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ABSTRACT

Recent advances in Vision-Language Models (VLMs) have enabled unified un-
derstanding across text and images, yet equipping these models with robust im-
age generation capabilities remains challenging. Existing approaches often rely
on reconstruction-oriented autoencoders or complex bridging mechanisms, lead-
ing to misalignment between understanding and generation representations, or
architectural complexity. In this work, we propose VUGEN, a novel frame-
work that explicitly leverages VLM’s pretrained visual understanding priors for
efficient and high-quality image generation. Our approach first transforms the
high-dimensional latent space of the VLM’s native vision encoder into a lower-
dimensional, tractable distribution that maximally preserves visual information.
The VLM is then trained to sample within this reduced latent space, ensuring
alignment with its visual understanding capabilities. Finally, a dedicated pixel de-
coder maps these generated latents back to the image space. We find that a VAE-
free pixel diffusion decoder to be on par or better than commonly used complex la-
tent diffusion decoders that internally rely on VAE latents. Extensive experiments
demonstrate that VUGEN achieves superior image generation performance, im-
proving DPG Bench from 71.17 to 74.32 and FID from 11.86 to 9.06 on COCO,
while fully preserving the VLM’s original understanding capabilities.

1 INTRODUCTION

Recent years have witnessed a remarkable evolution in Large Language Models (LLMs), which now
demonstrate impressive capabilities in both understanding and generating natural language. Build-
ing on this progress, Vision-Language Models (VLMs) have emerged, extending the capabilities of
LLMs by incorporating visual understanding. This advancement enables unified reasoning across
both text and images. As research continues to push the boundaries, there is growing interest in
unified VLMs—or Multimodal LLMs (MLLMs)—that can accept both text and images as input and
output, thereby combining understanding and generation capabilities across modalities.

A central question arises from this trajectory: Given that VLMs are pretrained to develop rich visual
priors for understanding, can these learned priors be effectively harnessed for image generation? Our
preliminary experiments suggest that the vision embeddings produced by a VLM’s vision encoder
—despite being optimized for understanding—retain sufficient visual information to support high-
quality image generation. This observation motivates our core research question: How can we
efficiently leverage the visual understanding priors learned by VLMs to enable generation?

Existing approaches to unifying vision and generation in VLMs have notable limitations. Recent
methods (Wu et al., 2025a; Deng et al., 2025; Liao et al., 2025) adopt semantic vision encoders
(e.g. SigLIP (Zhai et al., 2023)) for image understanding, and introduce image tokenizers from
reconstruction-oriented autoencoders (e.g. (VQ-)VAE (Kingma & Welling, 2014; Van Den Oord
et al., 2017)) to handle image generation. While this decoupled approach enables flexible integration
of specialized experts, it induces a misalignment between the representations used for understanding
and generation, hindering the model’s ability to fully leverage shared semantic information. Another
line of work seeks to bridge VLMs with image diffusion models through various connection mecha-
nisms. These methods (Gupta et al., 2022; Chen et al., 2025a; Lin et al., 2025) teach VLMs to sam-
ple semantic representations from a pretrained semantic image encoder. However, these approaches
tend to be architecturally complex, increasing overall model size and computational footprint. More-
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Figure 1: VUGEN inference (left): The complex VLM vision encoder space Z is reduced in di-
mension to Z̃ for generative modeling. VUGEN samples in Z̃ , and the pixel decoder maps the
generated latents to image space. VUGEN training (right): We first jointly train the dimension
reducer and pixel decoder to ensure a latent space optimized for generation. Then the learned di-
mension reducer is frozen, and the VLM is trained to sample over the (fixed) reduced space Z̃ .

over, directly generating in the high-dimensional semantic representation space is challenging and
necessitates large models to capture the complex distributions involved.

In this work, we propose VUGEN: Visual Understanding priors for GENeration to directly ad-
dresses these challenges. It decomposes image generation into two stages: (i) The VLM backbone
learns to sample in the latent space of its native understanding vision encoder. This design allows us
to fully leverage the VLM’s pretrained vision priors and avoids misalignment introduced by decou-
pled tokenizers. However, the semantic understanding embeddings are typically high-dimensional
and complex to model. We therefore introduce a dimension reducer that simplifies these embed-
dings while preserving the essential information for high-quality image generation, and the VLM
learns to sample in the reduced space. This makes the generative modeling tractable and enables
efficient training with smaller models. (ii) A pixel decoder then maps the generated latents back to
pixel space. We explore two approaches for this stage: (a) finetuning a pre-trained text-to-image
latent diffusion model that conditions on the understanding latents, and (b) training a lightweight,
VAE-free pixel diffusion decoder that directly reconstructs images from the understanding latents.
This eliminates the architectural complexity and VAE dependence common in prior work. Experi-
mental results demonstrate that our method significantly enhances prompt following capabilities and
image generation quality: VUGEN improves the baseline DPG Score (Hu et al., 2024) from 71.17
to 74.32 and FID from 11.86 to 9.06 on COCO2014 dataset (Lin et al., 2014).

Our contributions can be summarized as follows:
• VUGEN uses the VLM’s inherent understanding embedding space as the intermediate represen-

tation for image generation. By combining this with a novel dimension reduction technique, we
effectively and efficiently transfer the VLM’s understanding priors to its generative capabilities.

• We find that a direct pixel-diffusion decoder improves over latent diffusion model decoders while
eliminating the dependence on VAE-based tokenizers and reducing architectural complexity.

• We conduct extensive experiments on two datasets of varying scale, demonstrating both qualita-
tively and quantitatively that VUGEN improves image generation performance while preserving
the base VLM’s understanding abilities.

2 RELATED WORK

Unified vision language models. Early examples of such models, such as Chameleon (Chameleon
Team, 2024), Show-O (Xie et al., 2025), Transfusion (Zhou et al., 2025) and Emu3 (Wang et al.,
2024), relied on image tokenizers derived from reconstruction-oriented discrete or continuous au-
toencoders like (VQ-)VAE (Kingma & Welling, 2014; Van Den Oord et al., 2017). The multimodal
model then generates vision tokens either autoregressively or via diffusion, depending on the discrete
or continuous nature of the tokenizer. However, reconstructive autoencoders like VAEs are known
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to be suboptimal for visual understanding tasks, limiting their effectiveness in this context. Aiming
to combine strong understanding performance of VLMs with generative capabilities, another line of
work, including Janus (Wu et al., 2025a), JanusFlow (Ma et al., 2025), Bagel (Deng et al., 2025),
and Mogao (Liao et al., 2025) leverage separate semantic encoders for understanding and VAEs for
generation. While this decoupling can improve individual task performance, the use of distinct en-
coders can cause representational inconsistencies between understanding and generation pathways.
As a result, models must adapt to a new encoding space, leading to lower training efficiency (Deng
et al., 2025). More recent approaches such as Metamorph (Gupta et al., 2022), MetaQueries (Pan
et al., 2025), BLIP3-o (Chen et al., 2025a) and Bifrost (Lin et al., 2025), generate continuous visual
representations from LLMs/VLMs to guide an external latent diffusion model. This, however, sig-
nificantly increases the overall model size and computational footprint, and does not eliminate the
dependence on VAE latent spaces since the diffusion model itself typically relies on it. In contrast to
these different prior approaches, our method relies on a single visual representation that is optimized
for and supports strong image understanding performance (rather than (VQ-)VAEs in early work),
while using a simple pixel diffusion decoder that is light-weight in parameters and compute (rather
than relying on repurposed text-to-image latent diffusion models).

Two-stage generative image models. Several prior works have explored two-stage image gener-
ation pipelines for text-to-image and unconditional image generation. A first (diffusion) model is
trained to generate a high-level semantic representation, e.g., CLIP latents (Ramesh et al., 2022),
SSL features (Li et al., 2024), or features from pretrained image classifier (Pernias et al., 2024). A
second (diffusion) model then takes these (generated) high-level features as input and models the
conditional distribution over images, either directly in pixel-space (Ramesh et al., 2022) or over a
VAE latent space (Li et al., 2024; Pernias et al., 2024) which is itself decoded to pixel-space using
the VAE decoder. In a similar spirit, we learn a stage-one text-conditional diffusion model over
semantic VLM features, and generated features are decoded to pixel space using a second-stage dif-
fusion model. Different from these prior works, our approach seamlessly instills image generation
capabilities on top of pretrained VLMs using its native vision features. REPA (Yu et al., 2025) is an
alternative approach to leverage high-level features for generation, where internal representations of
the generative model are aligned with pre-trained image embeddings, rather than decomposing the
generative process to explicitly generate such features as an intermediate step. In our experiments
we consider this approach as a baseline.

Pixel-space diffusion decoders. While latent diffusion models (LDMs) (Rombach et al., 2022) un-
derpin many state-of-the-art generative image models, recent work has shown that pixel-space dif-
fusion models (Hoogeboom et al., 2025) can achieve competitive image quality and faster training.
Pixel-space diffusion models have also been adopted as decoders in autoencoder frameworks, en-
abling more expressive decoders that can accurately model the conditional distribution over images
given latent representations (Zhao et al., 2025; Chen et al., 2025c). These decoders have demon-
strated improved image reconstruction and generation, particularly at larger spatial downsampling
factors. This is well-suited for visual understanding features, which typically use 16× downsam-
pling. In our work, we leverage a pixel-space diffusion model to decode the (generated) VLM un-
derstanding features. Our design enables a fully unified visual representation for both understanding
and generation, while at the same time reducing the model complexity and computational overhead
associated with LDM-based decoders.

3 VUGEN: VISUAL UNDERSTANDING PRIORS FOR GENERATION

VUGEN equips a pretrained Vision-Language Model (VLM) with text-to-image generation capa-
bilities by fully leveraging its learned visual understanding priors, while also retaining its original
understanding abilities. We aim to utilize the VLM’s native image understanding embeddings as an
(intermediate) generative target, thereby aligning the generation process with the VLM’s pretrained
semantic priors and visual comprehension. However, directly generating in the full embedding
space Z of the VLM’s vision encoder is not trivial due to is high dimensionality and complexity. To
make the generation process tractable, we introduce a dimension reducer g that morphs the native
embedding space into a more tractable lower-dimensional space Z̃ , while preserving the essential
information required for recovering high-quality visual content.
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Given an image x ∈ X and a corresponding textual prompt c, VUGEN’s text-to-image generation
process is decomposed into two stages. Generative modeling: We model the conditional distribu-
tion P (z̃|c), i.e. we train the VLM to sample from the reduced understanding space Z̃ . Pixel decod-
ing: A dedicated pixel decoder d maps the generated z̃ back to the image space, modeling P (x|z̃).
Overall, the generation process can be factorized as: P (x|c) = P (z̃|c) · P (x|z̃). An overview of
VUGEN’s inference and training process is illustrated in Figure 1. In the remainder of this section
we detail the dimension reducer in Section 3.1, the generative modeling on understanding features
in Section 3, and the pixel decoder in Section 3.3.

3.1 DIMENSION REDUCTION OF UNDERSTANDING EMBEDDING SPACE

(a) Input image x (b) Reconstruction from
understanding latents z

(c) Reconstruction from
reduced latents z̃

Figure 2: Images reconstructed from understand-
ing latents. Accurate reconstruction indicates that
both the full z and the reduced z̃ understanding la-
tents retain sufficient visual information.

For visual understanding, VLMs employ a se-
mantic image encoder fund to project images
x into semantic embeddings z. These embed-
dings are then mapped into a shared embed-
ding dimension and fused with text features
via self-attention in the transformer backbone.
Although fund is optimized for understanding
tasks, we observe that Z captures a remarkably
rich signal of visual appearance. As demon-
strated in Figure 2(a,b), images can be effec-
tively reconstructed solely from their under-
standing embeddings z. This proves that z re-
tains sufficient visual signal for image genera-
tion. Moreover, Z is an ideal target for gener-
ative modeling: if we train the VLM to sample
directly over Z , we ensure that the produced latents are inherently compatible with the VLM’s
own semantic space—allowing us to fully exploit its pretrained visual priors and achieve seamless
integration between understanding and generation.

However, in practice, we find that directly training a generative model over Z is difficult, with
FID of generated samples above 200. We hypothesize that this is because Z exhibits a complex
distribution, especially when compared to the compact and structured latent spaces produced by
VAE-based approaches commonly used in existing methods. VAEs are explicitly trained to facilitate
reconstruction, encouraging the model to compress information into a dense, lower-dimensional
manifold (typically 8× spatially downsampled with 4 channels) that is easier to model and sample
from. In contrast, each z ∈ Z in our setting is formed by concatenating the understanding features
of all image patches, resulting in a much sparser and significantly higher-dimensional representation
(e.g., 14× downsampling but 1024 channels for the vision encoder used in our experiments).

To overcome this challenge, we introduce a dimension reducer g that projects the high-dimensional
embedding space Z ⊂ RD into a lower-dimensional, more tractable space Z̃ ⊂ RD

r , where
D is the dimension of understanding embeddings and r denotes g’s reduction ratio. Formally,
z̃ = g(z) = g ◦ fund(x). Then we learn a generative model on Z̃ instead of directly on Z . Ab-
stractly, g should extract the most relevant features for generation from the high-dimensional em-
beddings and discard redundancy. In this way, g bridges the gap between the rich, high-dimensional
representations learned by the VLM and the practical requirements of generative modeling.

A simple approach to compress z is to use linear dimension reduction techniques such as PCA,
which retains the linear subspace spanning most of the signal variance. In practice, however, images
reconstructed from z̃PCA = W⊤

PCAz lack crucial visual details. This indicates a critical misalignment
between the features that account for the most variance and those that are essential to capture visual
content for generation. To address this, we propose to jointly learn the dimension reducer with
the stage-two pixel decoder by parameterizing the dimension reducer as a trainable module gϕ of
the pixel decoder dψ . This joint learning enables the reducer to dynamically extract latent features
from the understanding encoder that are maximally suitable for high-fidelity image generation, see
Figure 2(c).
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3.2 LEARNING TO SAMPLE IN REDUCED UNDERSTANDING SPACE

With the reduced latent space Z̃ established, we train our generative model to sample in this space,
fully leveraging the VLM’s visual priors while ensuring tractability. Concretely, we adopt rectified
flow matching (Liu et al., 2023; Lipman et al., 2023). Let t ∈ [0, 1] interpolating between the
compressed encoding z̃ = g ◦ fund(x) of an image x ∈ X and unit Gaussian noise ϵ ∼ N (0, 1),
where we denote the interpolant as z̃t = tz̃ + (1− t)ϵ. For training we use the flow matching loss:

Lflow(θ) = Et,x∼X ,ϵ∼N (0,1) ∥ z̃ − ϵ− vVLM,θ(z̃t, t|c) ∥2, (1)

where vVLM,θ denotes the VLM image generation tower that acts as velocity field predictor. Note
that, since our goal is to sample from the fixed, tractable distribution Z̃ , both the dimension reducer
g and the understanding encoder fund are kept frozen during this training stage.

To best preserve the base VLM’s pretrained visual and language knowledge, we adopt the Mixture of
Transformer (MoT) architecture (Liang et al., 2025). Specifically, we initialize a new trainable image
generation tower from the pretrained VLM weights, and we keep the main VLM tower frozen during
training. During text-to-image generation, cross-modal interactions are facilitated through cross-
modal attention: following the masking strategy of Transfusion (Zhou et al., 2025), we apply causal
attention to text tokens and bidirectional attention to all vision tokens. In line with the flow matching
paradigm, inference proceeds iteratively: we start by appending pure noise z̃T ∼ N (0, 1) ∈ Z̃ to
the input sequence of the text prompt, the model predicts the velocity field at each step t, which is
then integrated to update the current noisy latent z̃t.

3.3 MAPPING FROM UNDERSTANDING LATENTS TO PIXEL SPACE

Given an input image x, the pixel decoder dψ is trained to reconstruct the original image from
its reduced image embedding z̃ = gϕ ◦ fund(x). Formally, x̂ = dψ(z̃). As detailed in Sec. 3.1,
the dimension reducer gϕ and decoder dψ are jointly optimized. Importantly, this joint training is
performed prior to training the VLM to sample in Z̃ . Once trained, the dimension reducer gϕ is kept
frozen during the generative training stage. This ensures that the VLM learns to generate within a
fixed, tractable latent space. We consider two pixel decoder designs.

Latent Diffusion Model (LDM). Similar to prior work on extending LLMs with image generation
capabilities (Gupta et al., 2022; Pan et al., 2025), we consider leveraging a pre-trained text-to-image
LDM. We replace the original conditioning on a sequence of text tokens with conditioning on z̃: a
sequence of (reduced) understanding embeddings of image patches, and finetune the LDM to exploit
this new conditioning signal. We follow the standard LDM training procedures, where the objective
is to denoise a latent variable conditioned on the understanding embedding.

Pixel-space Diffusion Decoder (PDD). Alternatively, we consider a pixel-space diffusion decoder
(PDD) that greatly simplifies the overall design by eliminating the dependence on a large LDM
which itself internally uses a VAE latent space. We use an autoencoding formulation to train the
PDD, where the understanding encoder fund serves as the frozen encoder, complemented with the
trainable dimension reducer gϕ, and the pixel decoder dψ is trained to map the reduced embedding z̃
directly to pixel images. Our decoder is inspired by recent advances in diffusion autoencoders (Zhao
et al., 2025; Chen et al., 2025c), which allow for more accurate reconstructions than classic feed-
forward decoders due to the iterative denoising process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We initialize our Vision-Language Model (VLM) from Perception Lan-
guage Model 1B (Cho et al., 2025). Following the Mixture of Transformers (Liang et al., 2025)
approach, we initialize a new trainable image generation tower to process generative visual embed-
dings and keep the original VLM tower frozen. For the dimension reduction module gϕ, we instanti-
ate it as an MLP with SiLU (Elfwing et al., 2018) activation. We adopt the dimension reduction ratio
r=16 as our default setup. For the LDM decoder, we adopt a multi-modal DiT architecture (Esser
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Table 1: Image generation results with VUGEN and baselines on StockMix and ImageNet.

Model StockMix ImageNet

FID ↓ CLIP↑ DPG ↑ GenEval↑ FID ↓ CLIP↑ Density↑ Coverage↑

Decoupled 13.06 26.71 72.09 54.00 5.85 26.32 70.51 16.61
REPA 11.86 26.71 71.17 55.03 5.40 25.89 72.12 17.14
VUGEN 9.07 27.45 74.15 56.81 4.15 26.40 103.32 22.46
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Figure 3: Generation performance across training iteration on StockMix and ImageNet. VU-
GEN reaches better performance in fewer training steps than compared baselines.

et al., 2024), conditioning on (reduced) understanding latents via an adapted embedding layer. For
the pixel diffusion decoder (PDD), we use a U-ViT-based architecture (Hoogeboom et al., 2023)
with transformer blocks, trained with flow-matching (Lipman et al., 2023) and perceptual losses.
See the App. A for more implementation details.

Datasets. We train on two datasets of varying scale and distribution. (i) ImageNet-1k (Deng et al.,
2009) is widely used to benchmark image generation. For models trained on ImageNet, evaluation is
performed on its official validation set. We follow the ImageNet preprocessing in standard diffusion
literature (Karras et al., 2022). We use the prompt template “This is an image of a [CLS].” for
conditioning on ImageNet class labels. (ii) StockMix: our primary training setup, composed of a
mixture of YFCC100M (Thomee et al., 2016), CC12M (Changpinyo et al., 2021), and S320M—a
large proprietary collection of stock images. This larger-scale dataset covers a more diverse real-
world imagery. For models trained on StockMix, evaluation is conducted on the COCO2014 (Lin
et al., 2014) validation set. For CC12M and S320M, we recaption images using Florence-2 (Xiao
et al., 2024) to obtain higher-quality captions. All training and evaluation are performed at a resolu-
tion of 256×256 pixels.

Metrics. We evaluate image generation quality using FID (Heusel et al., 2017). To assess
prompt alignment we report CLIP Score (Hessel et al., 2021), DPG-Bench (Hu et al., 2024) and
GenEval (Ghosh et al., 2023). We include distributional metrics density and coverage (Naeem et al.,
2020) to separately assess image quality and diversity.

Baselines. We compare against two main baselines using the same architecture, data and training
setup to allow for apples-to-apples comparisons. (1) Decoupled Vision Encoders Baseline. We
initialize from the same VLM backbone and use the VAE from SD3 (Esser et al., 2024) for gener-
ation. In other words, instead of sampling in the understanding embedding space, the model learns
to sample VAE tokens, which are then decoded by the VAE decoder. Conceptually, this baseline
closely resembles the LLaVAFusion setup from Shi et al. (2024), but differs in the architecture de-
tails and training data. (2) REPA Baseline. We extend our first baseline by adding REPA (Yu et al.,
2025) to align the intermediate representations of the image generation tower with the understanding
embeddings of input images from the native encoder fund. This baseline is particularly relevant to
our proposed approach, as it induces an implicit alignment with understanding embeddings, whereas
VUGEN explicitly samples in the understanding latent space.

4.2 MAIN RESULTS

Comparison with baselines. We compare the image generation performance of VUGEN and
the baselines in Tab. 1. We observe that VUGEN consistently outperforms baselines across both

6
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A busted red fire hy-
drant spewing water
all over a street creat-
ing a rainbow.

A view of a umbrella
and a bench with the
mountains in the back.

A cake sits on top of a
holder by some fruit.

Four cow rears stand in
front of a building with
a steeple.

A terra cotta pot con-
taining white and or-
ange flowers.

A black dog sitting on
top of a chair near a
counter.

Figure 4: Qualitative comparison of images generated by models trained on StockMix. VU-
GEN demonstrates significantly stronger prompt following capabilities (e.g. rainbow in column 1,
umbrella and bench in column 2, fruit in column 3) and produces more realistic outputs as well as
finer visual details (columns 4, 5 and 6).

datasets and on every reported metric. Specifically, VUGEN achieves a 24% improvement in FID
on StockMix and 23% on ImageNet w.r.t. the REPA baseline, indicating that the generated images
are closer to the real data distribution. The results also validate that generating in the understand-
ing embedding space enhances semantic alignment, as evidenced by improvements in both dense
prompt following (DPG-Bench) and fine-grained compositional evaluation (GenEval). On Ima-
geNet, VUGEN also delivers substantial gains in density and coverage, highlighting its ability to
produce images with both higher fidelity and greater diversity. For these experiments, we fix the
classifier-free guidance (CFG) scale at 1.8 for ImageNet and 5.0 for StockMix to achieve the best
balance between image quality and alignment. In App. D we provide analysis of the CFG strength.

In Fig. 3 we further extend the comparison between VUGEN and baselines to intermediate check-
points, where we evaluate using 5,000 validation images. The results demonstrate that VUGEN
achieves consistent improvement throughout training, and also reaches comparable performance
much faster than the baselines. For example, on ImageNet, after 10k training steps VUGEN al-
ready matches the density of the REPA baseline at 30k steps. Additionally, by leveraging native vi-
sion embeddings as the target space for generation, VUGEN benefits from a stronger initialization.
The prompt alignment (CLIP) score starts a high value since the beginning of training, indicating
more effective and semantically meaningful learning from the outset.

Qualitative results. Qualitative comparisons in Fig. 4 present side-by-side examples of images gen-
erated by VUGEN and the baselines. VUGEN demonstrates significantly better prompt alignment
and is able to accurately address semantic concepts that other methods fail to capture. Addition-
ally, VUGEN produces images with finer details and overall higher visual fidelity. Furthermore,
Fig. 5 examines the diversity of generated samples under the same prompt. While VAE-based base-
lines tend to produce images with similar object appearances and simple backgrounds, VUGEN
generates a broader variety of samples, capturing richer variations in both content and style.

Comparison with SOTA methods. In addition to baseline comparisons, we compare VUGEN
against SOTA unified VLMs that are capable of both image understanding and generation. Tab. 2
shows that VUGEN achieves state-of-the-art COCO FID among models of similar size and delivers
competitive results on prompt alignment metrics of GenEval and DPG-Bench.

4.3 ABLATION STUDIES

PCA reducer vs. jointly trained reducer. We compare PCA-based dimension reduction with
learning-based reducers using the LDM pixel decoder in Figure 6. In addition we consider the PDD
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Decoupled baseline REPA baseline VUGEN

Figure 5: Sample diversity analysis of models trained on StockMix. Images generated with: “A
bear looking forward in a forest.” and “A fresh looking salad on a square plate.”. While baselines
tend to produce repetitive outputs (the same pose of the bear and uniform background for the salad),
VUGEN exhibits variability in camera angles, backgrounds, and overall appearance.

Method Base (M)LLM COCO FID↓ GenEval↑ DPG↑

7B+ scale
EMU (Wang et al., 2024) LLaMA 13B 11.66 - -
MetaMorph (Gupta et al., 2022) LLaMA-3 8B 11.8 - -
TokenFlow-XL (Qu et al., 2025) Qwen-2.5 14B - 0.63 73.38
LMFusion (Shi et al., 2024) LLaVA-Next 8B 8.20 - -
DreamLLM (Dong et al., 2024) Vicuna 7B 8.46 - -
Chameleon (Chameleon Team, 2024) From Scratch 7B 26.74 0.39 -
EMU3 (Wang et al., 2024) From Scratch 7B 12.80 0.66 80.60
MetaQuery-XL (Pan et al., 2025) Qwen2.5-VL 7B 8.69 0.80 82.05
JanusPro-7B (Chen et al., 2025b) DeepSeek-LLM 7B - 0.80 84.19
BLIP3-o 8B (Chen et al., 2025a) Qwen2.5-VL 7B - 0.84 81.60
Bifrost-1 (Lin et al., 2025) Qwen2.5-VL 7B 34.35 0.81 77.67

3B scale
MetaQuery-L (Pan et al., 2025) Qwen2.5-VL 3B 8.87 0.78 81.10
BLIP3-o 4B (Chen et al., 2025a) Qwen2.5-VL 3B - 0.81 79.36
Bifrost-1 (Lin et al., 2025) Qwen2.5-VL 3B 23.02 0.61 76.41

∼1B scale
Show-o-512 (Xie et al., 2025) Phi-1.5 1.3B 9.24 0.68 -
Janus (Wu et al., 2025a) DeepSeek-LLM 1.5B 8.53 0.61 -
JanusFlow (Ma et al., 2025) DeepSeek-LLM 1.5B - 0.63 80.09
JanusPro-1B (Chen et al., 2025b) DeepSeek-LLM 1.5B - 0.73 82.63
VUGEN (CFG scale 5) PLM 1B 9.07 0.57 74.15
VUGEN (optimal CFG scale / metric) PLM 1B 6.77 0.61 76.97

Table 2: Comparison with SOTA unified VLMs on image generation metrics. For VUGEN, we
report metrics both at a fixed default guidance scale of 5 and at their respective optimal guidance
scales, since fidelity and prompt alignment metrics peak at different values. We found the optimal
guidance scale to be 1.5 for FID, 12 for GenEval, and 14 for DGP Score.

pixel decoder with a jointly learned reducer. The qualitative results show that images recovered from
PCA latents are noticeably less accurate (see, e.g., the dog tongue and teddy bear face), showing that
high variance directions in understanding features are not per se the best for generation. We also
compare the reconstruction FID curves during training of the LDM decoder with PCA and jointly
trained reducer in the right panel of Figure 6. The jointly learned reducer maintaining a significant
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Original LDM, PCA reduced LDM, joint reduced PDD, joint reduced

20k 40k 60k 80k
Training Iteration

8

10

12

14

16
Reconstruction FID

Joint
Fixed PCA

Figure 6: Left: Image reconstructions from reduced understanding latents (r = 16), using PCA and
jointly trained reducers, using LDM and PDD pixel decoders. Reconstructions from PCA are more
lossy (see, e.g., the dog tongue and the teddy bear face). Right: Reconstruction quality over the
course of training of LDM decoder with fixed PCA reducer vs. jointly learned reducer.

advantage throughout training over the PCA alternative, and we therefore retain the jointly trained
reducer. Comparing the PDD and LDM decoders, we find them to achieve similar results.

1 2 4 8 16 32
Dimension Reduction Ratio

6.8

7.2

7.6

8.0

8.4
Reconstruction FID

10k 20k 30k 40k
Training Iteration

25

100

250
Generation FID

r=1 r=2 r=4 r=8 r=16 r=32

Figure 7: Influence of dimension reduction ratio r
on image reconstruction and generation quality.

Dimension reduction ratio. We examine the
effect of the dimension reduction ratio r by
training models with r=1, 2, . . . , 32 on Ima-
geNet. In Fig. 7 we consider the reconstruc-
tion and generation quality using the LDM
decoder at different r. For reconstruction, the
image quality deteriorates as r increases, as
there is less information in the reduced la-
tent to recover the originals. For generation
on the other hand, for r < 4 the generative
model is not able to properly learn the com-
plex high-dimensional distribution, and the
FID remains very high. With larger reduc-
tion factors the model is able to fit the data
distribution in reduced dimensions. These re-
sults highlight a tradeoff: a higher reduction ratio simplifies the generation over the reduced under-
standing features, while making the pixel decoding task more challenging. Optimal performance is
achieved by balancing these competing factors, and in practice we set r = 16.

Latent diffusion model decoder (LDM) vs. pixel-space diffusion decoder (PDD). The qualitative
results in Fig. 6 show that PDD and LDM produce reconstructions of similar visual fidelity. Despite
being conceptually simpler, the PDD decoder is much more efficient both in terms of number of
parameters (48M vs. 794M), and in terms of throughput (119.2 vs. 3.2 ims/sec with batch size 64
on a single H200 GPU). PDD is therefore a compelling alternative to the LDM decoders used in
prior work, enabling image generation in multimodal models over understanding embeddings, and
obviating the need for large LDM decoders that internally rely on reconstruction-based VAE latents.

5 CONCLUSION

In this work, we introduced VUGEN, a model that unifies visual understanding and generation
within VLMs by leveraging their native understanding priors. By decomposing image generation
into a tractable two-stage process —sampling in a reduced semantic latent space and decoding to
pixels— we address key limitations of prior approaches, such as representation misalignment and
architectural complexity. To the best of our knowledge, VUGEN is the first multimodal generative
model that generates images without relying on any reconstruction-based autoencoder latent space.
Our experiments demonstrate that VUGEN is competitive with state-of-the-art models, and achieves
significant improvements in both prompt following and image quality w.r.t. strong baselines. These
results highlight the effectiveness of directly harnessing VLM understanding embeddings for gener-
ation, paving the way for more integrated and efficient multimodal generative models.
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A ADDITIONAL IMPLEMENTATION DETAILS

Pre-trained VLM. We base our models off the models distributed in the public PLM reposi-
tory (Cho et al., 2025). Our VLM backbone is Perception Language Model 1B, which adopts
Perception Encoder (Bolya et al., 2025) as its native understanding encoder and Llama 3 (Dubey
et al., 2024) as the base language model. With the mixture of transformer setup, the total number of
trainable parameters in VUGEN is 1.2B.

Latent Diffusion Model (LDM) decoder. We follow the LDM setup of Berrada Ifriqi et al. (2024),
utilizing a multi-modal DiT architecture (Esser et al., 2024) with 28 blocks and a hidden size of 1152.
The model employs the asymmetric autoencoder from Wu et al. (2023) to define its latent space.
Training is performed under the EDM (Karras et al., 2022) formulation for the DDPM paradigm,
with noise rescheduling as in Berrada Ifriqi et al. (2024), and sampling is conducted using the
EDM Euler scheduler. We pretrain the LDM using the StockMix dataset. To enable decoding of
(reduced) understanding latents, we adapt the condition embedding layer’s input dimension to match
the understanding latents, which are then fed into the DiT attention layers.

Pixel Diffusion Decoder (PDD). We use the pixel diffusion decoder from Anonymous (2026),
which is based on a U-ViT architecture (Hoogeboom et al., 2023) with 3 downsampling stages
and transformer blocks only at the deepest levels (8×8 blocks). The model is trained with a flow
matching loss (Lipman et al., 2023), LPIPS (Zhang et al., 2018), and REPA loss (Yu et al., 2025)
for internal feature alignment with DINOv2-B features (Oquab et al., 2024). For fast decoding,
the model is distilled into a single-step diffusion decoder (SSDD) similarly to Luhman & Luhman
(2021), but keeping the full training loss, and using an 8-steps model as the teacher, a copy of the
weights as the student. To decode from pretrained PLM understanding latents, we treat the PLM
encoder as a frozen encoder and connect it to the decoder via a jointly learned dimension reducer.
Full details of the pixel diffusion decoder can be found in (Anonymous, 2026).

Training. During training, we use a batch size of 8 and a sequence length of 4096, with a learning
rate of 3 × 10−4. We adopt an AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.9,
β2 = 0.95, and weight decay of 0.1. We train for 200k iterations on 32 GPUs for the model
trained on StockMix, and 50k iterations on 8 GPUs for ImageNet. All experiments are conducted
on NVIDIA H200 GPUs. Exponential Moving Average (EMA) of weights is activated starting at
50k training iteration for StockMix and 10k for ImageNet, with a decay of 0.9999.
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B COMPARISON WITH SOTA METHODS ON IMAGE UNDERSTANDING

Tab. 3 compares VUGEN’s understanding performance with SOTA methods. By construction, VU-
GEN retains the image understanding capabilities of the underlying base VLM, i.e. that of PLM-1B
in our experiments. The results show that VUGEN has understanding performance that is compa-
rable to that of other models at similar scale.

Table 3: Comparison with SOTA models on image understanding metrics

Method Base (M)LLM MME-P↑ MMB↑ MMMU↑
7B+ scale
MetaMorph (Gupta et al., 2022) LLaMA-3 8B - 75.2 -
LMFusion (Shi et al., 2024) LLaVA-Next 8B 1603.7 72.1 41.7
TokenFlow-XL (Qu et al., 2025) Qwen-2.5 14B 1551.1 76.8 43.2
BILP3-o 8B (Chen et al., 2025a) Qwen2.5-VL 7B 1682.6 83.5 50.6
Bifrost-1 (Lin et al., 2025) Qwen2.5-VL 7B 1685.2 83.5 58.6
MetaQuery-XL (Pan et al., 2025) Qwen2.5-VL 7B 1685.2 83.5 58.6
JanusPro-7B (Chen et al., 2025b) DeepSeek-LLM 7B 1567.1 79.2 41.0
Chameleon (Chameleon Team, 2024) From Scratch 7B - - 22.4
VILA-U (Wu et al., 2025b) LLaMA-2 7B 1401.8 - -
EMU3 (Wang et al., 2024) From Scratch 7B - 58.5 31.6

3B scale
MetaQuery-L (Pan et al., 2025) Qwen2.5-VL 3B 1574.3 78.6 53.1
BLIP3-o 4B (Chen et al., 2025a) Qwen2.5-VL 3B 1527.7 78.6 46.6

∼1B scale
Show-o-512 (Xie et al., 2025) Phi-1.5 1.3B 1097.2 - 26.7
Janus (Wu et al., 2025a) DeepSeek-LLM 1.5B 1338.0 69.4 30.5
JanusFlow (Ma et al., 2025) DeepSeek-LLM 1.5B 1333.1 74.9 29.3
JanusPro-1B (Chen et al., 2025b) DeepSeek-LLM 1.5B 1444.0 75.5 36.3
VUGEN PLM 1B 1546.2 75.8 32.1

C MORE QUALITATIVE RESULTS

We provide additional qualitative comparison on StockMix in Fig. 8. We also show examples of
generated images by VUGEN trained on ImageNet in Fig. 9.

D REALISM-CONSISTENCY TRADE-OFF

In text-to-image generation models, there is usually a trade-off between consistency (i.e. prompt
alignment) and realism (i.e. quality of generated samples). The CFG (Classifier-Free Guidance)
scale serves as a crucial control parameter: higher values generally improve prompt alignment (con-
sistency) but often at the expense of image realism. To analyze this trade-off, we sweep the CFG
scale and evaluate the performance of different models using the CLIPScore (as a measure of consis-
tency) and FID (as a measure of realism). We visualize these dynamics in Fig. 10 by plotting CLIP
score and FID as functions of the guidance scale, as well as plotting CLIPScore vs. FID, where
curves closer to the top-left indicate a more favorable balance between consistency and realism.

On the ImageNet dataset, our method consistently outperforms the baselines across the entire range
of guidance scales, achieving both better CLIP and FID scores for every setting. This superiority
is clearly reflected in the right-most plot, where our method’s curve remains closer to the top-left,
indicating a better consistency-realism trade-off. On StockMix, the comparison is more nuanced.
While our method consistently achieves higher consistency scores across all guidance scales, it does
not achieve the absolute lowest FID. At higher guidance scales, however, our method maintains a
significantly lower FID than both baselines, indicating better realism when strong prompt consis-
tency is required. Furthermore, the Pareto front across FID and ClipScore mostly consists of points
from our method, except for the guidance scale 1.5 result where the baselines obtain better FID at
the expense of worse CLIPScore.
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A white expensive car
parked on top of a ce-
ment slab.

A snowy park scene
with two main trees.

Men on sail boats rid-
ing in a line in a lake.

A transit center all lit
up at night.

A casserole dish with
meat, potatoes and
carrots.

A white, beige and
brown baby bear un-
der a beigewhite com-
forter.
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A ceramic pot sits on
top of a pillow.

A gray fire hydrant
with a yellow top.

A painting of a large
black cat with glowing
green eyes sits against
a wooden background
and towers over a bot-
tle and single serve
teapot with cup.

A farm scene made
from small fake trees
and animals.

Two red and blue fire
hydrants sitting in the
snow and grass.

A red stop sign with
various stickers on it.

Figure 8: Qualitative comparison of VUGEN and baselines trained on StockMix.
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Figure 9: Qualitative results of VUGEN trained on ImageNet.
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Figure 10: Consistency-realism trade-off analysis: CLIPScore (consistency) and FID (realism) are
plotted as against classifier-free guidance (CFG) scale, along with CLIPScore vs. FID plot.
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