/abstract/document/9793682
https://ieeexplore.ieee.org/abstract/document/9793682
https://proceedings.mlr.press/v139/yang21g.html
https://proceedings.mlr.press/v139/yang21g.html
http://arxiv.org/abs/2110.06500
https://proceedings.neurips.cc/paper_files/paper/2023/file/1e118ba9ee76c20df728b42a35fb4704-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1e118ba9ee76c20df728b42a35fb4704-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A MATHEMATICAL PROOFS

In this Appendix, we present the theoretical aspects of our approach, including proofs to our theorem and corollaries.

A.1 CONSTRAINED LEARNING THEOREM

The Constrained Learning Theorem (CLT) characterizes the duality gap in constrained learning problems. Such
problems are highly non-convex, and in general, nonconvex constrained problems lack guarantees of zero duality gap.
However, CLT establishes that constrained learning problems exhibit small duality gap due to the high expressivity of
neural networks.

Theorem 1 (CLT (Chamon et al., 2023)). Let (T∗,λ∗) be a stationary point of (6) and P ∗ denote the optimal value of
the statistical loss function in (4). Under Assumptions 1 - 5, it holds, for some constant ρ, that

|P ∗ − D̂∗| ≤ Cν + ρ ζ(M, δ), and

E
[
f
(
X,Φl(X;T∗)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ), ∀l,

with probability 1− δ each, and with ρ = max{∥λ∗∥, ∥λ̄∗∥}, where λ̄∗ = argmaxλ g(λ) is the optimal multiplier
of the statistical dual function. Moreover, ν and ζ(M, δ) are the expressivity parameter and the sample complexity,
respectively, and C is a Lipschitz constant.

We refer the reader to (Chamon et al., 2023) for detailed proofs and discussions. In the following, we state the
assumptions under which the theorem holds.

Assumption 1. The loss function f is C-Lipschitz continuous and bounded.

Assumption 2. Let Φl ∈ Pl be a model with l unrolling layers and parametrization T. Denote the convex hull of Pl

as P̄l := conv(Pl). Then, for every Φ̄ ∈ P̄l and every l, there exist a parametrization T such that

E
[ ∥∥Φl(X;T)− Φ̄(X)

∥∥
F

]
≤ ν, (10)

for any ν > 0.

Assumption 3. Let Y denote the domain of the transformer’s output. The set Y is either (i) finite, as in classification
tasks, or (ii) compact, in which case the descent constraints are uniformly continuous with respect to the total variation
topology for every Φ̄ ∈ P̄L. Moreover, the conditional distributions X|Y are nonatomic.

Assumption 4. There exists ζ(M, δ) ≥ 0 that is monotonically decreasing with the number of realizations M , for
which it holds, for all l, with probability 1− δ,∣∣∣E[f(X,Φl(X;T)

)]
− Ê

[
f
(
X,Φl(X;T)

)] ∣∣∣ ≤ ζ(M, δ), (11)

where Ê denotes the sample mean.

Assumption 5. There exists a parametrization of L layers, Φ ∈ PL, that is strictly feasible, i.e.,

E
[
f
(
X,Φl(X;T)

)]
− (1− αl)E

[
f
(
X,Φl−1(X;T)

)]
≤ −Cν − ξ, (12)

Ê
[
f
(
X,Φl(X;T)

)]
− (1− αl) Ê

[
f
(
X,Φl−1(X;T)

)]
≤ −ξ, (13)

for all l, with ξ > 0.

These assumptions are readily satisfied in practical settings. Assumption 1 induces Lipschitz continuity and holds
for a wide class of loss functions, including ℓ1 and ℓ2 norms. Assumption 2 invokes the universal approximation
theorem, which ensures that the parametrization is sufficiently rich to approximate any function Φ̄ up to a factor ν. This
property has been established for transformers in (Yun et al., 2020) and is the core reason that zero duality gap holds
for constrained learning. Assumption 3 requires the transformer’s output to be bounded, which can be guaranteed by
restricting the input domain to a compact set and using bounded learnable parameterization. Additionally, it requires
the conditional probabilities to be nonatomic. Assumption 4 imposes a mild assumption on the sample complexity,
allowing us to replace statistical expectations with sample means. The strict feasibility condition in Assumption 5 can
also be achieved by appropriately adjusting the design parameter αl or using resilient constrained learning (Hounie
et al., 2023).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2 PROOF OF THEOREM 2

Consider a probability space (Ω,F , P ), where Ω is a sample space, F is a sigma algebra, and P : F → [0, 1] is a
probability measure. We define a random variable X : Ω → R and write P ({ω : X(ω) = 0}) as P (X = 0) to keep
equations concise. We also define a filtration of F as {Fl}l>0, which can be thought of as an increasing sequence of
σ-algebras with Fl−1 ⊂ Fl. We assume that the outputs of the unrolled layers Yl are adapted to Fl, i.e., Yl ∈ Fl, for
all l.

A stochastic process Xk is said to form a supermartingale if E[Xk|Xk−1, . . . , X0] ≤ Xk−1. This inequality implies
that given the past history of the process, the future value Xk is not, on average, larger than the latest one. In the
following, we restate Theorem 2 before we provide a proof that uses a supermartingale argument similar to proofs of
convergence of stochastic descent algorithms. We follow a similar line of reasoning to that in (Hadou et al., 2024b).

In our analysis, we consider a functional minimizer, ϕ∗ : RN×T → RN×T , of the statistical loss:

ϕ∗ = argmin
ϕ

E
[
f(X, ϕ(X) )

]
. (14)

We evaluate the optimality of our constrained unrolled transformers by comparing the statistical loss they achieve with
the optimal value E

[
f
(
X, ϕ∗(X)

)]
. In Theorem 2, we argue that this difference is guaranteed to vanish asymptotically–

in the number of layers–falling below a small threshold that depends on the sample complexity, the stepsize and the
expressivity of the transformers. Theorem 2 holds under the following condition:

Assumption 6. The loss function f is C-Lipschitz continuous in its second argument, and there exists a parametrization
T with l layers that satisfies

E
[
∥Φl(X;T)− ϕ(X)∥F

]
≤ ν, ∀l (15)

for some ν > 0 and any ϕ : RN×T → RN×T .

The Lipschitz continuity assumption is standard in the analysis of convergence. The second part of the assumption
refers to the universal approximation of transformers, which has been established in (Yun et al., 2020). Under these
assumptions, we can prove the convergence guarantees of the constrained unrolled transformers as follows.

Theorem 2 (Convergence Guarantees). Given a constrained unrolled transformer T∗, which satisfies Theorem 1, and
a functional minimizer ϕ∗ as in (32), whose output for a given input X is denoted by Y∗ = ϕ∗(X). Then, under
Assumption 6, it holds that

lim
l→∞

min
k≤l

E
[
f
(
X, Φk(X;T∗)

)
− f

(
X,Y∗) ] ≤ 1

α

(
ζ(M, δ) +

Cδν

1− δ

)
, a.s.

with αl = α, for all l.

Proof. Let Al ∈ Fl be the event that the descent constraint in (4) at layer l is satisfied, and denote the output of layer l,
Φl(X;T∗), as Yk. By the total expectation theorem, we have

E
[
f(X,Yl)− f(X,Y∗)

]
= P (Al)E

[
f(X,Yl)− f(X,Y∗) |Al

]
+ P (Ac

l )E
[
f(X,Yl)− f(X,Y∗) |Ac

l

]
,

(16)

with P (Al) = 1− δ. The first term on the right-hand side is the expectation conditioned on the descent constraint being
met, which is bounded above according to Theorem 1. The second term represents the complementary event Ac

l ∈ Fl,
and is also bounded above:

E
[
f(X,Yl)− f(X,Y∗)

]
= E

[
|f(X,Yl)− f(X,Y∗)|

]
≤ C E

[
∥Yk −Y∗∥F

]
= C E

[
∥Φk(X;T∗)− ϕ∗(X)∥F

]
≤ Cν,

(17)

where ∥ · ∥F is the Frobenius norm. The first equality is true since f(X,Y∗) ≤ f(X,Y) by definition. The two
inequalities follow from Assumption 6: the first inequality is a direct application of the Lipschitz continuity and the
second one of the universal approximation property. Thus,

E
[
f(X,Yl)− f(X,Y∗)

]
≤ (1− δ)(1− α) E

[
f(X,Yl−1)− f(X,Y∗)

]
+ (1− δ)ζ(M, δ) + Cδν,

(18)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

almost surely. We let Zl = E
[
f(X,Yl) − f(X,Y∗)

]
, a random variable with a degenerate distribution, and η =

1
α

(
ζ(M, δ) + Cδν

1−δ

)
. We then convert (18) a supermartingale inequality:

E
[
Zl | Fl−1

]
≤ (1− δ)(1− α) Zl−1 + (1− δ)ζ(M, δ) + Cδν

= (1− δ) Zl−1 − (1− δ)
(
αZl−1 − ζ(M, δ)− Cδν

1− δ

)
= (1− δ) Zl−1 − (1− δ)

(
αZl−1 − αη

)
.

(19)

The goal of the rest of the proof is to show that with growing l, Zl almost surely and infinitely often achieves values
less that η, i.e.,

lim
l→∞

min
k≤l

{Zk} ≤ η a.s. (20)

Equation (20) restates (7) using simplified notation. To this end, we introduce two auxiliary sequences:

βl := Zl · 1{Zbest
l > η},

γl := α (Zl − η) · 1{Zbest
l > η},

(21)

where Zbest
l = mink≤l{Zk} tracks the best-so-far value observed up to step l, and 1{.} is an indicator function. Since

η is nonnegative, it follows that βl ≥ 0 and γl ≥ 0, for all l.

The sequence βl mirrors the values of Zl while the best-so-far value Zbest
l remains above the threshold η. Once Zbest

l
falls below η, the indicator function becomes zero and βl remains zero for all subsequent steps. Similarly, the sequence
γl holds the values of α(Zl − η) only as long as Zbest

l is above η, and also vanishes thereafter.

We now invoke the supermartingale convergence theorem (Robbins and Siegmund, 1971, Theorem 1) to show that βl
converges almost surely and the sequence γl is summable, which will facilitate the proof of (20). To apply this theorem,
we first need to verify that the sequence βl forms a supermartingale.

A sequence βl is a supermartingale if the conditional expectation given the past is upper bounded by the most recent
value, i.e., E[βl | Fl−1] ≤ βl−1. The conditional expectation can be written as

E
[
βl | Fl−1

]
= E

[
βl | Fl−1, βl−1 = 0

]
P (βl−1 = 0) + E

[
βl | Fl−1, βl−1 ̸= 0

]
P (βl−1 ̸= 0), (22)

splitting the expectation into two cases: βl−1 = 0 and βl−1 ̸= 0. When βl−1 = 0, (21) implies that the indicator
function is zero and Zbest

l−1 ≤ η. In turn, βk = 0 and γk = 0, for all k ≥ l − 1. Hence, the first term in (22) is zero,

E
[
βl | Fl−1, βl−1 = 0

]
= (1− δ)(βl−1 − γl−1) = 0. (23)

When βl−1 ̸= 0, the conditional expectation follows from the definition in (21),

E
[
βl | Fl−1, βl−1 ̸= 0

]
= E

[
Zl · 1{Zbest

l > η} | Fl−1, βl−1 ̸= 0
]

≤ E
[
Zl | Fl−1, βl−1 ̸= 0

]
≤ (1− δ) Zl−1 − (1− δ)

(
αZl−1 − αη

)
= (1− δ)(βl−1 − γl−1).

(24)

In the first equality, we plugin (21). The first inequality holds because the indicator function is either zero or one and
the second inequality is a direct application of (19). The last equality results from that fact that the indicator function
1{Zbest

l > η} is one since βl−1 ̸= 0, which implies that βl−1 = Zl−1 and γl−1 = α(Zl−1 − η). Combining the results
of (23) and (24), we find that

E
[
βl | Fl−1

]
≤ (1− δ)(βl−1 − γl−1)

[
P (βl−1 = 0) + P (βl−1 ̸= 0)

]
= (1− δ)(βl−1 − γl−1).

(25)

Hence, βl forms a supermartingale. By the supermartingale convergence theorem, (25) implies that (i) βl converges
almost surely, and (ii)

∑∞
l=1 γl is almost surely summable (i.e., finite). When the latter is written explicitly, we get

∞∑
l=1

(
αZl − αη

)
· 1{Zbest

l > η} <∞, a.s., (26)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Since γl ≥ 0, for all l, (26) implies that the limit inferior and limit superior collapse to zero,

lim inf
l→∞

(
αZl − αη

)
· 1{Zbest

l > η} = 0, a.s. (27)

Equation (27) is true if either there exist a sufficiently large l such that Zbest
l ≤ η to set the indicator to zero or it holds

that
lim inf
l→∞

(
αZl − αη

)
= 0, a.s. (28)

which is equivalent to having supl infm≥l Zm = η. Hence, there exists some large l where Zbest
l ≤ supl infm≥l Zm,

which leads to the same upper bound. This proves the correctness of (20) and completes the proof.

A.3 PROOF OF COROLLARY 3

The proof of Corollary 3 is adapted from (Hadou et al., 2024b) and is included here for completeness. The corollary
holds under the following assumption:
Assumption 7. There exists a non-negative asymmetric distance d(·, ·) between the input distribution Dx and the OOD
distribution D′

x such that
EDx

[
f
(
X,Φl(X;T∗)

) ]
− ED′

x

[
f
(
X,Φl(X;T∗)

) ]
≤ Cd(Dx, D

′
x)

uniformly over the second argument with C being a Lipschitz constant.
Corollary 3. Let T∗ be a constrained unrolled transformer trained on a data distribution Dx. Then, for any shifted
distribution Dx′ that satisfies Assumption 7, it holds with probability 1− δ, for all l:

ED′
x

[
f
(
X,Φl(X;T∗)

)]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

)]
≤ ζ(M, δ) + Cτ, (29)

where τ = d(Dx, Dx′) + d(Dx′ , Dx), and d(·, ·) is a bounded asymmetric distance metric.

Proof. We start by adding and subtracting the following two quantities EDx

[
f
(
X,Φl(X;T∗)

)]
and (1 −

ϵ)EDx

[
∥∇f(yl−1;x)∥2] from the quantity we seek to evaluate, i.e., we get

ED′
x

[
f
(
X,Φl(X;T∗)

) ]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

) ]
= ED′

x

[
f
(
X,Φl(X;T∗)

)]
− EDx

[
f
(
X,Φl(X;T∗)

)]
+ (1− αl)

[
EDx

[
f
(
X,Φl−1(X;T∗)

) ]
− EDx′

[
f
(
X,Φl−1(X;T∗)

)] ]
+ EDx

[
f
(
X,Φl(X;T∗)

)]
− (1− αl) EDx

[
f
(
X,Φl−1(X;T∗)

) ]
.

(30)

The right-hand side consists of three terms that can be bounded above with positive quantities according to Assumption
7 and Theorem 1. Therefore, the descent constraints under the new distribution Dx′ can be bounded above by

ED′
x

[
f
(
X,Φl(X;T∗)

) ]
− (1− αl)EDx′

[
f
(
X,Φl−1(X;T∗)

) ]
≤ Cd(D′

x, Dx) + C(1− αl)d(Dx, D
′
x) + ζ(M, δ)

≤ Cd(D′
x, Dx) + Cd(Dx, D

′
x) + ζ(M, δ).

(31)

Notice that this inequality holds with probability 1− δ since the upper bound in Theorem 1 also holds with the same
probability. This completes the proof.

A.4 PROOF OF COROLLARY 4

We evaluate the OOD generalizability of the constrained unrolled transformers by comparing their performance to that
of a functional minimizer of the statistical loss under the shifted distribution, i.e.,

ϕ̂∗ = argmin
ϕ

EDx′

[
f(X, ϕ(X) )

]
, (32)

where ϕ : RN×T → RN×T maps X to Y.

Corollary 4 (Out-of-Distribution Generalization). Let ϕ̂∗ be a functional minimizer of the statistical loss evaluated on
Dx′ and map input X to an estimation Ŷ∗. Then, the constrained unrolled transformer trained on Dx satisfies

lim
l→∞

min
k≤l

EDx′

[
f
(
X,Φk(X;T∗)

)
− f

(
X, Ŷ∗)] ≤ 1

α

(
ζ(M, δ) + Cτ +

Cδν

1− δ

)
. (33)

Proof. The proof of this corollary proceeds identically to that of Theorem 2 (see Appendix A.2), except it is initialized
with the inequality in Corollary 3.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.5 RESILIENT CONSTRAINED LEARNING

Resilient constrained learning (Hounie et al., 2023) aims to find an optimal relaxation of the constraints to ensure the
feasibility of the learning problem. to this end, it introduces a slack variable u ∈ RL

+ and reformulates the constrained
training problem in (4) as

T∗ = argmin
T,u

E
[
f
(
X, Φ(X;T)

) ]
+ h(u),

subject to E
[
f
(
X, Φl(X;T)

) ]
≤ (1− αl)E

[
f
(
X, Φl−1(X;T)

) ]
+ ul, ∀l, (34)

where h(·) is a convex relaxation cost, e.g., an ℓ2 norm. Similarly to (4), we tackle (34) in the dual domain by defining
the corresponding Lagrangian function as

L̂R(T,λ,u) = L̂(T,λ) + β

2
∥u∥22 − u⊤λ, (35)

where L̂ is the Lagrangian of the original problem. In (35), we choose the cost function h to be the ℓ2 norm, i.e.,
h(u) = β

2 ∥u∥
2
2. The associated dual problem becomes

D̂∗
R = max

λ
min
T,u

L̂(T,λ) + β

2
∥u∥22 − u⊤λ. (36)

The optimal slack variable can be obtained by taking the derivative of the objective L̂R and equating it to zero. This
results in u∗(λ) = 1

βλ, and, in turn, the dual problem reduces to

D̂∗
R = max

λ
min
T

L̂(T,λ)− 1

2β
∥λ∥22. (37)

Problem (37) is a regularized variant of the empirical dual problem in (6), and can be solved with the same optimization
scheme: alternating between minimizing with respect to T and maximizing over λ. The gradient with respect to T
remains unchanged, resulting in the same primal update as in Algorithm 1. However, the gradient with respect to λ now
includes a regularized term, − 1

βλ, modifying the dual update to

λ =

[(
1− 1

β

)
λ+ η2∇λL̂(T,λ)

]
+

. (38)

This formulation is analogous to applying weight decay in updating the Lagrangian multipliers and serves to stabilize
their growth. In our experiments, we employ either the update rule in (38) or directly solve (36) via automatic
differentiation, depending on the problem setting.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

B EXPERIMENTAL DETAILS

B.1 COMMON IMPLEMENTATION DETAILS FOR SECTIONS 4 AND 5

Training setting. The goal of both experiments is to compare the behavior of constrained and unconstrained models
under different settings. One setting is comprised of a model, a dataset, a perturbation level γ, and a depth L.

Hyperparameters. The common hyperparameters to tune are β, η1, η2, α and f0. The hyperparameter search method
differs in video and language, detailed in the next sections.

Optimizers. Unconstrained training uses one ADAM optimizer. Constrained training uses two ADAM optimizers, one
for the neural network parameters and another one for optimizing the dual variables. We implement resilient constrained
learning in video as presented in the original work (Hounie et al., 2023). For the language experiment, we use the
weight decay formulation of resilience. However, as was noted in Section 3, both formulations are equivalent.

Compute platform. The video experiments were distributed between three machines: one machine has a single
NVIDIA GeForce RTX 3080 Ti GPU, two of the machines have two NVIDIA GeForce RTX 3090 cards. The language
experiments were run exclusively in the machines with two GPUs.

Relevant libraries. All of our experiments are implemented using PyTorch, version 2.6 for video and 2.7 for language.
Additionally, the language experiment uses HuggingFace Datasets and Pytorch Lightning.

B.2 VIDEO DENOISING IMPLEMENTATION DETAILS

Models. We considered three models: UT, DUST, and ViT. While we generally follow the implementation from
(De Weerdt et al., 2023), we make some minor simplifications to DUST and UT, which may make our results not
directly comparable to theirs. These changes are explained in Appendix C To adapt ViT to the denoising task, we
discard the classifier head, directly take each layer’s output and interpret it as a reconstruction. It is worth noting
that ViT processes each frame separately, while DUST and UT are natively designed to process sequences of patches.
However, we reiterate that the goal of our experiments is not to compare performance across models, but rather contrast
the constrained and unconstrained versions of each. Therefore, this difference is not significant for our purposes.

Splits and data processing. We reuse the preprocessing from (Luong et al., 2021), which consists of grayscaling,
resizing to 160x160, and creating 16x16 patches. Vision Transformer uses its own out-of-the box processor on each
frame.

Initialization. Dual variables and resilience slacks are initialized to zero. Model weight initialization in video uses a
Discrete Cosine Transform for DUST and UT (Luong et al., 2021). ViT is initialized to pretrained weights.

Metrics. For a set of ground-truth images {Yi}Ni=1 and their reconstructions {Ŷi}Ni=1, the root mean squared error

(RMSE) is defined as RMSE =
√

1
N

∑N
i=1∥Ŷi −Yi∥22. At test time, we evaluate RMSE under different perturbation

levels, γ ∈ {0.01, 0.05, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0, 1.5}. In the forthcoming extended results, we summarize model
performance across different distribution shifts, we report the mean RMSE across perturbation levels.

Primal warmup. We train for an epoch without activating constraints as we empirically observed this aids with the
stability of constrained training

Resilience restarts. After every epoch, we clamp the resilience slacks to zero. We empirically observe that initial
relaxations tend to be high and then converge slowly. Restarting the slacks after every epoch helps converge to tighter
feasible solutions more quickly.

Hyperparameter tuning. We perform a single hyperparameter search for each model with training perturbation
γ = 0.15 and reuse the results for every setting. We fix η1 = 3× 10−4, except for runs of DUST-Avenue with L = 9,
which use η1 = 8× 10−6. Table 1 shows the results of the hyperparameter search.

Table 1: Dual hyperparameters used for each model in the video denoising task.

Model α f0 β η2

DUST 6.50 3.10× 106 0.75 2.78× 10−4

UT 5.50 5.30× 105 0.78 3.20× 10−4

ViT 0.44 2.02× 102 0.71 3.00× 10−4

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 2: Dual hyperparameters for the best run of each model in the language task.

Model Dataset L γ α f0 β η2

DistilBERT IMDB 12 1.00 0.774 1.00 1.07 3.83× 10−2

MNLI 12 1.00 0.774 1.00 1.99 1.51× 10−2

UT IMDB 3 0.80 0.900 0.90 3.45 2.80× 10−2

MNLI 3 0.00 0.900 0.90 1.98 9.12× 10−2

B.3 LANGUAGE EXPERIMENT SETUP.

Splits and data processing. We rely on the standard train and test splits for each dataset. For the case of MNLI, there
is a single step of preprocessing where we combine the premise and hypothesis into a single instance.

Models. We considered two models, a pretrained DistilBERT and UT. UT takes as input the same word embeddings as
DistilBERT.

Initialization. Dual variables and resilience slacks are initialized to zero. UT uses Xavier initialization. DistilBERT is
initialized to pretrained weights.

Metric. In language, we report the prediction accuracy, Acc(x,y) = 1
M

∑M
i=1 1

{
xi = yi

}
, where M is the number

of samples, x is the true vector of classes, and y is the predicted classes. To summarize, we estimate the AUC of the
accuracies at different perturbation levels.

Hyperparameter tuning. For constrained training, we performed a Bayesian hyperparameter search with five runs per
experimental setting. To maintain a fair comparison, unconstrained training was executed five times with different seeds,
and we report the best result. This choice was motivated by observing a higher sensitivity of constrained experiments to
dual hyperparameters compared to the video experiments. For brevity, Table 2 only lists hyperparameters corresponding
to the best-performing run for each combination of dataset, model, and number of layers. In all settings, we fixed
η1 = 10−5.

B.4 EXTENDED RESULTS FOR VIDEO AND LANGUAGE

Constraints Improve OOD Performance Across Settings. In Section 4 and 5 we analyzed ID and OOD distribution
for runs with a particular training perturbation. In Tables 3 and 4, we provide a summary of the complete suite
of experiments for language and video experiments respectively. Note that RoBERTa-MNLI were omitted due
to computational limitations. We can appreciate that in most settings, training with descent constraints increases
performance when compared to unconstrained runs with the same settings. In many cases, these differences are
significant. For instance, constrained DUST on the Avenue dataset with L = 5 and γ = 0.15, has an average RMSE
of 14.72, while unconstrained is 28.269, a 71% reduction. On the language side, we find a similar result: constraints
either improve or attain comparable AUC when compared across settings.

We also observe that a small number of constrained runs have very high RMSE, such as DUST with 7 layers on the
ShanghaiTech dataset results in an RMSE above 131. The reason for these anomalies is challenges with primal-dual
convergence. These results highlight the importance of carefully choosing the dual parameters and verifying training
finalizes at a feasible solution.

Monotonic Descent Behavior. In Figure 6, we observe that constrained DUST trained on the UCSD dataset exhibits a
monotonically decreasing loss f across the layers. This effect persists consistently for models with different depths. In
contrast, the descent behavior is absent in the unconstrained counterparts. Similar patterns were observed for other
models and datasets. We note that due to the choice of the reference value f0, the initial energy in some constrained
runs may be higher than that of the unconstrained ones.

Different Tradeoffs in Video Denoising. Figure 7 shows three more examples where, with the same settings,
constrained models achieve a better tradeoff between in-distribution and OOD reconstruction quality. In two of
them (UT and ViT), we see constrained models trading off reconstruction quality at low levels of noise for better
OOD performance. In the case of constrained DUST, however, we see a higher reconstruction quality compared to
unconstrained in low-perturbation settings, and this difference gradually decreases with more test noise.

Non-uniform Effect of Perturbation. Figure 8 shows constrained and unconstrained OOD accuracy curves for UT
and DistilBERT. In DistilBERT, as the perturbation level increases, the OOD accuracy of the constrained model slightly

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 3: Average test RMSE over perturbations: Constrained vs Unconstrained (all settings)

Avenue Shanghaitech UCSD
L γtrain Constr Unconstr. Constr Unconstr. Constr Unconstr.

DUST

3

0.00 21.145 19.679 19.290 19.357 19.165 19.323
0.09 16.976 17.139 16.175 15.952 14.856 14.974
0.11 16.054 16.410 15.377 15.444 14.166 14.167
0.13 15.409 15.878 17.452 14.838 13.562 13.505
0.15 14.765 15.264 13.781 14.276 12.970 12.934

5

0.00 17.650 21.072 18.643 19.174 17.517 19.469
0.09 15.599 20.344 15.018 15.259 14.362 14.443
0.11 15.848 20.960 13.633 12.463 105.767 20.965
0.13 18.057 22.368 13.231 13.738 13.240 13.257
0.15 14.724 28.269 12.410 18.636 12.642 12.840

7

0.00 16.179 19.370 131.102 19.233 14.448 19.396
0.09 28.916 36.374 132.968 14.754 13.040 25.968
0.11 14.885 25.883 138.362 13.470 22.551 20.503
0.13 14.515 63.309 13.106 13.502 12.365 62.931
0.15 14.330 30.617 11.986 13.065 12.024 23.470

UT

3

0.00 16.770 16.180 17.691 18.471 15.074 15.353
0.09 14.098 14.639 14.381 15.026 12.938 13.481
0.11 13.523 14.063 13.618 13.783 12.770 13.293
0.13 13.196 13.481 13.432 15.538 11.996 12.871
0.15 12.377 13.110 12.952 15.306 11.342 12.442

5

0.00 16.464 14.786 17.705 18.601 15.227 15.675
0.09 13.828 15.084 14.977 13.988 13.394 12.923
0.11 13.228 13.961 14.258 12.638 12.283 12.784
0.13 12.701 13.631 13.498 11.540 12.144 12.360
0.15 12.398 13.214 12.728 11.832 10.815 11.643

7

0.00 16.609 14.979 14.626 16.817 15.047 12.361
0.09 13.962 13.819 16.286 13.567 12.818 11.953
0.11 16.731 14.005 13.606 13.300 13.092 11.849
0.13 12.553 13.357 18.531 12.735 11.155 11.534
0.15 12.232 12.996 12.726 12.316 10.577 11.768

ViT 12

0.00 11.577 12.124 11.577 12.124 21.308 21.793
0.09 7.595 7.582 7.538 8.008 16.349 17.037
0.11 7.219 7.495 7.387 7.240 16.638 18.515
0.13 7.094 7.138 7.021 7.351 23.186 23.482
0.15 6.953 6.865 6.650 6.889 12.695 14.632

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 4: OOD Accuracy AUC values for all language classification settings.

IMDB MNLI
Model L γtrain Constr. Unconstr. Constr Unconstr.

UT

3

0.0 1.719 1.707 0.892 0.887
0.2 1.719 1.714 0.902 0.896
0.4 1.723 1.720 0.914 0.909
0.6 1.731 1.728 0.921 0.920
0.8 1.740 1.735 0.930 0.926
1.0 1.736 1.731 0.935 0.933

5

0.0 1.680 1.680 0.889 0.882
0.2 1.686 1.687 0.902 0.894
0.4 1.702 1.706 0.913 0.909
0.6 1.714 1.718 0.924 0.918
0.8 1.727 1.729 0.930 0.927
1.0 1.739 1.740 0.933 0.931

7

0.0 1.673 1.672 0.889 0.885
0.2 1.679 1.685 0.901 0.895
0.4 1.696 1.695 0.915 0.911
0.6 1.712 1.714 0.922 0.919
0.8 1.726 1.724 0.929 0.925
1.0 1.736 1.733 0.932 0.931

9

0.0 1.672 1.670 0.890 0.885
0.2 1.680 1.676 0.902 0.893
0.4 1.697 1.693 0.914 0.909
0.6 1.711 1.711 0.923 0.920
0.8 1.724 1.724 0.928 0.929
1.0 1.734 1.733 0.932 0.930

DistilBERT 12

0.0 1.583 1.608 1.052 1.064
0.2 1.592 1.586 1.091 1.096
0.4 1.653 1.602 1.162 1.153
0.6 1.677 1.660 1.253 1.227
0.8 1.738 1.704 1.328 1.322
1.0 1.789 1.745 1.408 1.405

RoBERTa 24

0.0 1.797 1.651 N/A N/A
0.2 1.789 1.702 N/A N/A
0.4 1.785 1.642 N/A N/A
0.6 1.778 1.708 N/A N/A
0.8 1.828 1.719 N/A N/A
1.0 1.874 1.824 N/A N/A

increases, an effect also present on the IMDb dataset, as shown in Section 4. This effect is not uniform across settings,
however, as we see that in UT the gap between constrained and unconstrained is largest when training with γ = 0.

Infeasible Solutions Leads to Low Performance. In Figure 9 we present a failure mode where the constrained model
failed to converge to a feasible solution, resulting in the constrained model having very low performance across all
noise regimes. As mentioned previously, this is is an example that highlights the importance of hyperparameter tuning
for the dual problem and verifying that constrained models are feasible at the end of training.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1 2 3
Layer

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

×105 3 Layers

1 2 3 4 5
Layer

5 Layers

1 2 3 4 5 6 7
Layer

7 Layers
Constrained
Unconstrained

Figure 6: Evolution of the loss function f for unconstrained and constrained DUST models with different numbers
of layers: 3, 5, and 7 from left to right. All models are trained on the UCSD dataset with no input perturbations.
Constrained DUST exhibits monotonic descent behavior while the unconstrained model does not.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Perturbation Level ( )

10

20

30

40

50

60

70

80

Te
st

 R
M

SE

Model: DUST | Dataset: Avenue

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Perturbation Level ( )

Model: ViT | Dataset: UCSD

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Perturbation Level ( )

Model: UT | Dataset: Shanghaitech

Constrained
Unconstrained

Figure 7: RMSE vs test perturbation plots for constrained and unconstrained models in three select video denoising
settings. The first is UT-ShanghaiTech with L = 7, train γ = 0.09, the second is ViT-UCSD with L = 12 and training
γ = 0.13, and the third is DUST-Avenue with L = 7 and training γ = 0.15.

C UNROLLED NEURAL NETWORKS

In this Appendix, we discuss the literature on unrolled neural networks, our relationship to unrolling, and implementation
details of the unrolled architectures used in the experiments of Sections 4 and 5

C.1 ALGORITHMIC UNROLLING AND UNROLLED NEURAL NETWORKS

Algorithmic unrolling began with the seminal work by Gregor & Lecun for learning fast approximations of sparse
coding (LISTA), which showed that a significant speedup can be accomplished by training a neural network to imitate
the optimal representation of ISTA. A vast literature has focused on improving the efficiency and convergence of
LISTA-like algorithms, for instance, (Liu et al., 2019a).

Since then, a new type of unrolling literature has emerged (Yang et al., 2022; De Weerdt et al., 2023; Yang et al., 2021;
Xie et al., 2023; Hershey et al., 2014; Frecon et al., 2022) where neural networks are interpreted as optimizers that
settle on an equilibrium point of an energy function. An unrolled network minimizes a problem of the form

H⋆(W) = argmin
H

E [g(X,H)] , (39)

where g(·) is the energy function, H is an optimization variable, and X is data. The network Φ(X;W) unrolls problem
(39) by iteratively decreasing g along its layers. The general method to prove unrolling is to interpret the forward pass
as a gradient step, proximal method, or some other descent method,

Hk+1(W) = Hk(W)− ηΓg,H(W), (40)

where ΓH(D) is a descent direction of g with respect to H. The goal of unrolling is then to find a g function such that
Γg,H(D) makes this equation also satisfy

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Te
st

 A
cc

ur
ac

y

Model: UT | Training Perturb: 0.0

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88
Model: UT | Training Perturb: 0.2

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88
Model: UT | Training Perturb: 0.4

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Model: DistilBERT | Training Perturb: 0.0

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.4

0.5

0.6

0.7

0.8

Model: DistilBERT | Training Perturb: 0.2

0.0 0.5 1.0 1.5 2.0
Perturbation Level ( )

0.4

0.5

0.6

0.7

0.8

Model: DistilBERT | Training Perturb: 0.4

Figure 8: Accuracy OOD plots for two select language experiment settings. The first plot row is UT-IMDB, the second
plot row is DistilBERT-MNLI. The plot columns are training γ levels. Each plot shows constrained and unconstrained
OOD Accuracy curves for each setting. The plot colors represent the training perturbation level.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Test Perturbation ( )

5

10

15

20

25

30

35

PS
N

R
 (d

B
)

DUST on ShanghaiTech: OOD Performance

Constraint Type
Constrained
Unconstrained

1 2 3 4 5 6 7
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 L
os

s

1e26 DUST on ShanghaiTech: Layerwise Test Loss

Constraint Type
Constrained
Unconstrained

Figure 9: Example of an infeasible constrained model. The setting is DUST on the ShanghaiTech dataset, L = 7,
training γ = 0.11. The left plot shows the OOD PSNR values for constrained and unconstrained models, and the right
plot shows the test loss of the models at each intermediate layer’s representation. The constrained model failed to
converge to a monotonically decreasing solution.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Hk+1(W) = ϕ(H,X;W), (41)

where ϕ is the forward pass of a neural network, such as a transformer. The motivation is to elucidate the behavior of
the neural network, as it is said that the function g explains the forward pass of the architecture. For example, consider
unrolling the following problem, which results in a ReLU layer:

min
H(W)

1

2
Tr[H⊤WH] +

1

2
∥H∥22 + ψ(H), ψ(u) =

{
+∞ if u < 0

0, otherwise
(42)

unrolls into Hk+1 = ReLU[WsHk], with the symmetric matrix Ws = (1− α)I − η
2 (W2 +W⊤

2 ), as shown in (Xie
et al., 2023).

Training unrolled models. Training an unrolled neural network is given by the following bilevel optimization problem:

W∗ = argmin
W

E[f(X,H∗(W))], (43)

s.t. H∗(W) = argmin
H

E[g(X,H;W)], (44)

where f is a training objective and g is an auxiliary objective function that guides the evolution of the representation H
and encourages desirable internal structure, such as sparsity, cross-correlation, etc.

Relation to our method. As we have explained in Section 2, we draw inspiration from the idea of neural network
unrolling, but what we call unrolling in this paper is a different method, since we don’t design and train neural networks
to solve optimization problems, but rather encourage existing architectures to descend on an objective via constraints
during training. For standard unrolled transformers, such as DUST and UT, our training method can be seen as solving
the bilevel problem (43) and (44). The constraints we impose in Section 3 encourage descent on (43). Since the unrolled
model is designed to be a descent algorithm of g(·), its forward pass should descend on 44, by construction.

C.2 TRANSFORMER UNROLLING

Consider the energy function given by g(X,W) = g1(X,W) + g2(X,W), with

g1(X;W) = −
T∑

t=1

T∑
u=1

exp {−1

2
∥Wxt −Wxu∥2}+

1

2

T∑
t=1

∥Wxt∥22, (45)

g2(X,W2) =
1

2
Tr{X⊤W2X}+ 1

2
∥X∥2F + φ(X) (46)

where W ∈ Rd×n is a matrix of learnable parameters. This function consists of a sum of scaled distances between the
vectors of the sequence X and the norm of the projected vectors.

Consider the following recursion that describes a symmetric transformer with shared weights,

Zk+1 = Xk × sm
[
(W1Xk)

⊤(W1Xk)
]
, (47)

Xk+1 = ReLU (WsZk+1) , (48)

for k ∈ [1,K], with Ws a symmetric weight matrix as in (42). Equation (47) is a softmax self-attention layer with a
single projection matrix Wl

1 shared between keys, queries, and values, i.e., Ql = Kl = Vl for all l, noting that the
value parameters cancel out from the previous layer. This Equation corresponds to the unrolling of (45). In the next
section, we will elaborate on the part of the proof from (Yang et al., 2022) that shows how to derive an attention-like
structure from this function.

Equation (48) is a linear transformation parameterized by W2, followed by a residual connection and a ReLU
nonlinearity. As mentioned in the previous section, this form of ReLU with symmetric weights corresponds to the
unrolling of (46).

With this definition of g(·), (Yang et al., 2022) show that Equations (47) and (48) are a descent algorithm for problem
(39). The proof involves showing that both steps sequentially result in an inexact gradient descent direction of
g1(·) + g2(·).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

C.2.1 DERIVATION OF SOFTMAX SELF-ATTENTION

In (Yang et al., 2022), Theorem 3.1 shows how to derive unrollings for a family of attention structures. Here we present
this theorem for the concrete case of self-attention, using our notation. We provide an extended version of their proof
for completeness.
Theorem 1 (Theorem 3.1 from (Yang et al., 2022)). Replace Y = WX, and consider g1(Y) as in (45). Let

βi = exp

{
− 1

2

∥∥∥y(k)
i

∥∥∥2}, and let Y(k) represent any fixed value for Y. Then the update rule

y
(k+1)
i =

∑n
j=1βj exp

{
y
(k)⊤
i y

(k)
j

}
y
(k)
j∑n

j=1 βj exp
{
y
(k)⊤
i y

(k)
j

} , ∀i, (49)

satisfies g1
(
Y(k+1)

)
≤ g1

(
Y(k)

)
with equality iff Y(k) is a stationary point of g1.

Replacing Y = WX in (45), we have

g1(Y) =

T∑
t=1

T∑
u=1

exp {−1

2
∥yt − yu∥2}+

1

2
∥Y∥2F . (50)

The proof relies on a graph over the tokens, but we will consider the special case of a fully connected graph G = (V, E),
Let G = (V, E) a fully connected graph over the tokens, with Laplacian L = D−A = BTB, where B ∈ Rm×n is the
incidence matrix Consider the surrogate energy function

g̃1 (Y,Γ) =
∑

u,v∈E

1

2
γu,v∥yu − yv∥2 +

1

2
∥Y∥2F . (51)

Proposition B.2 in (Yang et al., 2022) shows how a majorization-minimization algorithm that decreases g̃1 also decreases
g1. The proof relies on Lemma 3.2 in (Yang et al., 2021). Here we focus on the proof of decreasing g̃.
Theorem 2 (Theorem B.2 from (Yang et al., 2022)). Consider updating g̃1 using a gradient step with step size η and
Jacobi preconditioner D−(t):

Y(t+1) = Y(t) − ηD−(t)
∂g̃1

(
Y,Γ(t)

)
∂Y

∣∣∣∣∣∣
Y=Y(t)

, (52)

where

D(t) =
∂2g̃1

(
Y,Γ(t)

)
∂Y2

∣∣∣∣∣∣
Y=Y(t)

, (53)

and η ≤ 1, it follows that g̃1
(
Y(t+1)

)
≤ g̃1

(
Y(t)

)
.

And the update rule in (52) can be written as

y(t+1)
u = (1− η)y(t)

u + η

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

}
y(t)
v

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

} , ∀u. (54)

The weights are given by the diagonal matrix Γ with entries Γii = γuv, ∀ ei = (u, v) ∈ E . The γuv correspond to the
reweighting coefficients in a minimization-algorithm,

γ(t)u,v =
d(− exp{− 1

2∥yu − yv∥2})
d( 12∥yu − yv∥2)

(55)

= exp{−1

2
∥y(t)u − y(t)v ∥2} (56)

= exp{y(t)
⊤

u y(t)v }βuβv, βu = exp{−1

2
∥y(t)u ∥2} (57)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Let L̃ = BTΓB the reweighted Laplacian (note that Γ ∈ Rm×m is a diagonal matrix with entries γuv for every arc
(u, v) ∈ E , and that γuu = e0 = 1. The reweighted energy can be written as:

g̃1(Y) = Trace
[
YT L̃Y

]
+ ∥Y∥2F (58)

Then its derivative and Hessian are given by

∂g̃(Y)

∂Y
= L̃Y +Y (59)

∂2g̃(Y)

∂Y2
= L̃+ I. (60)

Note that the reweighted Laplacian has entries

L̃uv =

{∑
v′ ̸=u γuv′ if u = v

−γuv if u ̸= v
(61)

So the Jacobi preconditioner is the diagonal of the Hessian of g̃, with entries

[D]uu =
∑
v ̸=u

γuv + 1 (62)

=
∑
v∈V

γuv − γuu + 1 (63)

=
∑
v∈V

γuv (64)

the equalities coming from adding and subtracting γuu = e0 = 1.

Also note that, considering the two cases of L̃, we have

[L̃Y]u =
∑
v′ ̸=u

γuv′yu −
∑
v∈V

γuvyv (65)

The first term coming from the case where u = v, and the second term is the sum of all the other cases where u ̸= v.
Replacing this into (52) (and dropping (t) in the right hand side for brevity) we have

Y(t+1) = Y − ηD−1L̃Y − ηD−1Y (66)

The update rule for the vector of node u, substituting (65) and (64), becomes

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

y(t+1)
u = yu − η

∑
v′ ̸=u γuv′yu −

∑
v∈V γuvyv∑

v∈V γuv
− η

1∑
v∈V γuv

yu (67)

= yu − η

∑
v′ ̸=u γuv′∑
v∈V γuv

yu − η
γuu∑
v∈V γuv

yu + η

∑
v∈V γuvyv∑
v∈V γuv

(68)

= yu − η(

∑
v∈V γuv∑
v∈V γuv

)yu + η

∑
v∈V γuvyv∑
v∈V γuv

(69)

= (1− η)yu + η

∑
v∈V γuvyv∑
v∈V γuv

(70)

= (1− η)yu + η
βu

∑
v∈V exp {−yT

uyv}βvyv

βu
∑

v∈V exp {yT
uyv}βv

(71)

= (1− η)yu + η

∑
v∈V exp {yT

uyv}βvyv∑
v∈V exp {yT

uyv}βv
(72)

which is (54). This completes the proof of Theorem 2. Note that convergence requires that α ≤ 1/L(t), with L(t) the
Lipschitz constant of the gradient of D−(t)(̃Y,Γ(t)), but L(t) = 1.

Proof of Theorem 1. With η = 1 the yu term vanishes, replacing the summation over all vertices with the vertex
indices, and setting the temperature parameters to βu = 1 for all u ∈ V , Equation 72 becomes (49). By Theorem 2, this
update rule decreases g̃(·).
Furthermore, Proposition B.2 in (Yang et al., 2022) shows how a majorization-minimization algorithm that decreases g̃1
also decreases g1. The proof relies on Lemma 3.2 in (Yang et al., 2021).

SSA Reparametrization. If we replace back yu = Wxu in (49), we have, in matrix form,

WX(k+1) = WX(k) · sm
[ (

WX(k)
)⊤ (

WX(k)
) ]
, (73)

where we see that W cancels out on both sides, leading to what we call symmetric softmax attention without a V
matrix.

C.3 DEEP UNFOLDED SEQUENTIAL TRANSFORMER (DUST)

Leveraging the transformer unrolling seen in the previous section, Deep Unfolded Sequential Transformer (DUST)
(De Weerdt et al., 2023) derives an architecture for video processing by unrolling the function

min
H

E
[ T∑
t=1

(
1
2∥xt −ADht∥22 + λ1∥ht∥1

)
︸ ︷︷ ︸

LISTA loss

]
+ λ2 g1(H,D), (74)

where g1 is the symmetric attention energy as in Equation (45), X is a sequence of video frames as defined in Section 4,
D ∈ RD×N is the feature dictionary, A ∈ Rm×D, m≪ D is the measurement matrix, H ∈ RN×T is called the sparse
code, and λ1 and λ2 are regularization parameters. Unrolling this problem results in a symmetric softmax attention
layer followed by a LISTA layer. The g function is composed of three components: the objective f , ℓ1 terms to promote
sparsity, and the cross-correlation term g1. With this structure, DUST aims to learn a sparse reconstruction H of the
dictionary features D that also takes into account the cross-correlation of elements in the sequence.

The DUST architecture is

H(k+1/2) = λ2H
(k) softmax(H(k)⊤D⊤DH(k)), (75)

H
(k+1)
t = ϕλ1

c

(
UH

(k+1/2)
t +VX

)
, (76)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

for all k ∈ [1,K]. Here, the proximal operator ϕγ(u) = sign(u)max(0, |u|−γ) is called the soft-thresholding function,
and c is related to the Lipschitz constant of the gradient of X− The index (k + 1/2) denotes an intermediate step.

In (De Weerdt et al., 2023), U,V,D, c, λ1 and λ2 are learnable parameters. The matrices U and V are initialized as
U = I − 1

cD
⊤A⊤AD, and V = 1

cD
⊤A⊤, while the dictionary D is initialized to the Discrete Cosine Transform

(DCT) and updated during training as well.

Alternate execution of the updates (75) and (76) is guaranteed to reduce the objective of (74) leveraging the same
Alternate Minimization results from (Yang et al., 2022).

C.4 IMPLEMENTATION ADAPTATIONS FROM DUST

We make the following departures from the original paper’s implementation:

No compressed sensing. The experiments of (De Weerdt et al., 2023) include compressed sensing tasks. In these
experiments, the measurement matrix A that compresses the signal into a lower dimensional space. This matrix is
included in the unrolling of the LISTA layer to account for this signal compression. Since we only work with the
denoising task, we set A = I in our architecture.

Coupled LISTA weights. We keep the coupling of U and V within each layer instead of learning them, motivated by
results from the LISTA literature that suggest the coupling of these matrices is necessary for convergence (Chen et al.,
2018).

Disabling some learnable parameters. In our implementation, the only trainable parameter is D for unconstrained
DUST and Dl for all l in constrained DUST. We fix the learnable parameters to λ1 = 0.9, λ2 = 0.25, as we observed
the learnable parameters resulted in trivial satisfaction of our descent constraints (by making one term have zero weight).
Preliminary experiments suggested this came with little impact to performance for unconstrained runs.

Decoupled Layerwise Dictionaries. Although (Liu et al., 2019a) advocates parameter coupling across layers, we
maintain distinct dictionaries D for each layer in constrained models, as we empirically observed this improves
performance.

29


	Introduction
	Related Work

	Constrained Unrolled Transformers
	Training of Constrained Unrolled Transformers
	Video Denoising
	Text Classification with Perturbed Embeddings
	Conclusions
	Mathematical Proofs
	Constrained Learning Theorem
	Proof of Theorem 2
	Proof of Corollary 3
	Proof of Corollary 4
	Resilient Constrained Learning

	Experimental details
	Common Implementation details for Sections 4 and 5
	Video Denoising Implementation Details
	Language experiment setup.
	Extended Results for Video and Language

	Unrolled neural networks
	Algorithmic unrolling and unrolled neural networks
	Transformer Unrolling
	Derivation of softmax self-attention

	Deep Unfolded Sequential Transformer (DUST)
	Implementation Adaptations from DUST


