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Abstract

Few-shot Named Entity Recognition (NER) in-
volves the identification of new entities using a
limited amount of labeled data, which may con-
tain nested entities. Currently, mainstream few-
shot NER methods are not designed to handle
nested entities. This study introduces a novel
span-based meta-learning framework that uses
meta-learning convolution to address the chal-
lenges of few-shot nested NER. Our proposed
method, called Meta-Learning Convolution for
Few-Shot Nested NER (MCFSN), is the first
to integrate meta-learning with convolutional
neural networks, effectively handling nested
entities with limited training examples. This
study presents a two-stage processing approach:
extracting span features using CNN combined
with the Biaffine attention mechanism, fol-
lowed by entity span classification utilizing
ProtoNet and the Biaffine classifier. Our experi-
ments demonstrate consistently superior perfor-
mance across three diverse language datasets,
outperforming several competing baseline mod-
els in terms of F1 scores. Specifically, our ap-
proach achieves 6.9% F1 score improvement on
the Genia, 5.2% F1 value improvement on the
GermEval, and 4.5% F1 value enhancement on
the NEREL, thus validating the effectiveness
of our proposed approach.

1 Introduction

Named Entity Recognition (NER), a core task in
Natural Language Processing (NLP) (Zhang et al.,
2022; Yang et al., 2017; Yan et al., 2021), is essen-
tial for identifying and classifying predefined entity
categories within text. This task is particularly cru-
cial for various downstream NLP applications such
as information extraction (Lample et al., 2016a; Ma
and Hovy, 2016; Peters et al., 2017; Cui and Zhang,
2019; Yamada et al., 2020). The challenge of NER
is especially pronounced in specific domains such
as bioinformatics and in non-English languages
such as German and Russian. These fields often
have limited annotated data available (Cui et al.,

2021; Ma et al., 2022b; Lee et al., 2022a), leading
researchers to focus on few-shot NER (Wang et al.,
2022c; Ma et al., 2022a), as exemplified in Figure
I(a). A significant yet often overlooked issue in ex-
isting few-shot NER research is nested NER, where
one entity may contain another, as shown in Figure
1(b). This phenomenon is more common in certain
domains because of the textual characteristics of
the field (Sonkar et al., 2022; Wang et al., 2022a).
For instance, in bioinformatics texts, entities suck
as proteins, genes, or disease names are frequently
nested and interconnected, forming complex entity
structures.
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Figure 1: (a) Illustration of a 2-way, 2-shot few-shot
NER task, where new entities are learned from two
examples. (b) Example sentences demonstrating GE-
NIA Nested NER and German Compound Noun Nested
NER.

Most existing work either concentrates on few-
shot NER while overlooking the nested structure
of entities or focuses on nested NER but disregards
the scarcity of data samples. Currently, the predom-
inant approaches to few-shot NER can be broadly
categorized into two types: fine-tuning-based meth-
ods (Wang et al., 2022b; Schmidt et al., 2022)
and metric-based methods (Chen et al., 2022b; Ma
et al., 2022b).



Fine-tuning-based methods involve adjusting the
parameters of NER models using new examples,
whereas metric-based methods compare query to-
kens with prototypes of each entity class, represent-
ing entity types as vectors within a unified repre-
sentation space alongside individual tokens. Re-
searchers have proposed numerous enhancements
to these two processing approaches. For instance,
Huang et al. (2021) employed a distance-based
method to explore self-training techniques using ex-
ternal data, and Wang et al. (2023) generated coun-
terfactual instances as interventions to augment the
original dataset. Furthermore, prompt-based learn-
ing methods are widely applied in Few-shot NER
(Chen et al., 2022b). Das et al. (2022) combined
contrastive learning with prompt learning to better
represent label dependencies.

However, the direct application of these few-
shot NER methods to nested NER presents several
challenges. Using fine-tuning-based methods, in
a nested NER context, inconsistencies in entity la-
bels (Strakova et al., 2019) make it difficult for
classifiers trained in the source domain to transfer
effectively to the target domain (Wang et al., 2020).
Metric-based methods struggle to distinguish se-
mantic entities with only a few samples because
of the similar semantic feature representations of
nested entities. Moreover, prompt-based learning
faces challenges because nested entity spans may
exhibit varying dependency patterns, making it
challenging to glean sufficient information from
prompt learning to identify nested entities, particu-
larly for rare or complex nesting structures (Ming
et al., 2022; Huang et al., 2022).

In the context of nested NER, these methods re-
quire more nuanced adaptation and optimization to
overcome the challenges posed by data complex-
ity. Faced with the complexity of simultaneous
few-shot NER and nested NER as well as the dual
challenge of limited training data and the presence
of nested entities, we propose a novel span-based
meta-learning framework combined with a convo-
lutional processing approach (MCFSN) to address
the issue of few-shot nested NER. Our method
integrates the meta-learning framework with multi-
sample concatenation as soft prompts, effectively
addressing challenges in few-shot NER. Specifi-
cally, in processing nested NER, we proceed in
two stages. first, in the span detection stage, sen-
tence features are extracted using Convolutional
Neural Networks (CNN), and word features are

regularized using a Biaffine attention mechanism
to capture interactions between sentences and accu-
rately represent word features. Second, in the entity
span classification stage, the model combines the
ProtoNet and Biaffine classifiers, and employs a
fully connected layer output for labeling, thereby
enhancing the model’s span classification capabil-
ity.
Our main contributions are as follows:

* We introduce a novel span-based approach for
few-shot nested Named Entity Recognition,
using a Meta-Learning Convolutional Model
(MCFSN). This model is the first to leverage
meta-learning in conjunction with CNNs to
addressing the challenges of few-shot nested
NER.

* Our approach employs CNNs for extract-
ing high-dimensional sentence features. The
meta-learning framework effectively utilizes
information from few-shot samples and, in
combination with soft prompts and Biaffine
classifiers, further enhances the model’s abil-
ity to discriminate in few-shot nested NER.

* Experimental results demonstrate that the
MCEFSN model achieves state-of-the-art per-
formance on three benchmark datasets (GE-
NIA, GermEval, NEREL). It surpasses several
competing models in F1 scores, achieving 6.9
increase in F1 score on the GENIA, 5.2 im-
provement on the GermEval, and 4.5 enhance-
ment on the NEREL.

2 Related Work

2.1 Few-shot NER

Current mainstream few-shot NER methodologies
can be classified into two primary categories: fine-
tuning-based methods (Wang et al., 2022b) and
metric-based methods (Chen et al., 2022a). To im-
prove performance, researchers have proposed var-
ious enhancements, including the use of label infor-
mation to augment model recognition capabilities
(Hou et al., 2022), and the design of new paradigms
(Chen et al., 2022a), such as prompt-based methods
(Wang and Liu, 2021; Das et al., 2022; Ma et al.,
2022c). However, these approaches, which primar-
ily focus on flat NER, are not directly applicable to
nested NER.
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Figure 2: The few-shot nested NER meta-learning convolutional model incorporates Conditional Layer Normaliza-
tion (CLN) and a Multi-Layer Perceptron (MLP). The symbol & denotes vector concatenation, and "FC’ refers to a
fully connected layer. The Decoder employs Viterbi decoding combined with softmax prediction.

2.2 Nested NER

Early approaches to nested NER predominantly re-
lied on rule-based methods, which depended on
manually crafted rules for identifying and classi-
fying entities (Shen et al., 2021). Although effec-
tive in certain scenarios, these rule-based methods
lacked flexibility and struggled to adapt to nested
entity types not covered by the rules (Patil et al.,
2023). In recent years, the mainstream method-
ology has shifted towards fully supervised learn-
ing approaches, including neural transformer-based
methods (Tual et al., 2023), hypergraph-based
methods (Katiyar and Cardie, 2018; Wang and Lu,
2018), region-specific identification methods (Lin
et al., 2019), and span-based methods (Shen et al.,
2021; Wan et al., 2022; Zhu and Li, 2022). How-
ever, these methods require a substantial amount
of labeled data and are not suitable for few-shot
settings.

2.3 Few-shot Nested NER

To the best of our knowledge, existing work on few-
shot nested NER primarily focuses on exploring
effective methods to address the dual challenges of
nested entity structures and limited training sam-
ples. Ming et al. (2022) were pioneers specifically
studying the task of few-shot nested NER. They
introduced a Biaffine-based Contrastive Learning

Framework (BCL) to tackle this task. This frame-
work employs a Biaffine span representation mod-
ule to learn the contextual span dependencies of
each entity span, merging dependency and seman-
tic representations to differentiate nested entities.

Subsequently, the FIT model by Xu et al. (2023)
observed that entity spans and their nested counter-
parts may have distinct dependency models. This
model adjusts representations through contrastive
learning, enhancing the similarity within spans of
the same entity category and reducing it between
different categories. This method, by measuring
similarity, enhances transfer learning capabilities
for addressing few-shot.

3 Method

In this section, the task definitions for nested NER
and few-shot NER are first introduced, followed by
a detailed description of the MCFSN framework.
Finally, our training objectives are presented.

3.1 Overall Architecture

Definition of Few-Shot Nested NER: Given an in-
put sentence x = {Xq, ..., Xp } consisting of n word
tokens, the objective is to accurately identify the
left and right boundary tokens x¢) and x¢, of each
entity € = {Xel, ..., Xer } Within x, and to assign the
correct entity type to e from a predefined list of



categories Y, such as Y = {"GPE”,”ORG”, ...}.
Unlike Flat NER, in nested NER, entities may over-
lap, with tokens within entity e potentially being
assigned multiple types. The model follows the
standard few-shot NER setting described by Ding
et al. (2021), typically training on source domain
data and addressing the N-way (N unseen classes)
K-shot (K annotated examples per class) task in the
target domain.

The process of few-shot nested NER in our study
is divided into two stages: span extraction and
span classification. The overall approach employs a
meta-learning framework to address the challenges
posed by few-shot. Figure 2 illustrates our few-shot
nested NER meta-learning convolutional model.

3.2 Entity span detector

Given an input sentence X = {X1, ..., Xn } contain-
ing n word tokens, the BIOES tagging scheme
is used to provide more specific and granular
boundary information for entity spans. This en-
tails labeling each word x; in the sentence with
yvi € {B,I,0,E, S} to denote its position within
an entity span.

Each entity label in the input sentence is aug-
mented with samples of the same type because the
label name contains not only entity information
but also label details. This augmentation is con-
catenated to the sample as a soft prompt template
to enhance the model’s ability to utilize few-shot
information. Specifically, the input sentence is
formatted as x = {X[SEP]xge}, Where Xge rep-
resents a sample of the same type of entity, and
[SEP] serves as a delimiter to distinguish between
the enhanced instance and the input sentence.

We use BERT (Kenton and Toutanova, 2019) as
the encoder for our model, as it has been proven
to be one of the state-of-the-art models for repre-
sentation learning in NER (Wang et al., 2021). The
augmented text is input into the BERT encoder to
obtain the embedding vectors h € R™*¢, where d
represents the dimension of BERT’s hidden states.
For each token xi, the BERT token generator can
divide it into multiple subtokens t; = (t;,,. . ., tj,).

t; = BERT (z;) (1)

To further enhance context modeling, follow-
ing prior work (Wadden et al., 2019), we em-
ploy a Bidirectional LSTM (BiLSTM) as de-
scribed by Lample et al. (2016b). The em-
bedding vectors E = {eq,...,e,}, outputted by

BERT, are input into the BiLSTM to generate
the final word representation vectors, denoted as

H={hy,...,h,} € R4,
T = LSTM(t;, i) 2)
o = LSTM(t:, Toin) 3)
hi= [T 0y @)

The symbol [;] denotes concatenation, and h;
represents a 2d-dimensional vector.

Inspired by Li et al. (2020), the output vectors
H from the BiLSTM are processed using Condi-
tional Layer Normalization (CLN) to generate a
word pairs grid. This grid can be conceptualized as
a two-dimensional matrix M, where M € R™*d
to predict the relationships between word pairs
M (1, X5).
M) + i (5)

h _
M;j = CLN(hg, hj) = Xij © (=2

where the layer normalization gain parameter is
generated as \;; = Woh; +b,, and ¢;; = Wgh; +
bg. p and o represent the mean and variance of the
elements in h;, respectively. W, , b, , Wg and bg
are all learnable parameters.

Given that CNNs are well-suited for perform-
ing 2D convolutions on grids and exhibit excellent
characteristics in processing representational rela-
tionships (Zeng et al., 2018), we employ a 3x3
convolution as a feature refiner. Coupled with layer
normalization, this approach aims to capture the
interactions of different spans within a sentence.

C = CLN (Conv(M)) (6)

Subsequently, Biaffine Attention is employed to
represent the current word’s features through head
and tail characteristics, enhancing MLP prediction
(Lietal., 2021). Biaffine Attention can be viewed
as a method for modeling the pairwise interaction
relationships between elements in the sequence H
output by BiLSTM.

Ay =hIWh; +UT (h; @ hj)+b (7

Wherein W represents the weight matrix for the
bilinear terms, U is the weight matrix for the linear
terms, and b denotes the bias. @ indicates vector
concatenation.

The outputs from Biaffine Attention, CLN, and
layer normalization are then concatenated and fed
into an MLP to amalgamate information, with the



expectation of capturing both the regional informa-
tion and internal patterns necessary for predicting

spans.
F=MLP(A®C® M) (8)

Entity spans are obtained by employing Viterbi
decoding and softmax prediction, selecting the re-
sults with the highest probability.

efi
P(fi) = =—7 )
j=1¢"
S = argmax H P (f) (10)

i=1

Herein, m denotes the length of the sequence,
and f; represents the state at the ith position in the
sequence.

Our training objective is to minimize the discrep-
ancy between predicted probabilities and actual
labels, thereby enabling the model to accurately
identify entity spans. The loss function used in the
entity span detection stage employs cross-entropy
loss.

1
Edetector = - ﬁ Z CrossEntropyLoss(yij > pij)

ij

(11
The actual label y;;, which is either O or 1, signi-
fies whether the word pairs formed by the i;;, and
Jen, words in a sentence are part of a valid entity
span. p;; is the probability predicted by the model
for these word pairs to belong to a valid entity span.
The term n? denotes the total number of possible

word pairs combinations within the sentence.

3.3 Entity span classify

For the entity spans extracted in the entity span de-
tection stage, they are concatenated and integrated
with the output from BERT, and then processed
through a BILSTM. This approach is expected to
enable the model to fully utilize the information
from the existing few-shot instances.

hnew = [t1 @ s1,t2 @ S2, ..., tn B Sp] 12)
hi = LSTM (b1, hnew) — (13)

by = EST™ (it hnews) — (14)

Hyew = [F1 @ 1,05 @ o, o B @ B (15)

In this context, ¢; and s; respectively represent
the embedding vectors output by BERT and the en-
tity spans extracted during the entity span detection
stage, with @ indicating vector concatenation.

FlatNER is processed using ProtoNet.Assuming
Hyew,[ij) 1s the entity span output from the en-
tity span detection stage, spanning from h; to
hj, the span representation of Hy ;5 is calcu-
lated by averaging the representations of all tokens
Withianew,[i,ﬂ .

1 J
sup=———— > hy

g Jitl ;

(16)

Let Sy = {Hpew,[1j} denote the set of entity
spans contained in the given support set .S, cor-
responding to the entity class ~x in the set . For
each entity class vy, the average span representa-
tion is computed to serve as the prototype py.

Z SUPTi, 5]

15,51 €5k

1
pe(S) = Sl

(17)

Utilizing the given training set (Sirqin, Qtrain,
Yerain)> the prototypes for all entity classes in Virqin
are calculated in Syqiy using Equation 17. For
each span’s H,ey [ in the query set Qtrqin, the
Euclidean distance between H,,c,[; j and the pro-
totype of each category is computed to determine

the class of Hyey [1 -

dist =|| Hnew,[i,j} — Pk (Strain) |2 (18)
exp (—dist)
P roto Hnew j] ) — ;
Prot (pk‘ ’[ "7]) Zk’ eXp (_dZSt/)
(19)

For nested NER, Biaffine classifier is used, with
the category of each span being determined through
calculations performed by the Biaffine layer.

Bia = hIWihe + Wa(hs @ he) +b (20)

PBiaffine (pk|Hnew,[i,j}) = softmaﬂ: (BZCL)

1)

Wherein hg and h. denote the feature vectors of
the span’s start and end positions, respectively. W
and W, are weight matrices, and b represents the
bias.

The probability of an entity span’s category is
generated by concatenating the outputs of ProtoNet
and Biaffine classifier, and then inputting them into
a fully connected layer. This method is employed
to predict the category of an entity span more accu-
rately.

P =FC (PProto @& PBiaﬁ:me) (22)



Dataset 5-shot Nested ratio(%) 10-shot Nested ratio(%) Sentence Entities/Nest entities
GENIA 16 18 18k 54.3k/28.4k
GermEval 10 11 17.7k 39.8k/5.3k
NEREL 23 28 8.6k 53.8k/17.2k
FewNERD - - 188.2k 491.7k/-
Table 1: Data Scale of the Datasets Used in the Experiment.
Parameter Values Subsequently, the updated model My is evalu-

{1e-5, 3e-5, le-4}
{1,2,3,5,9, 10, 20}

Learning rate
ML fine-tune steps

Dropout {0.1,0.3,0.5}
BERT learning rate {5e-6, 1e-5, 2e-5}
n and A {0.35-0.65}
Batch size {16, 32}
Type similarity threshold {1,2.5,3,4,5}

Table 2: Hyper-parameters search space used in our
experiments.

The loss function employed in the classification
stage utilizes cross-entropy loss.

£classify = - Z Ye IOg(Pc) (23)

where y. represents the c:h element of y, indicat-
ing whether the entity span belongs to category c.
P, is the ¢ h element of P, denoting the probability
of being predicted as category c.

3.4 Meta-learning framework

The objective of meta-learning is to enable the
model to quickly adapt to few-shot tasks that it has
never encountered before. Meta-learning frame-
works consist of two stages: meta-training and
meta-testing. The existing model My undergoes re-
peated meta -training, followed by fine-tuning the
trained model My, using the novel episode support
set. This is then evaluated on the corresponding
query set.

During the meta-training phase, the model ran-
domly samples an ePiSOde (Strain’ Qtrain’ Vtrm’n)
from the source domain dataset €445, to sSimulate
test. Subsequently, the parameters ¢ of the model
Mp undergo n steps of inner updates, with the up-
date rule being:

00— OéV@ﬁ(H; Strain) (24)

Liotal = 77£detect + A»Cclassify (25)

Herein, « represents the learning rate, L4 1S
the loss function, and 7 and A are hyperparameters.

ated on the query set Q4qin for meta-updates.

008> L(6:Q0,) 26
(2

Here, 3 is the meta-learning rate. During the
meta-testing phase, the model is evaluated on test
tasks. After meta-training with L4447, the model is
fine-tuned to obtain Mjy+, and then this fine-tuned
model is used to make predictions on new query
examples Qpew-

4 Experiments

4.1 Settings

4.1.1 Datasets

The FewNERD! (Ding et al., 2021) dataset was uti-
lized as the source domain dataset, and experiments
were conducted on three datasets GENIA?(Kim
et al., 2003), NEREL?(Loukachevitch et al., 2021),
GermEval*(Benikova et al., 2014) to evaluate the
proposed method. Refer to Appendix A.1 for an
overview of the datasets.

4.1.2 Domain settings

FewNERD serves as the source domain dataset,
which can be divided into inter and intra parts.
The experiments on FewNERD inter subset fol-
low the processing method described in the orig-
inal paper by Ding et al. (2021), involving ran-
dom sampling to extract N-way N-shot subtasks
for meta-learning training. Similarly, during the
testing process, the FewNERD sampling procedure
is followed, randomly selecting N-way N-shot as
the fine-tune dataset on the target domain datasets.
For the NEREL, GermEval, and GENIA datasets,
the sampled datasets are derived from the test por-
tions provided in the original datasets, excluding
some entity categories with fewer than 50 entities.
The final data scale is presented in Table 1.

'https://github.com/thunlp/Few-NERD
2http: //www.geniaproject.org/genia-corpus
*https://github.com/nerel-ds/NEREL
4https: //germeval.github.io/
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5-shot 10-shot

Dataset Method P R Fi P R Fi
SEE-Few 30.92 14.41 19.314.95 52.35 29.84 37.7845.04
SDNet 41.25 11.36 17.48_1¢.97 48.57 12.18 19.0347.07
GENIA ESD 36.44 20.24 25.0349 88 48.84 28.00 35.2344.96
FIT 40.72 30.30 34.43 19 06 52.91 39.51 449513 33
BCL \ \ 46.0611 92 \ \ 62.3311 86
"Ours | ¢ 60.87  48.62  5296.59s 7382 6038  67.45.933

Table 3: Performance comparison of MCFSN and baselines on GENIA datasets under different shots.

Datasets Method 1-shot(F1) 5-shot(F1)
NNShot 28.584 676 41.2649 50
ProtoNet 19.0541.71 28.5949 39
GermEval CONTaiNER | 33.18.6093 42.381961
BCL 39561569 47.0712.94

"Ours | 44761173 502215096
NNShot 38.5841.30 46.54 11 93
ProtoNet 17.764178  23.1643.19
NEREL CONTaiNER 35-23i2.31 53-55i1 14
BCL 4447160 58951164

"Ours | 489557 54331605

Table 4: Performance comparison of MCFSN and baselines on GermEval and NEREL datasets under different

shots.

4.1.3 Implementation Details

In our experimental setup, the model was imple-
mented using the Pytorch framework, version 1.9.0.
The Pretrained Language Model (PLM) BERT-
base-uncased from the Huggingface Library (Wolf
et al., 2020) was employed as our primary encoder,
in accordance with the requirements set by Ding
et al. (2021). The embedding layer parameters
were frozen during optimization, with a learning
rate of 5e-6 during the Few-NERD learning period.
For optimization, we use AdamW (Loshchilov and
Hutter, 2018) with a learning rate of 3e-5 as the op-
timizer, complemented by a linear warm-up phase
accounting for 1% of the training. Hyperparameter
settings are determined using grid search, with the
search space outlined in Table 2. For more details,
please refer to the Appendix A.2

4.1.4 Baselines

The following models are used as baselines for few-
shot nested NER: ProtoNet (Snell et al., 2017),
NNShot (Yang and Katiyar, 2020), CONTaiNER
(Das et al., 2022), SEE-Few (Yang et al., 2022),
SDNet (Chen et al., 2022a), ESD (Wang et al.,
2022b), FIT (Xu et al., 2023), BCL (Ming et al.,

2022). The range of applicable methods is con-
strained by the inability of most few-shot NER
approaches to address few-shot nested NER chal-
lenges. For more details, Appendix A.3 should be
consulted.

4.2 Main Results

Tables 3 and 4 display the main results of our
method, averaged over five experiments, and com-
pare them with the results of previous advanced
methods.

It is evident that our proposed method signifi-
cantly outperforms previous approaches. On the
Genia, it achieved 6.9% increase in F1 score, on
the GermEval, 5.2% enhancement in F1 value, and
on the NEREL , 4.5% improvement in F1 score,
effectively demonstrating the effectiveness of our
approach.

Tables 3 and 4 illustrate the model’s results on
multilingual datasets, where our method achieves
impressive performance, particularly in the pres-
ence of significant language domain differences
compared to most other methods. For instance, it
facilitates the transfer and alignment of informa-
tion across different language datasets and even



5-shot 10-shot
Method P R F1 P R Fl
Full model 58.61 48.73 52-96i6 96 72.82 62.38 67.45i9 33
-w/o CNN feature | 4425 2414 31219972175 50.69 3255 39.75.gu7(-217)
-w/o Biaffine classifier 51.84 3627 43.0717g88(-9.89) 00.06 5291 58.23.496(_9.22)
-w/o meta learning 5672 43.08 48.734506(—4.23) 7371 6247 68.35.419(11.1)
-w/o soft prompts+Viterbi | 57.76 4544  51.0646929(_1.9) 73.66 62.05 67.131936(_0.32)

Table 5: Ablation study of MCFSN and baselines on the GENIA dataset under different shots.

disparate entity classes, thereby constructing a uni-
fied model for diverse domains.

It demonstrates the strong adaptability of our
approach.

4.3 Ablation Study

To verify the contribution of different components
in the proposed method, ablation experiments were
conducted on the Genia dataset from the perspec-
tive of modules and implementation. The following
variants and baselines for ablation study were in-
troduced:

w/o CNN feature: This variant involves extract-
ing features solely using word features, without
employing CNN for feature extraction of the com-
bined information. Subsequently, the model is used
for detecting nested NER and fine-tuned with few-
shot samples.

w/o biaffine classifier: In this variant, span clas-
sification for nested NER is conducted solely using
ProtoNet, without employing a biaffine classifier.

w/o meta learning: This variant involves train-
ing the detection and classification models using
traditional gradient descent methods, without the
use of meta-learning.

w/o soft prompts+Viterbi: In this variant, clas-
sification is performed using the original sentence
input and softmax prediction, without employing
soft prompts and Viterbi decoding.

As shown in Table 5. Generally, the removal
of any single module leads to a decrease in perfor-
mance. Furthermore, Table 5 also allows for some
in-depth observational conclusions.

1) The omission of CNN features for feature
extraction results in a significant decline in perfor-
mance. This indicates that relying solely on word
features during the feature extraction stage captures
only a limited amount of useful information, insuf-
ficient to meet the demands of few-shot NER and
nested NER.

2) Upon removing the biaffine classifier, results

indicate that this module exhibits good nested NER
classification performance in the 5-shot. As the
training data increases, the classification effective-
ness of the biaffine classifier module also improves.
This improvement is due to the span classifica-
tion stage gaining a stronger ability to differentiate
nested NER as the volume of data increases.

3) Meta-learning is essential for the application
of models in few-shot NER. The fact that the pos-
itive effect in a 5-shot setting surpasses that in a
10-shot setting indicates that the removal of meta-
learning leads to a noticeable decrease in results
when training data is scarce. Concurrently, meta-
learning also aids the model in effectively detecting
and classifying NER in few-shot contexts.

4) Ablation studies have shown that the use of
soft prompt templates and Viterbi decoding aids in
extracting valuable information from a limited num-
ber of samples, thereby enhancing the model’s ca-
pacity to learn nested NER. As a result, the model
can maintain a robust capability for feature extrac-
tion and language modeling.

5 Conclusion

This study introduces an innovative meta-learning
convolutional approach for few-shot NER, adeptly
combining the strengths of meta-learning and con-
volutional neural networks. This approach, demon-
strated through a two-stage process involving CNN
and dual affine attention mechanisms for span fea-
ture extraction followed by effective entity span
classification, shows considerable promise. No-
tably, the inclusion of mete-learning and CNN
has proven crucial, enabling the model to uti-
lize context effectively for entity knowledge recall.
The results from ablation studies and performance
evaluations indicate a substantial enhancement in
the model’s capability to learn nested NER. Our
method not only achieves significant F1 score im-
provements but also demonstrates robust adaptabil-
ity and efficiency in few-shot scenarios.



6 Limitations

 Dataset Specificity: Although effective across
the tested datasets, the proposed MCFSN
method may not generalize equally well to
all types of nested NER, particularly those
with highly idiosyncratic or domain-specific
language structures.

* Dependency on High-Quality Span Features:
The performance of MCFSN method heav-
ily relies on the accurate extraction of span
features using CNN and Biaffine attention
mechanisms. If these initial features are not
extracted effectively, this could significantly
impact the overall accuracy of nested entity
recognition. Moreover, it is important to in-
vestigate alternative approaches for modeling
such relationships, exploring novel perspec-
tives that could enhance the model’s adaptabil-
ity and effectiveness in diverse scenarios.
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A Appendix

A.1 Datasets

GENIA is a corpus focused on the biomedical
field, predominantly covering articles in biology
and molecular genetics. This dataset comprises 5
entity types, primarily centered around concepts
such as proteins, genes, and cells. We adhere to
the official partitioning scheme provided, which
roughly maintains an 8:1:1 ratio for the tra/dev/test
sets.

GermkEval is a German nested NER dataset that
includes 12 entity types. These are divided into
four main categories: Person, Location, Organi-
zation, and Other, each with its subcategories. We
split them into the train, dev, and test sets by 8:1:1.

NEREL is a Russian nested NER dataset, en-
compassing a total of 29 entity types. These types
include basic categories such as Person, Organiza-
tion, Location, Facility, and Geopolitical Entities.
NEREL is currently the largest Russian corpus with
annotations for entities and relationships, featuring
nesting of named entities up to six layers. We
roughly maintains an 8:1:1 ratio for the tra/dev/test
sets.

FewNERD is a NER dataset specifically de-
signed for few-shot learning, comprising data col-
lected from multiple domains, such as news, litera-
ture, and academia. The dataset contains 66 entity
types, covering a wide range of entity categories.
For this dataset, we employ the same training and
testing splits as outlined in the original paper.

All datasets are available under a usage license
and can be downloaded online. In terms of data par-
titioning within the meta-learning training frame-
work, the FewNERD dataset is used as the source
domain data, while datasets from other domains
serve as target datasets.

A.2 Implementation Details

The batch size is set to 32, with a maximum se-
quence length limit of 1024, and a dropout rate
maintained at 0.1. The hidden state size of the BiL-
STM encoder is set to 400. The output dimension
of the MLP and the dropout rate are set to 150 and
0.2, respectively. In the total loss function, both
n and A are set to 0.5. During the meta-training
phase, the number of inner update steps is set to 2.
During the span detector tuning stage, the number
of fine-tuning steps on the Few-NERD dataset is
set to 3, while for other datasets, it is set to 10.
The number of steps for the span classify phase is

12

set similarly. In the meta-training query set eval-
uation phase, the maximum loss coefficient A is
set to 2. The model’s effectiveness is validated on
the development set every 100 steps. To optimize
training speed, we retain only those entities whose
similarity score to the nearest prototype exceeds a
threshold of 2. The training is conducted on two
Nvidia RTX 3090 GPUs, each with 24GB of mem-
ory, taking approximately 6 hours.

A.3 Baselines

ProtoNet learned a metric space in which classifi-
cation could be performed by calculating distances
to prototype representations of each class, offering
a simple yet effective inductive bias.

NNShot utilized a supervised NER model,
trained on the source domain, as a feature extractor.
In the feature space, a nearest neighbor classifier
was applied, employing a straightforward method
to capture label dependencies among entity labels.

CONTaiNER optimized the distributional dis-
tances between tokens through contrastive learning.
It leveraged Gaussian distribution embeddings to
distinguish token categories, thereby effectively
addressing the issue of domain overfitting in envi-
ronmental training.

SEE-Few leveraged the context of mentioned en-
tities and their types, utilizing a shared text encoder
for joint learning to enhance performance.

SDNet utilized external data for joint training of
mention descriptions and entity generation tasks.
During the fine-tuning phase, mention descriptions
were used to summarize type concept descriptions,
followed by entity generation based on the gener-
ated descriptions.

ESD framed few-shot sequence tasks as a prob-
lem of matching span similarities between test
queries and support entities. Sampling was con-
ducted from the FewNERD and GENIA datasets at
a specific ratio, followed by pretraining.

FIT achieved outstanding performance on four
datasets by using a focus component and a bridge
component to provide an accurate candidate range
for the prompt component, without utilizing source
domain data. The prompt component capitalized
on the unique features of nested entities, classify-
ing spans based on soft prompts and contrastive
learning.

BCL employs Biaffine-based contrastive learn-
ing to differentiate nested entities using context
dependencies. A Biaffine span representation mod-



ule is utilized to learn the context span dependency
representation of each entity span. Nested entities
are distinguished by merging the two representa-
tions through residual connections.
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