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Abstract

Few-shot Named Entity Recognition (NER) in-001
volves the identification of new entities using a002
limited amount of labeled data, which may con-003
tain nested entities. Currently, mainstream few-004
shot NER methods are not designed to handle005
nested entities. This study introduces a novel006
span-based meta-learning framework that uses007
meta-learning convolution to address the chal-008
lenges of few-shot nested NER. Our proposed009
method, called Meta-Learning Convolution for010
Few-Shot Nested NER (MCFSN), is the first011
to integrate meta-learning with convolutional012
neural networks, effectively handling nested013
entities with limited training examples. This014
study presents a two-stage processing approach:015
extracting span features using CNN combined016
with the Biaffine attention mechanism, fol-017
lowed by entity span classification utilizing018
ProtoNet and the Biaffine classifier. Our experi-019
ments demonstrate consistently superior perfor-020
mance across three diverse language datasets,021
outperforming several competing baseline mod-022
els in terms of F1 scores. Specifically, our ap-023
proach achieves 6.9% F1 score improvement on024
the Genia, 5.2% F1 value improvement on the025
GermEval, and 4.5% F1 value enhancement on026
the NEREL, thus validating the effectiveness027
of our proposed approach.028

1 Introduction029

Named Entity Recognition (NER), a core task in030

Natural Language Processing (NLP) (Zhang et al.,031

2022; Yang et al., 2017; Yan et al., 2021), is essen-032

tial for identifying and classifying predefined entity033

categories within text. This task is particularly cru-034

cial for various downstream NLP applications such035

as information extraction (Lample et al., 2016a; Ma036

and Hovy, 2016; Peters et al., 2017; Cui and Zhang,037

2019; Yamada et al., 2020). The challenge of NER038

is especially pronounced in specific domains such039

as bioinformatics and in non-English languages040

such as German and Russian. These fields often041

have limited annotated data available (Cui et al.,042

2021; Ma et al., 2022b; Lee et al., 2022a), leading 043

researchers to focus on few-shot NER (Wang et al., 044

2022c; Ma et al., 2022a), as exemplified in Figure 045

1(a). A significant yet often overlooked issue in ex- 046

isting few-shot NER research is nested NER, where 047

one entity may contain another, as shown in Figure 048

1(b). This phenomenon is more common in certain 049

domains because of the textual characteristics of 050

the field (Sonkar et al., 2022; Wang et al., 2022a). 051

For instance, in bioinformatics texts, entities suck 052

as proteins, genes, or disease names are frequently 053

nested and interconnected, forming complex entity 054

structures. 055

Researchers focused on the Rat insulin-like growth factor 1 gene

Protein

DNA

S1: [Marie Curie]PER discovered [Radium]CHEM

S2: [Albert Einstein]PER formulated [E = mc2]THEORY

query: Charles Darwin authored on the Origin of Species

Model(never accesses [PER] entity)

[Charles Darwin]PER authored on the Origin of Species

(a)

(b)

Der Geschäftsführer der Berliner Marketingfirma präsentierte

POS

ORG

Figure 1: (a) Illustration of a 2-way, 2-shot few-shot
NER task, where new entities are learned from two
examples. (b) Example sentences demonstrating GE-
NIA Nested NER and German Compound Noun Nested
NER.

Most existing work either concentrates on few- 056

shot NER while overlooking the nested structure 057

of entities or focuses on nested NER but disregards 058

the scarcity of data samples. Currently, the predom- 059

inant approaches to few-shot NER can be broadly 060

categorized into two types: fine-tuning-based meth- 061

ods (Wang et al., 2022b; Schmidt et al., 2022) 062

and metric-based methods (Chen et al., 2022b; Ma 063

et al., 2022b). 064
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Fine-tuning-based methods involve adjusting the065

parameters of NER models using new examples,066

whereas metric-based methods compare query to-067

kens with prototypes of each entity class, represent-068

ing entity types as vectors within a unified repre-069

sentation space alongside individual tokens. Re-070

searchers have proposed numerous enhancements071

to these two processing approaches. For instance,072

Huang et al. (2021) employed a distance-based073

method to explore self-training techniques using ex-074

ternal data, and Wang et al. (2023) generated coun-075

terfactual instances as interventions to augment the076

original dataset. Furthermore, prompt-based learn-077

ing methods are widely applied in Few-shot NER078

(Chen et al., 2022b). Das et al. (2022) combined079

contrastive learning with prompt learning to better080

represent label dependencies.081

However, the direct application of these few-082

shot NER methods to nested NER presents several083

challenges. Using fine-tuning-based methods, in084

a nested NER context, inconsistencies in entity la-085

bels (Straková et al., 2019) make it difficult for086

classifiers trained in the source domain to transfer087

effectively to the target domain (Wang et al., 2020).088

Metric-based methods struggle to distinguish se-089

mantic entities with only a few samples because090

of the similar semantic feature representations of091

nested entities. Moreover, prompt-based learning092

faces challenges because nested entity spans may093

exhibit varying dependency patterns, making it094

challenging to glean sufficient information from095

prompt learning to identify nested entities, particu-096

larly for rare or complex nesting structures (Ming097

et al., 2022; Huang et al., 2022).098

In the context of nested NER, these methods re-099

quire more nuanced adaptation and optimization to100

overcome the challenges posed by data complex-101

ity. Faced with the complexity of simultaneous102

few-shot NER and nested NER as well as the dual103

challenge of limited training data and the presence104

of nested entities, we propose a novel span-based105

meta-learning framework combined with a convo-106

lutional processing approach (MCFSN) to address107

the issue of few-shot nested NER. Our method108

integrates the meta-learning framework with multi-109

sample concatenation as soft prompts, effectively110

addressing challenges in few-shot NER. Specifi-111

cally, in processing nested NER, we proceed in112

two stages. first, in the span detection stage, sen-113

tence features are extracted using Convolutional114

Neural Networks (CNN), and word features are115

regularized using a Biaffine attention mechanism 116

to capture interactions between sentences and accu- 117

rately represent word features. Second, in the entity 118

span classification stage, the model combines the 119

ProtoNet and Biaffine classifiers, and employs a 120

fully connected layer output for labeling, thereby 121

enhancing the model’s span classification capabil- 122

ity. 123

Our main contributions are as follows: 124

• We introduce a novel span-based approach for 125

few-shot nested Named Entity Recognition, 126

using a Meta-Learning Convolutional Model 127

(MCFSN). This model is the first to leverage 128

meta-learning in conjunction with CNNs to 129

addressing the challenges of few-shot nested 130

NER. 131

• Our approach employs CNNs for extract- 132

ing high-dimensional sentence features. The 133

meta-learning framework effectively utilizes 134

information from few-shot samples and, in 135

combination with soft prompts and Biaffine 136

classifiers, further enhances the model’s abil- 137

ity to discriminate in few-shot nested NER. 138

• Experimental results demonstrate that the 139

MCFSN model achieves state-of-the-art per- 140

formance on three benchmark datasets (GE- 141

NIA, GermEval, NEREL). It surpasses several 142

competing models in F1 scores, achieving 6.9 143

increase in F1 score on the GENIA, 5.2 im- 144

provement on the GermEval, and 4.5 enhance- 145

ment on the NEREL. 146

2 Related Work 147

2.1 Few-shot NER 148

Current mainstream few-shot NER methodologies 149

can be classified into two primary categories: fine- 150

tuning-based methods (Wang et al., 2022b) and 151

metric-based methods (Chen et al., 2022a). To im- 152

prove performance, researchers have proposed var- 153

ious enhancements, including the use of label infor- 154

mation to augment model recognition capabilities 155

(Hou et al., 2022), and the design of new paradigms 156

(Chen et al., 2022a), such as prompt-based methods 157

(Wang and Liu, 2021; Das et al., 2022; Ma et al., 158

2022c). However, these approaches, which primar- 159

ily focus on flat NER, are not directly applicable to 160

nested NER. 161
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[Marie Curie]PER discovered Radium

[Marie Curie]PER discovered Radium [SEP] [Albert Einstein]PER formulated E = mc2 [SEP]
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Figure 2: The few-shot nested NER meta-learning convolutional model incorporates Conditional Layer Normaliza-
tion (CLN) and a Multi-Layer Perceptron (MLP). The symbol ⊕ denotes vector concatenation, and ’FC’ refers to a
fully connected layer. The Decoder employs Viterbi decoding combined with softmax prediction.

2.2 Nested NER162

Early approaches to nested NER predominantly re-163

lied on rule-based methods, which depended on164

manually crafted rules for identifying and classi-165

fying entities (Shen et al., 2021). Although effec-166

tive in certain scenarios, these rule-based methods167

lacked flexibility and struggled to adapt to nested168

entity types not covered by the rules (Patil et al.,169

2023). In recent years, the mainstream method-170

ology has shifted towards fully supervised learn-171

ing approaches, including neural transformer-based172

methods (Tual et al., 2023), hypergraph-based173

methods (Katiyar and Cardie, 2018; Wang and Lu,174

2018), region-specific identification methods (Lin175

et al., 2019), and span-based methods (Shen et al.,176

2021; Wan et al., 2022; Zhu and Li, 2022). How-177

ever, these methods require a substantial amount178

of labeled data and are not suitable for few-shot179

settings.180

2.3 Few-shot Nested NER181

To the best of our knowledge, existing work on few-182

shot nested NER primarily focuses on exploring183

effective methods to address the dual challenges of184

nested entity structures and limited training sam-185

ples. Ming et al. (2022) were pioneers specifically186

studying the task of few-shot nested NER. They187

introduced a Biaffine-based Contrastive Learning188

Framework (BCL) to tackle this task. This frame- 189

work employs a Biaffine span representation mod- 190

ule to learn the contextual span dependencies of 191

each entity span, merging dependency and seman- 192

tic representations to differentiate nested entities. 193

Subsequently, the FIT model by Xu et al. (2023) 194

observed that entity spans and their nested counter- 195

parts may have distinct dependency models. This 196

model adjusts representations through contrastive 197

learning, enhancing the similarity within spans of 198

the same entity category and reducing it between 199

different categories. This method, by measuring 200

similarity, enhances transfer learning capabilities 201

for addressing few-shot. 202

3 Method 203

In this section, the task definitions for nested NER 204

and few-shot NER are first introduced, followed by 205

a detailed description of the MCFSN framework. 206

Finally, our training objectives are presented. 207

3.1 Overall Architecture 208

Definition of Few-Shot Nested NER: Given an in- 209

put sentence x = {x1, ...,xn} consisting of n word 210

tokens, the objective is to accurately identify the 211

left and right boundary tokens xel and xer of each 212

entity e = {xel, ...,xer} within x, and to assign the 213

correct entity type to e from a predefined list of 214
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categories Y, such as Y = {”GPE”, ”ORG”, ...}.215

Unlike Flat NER, in nested NER, entities may over-216

lap, with tokens within entity e potentially being217

assigned multiple types. The model follows the218

standard few-shot NER setting described by Ding219

et al. (2021), typically training on source domain220

data and addressing the N-way (N unseen classes)221

K-shot (K annotated examples per class) task in the222

target domain.223

The process of few-shot nested NER in our study224

is divided into two stages: span extraction and225

span classification. The overall approach employs a226

meta-learning framework to address the challenges227

posed by few-shot. Figure 2 illustrates our few-shot228

nested NER meta-learning convolutional model.229

3.2 Entity span detector230

Given an input sentence x = {x1, ...,xn} contain-231

ing n word tokens, the BIOES tagging scheme232

is used to provide more specific and granular233

boundary information for entity spans. This en-234

tails labeling each word x1 in the sentence with235

yi ∈ {B, I,O,E,S} to denote its position within236

an entity span.237

Each entity label in the input sentence is aug-238

mented with samples of the same type because the239

label name contains not only entity information240

but also label details. This augmentation is con-241

catenated to the sample as a soft prompt template242

to enhance the model’s ability to utilize few-shot243

information. Specifically, the input sentence is244

formatted as x = {x[SEP]xse}, where xse rep-245

resents a sample of the same type of entity, and246

[SEP] serves as a delimiter to distinguish between247

the enhanced instance and the input sentence.248

We use BERT (Kenton and Toutanova, 2019) as249

the encoder for our model, as it has been proven250

to be one of the state-of-the-art models for repre-251

sentation learning in NER (Wang et al., 2021). The252

augmented text is input into the BERT encoder to253

obtain the embedding vectors h ∈ Rn×d, where d254

represents the dimension of BERT’s hidden states.255

For each token xi, the BERT token generator can256

divide it into multiple subtokens ti = (ti1 , . . . , tij).257

ti = BERT(xi) (1)258

To further enhance context modeling, follow-259

ing prior work (Wadden et al., 2019), we em-260

ploy a Bidirectional LSTM (BiLSTM) as de-261

scribed by Lample et al. (2016b). The em-262

bedding vectors E = {e1, . . . , en}, outputted by263

BERT, are input into the BiLSTM to generate 264

the final word representation vectors, denoted as 265

H = {h1, . . . ,hn} ∈ Rn×d. 266

−→
h i =

−−−−→
LSTM(ti,

−→
h i−1) (2) 267

268←−
h i =

←−−−−
LSTM(ti,

←−
h i−1) (3) 269

270
hi = [

−→
h i;
←−
h i] (4) 271

The symbol [; ] denotes concatenation, and hi 272

represents a 2d-dimensional vector. 273

Inspired by Li et al. (2020), the output vectors 274

H from the BiLSTM are processed using Condi- 275

tional Layer Normalization (CLN) to generate a 276

word pairs grid. This grid can be conceptualized as 277

a two-dimensional matrix M, where M ∈ Rnxd, 278

to predict the relationships between word pairs 279

Mij(xi, xj). 280

Mij = CLN(hi, hj) = λij⊙ (
hj − µ

σ
)+ϕij (5) 281

where the layer normalization gain parameter is 282

generated as λij = Wαhi+bα, and ϕij = Wβhi+ 283

bβ . µ and σ represent the mean and variance of the 284

elements in hj, respectively. Wα , bα , Wβ and bβ 285

are all learnable parameters. 286

Given that CNNs are well-suited for perform- 287

ing 2D convolutions on grids and exhibit excellent 288

characteristics in processing representational rela- 289

tionships (Zeng et al., 2018), we employ a 3x3 290

convolution as a feature refiner. Coupled with layer 291

normalization, this approach aims to capture the 292

interactions of different spans within a sentence. 293

C = CLN (Conv(M)) (6) 294

Subsequently, Biaffine Attention is employed to 295

represent the current word’s features through head 296

and tail characteristics, enhancing MLP prediction 297

(Li et al., 2021). Biaffine Attention can be viewed 298

as a method for modeling the pairwise interaction 299

relationships between elements in the sequence H 300

output by BiLSTM. 301

Aij = hTi Whj +UT (hi ⊕ hj) + b (7) 302

Wherein W represents the weight matrix for the 303

bilinear terms, U is the weight matrix for the linear 304

terms, and b denotes the bias. ⊕ indicates vector 305

concatenation. 306

The outputs from Biaffine Attention, CLN, and 307

layer normalization are then concatenated and fed 308

into an MLP to amalgamate information, with the 309
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expectation of capturing both the regional informa-310

tion and internal patterns necessary for predicting311

spans.312

F = MLP(A⊕ C ⊕M) (8)313

Entity spans are obtained by employing Viterbi314

decoding and softmax prediction, selecting the re-315

sults with the highest probability.316

P (fi) =
efi∑n
j=1 e

fj
(9)317

318

Ŝ = argmax
m∏
i=1

P (fi) (10)319

Herein, m denotes the length of the sequence,320

and fi represents the state at the ith position in the321

sequence.322

Our training objective is to minimize the discrep-323

ancy between predicted probabilities and actual324

labels, thereby enabling the model to accurately325

identify entity spans. The loss function used in the326

entity span detection stage employs cross-entropy327

loss.328

Ldetector = −
1

n2

∑
ij

CrossEntropyLoss(yij , pij)

(11)329

The actual label yij , which is either 0 or 1, signi-330

fies whether the word pairs formed by the ith and331

jth words in a sentence are part of a valid entity332

span. pij is the probability predicted by the model333

for these word pairs to belong to a valid entity span.334

The term n2 denotes the total number of possible335

word pairs combinations within the sentence.336

3.3 Entity span classify337

For the entity spans extracted in the entity span de-338

tection stage, they are concatenated and integrated339

with the output from BERT, and then processed340

through a BiLSTM. This approach is expected to341

enable the model to fully utilize the information342

from the existing few-shot instances.343

hnew = [t1 ⊕ s1, t2 ⊕ s2, ..., tn ⊕ sm] (12)344
345 −→

hl =
−−−−→
LSTM

(−−→
hl−1, hnew,i

)
(13)346

347 ←−
hl =

←−−−−
LSTM

(←−−
hl+1, hnew,i

)
(14)348

349

Hnew =
[−→
h1 ⊕

←−
h1,
−→
h2 ⊕

←−
h2, ...,

−→
hn ⊕

←−
hn

]
(15)350

In this context, ti and si respectively represent351

the embedding vectors output by BERT and the en-352

tity spans extracted during the entity span detection353

stage, with ⊕ indicating vector concatenation.354

FlatNER is processed using ProtoNet.Assuming 355

Hnew,[i,j] is the entity span output from the en- 356

tity span detection stage, spanning from hi to 357

hj , the span representation of Hnew,[i,j] is calcu- 358

lated by averaging the representations of all tokens 359

withinHnew,[i,j]. 360

sup
[i,j]

=
1

j − i+ 1

j∑
k=i

hk (16) 361

Let Sk = {Hnew,[i,j]} denote the set of entity 362

spans contained in the given support set S, cor- 363

responding to the entity class γk in the set γ. For 364

each entity class γk, the average span representa- 365

tion is computed to serve as the prototype pk. 366

pk(S) =
1

|Sk|
∑

x[i,j]∈Sk

sup[i,j] (17) 367

Utilizing the given training set (Strain, Qtrain, 368

γtrain), the prototypes for all entity classes in γtrain 369

are calculated in Strain using Equation 17. For 370

each span’s Hnew,[i,j] in the query set Qtrain, the 371

Euclidean distance between Hnew,[i,j] and the pro- 372

totype of each category is computed to determine 373

the class of Hnew,[i,j]. 374

dist =∥ Hnew,[i,j] − pk(Strain) ∥2 (18) 375

376

PProto

(
pk|Πnew,[i,j]

)
=

exp (−dist)∑
k′ exp (−dist′)

(19) 377

For nested NER, Biaffine classifier is used, with 378

the category of each span being determined through 379

calculations performed by the Biaffine layer. 380

Bia = hTs W1he +W2(hs ⊕ he) + b (20) 381

382

PBiaffine

(
pk|Hnew,[i,j]

)
= softmax (Bia)

(21) 383

Wherein hs and he denote the feature vectors of 384

the span’s start and end positions, respectively. W1 385

and W2 are weight matrices, and b represents the 386

bias. 387

The probability of an entity span’s category is 388

generated by concatenating the outputs of ProtoNet 389

and Biaffine classifier, and then inputting them into 390

a fully connected layer. This method is employed 391

to predict the category of an entity span more accu- 392

rately. 393

P = FC
(
PProto ⊕ PBiaffine

)
(22) 394
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Dataset 5-shot Nested ratio(%) 10-shot Nested ratio(%) Sentence Entities/Nest entities
GENIA 16 18 18k 54.3k/28.4k

GermEval 10 11 17.7k 39.8k/5.3k
NEREL 23 28 8.6k 53.8k/17.2k

FewNERD - - 188.2k 491.7k/-

Table 1: Data Scale of the Datasets Used in the Experiment.

Parameter Values
Learning rate {1e-5, 3e-5, 1e-4}
ML fine-tune steps {1, 2, 3, 5, 9, 10, 20}
Dropout {0.1, 0.3, 0.5}
BERT learning rate {5e-6, 1e-5, 2e-5}
n and λ {0.35-0.65}
Batch size {16, 32}
Type similarity threshold {1, 2.5, 3, 4, 5}

Table 2: Hyper-parameters search space used in our
experiments.

The loss function employed in the classification395

stage utilizes cross-entropy loss.396

Lclassify = −
∑
c

yc log(Pc) (23)397

where yc represents the cth element of y, indicat-398

ing whether the entity span belongs to category c.399

Pc is the cth element of P , denoting the probability400

of being predicted as category c.401

3.4 Meta-learning framework402

The objective of meta-learning is to enable the403

model to quickly adapt to few-shot tasks that it has404

never encountered before. Meta-learning frame-405

works consist of two stages: meta-training and406

meta-testing. The existing model Mθ undergoes re-407

peated meta -training, followed by fine-tuning the408

trained model Mθ′ using the novel episode support409

set. This is then evaluated on the corresponding410

query set.411

During the meta-training phase, the model ran-412

domly samples an episode (Strain, Qtrain, γtrain)413

from the source domain dataset ϵtrain to simulate414

test. Subsequently, the parameters θ of the model415

Mθ undergo n steps of inner updates, with the up-416

date rule being:417

θ ← θ − α∇θL(θ;Strain) (24)418
419

Ltotal = ηLdetect + λLclassify (25)420

Herein, α represents the learning rate, Ltotal is421

the loss function, and η and λ are hyperparameters.422

Subsequently, the updated model Mθ is evalu- 423

ated on the query set Qtrain for meta-updates. 424

θ ← θ − β∇θ

∑
i

L
(
θ;Q

(i)
train

)
(26) 425

Here, β is the meta-learning rate. During the 426

meta-testing phase, the model is evaluated on test 427

tasks. After meta-training with Ltotal, the model is 428

fine-tuned to obtain Mθ∗ , and then this fine-tuned 429

model is used to make predictions on new query 430

examples Qnew. 431

4 Experiments 432

4.1 Settings 433

4.1.1 Datasets 434

The FewNERD1(Ding et al., 2021) dataset was uti- 435

lized as the source domain dataset, and experiments 436

were conducted on three datasets GENIA2(Kim 437

et al., 2003), NEREL3(Loukachevitch et al., 2021), 438

GermEval4(Benikova et al., 2014) to evaluate the 439

proposed method. Refer to Appendix A.1 for an 440

overview of the datasets. 441

4.1.2 Domain settings 442

FewNERD serves as the source domain dataset, 443

which can be divided into inter and intra parts. 444

The experiments on FewNERD inter subset fol- 445

low the processing method described in the orig- 446

inal paper by Ding et al. (2021), involving ran- 447

dom sampling to extract N-way N-shot subtasks 448

for meta-learning training. Similarly, during the 449

testing process, the FewNERD sampling procedure 450

is followed, randomly selecting N-way N-shot as 451

the fine-tune dataset on the target domain datasets. 452

For the NEREL, GermEval, and GENIA datasets, 453

the sampled datasets are derived from the test por- 454

tions provided in the original datasets, excluding 455

some entity categories with fewer than 50 entities. 456

The final data scale is presented in Table 1. 457

1https://github.com/thunlp/Few-NERD
2http://www.geniaproject.org/genia-corpus
3https://github.com/nerel-ds/NEREL
4https://germeval.github.io/
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Dataset Method 5-shot 10-shot
P R F1 P R F1

GENIA

SEE-Few 30.92 14.41 19.31±6.95 52.35 29.84 37.78±5.04

SDNet 41.25 11.36 17.48±6.97 48.57 12.18 19.03±7.07

ESD 36.44 20.24 25.03±9.88 48.84 28.00 35.23±4.96

FIT 40.72 30.30 34.43±9.06 52.91 39.51 44.95±3.38

BCL \ \ 46.06±1.22 \ \ 62.33±1.86

Ours 60.87 48.62 52.96±6.96 73.82 60.38 67.45±9.33

Table 3: Performance comparison of MCFSN and baselines on GENIA datasets under different shots.

Datasets Method 1-shot(F1) 5-shot(F1)

GermEval

NNShot 28.58±6.76 41.26±2.50

ProtoNet 19.05±1.71 28.59±2.32

CONTaiNER 33.18±6.03 42.38±2.61

BCL 39.56±5.69 47.07±2.94

Ours 44.76±11.73 50.22±8.96

NEREL

NNShot 38.58±1.30 46.54±1.93

ProtoNet 17.76±1.78 23.16±3.19

CONTaiNER 35.23±2.31 53.55±1.14

BCL 44.47±1.60 58.95±1.64

Ours 48.95±8.76 54.33±6.95

Table 4: Performance comparison of MCFSN and baselines on GermEval and NEREL datasets under different
shots.

4.1.3 Implementation Details458

In our experimental setup, the model was imple-459

mented using the Pytorch framework, version 1.9.0.460

The Pretrained Language Model (PLM) BERT-461

base-uncased from the Huggingface Library (Wolf462

et al., 2020) was employed as our primary encoder,463

in accordance with the requirements set by Ding464

et al. (2021). The embedding layer parameters465

were frozen during optimization, with a learning466

rate of 5e-6 during the Few-NERD learning period.467

For optimization, we use AdamW (Loshchilov and468

Hutter, 2018) with a learning rate of 3e-5 as the op-469

timizer, complemented by a linear warm-up phase470

accounting for 1% of the training. Hyperparameter471

settings are determined using grid search, with the472

search space outlined in Table 2. For more details,473

please refer to the Appendix A.2474

4.1.4 Baselines475

The following models are used as baselines for few-476

shot nested NER: ProtoNet (Snell et al., 2017),477

NNShot (Yang and Katiyar, 2020), CONTaiNER478

(Das et al., 2022), SEE-Few (Yang et al., 2022),479

SDNet (Chen et al., 2022a), ESD (Wang et al.,480

2022b), FIT (Xu et al., 2023), BCL (Ming et al.,481

2022). The range of applicable methods is con- 482

strained by the inability of most few-shot NER 483

approaches to address few-shot nested NER chal- 484

lenges. For more details, Appendix A.3 should be 485

consulted. 486

4.2 Main Results 487

Tables 3 and 4 display the main results of our 488

method, averaged over five experiments, and com- 489

pare them with the results of previous advanced 490

methods. 491

It is evident that our proposed method signifi- 492

cantly outperforms previous approaches. On the 493

Genia, it achieved 6.9% increase in F1 score, on 494

the GermEval, 5.2% enhancement in F1 value, and 495

on the NEREL , 4.5% improvement in F1 score, 496

effectively demonstrating the effectiveness of our 497

approach. 498

Tables 3 and 4 illustrate the model’s results on 499

multilingual datasets, where our method achieves 500

impressive performance, particularly in the pres- 501

ence of significant language domain differences 502

compared to most other methods. For instance, it 503

facilitates the transfer and alignment of informa- 504

tion across different language datasets and even 505
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Method 5-shot 10-shot
P R F1 P R F1

Full model 58.61 48.73 52.96±6.96 72.82 62.38 67.45±9.33

-w/o CNN feature 44.25 24.14 31.21±9.97(−21.75) 50.69 32.55 39.75±8.47(−27.7)

-w/o Biaffine classifier 51.84 36.27 43.07±7.88(−9.89) 66.06 52.91 58.23±6.96(−9.22)

-w/o meta learning 56.72 43.08 48.73±8.06(−4.23) 73.71 62.47 68.35±4.19(+1.1)

-w/o soft prompts+Viterbi 57.76 45.44 51.06±6.22(−1.9) 73.66 62.05 67.13±9.86(−0.32)

Table 5: Ablation study of MCFSN and baselines on the GENIA dataset under different shots.

disparate entity classes, thereby constructing a uni-506

fied model for diverse domains.507

It demonstrates the strong adaptability of our508

approach.509

4.3 Ablation Study510

To verify the contribution of different components511

in the proposed method, ablation experiments were512

conducted on the Genia dataset from the perspec-513

tive of modules and implementation. The following514

variants and baselines for ablation study were in-515

troduced:516

w/o CNN feature: This variant involves extract-517

ing features solely using word features, without518

employing CNN for feature extraction of the com-519

bined information. Subsequently, the model is used520

for detecting nested NER and fine-tuned with few-521

shot samples.522

w/o biaffine classifier: In this variant, span clas-523

sification for nested NER is conducted solely using524

ProtoNet, without employing a biaffine classifier.525

w/o meta learning: This variant involves train-526

ing the detection and classification models using527

traditional gradient descent methods, without the528

use of meta-learning.529

w/o soft prompts+Viterbi: In this variant, clas-530

sification is performed using the original sentence531

input and softmax prediction, without employing532

soft prompts and Viterbi decoding.533

As shown in Table 5. Generally, the removal534

of any single module leads to a decrease in perfor-535

mance. Furthermore, Table 5 also allows for some536

in-depth observational conclusions.537

1) The omission of CNN features for feature538

extraction results in a significant decline in perfor-539

mance. This indicates that relying solely on word540

features during the feature extraction stage captures541

only a limited amount of useful information, insuf-542

ficient to meet the demands of few-shot NER and543

nested NER.544

2) Upon removing the biaffine classifier, results545

indicate that this module exhibits good nested NER 546

classification performance in the 5-shot. As the 547

training data increases, the classification effective- 548

ness of the biaffine classifier module also improves. 549

This improvement is due to the span classifica- 550

tion stage gaining a stronger ability to differentiate 551

nested NER as the volume of data increases. 552

3) Meta-learning is essential for the application 553

of models in few-shot NER. The fact that the pos- 554

itive effect in a 5-shot setting surpasses that in a 555

10-shot setting indicates that the removal of meta- 556

learning leads to a noticeable decrease in results 557

when training data is scarce. Concurrently, meta- 558

learning also aids the model in effectively detecting 559

and classifying NER in few-shot contexts. 560

4) Ablation studies have shown that the use of 561

soft prompt templates and Viterbi decoding aids in 562

extracting valuable information from a limited num- 563

ber of samples, thereby enhancing the model’s ca- 564

pacity to learn nested NER. As a result, the model 565

can maintain a robust capability for feature extrac- 566

tion and language modeling. 567

5 Conclusion 568

This study introduces an innovative meta-learning 569

convolutional approach for few-shot NER, adeptly 570

combining the strengths of meta-learning and con- 571

volutional neural networks. This approach, demon- 572

strated through a two-stage process involving CNN 573

and dual affine attention mechanisms for span fea- 574

ture extraction followed by effective entity span 575

classification, shows considerable promise. No- 576

tably, the inclusion of mete-learning and CNN 577

has proven crucial, enabling the model to uti- 578

lize context effectively for entity knowledge recall. 579

The results from ablation studies and performance 580

evaluations indicate a substantial enhancement in 581

the model’s capability to learn nested NER. Our 582

method not only achieves significant F1 score im- 583

provements but also demonstrates robust adaptabil- 584

ity and efficiency in few-shot scenarios. 585
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6 Limitations586

• Dataset Specificity: Although effective across587

the tested datasets, the proposed MCFSN588

method may not generalize equally well to589

all types of nested NER, particularly those590

with highly idiosyncratic or domain-specific591

language structures.592

• Dependency on High-Quality Span Features:593

The performance of MCFSN method heav-594

ily relies on the accurate extraction of span595

features using CNN and Biaffine attention596

mechanisms. If these initial features are not597

extracted effectively, this could significantly598

impact the overall accuracy of nested entity599

recognition. Moreover, it is important to in-600

vestigate alternative approaches for modeling601

such relationships, exploring novel perspec-602

tives that could enhance the model’s adaptabil-603

ity and effectiveness in diverse scenarios.604
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A Appendix915

A.1 Datasets916

GENIA is a corpus focused on the biomedical917

field, predominantly covering articles in biology918

and molecular genetics. This dataset comprises 5919

entity types, primarily centered around concepts920

such as proteins, genes, and cells. We adhere to921

the official partitioning scheme provided, which922

roughly maintains an 8:1:1 ratio for the tra/dev/test923

sets.924

GermEval is a German nested NER dataset that925

includes 12 entity types. These are divided into926

four main categories: Person, Location, Organi-927

zation, and Other, each with its subcategories.We928

split them into the train, dev, and test sets by 8:1:1.929

NEREL is a Russian nested NER dataset, en-930

compassing a total of 29 entity types. These types931

include basic categories such as Person, Organiza-932

tion, Location, Facility, and Geopolitical Entities.933

NEREL is currently the largest Russian corpus with934

annotations for entities and relationships, featuring935

nesting of named entities up to six layers. We936

roughly maintains an 8:1:1 ratio for the tra/dev/test937

sets.938

FewNERD is a NER dataset specifically de-939

signed for few-shot learning, comprising data col-940

lected from multiple domains, such as news, litera-941

ture, and academia. The dataset contains 66 entity942

types, covering a wide range of entity categories.943

For this dataset, we employ the same training and944

testing splits as outlined in the original paper.945

All datasets are available under a usage license946

and can be downloaded online. In terms of data par-947

titioning within the meta-learning training frame-948

work, the FewNERD dataset is used as the source949

domain data, while datasets from other domains950

serve as target datasets.951

A.2 Implementation Details952

The batch size is set to 32, with a maximum se-953

quence length limit of 1024, and a dropout rate954

maintained at 0.1. The hidden state size of the BiL-955

STM encoder is set to 400. The output dimension956

of the MLP and the dropout rate are set to 150 and957

0.2, respectively. In the total loss function, both958

η and λ are set to 0.5. During the meta-training959

phase, the number of inner update steps is set to 2.960

During the span detector tuning stage, the number961

of fine-tuning steps on the Few-NERD dataset is962

set to 3, while for other datasets, it is set to 10.963

The number of steps for the span classify phase is964

set similarly. In the meta-training query set eval- 965

uation phase, the maximum loss coefficient λ is 966

set to 2. The model’s effectiveness is validated on 967

the development set every 100 steps. To optimize 968

training speed, we retain only those entities whose 969

similarity score to the nearest prototype exceeds a 970

threshold of 2. The training is conducted on two 971

Nvidia RTX 3090 GPUs, each with 24GB of mem- 972

ory, taking approximately 6 hours. 973

A.3 Baselines 974

ProtoNet learned a metric space in which classifi- 975

cation could be performed by calculating distances 976

to prototype representations of each class, offering 977

a simple yet effective inductive bias. 978

NNShot utilized a supervised NER model, 979

trained on the source domain, as a feature extractor. 980

In the feature space, a nearest neighbor classifier 981

was applied, employing a straightforward method 982

to capture label dependencies among entity labels. 983

CONTaiNER optimized the distributional dis- 984

tances between tokens through contrastive learning. 985

It leveraged Gaussian distribution embeddings to 986

distinguish token categories, thereby effectively 987

addressing the issue of domain overfitting in envi- 988

ronmental training. 989

SEE-Few leveraged the context of mentioned en- 990

tities and their types, utilizing a shared text encoder 991

for joint learning to enhance performance. 992

SDNet utilized external data for joint training of 993

mention descriptions and entity generation tasks. 994

During the fine-tuning phase, mention descriptions 995

were used to summarize type concept descriptions, 996

followed by entity generation based on the gener- 997

ated descriptions. 998

ESD framed few-shot sequence tasks as a prob- 999

lem of matching span similarities between test 1000

queries and support entities. Sampling was con- 1001

ducted from the FewNERD and GENIA datasets at 1002

a specific ratio, followed by pretraining. 1003

FIT achieved outstanding performance on four 1004

datasets by using a focus component and a bridge 1005

component to provide an accurate candidate range 1006

for the prompt component, without utilizing source 1007

domain data. The prompt component capitalized 1008

on the unique features of nested entities, classify- 1009

ing spans based on soft prompts and contrastive 1010

learning. 1011

BCL employs Biaffine-based contrastive learn- 1012

ing to differentiate nested entities using context 1013

dependencies. A Biaffine span representation mod- 1014

12



ule is utilized to learn the context span dependency1015

representation of each entity span. Nested entities1016

are distinguished by merging the two representa-1017

tions through residual connections.1018
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