
Does learning the right latent variables necessarily improve in-context learning?

Sarthak Mittal † 1 2 Eric Elmoznino † 1 2 Leo Gagnon † 1 2 Sangnie Bhardwaj 1 2 3 Guillaume Lajoie * 1 2

Dhanya Sridhar * 1 2

Abstract
Large autoregressive models like Transformers
can solve tasks through in-context learning (ICL)
without learning new weights, suggesting avenues
for efficiently solving new tasks. For many tasks,
e.g., linear regression, the data factorizes: exam-
ples are independent given a task latent that gen-
erates the data, e.g., linear coefficients. While an
optimal predictor leverages this factorization by
inferring task latents, it is unclear if Transformers
implicitly do so or instead exploit heuristics and
statistical shortcuts through attention layers. In
this paper, we systematically investigate the effect
of explicitly inferring task latents by minimally
modifying the Transformer architecture with a
bottleneck to prevent shortcuts and incentivize
structured solutions. We compare it against stan-
dard Transformers across various ICL tasks and
find that contrary to intuition and recent works,
there is little discernible difference between the
two; biasing towards task-relevant latent variables
does not lead to better out-of-distribution perfor-
mance, in general. Curiously, we find that while
the bottleneck effectively learns to extract latent
task variables from context, downstream process-
ing struggles to utilize them for robust prediction.
Our study highlights the intrinsic limitations of
Transformers in achieving structured ICL solu-
tions that generalize, and shows that while infer-
ring the right latents aids interpretability, it is not
sufficient to alleviate this problem.

1. Introduction
Recent advancements in large language models (LLMs, Rad-
ford et al., 2019) showcase the Transformer architecture’s
(Vaswani et al., 2017) ability to perform novel tasks at infer-

†Equal Contribution,*Equal Supervision 1Mila – Quebec AI
Institute 2Université de Montréal 3Google DeepMind. Correspon-
dence to: Sarthak Mittal <sarthmit@gmail.com>, Guillaume La-
joie <guillaume.lajoie@mila.quebec>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ence through in-context learning (ICL, Brown et al., 2020).
Indeed, LLMs can learn from instructions and demonstra-
tions provided as input, without requiring gradient-based
learning. While ICL plays a key role in many LLM abilities
(Lu et al., 2024), such as instruction-following (Wei et al.,
2022) and chain-of-thought reasoning (Wei et al., 2023), the
factors that influence its generalization – particularly in out-
of-distribution (OOD) settings – remain poorly understood.
Although ICL can leverage a combination of instructions
and demonstrations, our analysis focuses specifically on
its ability to model predictions based on a task’s training
examples (demonstrations) provided in-context (Lampinen
et al., 2024) beyond the modality of language.

A plausible hypothesis behind the success of ICL is that
since many tasks are based on some low-dimensional latents
(e.g., complex games are described completely through their
rules, linear regression through its underlying coefficients),
Transformers might generalize to novel queries by inferring
the task latents from the context (Hendel et al., 2023;
Todd et al., 2024; Yang et al., 2025). This describes a
parametric (Bishop, 2006) modeling approach that breaks
the prediction mechanism into two parts: 1) inferring the
task latents (i.e. parameters) from the context, and then
2) using them to make predictions on novel queries. With
the right prediction function, such an approach leads to
systematic OOD generalization to new queries.

However, mounting evidence (Wang et al., 2023; Han et al.,
2023; Song et al., 2024; Tang et al., 2023b; Bhaskar et al.,
2024; Crosbie & Shutova, 2024) suggests that Transformers
instead often employ more shallow solutions which rely
on direct comparison of the query to demonstrations
(reminiscent of induction heads, Olsson et al., 2022). This
is closer in spirit to non-parametric approaches (such as
nearest neighbors or kernel regression) which are known
for their flexibility but poor generalization (Bishop, 2006).
Since these solutions do not model the data generative
process, they can be described as statistical shortcuts and
risk poor performance on OOD context and queries – e.g.,
learning the actual linear predictor for linear regression
can generalize to any distribution over training and test
points, but nearest-neighbour based interpolation might not.
Interestingly, the functional form of attention operations
is almost identical to that of kernel regression (Tsai et al.,

1

Does learning the right latent variables necessarily improve in-context learning?

Transformer y*

x1
y1 . . . xn

yn
x*0

Context Transformer

x1
y1 . . . xn

yn

z

x*

pθ (y* | x*, D) z = fθ (D) pθ (y* | x*, z)
Implicit model Explicit model

Prediction function y*

(x*, y*)(x*, y*)
D D

Dimensionality
bottleneck

z
z

✔ Expressivity ✗

✗ Explicit latents ✔

✔ Performance ✔

✗ Interpretability ✔

Figure 1. We compare the benefits of the implicit (left) and the explicit (right) model. Explicit models disentangle context aggregation and
prediction into two separate functions with an inductive bias for inferring generative latent variables in order to solve the task. Implicit
models are more expressive, but can learn non-parametric shortcut solutions that bypass latent variable inference.

2019; Han et al., 2023), making such solutions more natural
for Transformers to express (Zhou et al., 2023).

In this paper, we aim to test the hypothesis that biasing
Transformers against non-parametric solutions can improve
their ICL performance by encouraging parametric modeling.
We minimally modify the Transformer architecture to pre-
vent such non-parametric shortcuts and compare the OOD
performance of the resulting model to that of a traditional
Transformer on a large array of ICL tasks. We call this al-
tered architecture an explicit model because of its inductive
bias of explicitly extracting structured latent variables to
solve the tasks, and call the traditional Transformer architec-
ture an implicit model. Specifically, the explicit model pre-
vents the query from directly attending to demonstrations in
the context by introducing a bottleneck between the process-
ing of the context and the query (see Figure 1), similar to a
conditional neural process (Garnelo et al., 2018a). To study
the impacts of this inductive bias favoring parametric solu-
tions, we need to establish that explicit models successfully
recover task latents. As such, we consider synthetic and real
tasks for which the latent mechanisms are well understood,
and systematically analyse the impact of task latents on
generalization by comparing explicit and implicit models.

We find that the explicit model does not outperform the
implicit one on OOD data, challenging the aforementioned
hypothesis that avoiding non-parametric solutions enhances
generalization. Our investigation into this lack of improve-
ment reveals that the issue often lies in the explicit model’s
prediction function which has to leverage the inferred latent
variables for downstream predictions on the query. Our
controlled experiments and analysis on the interpretable
nature of the bottleneck revealed strong evidence that while
the explicit model often extracts relevant task latents, these
are not properly utilized by the prediction function.

While on one hand, our research demonstrates that

using a simple bottleneck in a Transformer can improve
interpretability and explicitly extract task-relevant latent
variables, it also suggests that the limitations of Trans-
formers in learning more structured and generalizable ICL
solutions are not solely due to non-parametric shortcuts that
skirt latent variable inference, but due to more fundamental
architectural limitations. In sum, our contributions are:

• Formalizing a framework to test whether parametric ICL
solutions generalize better out-of-distribution.

• Analyzing the benefits, or lack thereof, of inferring the
true latents explicitly.

• Highlighting flaws in the prediction function and down-
stream latent utilization which hinders generalization.

2. Notation
Throughout the paper, we denote datasets with the symbol
D which consists of a set of observations with inputs de-
noted via x ∈ X and their corresponding outputs as y ∈ Y .
A task is defined by a functional mapping g : X ,Z → Y
which maps observations x to labels y through some latents
or parameters z, eg. y = zTx for a linear regression task,
or y ∼ N (·; zTx, σ2) for its stochastic counterpart. To ease
readability, we will reserve x∗ ∈ X for the query, i.e. the
test time observation we want to generalize to, and y∗ ∈ Y
its corresponding target. Finally, ψ denotes the parameters
of the context aggregation component of explicit model,
which inputs the dataset D and infers the corresponding
parameters zψ(D), and γ the parameters of the prediction
model which given a query x∗ and parameters z ∈ Z , pro-
vides the prediction. For the implicit model, these operations
are subsumed into a single model, with parameters φ.

3. Implicit vs. Explicit Inference
We look at ICL in the context of algorithmic problems where
the task is to predict the target y∗ from a query x∗ when
provided with some context examples D = {(xi, yi)}ni=1,

2

Does learning the right latent variables necessarily improve in-context learning?

a. Synthetic regression tasks

b. Synthetic classification tasks c. Compositional tasks

Transformer

Implicit

xq
yq

D
Explicit

Transformer Transformer MLP
xq
zD yq

0 0 0 0 0 0 0 0 0

Figure 2. Comparison of implicit and explicit models in-distribution (ID) and out-of-distribution (OOD) across various domains: (a)
synthetic regression, (b) classification, and (c) compositional generalization tasks. Implicit models are in shown gray, explicit models with
Transformer prediction in blue, and with MLP prediction in orange. Further details about tasks is provided in Appendix B.

sharing a common underlying structure defined by the
task latent z and a functional form g. The goal of ICL
is to learn a function that can utilize the context set D to
provide predictions for new queries x∗. To achieve this,
the model is trained on different draws of context sets
(D1,D2, ...) which share the same underlying functional
mapping g : x, z → y but different realizations of the latent
z, for example g(x, z) = zTx could be a linear regression
system shared across different contexts D1,D2, ..., but the
underlying latents could be different, i.e. D1 is generated
from z1 while D2 from z2, similar to Von Oswald et al.
(2023). We emphasize that in this setup, we are not training
models to do next-token prediction as is done in language
modeling; instead, given a fixed context D that includes
n samples, we are attempting to make a prediction on a
single novel query x∗. We therefore do not use a causal
Transformer, and we allow all tokens to attend to each other.

Often, ICL solutions are learned via maximum likelihood:

argmax
φ

ED,x∗,y∗ [log pφ(y∗|x∗,D)] (1)

where pφ represents the Transformer model and D is sam-
pled from the parametric family defined through g. Thus,
the transformer model pφ must not only learn the form of the
prediction function g, but also how to efficiently aggregate
information from the context D to infer z for downstream
predictions on x∗. Thus, this general framework can be
naturally decomposed into two distinct parts.

Context Aggregation. This component deals with inferring
the task-dependent latent variables from the in-context
examples such that the downstream prediction becomes
conditionally independent of the context, i.e. inferring z
from D such that p(y∗ | x∗, z,D) = p(y∗ | x∗, z).

Predictive Modeling. This component refers to the process
of estimating the predictive function that leverages context
D to infer y∗ from a query x∗. In the above example, it
refers to learning the functional mapping g once z has been
extracted from context aggregation.

As discussed, Transformers do not have a clear incentive
to make this explicit separation of context aggregation and
predictive modeling. Instead, given context D, they implic-
itly and jointly model both the function g along with D-
dependent latent variable z inference to directly provide pre-
dictions for the query x∗, in contrast to separately estimating
g and explicitly factorizing z. Thus, in order to enforce ex-
plicit representation of z, we propose a simple architectural
modification where the query x∗ cannot directly attend to
the context, and the latent task representation is forced to
summarize the context efficiently. Formally, we compare
the following two models, which are illustrated in Figure 1.

Implicit Model. This refers to the traditional in-context
learning computation performed by Transformer models.
In this setup, given the set of observations D (context)
and a query x∗, the prediction y∗ is modeled directly

3

Does learning the right latent variables necessarily improve in-context learning?

z

Known z
Backprop

Transformer

Implicit

xq
yq

D
Explicit

Transformer xq
D Transformer yqKnown

0 0

Figure 3. Performance on a subset of tasks where the true latents z and prediction function g are known. Implicit models are in shown
gray, explicit models with Transformer prediction in blue, models trained with an auxiliary loss to predict the true latents in purple and
those using the true prediction function in green. Using the known prediction function leads to significantly better OOD performance.

as pφ(y∗|x∗,D), where pφ is defined using a standard
Transformer with parameters φ and is tasked with modeling
both context aggregation and predictive modeling.

Explicit Model. This represents the architectural variation
which minimally modifies the Transformer architecture by
separating context aggregation and predictive modeling. It
first constructs a task representation zψ(D) using the set
of observations D and a context model zψ with parameters
ψ (context aggregation) and another network pγ to make
a prediction for a new point x∗ (predictive modeling) as
pγ(y∗|x∗, zψ(D)). A key insight is that the task latents
are invariant to the queries when modeling prediction. The
context model is implemented with a Transformer zψ with
weights ψ, and for the prediction function pγ , we study
both Transformers and MLPs with weights γ. Importantly,
the output of the context model zψ(D) is a fixed-size vector
with much lower dimensionality than the full context D.
This information bottleneck prevents the query x∗ from
attending directly to the context as in standard Transform-
ers; instead, the context model must summarize D into
underlying generative factors, thus ruling out potential
shortcut solutions that bypass latent variable inference.

Implicit vs. Explicit. Assuming Transformers do in
fact favour shortcut-based solutions, we first hypothesize
when each setup should perform better given different task
characteristics. If the data is generated with a parametric
model with few underlying parameters z (e.g. a linear
model y = zTx), the right predictor can be precisely
described using the parameters z, making the explicit
model better suited. In contrast, if the data is generated
with a Gaussian Process (GP), the implicit model should be
superior since by construction query prediction computes
similarities with all points in the context. In this case,
the task latents of GP-based data with RBF kernel are
infinite dimensional (i.e. a point in function space), which
cannot be captured in the finite-dimensional bottleneck
of the explicit model. In general, we should expect the
explicit model to be superior when the underlying true

model is parametric and low-dimensional, but in case of a
non-parametric or very high dimensional parametric model,
the implicit model should be better.

Finally, we note that our aim is not to construct the best
possible explicit model architecture – indeed, more sophis-
ticated ones already exist based on amortized Bayesian
inference (Garnelo et al., 2018b; Mittal et al., 2023). Instead,
we are interested in investigating potential inductive biases
for ICL by minimally modifying the standard Transformer
architecture to remove certain shortcuts from the space of
possible solutions. We leave the design of more performant
architectures for future work and refer the readers to
Appendix A for a detailed discussion of related work.

4. Experiments
Our goal is to use both synthetic and real tasks that capture
the key elements of ICL applications to tease apart the ef-
fects of implicit and explicit models on both in-distribution
(ID) and out-of-distribution (OOD) generalization.

Task Setup. We conduct experiments across a variety of
settings that admit task latents, from synthetic regression
and classification to reasoning problems. For reasoning
tasks that require compositional knowledge, we consider
Raven’s Progressive Matrices (Raven’s PM) (John & Raven,
2003), Alchemy (Wang et al., 2021), Gene Targeting (Nor-
man et al., 2019) and reusable mixture of experts. A brief
description of our tasks is provided below, with a more
thorough explanation in Appendix B.

Regression Tasks. We consider different data-generating pro-
cesses, e.g., linear: prediction zTx and latents z, nonlinear
(MLP): prediction with a neural network g(x, z) and latents
as its weights, sinusoidal: prediction as a sum of sinusoids
with different frequencies and the latents as its amplitudes.

Classification Tasks. Akin to the regression problems, we
consider a linear and nonlinear (MLP) prediction for classifi-
cation using an additional sigmoid activation on the output.

4

Does learning the right latent variables necessarily improve in-context learning?

a. Decoding the true latent z

b. Counterfactual interventions

Transformer MLP Known

Implicit

Transformer
xq

yq
D

Explicit

Transformer xq
z

D yq

Known z
Backprop

Figure 4. Explicit models are interpretable as the bottleneck allows (a) linearly decoding the true latent, and (b) intervening to obtain
correct counterfactual predictions. Implicit models are shown in gray, explicit models with Transformer prediction in blue, and with MLP
prediction in orange. Models in green use the true prediction function g, while models in purple use an additional auxiliary loss based on
true latents. To evaluate decoding performance in (a), we linearly decode the true latent directly from concatenated context examples,
which yields significantly worse performance than decoding from the bottleneck. Baseline performances in units of the plots are – Linear
regression: 0.49, Nonlinear regression (MLP): 0.94, Sinusoid regression: 0.33, Linear classification: 0.86, Nonlinear classification
(MLP): 0.97, Raven’s PM: 0.5, and Gene targeting: 0.0. In (b), the “Relative accuracy” takes the baseline in account (details in C.4).

Raven’s Progressive Matrices. A pattern-completion task
used in IQ tests where individual object attributes evolve
according to different rules. The task is to complete a
sequence of frames to satisfy the underlying rule, which is
the latent variable and can be based on colors, shapes, etc.

Alchemy. Here, a latent causal graph describes how different
stones and potions interact to generate new stones. The task
is to infer the next stone given some transitions.

Gene Targeting. It represents a real-world dataset of targeted
gene knockouts and subsequent observations of gene expres-
sions across many cells. The underlying latent variable is
the set of genes that were knocked out in a given experiment,
and the task is to infer the gene expressions of certain cells
in an experiment given those of other observed ones.

Reusable Modular Mixture of Experts (MoE). In this task,
we apply a sequence of operations gl on the input x, where
the choice of expert applied at layer l is governed by a cat-
egorical latent zl. In particular, we apply five operations
sequentially, leading to y = gz5 ◦ gz4 ◦ . . . ◦ gz1(x). Here
g1, g2, . . . are shared across tasks and each task is uniquely
identified by (z1, . . . ,z5) which are the task latents. This
represents a reusable mixture of experts system with a hier-
archical and compositional decomposition.

Training and Evaluation. Tasks based on regression utilize

the mean-squared error loss, while those based on classifi-
cation use the cross entropy loss for training. Model archi-
tecture details are provided in subsection C.1. For ID evalu-
ation, we consider the underlying task latent z, context sam-
ples D, and queries x∗ to be sampled from the same distribu-
tion as during training. The challenge in this case is simply
to generalize from finite data. For OOD evaluation, we test
two different cases depending on the kind of task. For our
synthetic regression and classification tasks, the task latent z
and context samples D are sampled from the same distribu-
tion as at training time, but the queries x∗ are sampled from
a Gaussian distribution with higher (3×) standard deviation,
thus testing a form of out-of-domain generalization. For our
reasoning-based problems, we evaluate on task latents z that
were not seen at training. The task latent in each of these
reasoning-based problems is composed of parts (e.g., in the
Gene Targeting experiment, the latent is a binary vector of
targeted genes), which allows us to test a form of composi-
tional generalization (Wiedemer et al., 2023) in which all
parts have full marginal support at training time, but novel
combinations of those parts are evaluated at test-time.

For all tasks, implicit and explicit models were trained from
scratch over a distribution of tasks latents, with a control
for the number of parameters to provide a systematic
comparison between the two. To better understand the
shortcomings of different models, we also compare with

5

Does learning the right latent variables necessarily improve in-context learning?

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Permutations Seen

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

 (
)

Implicit
Explicit - Transformer
Explicit - MLP

Figure 5. We conduct experiments on reusable modular MoE task
where we train on a subset of combinations of experts, shown on
the X-axis. Our results indicate that across different percentages of
combinations seen during training, the implicit model consistently
outperforms the explicit one at compositional generalization.

privileged oracles (known decoder – using ground-truth
g function, and known latent variable – using an auxiliary
loss that includes the ground-truth z).

Explicit models do not outperform the implicit models.
The first evaluation setting that we considered was the
ID performance. In this case, we should expect both
implicit and explicit models to perform equally well, even
if implicit models learn shortcuts rather than ground-truth
task latents. This is because those shortcuts are tuned to
minimize prediction error within the same data distribution
that is being evaluated. Across all our tasks, the results
indeed confirmed this prediction. Specifically, during
ID evaluation, all models were capable of making highly
accurate predictions (Figure 2). While the performance of
the implicit model was generally slightly better than that of
the explicit models, the benefits were marginal. Effectively,
all models solved the tasks similarly well.

While we expected that ID evaluation would be insufficient
to demonstrate potential benefits of the explicit models, we
expected to see differences in OOD settings. Both implicit
and explicit models are sufficiently expressive to fit the
training distribution. However, if an explicit model suc-
cessfully learns the true task latents that generated the data
while an implicit model learns statistical shortcuts that are
specialized to the training distribution, we should expect the
explicit model to generalize better OOD. As a reminder, for
the synthetic regression and classification tasks in Figure 2
(a, b), OOD evaluation was done by sampling x∗ from a

normal distribution with wider standard deviation than was
used at training (3×), effectively evaluating if the models
could extrapolate to points further out along their domain
despite only being trained within a narrow distribution near
the origin. For the compositional tasks in Figure 2 (c), we
instead evaluated OOD performance by only training on
certain configurations of the true latent variable z while
evaluating on unseen ones. Importantly, at training time
the models were shown data that included every possible
value for each component of z, but not every possible
combination of these values were seen, thus evaluating
a form of compositional generalization (Wiedemer et al.,
2023). Similarly, for the reusable modular MoE task, we
train the models on a fraction of all possible combinations
in the latent (z1, . . . ,z5) and evaluate on all combinations.

Surprisingly, and counter to our predictions above, we
found that the explicit model provided no significant
benefit in OOD settings. In synthetic regression tasks
shown in Figure 2 (a), all models failed to generalize and
obtained substantially worse performance than during ID
evaluation, with the implicit model actually being the one
that had a slightly lower degradation in performance. In
classification and compositional tasks shown in Figure 2 (b,
c), all models generalized fairly well OOD and with similar
performance. Our results on reusable modular MoE task in
Figure 5 further indicate that implicit models consistently
outperform explicit ones across different proportion of
latent combinations seen during training (X-axis). In
summary, explicit models appear to provide no benefit
across our tasks, both in terms of ID and OOD performance.

If the explicit model did learn the right latent variables in
the bottleneck, it essentially implies that either the implicit
model learns benign shortcuts (if at all) or that learning the
right latent variables is not sufficient to improve generaliza-
tion, both ID or OOD. In the following results, we see that
the explicit model does indeed learn the right task latents.

Explicit models learn to infer the correct latent variable,
but not how to use it. Why didn’t the explicit model
provide any benefit? Our initial hypothesis was that the im-
plicit model could be susceptible to learning shortcuts that
are sufficient to reduce the training loss and easy to express
using self-attention between the query x∗ and context D.
By summarizing the context in a bottleneck zψ , the explicit
model should instead be forced to extract the true latent
variable in order to minimize the training loss, thus learning
a solution that is closer to the actual data-generating process.
There are then two possible explanations for the results
in Figure 2: (1) the explicit models did not learn to extract
the true latent variable despite inductive biases to do so
induced by the bottleneck, or (2) they did extract the true
latent variable but did not learn to use it in the correct
way. We performed several experiments to test these two

6

Does learning the right latent variables necessarily improve in-context learning?

z
Transformer

Implicit

xq
yq

D
Explicit

Transformer xq
D Transformer yqKnown

a. Task performance (OOD)

b. Decoding the true latent z

Figure 6. We analyze (a) Linear regression OOD performance and (b) latent variable linear decoding as a function of model and task
parameters. Task performance scales similarly for implicit (gray) and explicit models (blue), while latent variable decoding scales similarly
for the explicit model and models trained with the true prediction function g (green).

possibilities, and found strong evidence for the second.

To test whether or not the explicit models failed because
they did not extract the correct latent variable, we added an
additional supervised loss term to Equation 1, ||z−Wzψ||2,
to force the explicit model to recover the true task latent z
up to a linear transformation, where W is a learnable param-
eter. The loss of this linear model was then backpropagated
through the context model along with the task loss. Results
in Figure 3 (purple) show that this auxiliary loss provided
no improvement apart from minor increases in accuracy
on Raven’s PM, suggesting that incorrect latent variable
inference does not explain the explicit model’s suboptimal
performance. Indeed, when we did not use the auxiliary loss
as a training signal for the explicit model and just evaluated
the quality of the learned task latents by training a separate
linear predictor to predict zψ, we found that we could still
accurately predict the true latent variable (see Figure 4 (a)).
This means that in the absence of any explicit training signal
to predict the true task latent, the explicit model accurately
learns task latents up to linear reparameterizations.

Given that the explicit model correctly infers the true latent
variable in its bottleneck, we study whether the prediction
function is suboptimally learned. In other words, despite the
explicit model having access to the true z, we hypothesize
that pγ(y∗|x∗, zψ) does not learn the true data-generating
process y∗ = g(x∗, z), where g is the true prediction func-
tion – e.g., for linear regression g(x∗, z) = zTx∗. To
validate this hypothesis, we trained explicit models with the
prediction function g hard-coded as an oracle. For instance,
in the linear regression task, the zψ output by the context

model was linearly projected to the same dimensionality as
the true weights z, after which the prediction function took
its dot product with queried input x∗. In this setting, if the
explicit model extracts the correct latent variable, it should
generalize perfectly both in and out of distribution. Our
results in Figure 3 confirm that using the correct prediction
function indeed provides substantially better OOD general-
ization and effectively solves most tasks. This finding has
significant implications: it suggests that while learning the
true task latents may be a necessary condition for gener-
alization, this must also be supplemented with significant
inductive biases in the prediction function – for instance,
through novel architectures – so that these task latents can
be leveraged correctly. In the absence of such inductive
biases, inferring the correct task latent appears to provide
no benefits in practice. We do note that our nonlinear regres-
sion tasks, where z represents the weights of an underlying
MLP generating the data, were an exception to the results
described here in that using an oracle prediction function
performed poorly. In this case, we conjecture that the under-
lying latent variable is too difficult to accurately infer from
the context, while shortcut-based solutions would avoid la-
tent variable inference altogether to provide robust solutions.

Explicit models are easily interpretable. While explicit
models do not provide performance benefits, the ability
to extract the correct latent and summarize it in a single
bottleneck can still be useful for interpretability. On tasks
with known underlying latent variables, we were able to
linearly decode them from zψ with high accuracy, meaning
that the information is not only present but also easily
accessible (Figure 4 (a)). The exceptions were complex

7

Does learning the right latent variables necessarily improve in-context learning?

Transformer MLP Known

Implicit

Transformer
xq

yq
D

Explicit

Transformer xq
z

D yq

Known z
Backprop

Figure 7. We analyze sinusoid regression by sampling the query either from the normal distribution (left) or close to the context (right)
during training but always far from context during evaluation. We see that when queries are sampled close to the context, implicit models
which can rely more on kernel-regression based nearest-neighbor solutions don’t generalize far from context, while explicit models do.

nonlinear regression tasks where the latents are difficult to
infer and classification tasks where more context samples
are needed to precisely identify the decision boundary.
In contrast, finding such clear task-relevant latents is
immensely challenging in an ordinary Transformer trained
to do ICL, given that they can be distributed across a
mixture of many layers and token positions.

Furthermore, even when latent variables appear to be suc-
cessfully identified using a linear decoder in some hidden
layer of a Transformer, one often finds that the relationships
merely amount to spurious correlations (Ravichander et al.,
2021). For instance, if one manually modifies the activations
in this hidden layer such that a different latent variable is
predicted by the linear decoder, the model’s predictions do
not generally change in a way that is “counterfactually” con-
sistent with this new latent (i.e., the prediction is not what it
should have been under the new latent variable). We there-
fore used the Distributed Alignment Search (DAS) method
from Geiger et al. 2023b (see subsection C.4) to search for
units in the implicit and explicit models that can be manip-
ulated to obtain correct counterfactual predictions. For the
explicit model, we limited this search to the bottleneck zψ.
We found that using the explicit model, we were indeed able
to manipulate zψ and obtain correct counterfactual predic-
tions, but we were not able to successfully do this using the
implicit model, as shown in Figure 4 (b). Explicit models
might therefore be useful for both mechanistic interpretabil-
ity and scientific discovery (Geiger et al., 2023a), where we
do not know the underlying task latents and want to be able
to easily uncover them from the trained model, and subse-
quently obtain a good predictor for an intervened system
zero-shot given some knowledge about the intervention.

Scaling Trends across Different Properties. To better
compare the implicit and explicit models, we investigated
their OOD task performance on linear regression as we var-
ied the different properties of the task (input dimensionality
and context length) and the size of the model used (Figure 6
(a)). We found that performance in both models scaled

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Model
aux_decoded
aux_direct

Figure 8. We compare using the auxiliary ground-truth task latent
loss directly on the output of context aggregation, i.e. zψ(D)
(aux direct), or to a linear decoding from it (aux decoding).

similarly, but that the implicit model reliably outperformed
the explicit one unless it used the known prediction function
g. We also looked at the latent variable linear decoding
accuracy in the explicit model as a function of these task
and model properties (Figure 6 (b)). As expected, we
found that the latent variable was easier to decode from
the explicit model’s bottleneck when there was less inherit
uncertainty about its value (lower data dimensionality,
longer context length) and when the explicit model was
given more capacity. However, throughout the different
settings, we see that while the explicit model does learn
the true latent well, it is not sufficient to get a performance
boost over the implicit models. Further details on the setup
of these scaling experiments is provided in subsection C.2.

Impact of auxiliary loss on decoding from bottleneck.
Additionally, we perform an experiment where instead of
using an auxiliary loss obtained between the ground-truth
task latents z and a decoding from the explicit model’s
bottleneck ||z −Wzψ||2 (called aux decoded), we instead
force the bottleneck itself to be directly close to the
ground-truth ||z − zψ||2 (called aux direct). Since the
prediction function relies on the bottleneck and not its
decoding, removing this extra layer when providing
additional supervision might allow the bottleneck to better

8

Does learning the right latent variables necessarily improve in-context learning?

reflect the task latents and thereby aid prediction. Our
results, however, indicate that doing so does not lead to any
benefits on OOD evaluation for linear regression, further
strengthening the conclusion that effective task latent
inference is not the biggest problem in such models.

Extreme Shortcut Injection. Finally, we test whether in-
jecting extreme shortcuts during training pushes implicit
models to learn nearest-neighbor styled kernel-regression so-
lutions as opposed to uncovering the underlying functional
form. We consider two cases, where queries during training
are sampled (a) randomly, or (b) near context points. The
latter further incentivizes implicit models to learn nearest
neighbour shortcuts. At evaluation, the queries are sampled
far from the context. Our results on sinusoid regression in
Figure 7 indicate that while implicit models perform well
generally, they suffer considerably more in the presence of
such injected shortcuts since explicit models distill the task
latent from context independent of the query.

We further refer to Appendix D for a detailed analysis.

5. Conclusion
A commonly believed hypothesis is that Transformers do
ICL through brittle statistical shortcuts rather than by in-
ferring the underlying generative latent variables of the task,
and that this explains their inability to generalize outside
of the training distribution. Here, we empirically tested
this hypothesis by minimally modifying the Transformer
architecture through the use of a bottleneck that factorized
the model into separate context aggregation and prediction
functions, creating an inductive bias for explicit latent
variable inference. While we confirmed that this model
indeed learned to infer the correct latent variables across
many ICL tasks, it surprisingly gave no improvement in
performance for either in-distribution or out-of-distribution
evaluation. Contrary to common belief, then, we showed
that simply learning the correct latent variables for the tasks
is not sufficient for better generalization because end-to-end
optimization does not learn the right prediction model to
leverage these latent variables.

Impact Statement
This paper provides a comparative analysis to better
understand the capabilities of current in-context learners
from a point of view of making them more robust and
aligned with the true underlying models of the data. We
believe that this is an important step towards understanding
when and how machine learning models can rely on
shortcuts and spurious correlations, and understanding
whether such correlations can be mitigated through the use
of conditional independence assumptions and bottlenecks,
as is investigated in this work.

While we show a negative result that such bottlenecks do

not substantially aid generalization, they do come with in-
terpretability benefits which are extremely useful when de-
ploying AI systems at scale. Finally, we hope that our
analysis sparks controlled experiments to understand the
mechanisms behind in-context learning better as well as in-
corporating and validating numerous inductive biases to see
whether they do aid generalization and reduce the reliance
on shortcuts.

Ackonwledgements
The authors would like to acknowledge the following re-
searchers for valuable discussions and exchanges: Joao
Sacramento, Johannes von Oswald. All authors acknowl-
edge support from an unrestricted gift from Google inc. EE
acknowledges support from Vanier Canada Graduate Schol-
arship #492702. SM acknowledges the support of PhD
Excellence Scholarship from UNIQUE. DS acknowledges
support from NSERC Discovery Grant RGPIN-2023-04869,
and a Canada-CIFAR AI Chair. GL acknowledges sup-
port from NSERC Discovery Grant RGPIN-2018-04821,
the Canada Research Chair in Neural Computations and
Interfacing, and a Canada-CIFAR AI Chair.

9

Does learning the right latent variables necessarily improve in-context learning?

References
Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context

language learning: Architectures and algorithms, 2024.

Alain, G. and Bengio, Y. Understanding intermediate layers
using linear classifier probes, 2018.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn,
C., and Whiteson, S. A survey of meta-reinforcement
learning, 2023.

Bhaskar, A., Friedman, D., and Chen, D. The heuristic core:
Understanding subnetwork generalization in pretrained
language models, 2024. URL https://arxiv.org/
abs/2403.03942.

Bishop, C. Pattern Recognition and Ma-
chine Learning. Springer, January 2006.
URL https://www.microsoft.com/
en-us/research/publication/
pattern-recognition-machine-learning/.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems, 35:18878–18891, 2022.

Crosbie, J. and Shutova, E. Induction heads as an essen-
tial mechanism for pattern matching in in-context learn-
ing, 2024. URL https://arxiv.org/abs/2407.
07011.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can
transformers learn in-context? a case study of simple
function classes, 2023.

Garnelo, M., Rosenbaum, D., Maddison, C. J., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D. J., and
Eslami, S. M. A. Conditional neural processes, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S. M. A., and Teh, Y. W. Neural
processes, 2018b.

Geffner, T., Papamakarios, G., and Mnih, A. Com-
positional score modeling for simulation-based infer-
ence. In Krause, A., Brunskill, E., Cho, K., Engel-
hardt, B., Sabato, S., and Scarlett, J. (eds.), Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 11098–11116. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/geffner23a.html.

Geiger, A., Potts, C., and Icard, T. Causal abstraction for
faithful model interpretation, 2023a.

Geiger, A., Wu, Z., Potts, C., Icard, T., and Goodman, N. D.
Finding alignments between interpretable causal variables
and distributed neural representations, 2023b.

Geiger, A., Wu, Z., Potts, C., Icard, T., and Goodman, N. D.
Finding alignments between interpretable causal variables
and distributed neural representations, 2024.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut
learning in deep neural networks. Nature Machine Intelli-
gence, 2(11):665–673, November 2020. ISSN 2522-5839.
doi: 10.1038/s42256-020-00257-z. URL http://dx.
doi.org/10.1038/s42256-020-00257-z.

Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E.,
Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B.,
Ploegh, H. L., Bassik, M. C., et al. Genome-scale crispr-
mediated control of gene repression and activation. Cell,
159(3):647–661, 2014.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. arXiv preprint arXiv:1910.13556, 2019.

Grau-Moya, J., Genewein, T., Hutter, M., Orseau, L.,
Delétang, G., Catt, E., Ruoss, A., Wenliang, L. K., Mat-
tern, C., Aitchison, M., and Veness, J. Learning universal
predictors, 2024.

Guo, Y., Hao, Y., Zhang, R., Zhou, E., Du, Z., Zhang, X.,
Song, X., Wen, Y., Zhao, Y., Zhou, X., Guo, J., Yi, Q.,
Peng, S., Huang, D., Chen, R., Guo, Q., and Chen, Y.
Emergent communication for rules reasoning, 2023.

Hahn, M. and Goyal, N. A theory of emergent in-context
learning as implicit structure induction, 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. Explaining emergent
in-context learning as kernel regression, 2023.

10

https://arxiv.org/abs/2403.03942
https://arxiv.org/abs/2403.03942
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://arxiv.org/abs/2407.07011
https://arxiv.org/abs/2407.07011
https://proceedings.mlr.press/v202/geffner23a.html
https://proceedings.mlr.press/v202/geffner23a.html
http://dx.doi.org/10.1038/s42256-020-00257-z
http://dx.doi.org/10.1038/s42256-020-00257-z

Does learning the right latent variables necessarily improve in-context learning?

Hastie, T. The elements of statistical learning: data mining,
inference, and prediction, 2009.

Hendel, R., Geva, M., and Globerson, A. In-context learning
creates task vectors, 2023.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A.
Meta-learning in neural networks: A survey, 2020a.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A.
Meta-learning in neural networks: A survey, 2020b. URL
https://arxiv.org/abs/2004.05439.

John and Raven, J. Raven Progressive Matri-
ces, pp. 223–237. Springer US, Boston, MA,
2003. ISBN 978-1-4615-0153-4. doi: 10.1007/
978-1-4615-0153-4 11. URL https://doi.org/
10.1007/978-1-4615-0153-4_11.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Lampinen, A. K., Chan, S. C., Singh, A. K., and Shanahan,
M. The broader spectrum of in-context learning. arXiv
preprint arXiv:2412.03782, 2024.

Lu, S., Bigoulaeva, I., Sachdeva, R., Madabushi, H. T., and
Gurevych, I. Are emergent abilities in large language
models just in-context learning?, 2024. URL https:
//arxiv.org/abs/2309.01809.

McCoy, T., Pavlick, E., and Linzen, T. Right for the
wrong reasons: Diagnosing syntactic heuristics in nat-
ural language inference. In Korhonen, A., Traum, D., and
Màrquez, L. (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp.
3428–3448, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1334.
URL https://aclanthology.org/P19-1334.

Mittal, S., Bracher, N. L., Lajoie, G., Jaini, P., and Brubaker,
M. A. Exploring exchangeable dataset amortization
for bayesian posterior inference. In ICML 2023 Work-
shop on Structured Probabilistic Inference & Generative
Modeling, 2023. URL https://openreview.net/
forum?id=Zt9A5LmNUG.

Nguyen, T. and Grover, A. Transformer neural processes:
Uncertainty-aware meta learning via sequence modeling,
2023.

Norman, T. M., Horlbeck, M. A., Replogle, J. M., Ge, A. Y.,
Xu, A., Jost, M., Gilbert, L. A., and Weissman, J. S.
Exploring genetic interaction manifolds constructed from
rich single-cell phenotypes. Science, 365(6455):786–793,
2019.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads, 2022. URL https://
arxiv.org/abs/2209.11895.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L.
Neural clustering processes. In International Conference
on Machine Learning, pp. 7455–7465. PMLR, 2020.

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Pi-
wkowska, Z., Bal, T., Frégnac, Y., Markram, H., and
Destexhe, A. Minimal hodgkin–huxley type models for
different classes of cortical and thalamic neurons. Biolog-
ical cybernetics, 99:427–441, 2008.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and
Köthe, U. Bayesflow: Learning complex stochastic mod-
els with invertible neural networks. IEEE transactions on
neural networks and learning systems, 33(4):1452–1466,
2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ravichander, A., Belinkov, Y., and Hovy, E. Probing the
probing paradigm: Does probing accuracy entail task
relevance?, 2021.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should i
trust you?”: Explaining the predictions of any classifier,
2016.

Singh, A. K., Moskovitz, T., Hill, F., Chan, S. C. Y., and
Saxe, A. M. What needs to go right for an induction
head? a mechanistic study of in-context learning circuits
and their formation, 2024.

Song, R., Li, Y., Shi, L., Giunchiglia, F., and Xu, H. Shortcut
learning in in-context learning: A survey, 2024. URL
https://arxiv.org/abs/2411.02018.

11

https://arxiv.org/abs/2004.05439
https://doi.org/10.1007/978-1-4615-0153-4_11
https://doi.org/10.1007/978-1-4615-0153-4_11
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2309.01809
https://aclanthology.org/P19-1334
https://openreview.net/forum?id=Zt9A5LmNUG
https://openreview.net/forum?id=Zt9A5LmNUG
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2411.02018

Does learning the right latent variables necessarily improve in-context learning?

Tang, R., Kong, D., Huang, L., and Xue, H. Large lan-
guage models can be lazy learners: Analyze shortcuts
in in-context learning. In Findings of the Association
for Computational Linguistics: ACL 2023. Association
for Computational Linguistics, 2023a. doi: 10.18653/v1/
2023.findings-acl.284. URL http://dx.doi.org/
10.18653/v1/2023.findings-acl.284.

Tang, R., Kong, D., Huang, L., and Xue, H. Large lan-
guage models can be lazy learners: Analyze shortcuts
in in-context learning. In Rogers, A., Boyd-Graber, J.,
and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 4645–4657,
Toronto, Canada, July 2023b. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
284. URL https://aclanthology.org/2023.
findings-acl.284/.

Tejero-Cantero, A., Boelts, J., Deistler, M., Lueckmann,
J.-M., Durkan, C., Gonçalves, P. J., Greenberg, D. S.,
and Macke, J. H. Sbi – a toolkit for simulation-based
inference, 2020.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models, 2023.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models, 2024.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: A unified
understanding of transformer’s attention via the lens of
kernel, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vettoruzzo, A., Bouguelia, M.-R., Vanschoren, J.,
Rögnvaldsson, T., and Santosh, K. Advances and chal-
lenges in meta-learning: A technical review, 2023.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal
mediation analysis for interpreting neural nlp: The case
of gender bias, 2020.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymy-
rov, M. Transformers learn in-context by gradient
descent. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine

Learning Research, pp. 35151–35174. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/von-oswald23a.html.

Wang, J. X., King, M., Porcel, N., Kurth-Nelson, Z.,
Zhu, T., Deck, C., Choy, P., Cassin, M., Reynolds, M.,
Song, F., Buttimore, G., Reichert, D. P., Rabinowitz, N.,
Matthey, L., Hassabis, D., Lerchner, A., and Botvinick,
M. Alchemy: A benchmark and analysis toolkit for meta-
reinforcement learning agents, 2021.

Wang, L., Li, L., Dai, D., Chen, D., Zhou, H., Meng, F.,
Zhou, J., and Sun, X. Label words are anchors: An
information flow perspective for understanding in-context
learning, 2023.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners, 2022. URL https://
arxiv.org/abs/2109.01652.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Wiedemer, T., Mayilvahanan, P., Bethge, M., and Brendel,
W. Compositional generalization from first principles,
2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference, 2022.

Yang, L., Lin, Z., Lee, K., Papailiopoulos, D., and Nowak,
R. Task vectors in in-context learning: Emergence, for-
mation, and benefit. arXiv preprint arXiv:2501.09240,
2025.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhang, H., Li, L. H., Meng, T., Chang, K.-W., and den
Broeck, G. V. On the paradox of learning to reason from
data, 2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization, 2023.

12

http://dx.doi.org/10.18653/v1/2023.findings-acl.284
http://dx.doi.org/10.18653/v1/2023.findings-acl.284
https://aclanthology.org/2023.findings-acl.284/
https://aclanthology.org/2023.findings-acl.284/
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Does learning the right latent variables necessarily improve in-context learning?

A. Related Work
In-Context Learning. In-Context learning (ICL) is an ability of certain trained models to take an entire task’s dataset
as input and parameterize solutions directly in their layer activations, which then condition subsequent computation on
novel inputs from those same tasks. Generally, this ability is found in sequence models such as Transformers where the
task dataset, or “context”, corresponds to an earlier part of the sequence. ICL was first observed in large-scale pre-trained
LLMs (Brown et al., 2020), and is similar in many respects to meta-learning (Chan et al., 2022). These LLM findings
were subsequently expanded to more controlled settings outside of the language modality, where Transformer models
were directly trained on task distributions such as linear regression (Von Oswald et al., 2023; Garg et al., 2023), hidden
Markov models (Xie et al., 2022), compositional grammars (Hahn & Goyal, 2023), regular languages (Akyürek et al.,
2024) and Turing machines (Grau-Moya et al., 2024), with a set of task observations defining the “context”. These works
highlight that Transformers are indeed able to model many types of complex task distributions, approaching in many cases
the performance of the Bayes-optimal predictor, the a-priori optimal solution (Xie et al., 2022). Our work lies along similar
lines but using more complex tasks and a systematic study into the differences between modeling the predictive space
directly, or through a two-step process involving explicit inference of task latents.

Shortcuts in ICL. Shortcut learning is a phenomenon that has widely been observed in machine learning (Geirhos et al.,
2020), and refers to where a model solves a task through statistical correlations that are accidental and thus not robust to
even slight distribution shifts. A classical example of this in image classification is the usage of background cues to classify
objects (Ribeiro et al., 2016). Similar mistakes are know to be very common in NLP (McCoy et al., 2019), specifically
in reasoning tasks (Zhang et al., 2022). Particularly relevant to our work, many authors have shown that has shown that
Transformers are very prone to relying on shortcuts when performing ICL (Tang et al., 2023a). For instance, (Olsson et al.,
2022; Singh et al., 2024) have shown that induction heads play in important role in ICL by predicting that the continuation
of a token will be the same as last time (i.e. [a][b] . . . [a] → [b]). As shown by (Von Oswald et al., 2023) this motif can be
used to do linear regression, and can generally be seen as a form of kernel regression (i.e. p(yq|xq, x1:n) ∝

∑
iK(xi, xq)yi,

(Han et al., 2023)). This observation draws a link between those types of solutions and non-parametric inference methods
in statistics (Hastie, 2009), of which kernel regression is a member. In contrast (Hendel et al., 2023; Todd et al., 2023)
have concurrently shown that in some cases Transformers encode a “task vector” that they infer from the context and then
use to do the prediction. There is therefore a need to better understand the nature of shortcuts in ICL and whether or not
they can be easily avoided for better generalization. Our work explores this very question.

Neural Processes. The problem of solving new tasks in a zero-shot manner directly at inference is also closely tied to
amortized Bayesian models (Kingma & Welling, 2013; Rezende et al., 2014; Radev et al., 2020; Geffner et al., 2023; Mittal
et al., 2023). Conditional Neural Processes (CNPs) (Garnelo et al., 2018a) provide a framework akin to the explicit model,
where the posterior predictive distribution is modeled through a bottleneck zψ, i.e. pθ(y∗|x∗,D) = pθ(y∗|x∗, zψ(D)).
However, CNPs do not look at the relevance of zψ to the true latent z, and use the DeepSets (Zaheer et al., 2017) architecture
to model zψ, though recent research generalizes this setting to use Transformers (Nguyen & Grover, 2023) and other
architectural backbones as well (Kim et al., 2019; Gordon et al., 2019). Our approach with the explicit model, however,
is to precisely question whether task-specific latents are encoded via zψ which is now instead modeled using a Transformer
architecture. Analogously, Neural Processes (NPs) (Garnelo et al., 2018b; Pakman et al., 2020) augment CNPs with
probabilistic modeling, where z is now modeled explicitly as a latent-variable in the Bayesian sense, i.e. the likelihood
is now modeled as pθ(y|x∗,D) =

∫
pθ(y|x, z)pθ(z|D)dz, where z represents the latent variable and θ the parameters

of the likelihood model. The model is trained via the Evidence Lower-Bound (ELBO) with the amortized variational
approximation qφ(·|D). Once trained, predictions for new datasets can be made by simply performing inference over the
encoder qφ to obtain z, and then leveraging this latent variable to eventually give the predictions via pθ(y|x∗, z). Hence,
while CNPs and the explicit model to share similarities in architecture, our goal is orthogonal in that we specifically use
the explicit model to understand the impact of task-specific latent variable inference on ICL setups.

Meta-Learning. Meta-learning (Hospedales et al., 2020b;a) studies systems that can learn over two levels: rapidly through
an inner-loop that is meta-learned using a slower outer-loop. The goal in such methods is to learn a good initialization
common to the parameterized family of tasks, in a manner that obtaining a particular solution for a new task is fast from
this initial point. The inner loop provides an optimization trajectory for a randomly drawn task from some initialization,
which in itself is optimized in the outer loop to a good solution applicable for the global set of tasks. Typically, evaluation
is done on some meta-validation set of tasks not seen during training. Task distributions can for example be a set of
different classification/regression tasks (few shot learning, (Vettoruzzo et al., 2023)) or variations of a reinforcement
learning (meta-RL, (Beck et al., 2023)). The goal is similar to ICL approaches in the sense that given a novel context D,

13

Does learning the right latent variables necessarily improve in-context learning?

Transformer

Implicit

xq
yq

D
Explicit

Transformer Transformer MLP
xq
zD yq

Figure 9. Same experiment as Figure 4b but with the linear regression task. Specifically, we use Distributed Alignment Search (DAS,
(Geiger et al., 2023b), see Appendix C for details) to find the 10 dimensional subspace in each model with best simulates counterfactual
interventions on the task vector (in this case, the weight of the linear regression). In both explicit model, the subspace is taken at the
bottleneck. In the implicit one, we perform the DAS at all layer of the query token and report the best one. The reported metric is the
MSE of the intervened model on the intervened regression problem (i.e. using the same query x but y’s coming from the intervened linear
regression weights, Appendix C for details).

one wants to make predictions for some query x∗. However, a big difference is that ICL approaches bypass modeling
a common initialization by working directly on the prediction side (implicit), or instead predict the optimal parameters
directly zero-shot through inference on the context model (explicit).

Mechanistic Interpretability. Mechanistic interpretability is interested in understanding deep neural network’s
computations through interpretable abstraction, akin to what computational neuroscience does with the brain. (Alain &
Bengio, 2018) introduced the foundational technique of linear “probes”, which are linear models trained on the hidden
state of a network to predict an abstract feature of the input; the success of which suggests that such a feature is used by
the model. Since then, this naı̈ve approach has been criticized for being potentially misleading (Ravichander et al., 2021);
in many cases a feature can be linearly decoded from a model without the model using it. More reliable methods grounded
in causality (Vig et al., 2020; Geiger et al., 2024) have now became the gold standard, and their use applied to Transformers
has been exploding in popularity (Elhage et al., 2021).

B. Tasks
We consider the following tasks for our evaluations, specified by the data-generating prediction function g : x, z → y which
is used to generate the ICL dataset, where z represents the task-specific latent variable.

B.1. Regression Tasks

For regression tasks, since y ∈ R, we use the mean-squared-error loss to train the model.

Linear Regression. This refers to the task where y is obtained from an affine transformation on the input x. In particular,
y = g(x, z) = zTx, where z ∈ Ri×j ∼ N (0, I). For our experiments, we set dim(x) = 1 and dim(y) = 1.

Nonlinear Regression using MLPs. Here, the labels y are obtained from a neural network which takes x as an input. In
particular, y = g(x, z) = fz(x), where fz is modeled as a Multi-Layer Perceptron (MLP) network with a 64 dimensional
single hidden layer and ReLU nonlinearity. The distribution of the weights of the neural network is z ∼ N (0, I). For our
experiments, we set dim(x) = 2 and dim(y) = 1.

Sinusoid Regression. For this task, the label y is obtained as a summation of sine functions with different frequencies and

amplitudes, taking x as an input. Mathematically, we structure the system as y = g(x, z) =
K∑
i=1

αi sin (2πλix), where λi’s

denote the frequencies and αi’s the amplitudes. The parameters for the system can be seen as z = {α1:K} while λ1:K

14

Does learning the right latent variables necessarily improve in-context learning?

remains fixed throughout. Additionally, for our experiments we set K = 3, and consider the distributions – λi ∼ U(0, 5)
and αi ∼ U(−1, 1), and set dim(x) = 2 and dim(y) = 1.

Gaussian Process Regression. While the other tasks considered had a parametric nature to it, this task on the other hand
has more of a non-parametric nature. Here, the task is that Y ∼ N (0,K(X,X)), i.e. the set of labels is sampled from a
joint Gaussian distribution, akin to drawing a random function through a Gaussian Process (GP) prior and then evaluating it
at different points X; with K defining the kernel in the GP. In our case, we consider K(x,x′) = exp

(
−∥x−x′∥2

2σ2

)
as the

RBF kernel and X = (Xc,Xq),Y = (Yc,Yq) are the combined points for both the context and the queries, which are
split after this sampling. Here the latents z has to store the kernel computations between the query and all the context points
Xc, as well as the corresponding context labels Yc. Storing this either involves storing the high-dimensional mapping of Xc

which is defined by the kernel K, or storing all the points Xc themselves. This is thus very high dimensional and weakly
structured.

Hodgkin-Hoxley ODE Prediction. This is an example of the task where the context D is not composed of iid entries, but
instead observations from the Hodgkin-Huxley temporal dynamics model of neural activity unrolled through time :

Cm
dV

dt
= g1 (E1 − V) + ḡNam

3h (ENa − V) + ḡKn
4 (EK − V) + ḡMp (EK − V) + Iinj + ση (t)

Above, V represents the membrane potential which is the target of interest, t represents the different points at which
observations are provided, Cm is the membrane capacitance, gl is the leak conductance, El is the membrane reversal
potential, ḡc is the density of channels of type c (Na+, K+, M), Ec is the reversal potential of c, (m, h, n, p) are the
respective channel gating kinetic variables, and ση(t) is the intrinsic neural noise. The right hand side of the voltage
dynamics is composed of a leak current, a voltage-dependent Na+ current, a delayed-rectifier K+ current, a slow voltage-
dependent K+ current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gating variables q
have dynamics fully characterized by the neuron membrane potential V , given the respective steady-state q∞(V) and time
constant τq(V) (details in (Pospischil et al., 2008)).

Importantly, in our experiments, we fix all parameters but (ḡNa, ḡK) to values in Tejero-Cantero et al. 2020 and solve the
differential equation for 6,400 pairs (ḡNa, ḡK) ∈ [0, 40]2 from t = 0 to t = 120 with 1000 time-steps. In other words, the
Transformer has to regress to solutions of ordinary differential equations, where the task latents are z = {ḡNa, ḡK]}, the
observations are x = t and y = V , such that y = g(x, z). Here g represents the unrolling of the differential equation.

B.2. Classification Tasks

For classification tasks, since y is a categorical measure, we use a cross-entropy loss for training.

Linear Classification. Akin to linear regression, here we consider the case that y is obtained by an affine transformation of
x followed by a sigmoid function and a consequent sampling step. That is, y = g(x, z) ∼ Categorical(Softmax(zTx))
where z ∈ Ri×j ∼ N (0, I). For our experiments, we set dim(x) = 2 and y ∈ {0, 1}.

Nonlinear Classification Using MLPs. Here, the logits for the labels are instead obtained through a neural net-
work taking x as an input, and not an affine transformation. Mathematically, this can be seen as y = g(x, z) ∼
Categorical(Softmax(fz(x))) where fz is modeled as a Multi-Layer Perceptron (MLP) network with a 64 dimensional
single hidden layer and ReLU nonlinearity. The distribution of the weights of the neural network is z ∼ N (0, I). For our
experiments, we set dim(x) = 2 and y ∈ {0, 1}.

B.3. Compositional tasks

Reusable Modular Mixture of Experts (MoE). We consider a modular task which consists of sequential application of
a choice of K experts g1, . . . gK over the input x. In particular, the computational graph consists of L layers where at
each layer l, expert zl operates on the output of the preceding layer to give the successive output, i.e. xl = gzl

(xl−1).
This task is compositional in nature because at each layer, any of the K experts can be called upon to perform a unit of
computation and the choice of the expert is defined by the underlying task latent z1, . . . ,zL, each of which are categorical
with K possibilities. In our specific implementation, we set L to be 5, K to be 5, x ∈ R4 and y ∈ R4. Each expert gi is
parameterized as a linear layer followed by the tanh activation function. We enumerate all KL possible combinations and
then only use a subset of them during training, while randomly sampling all for evaluation.

Alchemy. Alchemy is a meta-reinforcement learning benchmark (Wang et al., 2021) where each environment is defined

15

Does learning the right latent variables necessarily improve in-context learning?

by a set z = (GRAPH, POTION MAP, STONE MAP) of rules about how some set of potions transforms some stones. We
extracted from it an ICL classification dataset consisting of transformations x = (STONE, POTION) → y = STONE. The
transformations are compositional and symbolic; each potion affects only one of the three properties of stones (size, shape
and color). An environment is specified by how observable stones and potions MAP to latent stones and potions, along with
a GRAPH over these latent stones which specify the result of the Transformations. In total there is 109 GRAPH, 48 POTION
MAP and 32 STONE MAPS, making for 167424 environments. We reserve 100,000 environments for evaluation and train of
the remaining ones.

Raven’s Progressive Matrices. Raven’s Progressive Matrices (Raven’s PM) is a reasoning task used for IQ tests (John
& Raven, 2003). It consists of a 3x3 grid where each cell contains simple objects varying in a small number of attributes
(number, shape, size, color), but the bottom right cell is left empty. Subjects must notice a pattern in how the cells change
from left to right in the first two rows of the grid, and then use that same pattern to complete missing cell in the bottom
row. This is done by selecting one answer among N possible provided options for the missing cell. We use a symbolic
version of the dataset that addresses bias in the original version (Guo et al., 2023). In this dataset, objects at a cell have 4
discrete attributes with 40 possible values each. In our models, the context consists of the first two rows of the grid, the
query consists of the last row with a masked out final cell, and the ground-truth latent variable is the underlying rule that
generates a particular grid. Each rule is composed of a set of sub-parts, and we evaluate on unseen compositions.

Gene Targeting. We use Perturb-seq dataset collected by Norman et al. (2019) where researchers performed several genetic
intervention experiments using CRISPR (Gilbert et al., 2014). In each experiment, either one or two genes were targeted and
the resulting expressions across 5000 genes were observed across several cells. Here, we consider each CRISPR intervention
experiment as a different context, the resulting cell genetic expressions as 5000-dimensional observations, and a left-out cell
with half of the genetic expressions randomly masked out as the query. The task is to predict the missing genetic expressions
for the queried cell. We evaluate on held on held out CRISPR experiments with novel pairs of targeted genes.

C. Model Details
In the following section, we describe the standard architectural details used for all the tasks, as well as specific differences in
the architecture used for the scaling experiments. Finally, we also provide details about the distributed alignment search
mechanism.

C.1. General Details

For our implicit model, we use a standard Transformer with 8 layers. In the explicit model, for context aggregation we
parameterize zψ(D) using a standard Transformer with 4 layers, 256 dimensions latent, 512 dimensions MLP, and 4 heads.
For the predictor pγ , we consider two options: a ReLU-actiavtion based MLP with three hidden layers of size 512 and a
Transformer with the same configuration as zψ(D).

For the implicit model, we format the prompt for prediction as [x1, y1] . . . [xn, yn][xq, ∅], where every [·] represents a token.
We use a distinct mask token ∅ to represent the target (which is the thing being predicted). For the explicit model, we first
compute [x1, y1] . . . [xn, yn] to zψ(D) with the context Transformer, then we give [zψ(D)][xq] to the predictor Transformer
or [zψ(D),xq] to the MLP.

For our experiments, the number of context points n is uniformly sampled from 16 to 128 for both training and evaluation.
Training is done with new data being synthetically generated on the fly, and evaluation either based on the test set provided
for real-world tasks or simulated data of 1000 different contexts for synthetic tasks. All the models were trained with a
learning rate of 10−4 using the Adam optimizer (Kingma & Ba, 2014) for a 1000 epochs.

C.2. Scaling Experiments

For the scaling experiments, we only consider the linear regression case with a base configuration of: (a) x of dimensionality
100, (b) context size being sampled uniformly from (75, 125), and (c) 8 heads, 8 layers, 512 hidden dimensions and 256
bottleneck dimension for the transformer models.

From this base configuration, we changed only one of the configurations at each time to test for scaling trends for each
property independently. In particular, we ablated over (50, 100, 250) for the dimensionality of x, (50, 100, 250) for the
context length which was sampled from a ±25 range and the model size. The smallest model size considered had 4 heads, 4

16

Does learning the right latent variables necessarily improve in-context learning?

Figure 10. Illustration of the DAS training procedure

layers, 256 hidden dimensions and 128 feature dimensions. The medium multiplied each of these properties by 2×, and the
biggest model subsequently multiplied it by 2× again. For the explicit models, we considered the same scaling paradigms
with the number of layers being split by half to accommodate a separate context model and prediction model.

All the models were trained with a learning rate of 10−5 using the Adam optimizer for 5000 epochs.

C.3. Compute Details

We train most of our models on single RTX8000 NVIDIA GPUs, where it takes roughly 3-6 hours for each experiment to
run. Our scaling experiments on the other hand often required 1-2 days on single GPUs for training each model.

C.4. Distributed Alignment Search details

To find subspace causally associated with a task latent in Alchemy, we use a method based on Distributed Alignment
Search (DAS) by (Geiger et al., 2023b). This procedure is performed for a location L = Rd (e.g. the bottleneck) and latent
i ∈ {1, 2, 3} (GRAPH, STONE MAP, POTION MAP).

First, we run with the model on Dz and Dz̄ for every possible query x∗. We call z the base and z̄ the source and only
differ by the ith latent. For every run, we record the activity of the source model at the location lz ∈ L̄. Then, we run
the base model again but this time fixing the subspace of l defined by the orthogonal projection Π ∈ Rd×10 to it’s value
in lz . A single projection Π is learned over all possible combination z, z̄ and x∗ with a cross-entropy loss between the
prediction of the base (intervened) model and the true counter-factual result of changing the latent zi to z̄i. See Figure 10
for an illustration of the process. A subspace is evaluated by looking at the accuracy of the counterfactual interventions
over a dataset of held-out z, z̄ pairs; a quantity called the Interchange Intervention Accuracy (IIA). In Figure Figure 4 (b)
we report the validation IIA relative to a baseline corresponding to the counterfactual accuracy if we don’t perform any
intervention (because changing the latent sometimes doesn’t change the prediction) IIA−BASELINE

1−BASELINE
.

D. Analysis of Experiments
Based on the empirical evidence presented in section 4, we finally provide details and analysis into the results to further the
understanding of the conclusions. In particular, our key analysis includes

Explicit Models sufficiently uncover task latents. We see that in problems where the context provides enough evidence

17

Does learning the right latent variables necessarily improve in-context learning?

Explicit

Transformer MLP
xq
zD yq

Implicit Proxy

Transformer MLP
xq
zD

yq
xq

Figure 11. To further understand the difference between the explicit and implicit model, we utilize an implicit proxy model which shares
the same architecture as the explicit model with MLP prediction with just one key difference: the task latent z depends on the query xq as
well. This task latent z can be understood as the final attention layer output of the implicit model, after which an additional MLP is utilized
to provide prediction. Our findings on linear and sinusoidal regression demonstrate that as we move further and further out-of-distribution,
the implicit proxy model performs better than the explicit model (left figures), but recovers the underlying true task latents worse (two
right figures). This provides additional validation of our hypothesis.

to uncover the true task latents, explicit models are able to do so. In particular, this hints at the fact that explicit models
do perform downstream prediction based on true task latents whenever these latents can be sufficiently identified from the
context examples.

Explicit Models do not generalize better than implicit ones. Our analysis also reveals that while explicit models often do
uncover the right task latents, they are still not able to surpass implicit models even on OOD generalization. This could
be due to implicit models also uncovering the true underlying prediction function but in a distributed fashion, or explicit
models not being able to leverage the learned latents in downstream prediction.

Learned downstream prediction is often sub-optimal. Our results indicate that it is indeed the case that while the explicit
models do uncover the right latents, they fail to generalize well OOD because the downstream prediction function fails to
generalize.

This is further strengthened by Figure 11 where additionally leverage the query in context aggregation, thus interpolating
between explicit and implicit model while maintaining a bottleneck. Our results indicate that despite worse latent variable
inference far from the query, it still has better predictive generalization when compared to explicit models. This further
strengthens the claim that better latent variable inference is not the sole problem, and learning the right downstream
prediction is as important.

Classification tasks vs. regression tasks. OOD performance is generally strong (across all models) for classification
because decision boundaries are within the training domain and do not change beyond it. In contrast, for regression tasks,
the function continues to change beyond the observed training domain, making OOD prediction more difficult. This is also
why known prediction functions give little benefit in classification tasks: they are already solved well OOD with ordinary
implicit and explicit models.

The explicit model with known prediction function does not give benefits in nonlinear (MLP) regression. This is
because the problem of inferring an MLP’s weights given some context examples is too difficult, so the explicit model
opts for a different, non-parametric solution. This is supported by the latent variable decoding results in Fig. 5 (previously
Fig. 4), which show that even with a known prediction function the explicit model does not learn to infer the correct latent
variable for the nonlinear (MLP) regression task.

Impact of Output Dimensionality. In addition to our standard experiments, we consider linear regression with varying
output dimensionality as another measure of difficulty of the task. Our results in Figure 14 showcase that the implicit model
fares much better than the explicit model, however having a known prediction function leads to much better performance.

Size of Context Aggregator. While we primarily controlled for the total number of parameters, it is possible that context
aggregation requires more parameters and thus equally splitting parameters between this aggregation and prediction may be
the cause for suboptimal performance. To study this properly, we conduct experiments where the context aggregator is the

18

Does learning the right latent variables necessarily improve in-context learning?

a. Synthetic regression tasks

b. Synthetic classification tasks c. Compositional tasks

Transformer

Implicit

xq
yq

D
Explicit

Transformer Transformer MLP
xq
zD yq

Explicit, context aggregator Transformer
same size as for Implicit model

Figure 12. Similar to Figure 2, but with an additional explicit model where the context aggregator is identical in size and hyperparameters
(M) as the implicit model. Implicit models are in shown gray, explicit with Transformer prediction in blue (light blue = total model size
identical to implicit as in main paper, dark blue = context aggregator identical to implicit), and with MLP prediction in orange.

same size as the implicit model and we see similar results in Figures 12 and 13. In addition, we ablate with differently sized
context aggregators and prediction models for different tasks in Tables 1 to 8

Visualization of Explicit Predictions. We visualize the failure of explicit model in learning the right prediction function,
which can be seen in out of distribution for sinusoid regression in Figure 15.

E. Mathematical Formalism
In this section, we provide a formal distinction between the implicit and explicit model. In both the approaches, the goal is to
model the true posterior predictive p(y|x,D); however the two methods model it through different conditional independence
setup.

Implicit Model. In this setup, we model the predictive distribution as pφ(y|x,D), where the training is done as

argmax
φ

Ex,y,D [log pφ(y|x,D)] (2)

and then given a query x and dataset D, the inference is done simply by sampling or estimating the mean of p(y|x,D).

Explicit Model. Contrary to the implicit model, the explicit model parameterizes the predictive distribution as
pγ(y|x, zψ(D)), with a similar training procedure as above. Note that the predictive distribution only interacts with
the dataset D through the latent zψ(D) while the implicit model allows unconstrained access to D.

Implicit Proxy Model. To better understand the differences that play a role from architectural differences and parameteriza-
tions, we use exactly the same architecture as the explicit model to obtain a version of the implicit model. Such a model
parameterizes the predictive distribution as pγ(y|x, zψ(D,x)), with a similar training procedure as above. Note that the
only difference with the explicit model here is that the conditional dependence of the query and the task latents is broken.

We refer the reader to Figure 16 for a plate diagram of the corresponding architectures.

19

Does learning the right latent variables necessarily improve in-context learning?

z

Known z
Backprop

Transformer

Implicit

xq
yq

D
Explicit

Transformer xq
D Transformer yqKnown

0 0

Explicit, context aggregator Transformer
same size as for Implicit model

Figure 13. Similar to Figure 3 but with an additional explicit model where the context aggregator is identical in size and hyperparameters
(M) as the implicit model. Performance on tasks where the true latents z and prediction function g are known. Implicit models are in gray,
explicit models with Transformer prediction in blue, models trained with an auxiliary loss to predict true latents in purple and those using
the true prediction function in green. Using the known prediction function leads to significantly better OOD performance. Lighter color
indicates total model size identical to implicit as in main paper, darker = context aggregator identical to implicit.

Figure 14. We study the impact of output dimensions on the performance of explicit and implicit models for linear regression with
8-dimensional inputs. The output dimensionality is considered to be 1, 4 and 8 dimensional, and our results indicate that implicit methods
(gray) outperform explicit ones (blue), but the same explicit models with known prediction function (green) scales much better.

20

Does learning the right latent variables necessarily improve in-context learning?

Figure 15. Illustration of explicit model with MLP prediction on the sinusoid task OOD. True function is shown in black, model output in
green, context points in blue and query points in red. Our results indicate the failure of learned prediction function away from context.

x y x*

y*

𝒟

N

φ

x y x*

y*

𝒟

N

zψ
γ

x y x*

y*

𝒟

N

zψ
γ

Implicit Model Implicit Proxy Model Explicit Model

Figure 16. Plate diagram for the implicit model (left), implicit proxy model (middle) and the explicit model (right), where gray blocks
refer to observed variables and white refers to unobserved variables. Trainable parameters are indicated without circles. In the explicit
model case, z is currently modeled as a dirac measure defined via the trainable parameters ψ. One can see the implicit proxy model as
very similar to the implicit model where output of the last attention layer corresponding to the query token is further processed to give
prediction. Its similarity to the explicit model is also clear as it shares exactly the same parameterization.

21

Does learning the right latent variables necessarily improve in-context learning?

L2 Loss (↓)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD Query OOD Latent

Explicit-Known
4 - 2.1 0.011 0.016 0.782
6 - 3.2 0.012 0.019 0.923
8 - 4.2 0.013 0.023 1.391

Explicit-MLP

4 4 3.0 0.015 0.169 0.883
4 6 3.6 0.017 0.174 0.728
4 8 4.1 0.015 0.082 0.929
6 4 4.1 0.011 0.201 1.047
6 6 4.6 0.013 0.131 0.509
6 8 5.1 0.012 0.077 0.439
8 4 5.1 0.012 0.165 1.043
8 6 5.7 0.017 0.171 1.020
8 8 6.2 0.016 0.082 1.091

Explicit-Tsf

4 4 4.2 0.012 0.267 0.856
4 6 5.3 0.014 0.335 1.014
4 8 6.3 0.011 0.314 0.970
6 4 5.3 0.025 0.389 1.128
6 6 6.3 0.011 0.379 1.091
6 8 7.4 0.012 0.289 0.981
8 4 6.3 0.012 0.354 1.171
8 6 7.4 0.013 0.311 1.134
8 8 8.4 0.012 0.369 1.373

Implicit
4 - 2.1 0.013 0.258 0.817
6 - 3.2 0.011 0.261 0.638
8 - 4.2 0.011 0.287 0.661

Table 1. Analysis of different design choices for linear regression where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization where either the query is OOD or the underlying latent is.

22

Does learning the right latent variables necessarily improve in-context learning?

Accuracy (↑)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD Query OOD Latent

Explicit-Known
4 - 2.1 96.381 97.779 96.288
6 - 3.2 96.331 97.746 96.324
8 - 4.2 96.426 97.788 96.299

Explicit-MLP

4 4 3.0 96.297 97.646 96.150
4 6 3.6 96.176 97.410 95.989
4 8 4.1 96.338 97.772 95.964
6 4 4.1 96.289 97.679 96.125
6 6 4.6 95.885 97.154 95.803
6 8 5.1 96.167 97.503 96.039
8 4 5.1 96.194 97.496 95.761
8 6 5.7 96.158 97.508 96.224
8 8 6.2 95.915 97.006 95.758

Explicit-Tsf

4 4 4.2 96.386 97.760 96.239
4 6 5.3 96.288 97.676 96.163
4 8 6.3 96.453 97.874 96.349
6 4 5.3 96.343 97.722 96.228
6 6 6.3 96.415 97.853 96.365
6 8 7.4 96.019 97.335 96.074
8 4 6.3 96.288 97.733 96.306
8 6 7.4 95.811 96.976 95.976
8 8 8.4 96.304 97.729 96.068

Implicit
4 - 2.1 96.525 97.996 96.149
6 - 3.2 96.557 98.036 96.440
8 - 4.2 96.554 98.147 96.357

Table 2. Analysis of different design choices for linear classification where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization where either the query is OOD or the underlying latent is.

23

Does learning the right latent variables necessarily improve in-context learning?

L2 Loss (↓)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD Query

Explicit-Known
4 - 2.1 0.001 0.002
6 - 3.2 0.000 0.001
8 - 4.2 0.001 0.002

Explicit-MLP

4 4 3.0 0.001 0.295
4 6 3.6 0.001 0.254
4 8 4.1 0.001 0.208
6 4 4.1 0.001 0.298
6 6 4.6 0.001 0.307
6 8 5.1 0.001 0.229
8 4 5.1 0.001 0.399
8 6 5.7 0.002 0.266
8 8 6.2 0.001 0.222

Explicit-Tsf

4 4 4.2 0.001 0.179
4 6 5.3 0.001 0.196
4 8 6.3 0.001 0.186
6 4 5.3 0.001 0.212
6 6 6.3 0.001 0.230
6 8 7.4 0.001 0.211
8 4 6.3 0.002 0.201
8 6 7.4 0.001 0.209
8 8 8.4 0.001 0.203

Implicit
4 - 2.1 0.001 0.186
6 - 3.2 0.000 0.143
8 - 4.2 0.000 0.153

Table 3. Analysis of different design choices for sinusoid regression where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization.

L2 Loss (↓)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD Query

Explicit-MLP

4 4 3.0 0.039 0.205
4 6 3.6 0.033 0.185
4 8 4.1 0.037 0.181
6 4 4.1 0.034 0.186
6 6 4.6 0.030 0.183
6 8 5.1 0.029 0.174
8 4 5.1 0.030 0.186
8 6 5.7 0.032 0.176
8 8 6.2 0.031 0.175

Explicit-Tsf

4 4 4.2 0.028 0.181
4 6 5.3 0.027 0.172
4 8 6.3 0.027 0.172
6 4 5.3 0.025 0.170
6 6 6.3 0.024 0.169
6 8 7.4 0.027 0.171
8 4 6.3 0.025 0.171
8 6 7.4 0.028 0.173
8 8 8.4 0.030 0.177

Implicit
4 - 2.1 0.011 0.148
6 - 3.2 0.010 0.148
8 - 4.2 0.010 0.147

Table 4. Analysis of different design choices for GP regression where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization.

24

Does learning the right latent variables necessarily improve in-context learning?

L2 Loss (↓)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD Query

Explicit-Known
4 - 2.1 0.084 1.323
6 - 3.2 0.074 1.168
8 - 4.2 0.073 1.135

Explicit-MLP

4 4 3.0 0.051 2.658
4 6 3.6 0.051 2.708
4 8 4.1 0.057 2.054
6 4 4.1 0.051 2.814
6 6 4.6 0.052 2.256
6 8 5.1 0.058 2.395
8 4 5.1 0.047 2.465
8 6 5.7 0.053 2.061
8 8 6.2 0.054 1.906

Explicit-Tsf

4 4 4.2 0.039 2.052
4 6 5.3 0.044 2.185
4 8 6.3 0.046 2.331
6 4 5.3 0.042 2.154
6 6 6.3 0.050 2.118
6 8 7.4 0.052 2.351
8 4 6.3 0.043 1.945
8 6 7.4 0.044 2.148
8 8 8.4 0.048 2.178

Implicit
4 - 2.1 0.024 1.443
6 - 3.2 0.024 1.487
8 - 4.2 0.024 1.509

Table 5. Analysis of different design choices for MLP regression where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization.

25

Does learning the right latent variables necessarily improve in-context learning?

Accuracy (↑)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD

Explicit-Known
4 - 2.1 94.426 90.753
6 - 3.2 94.633 91.086
8 - 4.2 94.492 91.443

Explicit-MLP

4 4 3.0 94.888 92.775
4 6 3.6 94.971 92.861
4 8 4.1 94.465 92.342
6 4 4.1 94.878 92.807
6 6 4.6 94.933 93.024
6 8 5.1 94.851 93.097
8 4 5.1 94.818 93.036
8 6 5.7 94.822 93.024
8 8 6.2 94.878 92.985

Explicit-Tsf

4 4 4.2 95.074 92.990
4 6 5.3 95.060 92.988
4 8 6.3 95.157 93.190
6 4 5.3 94.989 93.010
6 6 6.3 95.060 93.275
6 8 7.4 95.078 93.119
8 4 6.3 95.010 93.133
8 6 7.4 95.058 93.121
8 8 8.4 94.969 92.954

Implicit
4 - 2.1 95.285 93.394
6 - 3.2 95.325 93.336
8 - 4.2 95.324 93.351

Table 6. Analysis of different design choices for MLP classification where implicit and explicit models are tested with different number
of parameters or different parameter split between context aggregation and prediction. We conduct experiments on in-distribution
generalization as well as out of distribution generalization.

26

Does learning the right latent variables necessarily improve in-context learning?

Accuracy (↑)
Model # Context Layers # Prediction Layers # Parameters (M) IID OOD

Explicit-Known
4 - 2.1 99.864 99.844
6 - 3.2 99.876 99.875
8 - 4.2 99.545 99.539

Explicit-MLP
4 4 3.4 97.929 97.894
4 6 4.0 97.551 97.532
4 8 4.5 97.804 97.802
6 4 4.5 97.394 97.383
6 6 5.0 97.524 97.517
6 8 5.5 98.527 98.514
8 4 5.5 29.883 29.587
8 6 6.1 98.240 98.216
8 8 6.6 96.726 96.677

Explicit-Tsf

4 4 4.2 98.522 98.513
4 6 5.3 98.467 98.455
4 8 6.3 98.006 98.005
6 4 5.3 98.494 98.459
6 6 6.3 97.930 97.874
6 8 7.4 98.566 98.591
8 4 6.3 98.280 98.260
8 6 7.4 97.750 97.744
8 8 8.5 98.468 98.456

Implicit
4 - 2.1 98.359 98.334
6 - 3.2 98.332 98.309
8 - 4.2 97.164 97.176

Table 7. Analysis of different design choices for RAVEN’s progressive matrices where implicit and explicit models are tested with
different number of parameters or different parameter split between context aggregation and prediction. We conduct experiments on
in-distribution generalization as well as compositional out of distribution generalization.

R2 (↑)
Model # Context Layers # Prediction Layers # Parameters (M) Performance

Explicit-MLP

4 4 9.5 0.815
4 6 10.0 0.827
4 8 10.5 0.814
6 4 10.5 0.814
6 6 11.0 0.818
6 8 11.6 0.819
8 4 11.6 0.828
8 6 12.1 0.820
8 8 12.6 0.817

Explicit-Tsf

4 4 8.1 0.829
4 6 9.1 0.824
4 8 10.2 0.823
6 4 9.1 0.808
6 6 10.2 0.812
6 8 11.3 0.812
8 4 10.2 0.810
8 6 11.3 0.818
8 8 12.3 0.821

Implicit
4 - 4.7 0.819
6 - 5.7 0.823
8 - 6.8 0.817

Table 8. Analysis of different design choices for gene targeting experiments where implicit and explicit models are tested with different
number of parameters or different parameter split between context aggregation and prediction. We conduct experiments on compositional
out of distribution generalization.

27

