
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AbsGS: Recovering Fine Details for 3D Gaussian Splatting
Anonymous Authors

(d) Ground Truth Image(a) Rendered (b) Point Cloud (c) Ellipsoid

3D
-G

S
O

ur
s

SSIM: 0.708
PSNR:22.18
LPIPS:0.218

9 0.7080052495002747
22.18341636657715
0.21808823943138123

0.67380690574646
21.709636688232422
0.27260518074035645

3794006
ABS:940.9

Points: 3636448
Memory: 901.8MB

Points: 3794006
Memory: 940.9MB

SSIM: 0.673
PSNR:21.70
LPIPS:0.273

Figure 1: We reveal that the original adaptive density control strategy in 3D Gaussian Splatting (3D-GS) has the flaw of
gradient collision which results in degradation, and propose homodirectional gradient as the guidance for densification. (a)
Our method recovers fine details and achieves higher quality novel view synthesis results. SSIM, PSNR, LPIPS are inset. (b) Our
proposed method yields more reasonable distribution of Gaussion points with comparable number of Gaussians and memory
consumption with 3D-GS. (c) By adopting our method, the large Gaussians in over-reconstructed regions that lead to blur are
eliminated.

ABSTRACT
3D Gaussian Splatting (3D-GS) technique couples 3D Gaussian
primitives with differentiable rasterization to achieve high-quality
novel view synthesis results while providing advanced real-time
rendering performance. However, due to the flaw of its adaptive
density control strategy in 3D-GS, it frequently suffers from over-
reconstruction issue in intricate scenes containing high-frequency
details, leading to blurry rendered images. The underlying rea-
son for the flaw has still been under-explored. In this work, we
present a comprehensive analysis of the cause of aforementioned
artifacts, namely gradient collision, which prevents large Gaussians
in over-reconstructed regions from splitting. To address this is-
sue, We propose the novel homodirectional view-space positional
gradient as the criterion for densification. Our strategy efficiently
identifies large Gaussians in over-reconstructed regions, and recov-
ers fine details by splitting. We evaluate our proposed method on
various challenging datasets. The experimental results indicate that
our approach achieves the best rendering quality with reduced or
similar memory consumption. Our method is easy to implement
and can be incorporated into a wide variety of most recent Gauss-
ian Splatting-based methods. We will open source our codes upon
formal publication.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computing methodologies→ Reconstruction; Rendering.

KEYWORDS
Novel View Synthesis, 3D Gaussian Splatting, Point-based Radiance
Field, 3D reconstruction

1 INTRODUCTION
High quality novel view synthesis from multiple unordered im-
ages is a long-standing problem for 3D vision researchers. Recent
advances on neural rendering have revolutionized this task by learn-
ing a neural implicit representation instead of explicit point clouds
or meshes. One of the most effective approach with in this para-
digm has been reconstructing a set of 3D Gaussian primitives of
the scene[17]. Coupled with splat-based rasterization, 3D Gauss-
ian Splatting (3D-GS)[17] produces compelling real-time render-
ing results with unprecedented fidelity. The remarkable perfor-
mance of 3D-GS is closely tied to the adaptive density control
strategy. Initialized solely from a set of sparse point clouds de-
rived from Structure from Motion (SfM), 3D-GS gradually popu-
late empty areas by split/cloning existing Gaussians, ultimately
covering whole scenes with compact and precise representation.
There have been many interests on extending 3D-GS to other ap-
plications, e.g., dynamic modeling[9, 29, 37, 42], single-view or
text-to-view generation[30, 39, 43, 44], mesh extraction[12, 15, 32],
SLAM[8, 14, 40] and so on.

However, applying 3D Gaussian Splatting to complex scenes en-
counters the issue of over-reconstruction, where regions containing
high frequency details are covered by only a small number of large
Gaussians. Consequently, the rendering results become blurry and

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝜇𝜇i3𝑑𝑑

Splatting

�𝑔𝑔𝑖𝑖
Densify

𝑔𝑔𝑖𝑖 ∑ ||𝑔𝑔𝑖𝑖||
𝑛𝑛

 < 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑

∑ ||�𝑔𝑔𝑖𝑖||
𝑛𝑛

 > 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑

𝜇𝜇i

�𝑔𝑔𝑖𝑖 = �
𝑗𝑗

𝑚𝑚
𝜕𝜕𝐿𝐿𝑗𝑗
𝜕𝜕𝜇𝜇𝑖𝑖,𝑥𝑥

,�
𝑗𝑗

𝑚𝑚
𝜕𝜕𝐿𝐿𝑗𝑗
𝜕𝜕𝜇𝜇𝑖𝑖,𝑦𝑦

(a) Splatting

(b) 3D-GS

(c)AbsGS

�𝑔𝑔𝑖𝑖 = �
𝑗𝑗

𝑚𝑚
𝜕𝜕𝐿𝐿𝑗𝑗
𝜕𝜕𝜇𝜇𝑖𝑖,𝑥𝑥

,�
𝑗𝑗

𝑚𝑚
𝜕𝜕𝐿𝐿𝑗𝑗
𝜕𝜕𝜇𝜇𝑖𝑖,𝑦𝑦

Figure 2: Overview of our method. (a) The splat-based rendering technique project Gaussian𝐺𝑖 with mean position 𝜇3𝑑
𝑖

to 2D
coordinate 𝜇𝑖 in pixel-space. The number of covered pixels by Gaussian𝐺𝑖 is𝑚. (b) By backpropagating, the view-space gradient
𝑔𝑖 of Gaussian𝐺𝑖 under viewpoint 𝑘 is caculated as the sum of all view-space gradients of pixels that are covered by𝐺𝑖 . Since the
gradients 𝜕𝐿𝑗

𝜕𝜇𝑖
have different directions, the overall sum 𝑔𝑖 will have a small scale, which do not satisfy the gradient threshold

for densification. (c) Motivated by above analysis, we redesign densitifaction scheme by taking the absolute value of each
component | 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
| and | 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑦
| before summing. This enables to identify large Gaussians in over-reconstructed regions for split.

cannot accurately reflect the appearance and geometry of the scene
as validated in Fig. 1. The cause of over-reconstruction is that the
adaptive density control strategy cannot effectively identify large
Gaussians in over-reconstructed areas and split them to represent
details. The deficiency of the strategy has not been well explored.

In this paper, we find that the deficiency of the original strat-
egy lies in its failure to consider the negative impact of pixel-wise
sub-gradient directions on the identification of large Gaussians in
over-reconstructed areas. Specifically, original 3D-GS proposes to
use the view-space positional gradient to determine whether if a
large Gaussian requires split. We observe that for each Gaussian
primitive the pixel-wise sub-gradients of the view-space positional
gradient may have different directions. Therefore, the sub-gradients
cancel each other out during the process of summation, namely gra-
dient collision. Especially for large Gaussians covering many pixels,
maintaining consistent gradient directions for each pixel becomes
exceptionally challenging which results in a small-scale view-space
positional gradient. Consequently, the magnitude of view-space po-
sitional gradient fails to surpass the densification threshold, thereby
hindering the split of over-reconstructed Gaussians.

Based on the above analysis, we propose homodirectional view-
space positional gradient as criteria for densification. Homodirec-
tional view-space positional gradient is designed as the sum of the
absolute values of pixel-wise sub-gradients covered by a Gaussian
primitive, based on the rationale that the representation quality is
solely dependent on the magnitude of the gradient, irrespective of
its direction. The absolute operation can mitigate the influence of

gradient direction while retaining the influence of gradient magni-
tude. The homodirectional view-space positional gradient therefore
avoids the gradient collision and facilitates the split of large Gaus-
sians in over-reconstructed regions that were unrecognized by
original strategy. An overview of our method (dubbed as AbsGS) is
shown in Fig. 2.

We evaluate AbsGS on previously published real-world datasets.
The experiment results show that our method consistently yields
high quality novel view synthesis and exhibits better results on
PSNR, SSIM, and LPIPS. At the same time, our method keeps similar
or less memory consumption compared with 3D-GS. From the
visualization of Gaussian ellipsoids, we observe that our method
eliminates over-reconstruction areas and recovers fine details while
3D-GS fails and leads to blur, as illustrated in Fig. 1. In summary,
our contributions are as follows:

• First, we analyze the deficiency of the original strategy that
results in over-reconstruction is caused by gradient collision.

• Second, a straightforward yet effective strategy is proposed
to utilize homodirectional view-space positional gradient as
guidance for densification throughout training.

• Third, our proposed method can effectively eliminate large
Gaussians in over-reconstructed regions, and achieves better
novel view synthesis quality with similar or less memory
consumption.

2 RELATEDWORKS
Neural Implicit 3D Representation. In contrast to widely adopted

classic explicit 3D representaiton, e.g., point cloud, voxels and

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AbsGS: Recovering Fine Details for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

mesh, more recent learning-based neural implicit representations
do not require complex regularization, attract more attention and
achieve more accurate rendering results. As a revolutionary pi-
oneer, Neural Radiance Fields (NeRF)[20] couples differentiable
ray-marching with continuous radiance field to enable end-to-end
optimization from images. NeRF has been broadly receivingmassive
interest towards more photo-realistic novel view synthesis[1, 2, 4]
and its follow-up methods have been providing impressive results
to other applications, e.g, dynamic modeling[11, 24, 25], surface
reconstruction[35, 36, 38, 41], 3D asset generation[16, 26, 34]. How-
ever, with expensive volumetric ray-marching which densely sam-
ple point locations along the camera rays, NeRF is inefficient for
training at the beginning of design. Though notable NeRF-variants
[5, 10, 21, 27] have been proposed to alleviate the training/inference
computation burden by introducing spatial datastructures to store
neural features instead of large MLPs, the plenty of sampling and
queries can not be avoided due to the inherit requirement of volu-
metric rendering. Instead, point based representations with learn-
able attributes support more efficient forward rasterization for real-
time rendering. More recently, 3D Gaussian Splatting (3D-GS)[17],
revisit fast point-based rendering engine with learnable Gaussian
primitives. Starting from initial sparse point clouds from Structure
from Motion (SfM)[23, 28, 33], the optimization procedure moves
the Gaussians to correct positions, creates new Gaussians to cover
empty space, removes invalid Gaussians and finally produces a
set of Gasussions to precisely represent underlying scenes. As an
unstructured and discrete representation that supports forward
rasterzation, it fundamentally avoid the shortcomings of expensive
sampling and queries and provide real-time rendering performance,
along with high quality for novel-view synthesis. Nowadays there
have been many subsequent extensions of 3D Gaussian splatting,
e.g, surface reconstruction[6, 12, 15], generation[7, 22, 31, 39] and
dynamic modeling[19, 37].

3 METHOD
In this section, we first review the basic background of 3D-GS in
Section 3.1; then, we describe the gradient collision phenomenon
that prevent large Gaussions in over-reconstructed regions from
splitting in Section 3.2; finally, we propose the homodirectional gra-
dient as guidance for splitting and present the details in Section 3.3.

3.1 Preliminary
3D Gaussian Splatting (3D-GS)[17] proposes to represent scenes by
a set of learnable 3D Gaussians 𝐺0,𝐺1, ...,𝐺𝑁 . Each 3D Gaussian
primitive𝐺𝑖 is explicitly parameterized via center position 𝜇3𝑑

𝑖
and

full 3D covariance matrix Σ3𝑑
𝑖
:

𝐺𝑖 (𝑥) = 𝑒−
1
2 (𝑥−𝜇

3𝑑
𝑖

)𝑇 (Σ3𝑑
𝑖
)−1 (𝑥−𝜇3𝑑

𝑖
) (1)

3D Gaussian primitive also has two additional learnable attributes:
opacity 𝑜𝑖 and spherical harmonics coefficients 𝑆𝐻 𝑖 to model view
dependent color. To render an image, the 3D Gaussian primitive𝐺𝑖

is first transformed into the camera coordinate and projected onto
image plane, resulting the 2D Gaussian𝐺2𝑑

𝑖
with center position 𝜇𝑖

and 2D covariance matrix Σ2𝑑
𝑖
:

𝐺2𝑑
𝑖 (𝑥) = 𝑒−

1
2 (𝑥−𝜇𝑖)

𝑇 (Σ2𝑑
𝑖
)−1 (𝑥−𝜇𝑖) (2)

(a) GT (b) Rendered

(c) L1 (d) Gradients

Figure 3: We analyze gradient collision for view-space posi-
tional gradient, by optimizing single Gaussian to fit a image.
We show the x-axis direction of pixel-wise gradient in (d),
where red represents positive and green represents negative.

then differentiable alpha blending is employed to integrate colors
from front-to-back:

𝑐 (𝑥) =
N∑︁
𝑖

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗) (3)

𝛼𝑖 = 𝜎 (𝑜𝑖) ×𝐺2𝑑
𝑖 (𝑥) (4)

where 𝜎 (·) is the sigmoid function and N is the number of Gaus-
sians that participate in alpha blending. 3D-GS initializes 3D Gaus-
sians with the free sparse point clouds produced from SfM[28],
and then applies adaptive density control to populate empty ar-
eas. There are two forms of densitification: split and clone. Split
operation is designed to split large Gaussians that represent small-
scale areas in two, which corresponds to over-reconstruction. Clone
operation aims at clone more Gaussians to sufficiently cover under-
reconstruction region For each Gaussian𝐺𝑖 , 3D-GS uses the average
magnitude of view-space positional gradients to determine whether
to apply densification. Specifically, for Gaussian𝐺𝑖 which have the
pixel-space projection point 𝜇𝑘

𝑖
= (𝜇𝑘

𝑖,𝑥
, 𝜇𝑘

𝑖,𝑦
) under viewpoint 𝑘 and

corresponding loss 𝐿𝑘 , the average view-space positional gradient
∇𝜇𝑖𝐿 is calculated every 100 training iterations as follows:

∇𝜇𝑖𝐿 =

∑𝑀
𝑘=1 | |

𝜕𝐿𝑘

𝜕𝜇𝑘
𝑖

| |

𝑀
=

∑𝑀
𝑘=1

√︂
(𝜕𝐿𝑘

𝜕𝜇𝑘
𝑖,𝑥

)2 + (𝜕𝐿𝑘

𝜕𝜇𝑘
𝑖,𝑦

)2

𝑀
(5)

where𝑀 is the total number of viewpoints that Gaussian𝐺𝑖 partic-
ipates in calculation during 100 iterations. Split for𝐺𝑖 is performed
when it satisfies:

∇𝜇𝑖𝐿 > 𝜏𝑝 and Σ3𝑑𝑖 > 𝜏𝑆 (6)

where 𝜏𝑝 is the the gradient threshold (default 0.0002) and 𝜏𝑆 is the
scale threshold (default 0.01).

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) Ground truth (b) Rendered (c) Ellipsoids

#: 16448 #: 69269

(d) Select by 3D-GS

#: 16448 #: 69269

(e) Select by AbsGS

Figure 4: An example to demonstrate the difference between densification strategy of 3D-GS and AbsGS. From (b) and (c), we
observe that large-scale Gaussians are used to represent cement ground, which contains fine details and indeed should be
represented by many small-scale Gaussians. In (d) and (e), we show the Gaussians that satisfy densification criteria of 3D-GS
and ours respectively, where identified Gaussians’ colors are set to white. When using 𝑔𝑖 as 3D-GS, the large Gaussians that
represent cement ground are not identified while our selection strategy based on 𝑔𝑖 can find those Gaussians.

3.2 Gradient Collision
3D-GS relies on gradient descent to optimize the scene, so the
magnitude of the gradient can reflect the quality of representation.
However, the computation of ∇𝜇𝑖𝐿 includes gradient directions
that are irrelevant to the representation state, weakening the ef-
fectiveness of the gradient magnitude. In this section, we analyze
the negative impact of gradient directions. Specifically, there exists
gradient collision in the calculation of 𝜕𝐿𝑘

𝜕𝜇𝑘
𝑖,𝑥

and 𝜕𝐿𝑘

𝜕𝜇𝑘
𝑖,𝑦

, thus affect

the role of ∇𝜇𝑖𝐿. To simplify the notation, we discard view 𝑘 in
following notations, and we use 𝑔𝑖 , 𝑔𝑖,𝑥 and 𝑔𝑖,𝑦 to refer 𝜕𝐿

𝜕𝜇𝑖
, 𝜕𝐿
𝜕𝜇𝑖,𝑥

and 𝜕𝐿
𝜕𝜇𝑖,𝑦

respectively.
Take the x-axis gradient 𝑔𝑖,𝑥 as an example. We further decom-

pose this gradient into the sum of multiple sub-gradients con-
tributed by each pixel:

𝑔𝑖,𝑥 =
𝜕𝐿

𝜕𝜇𝑖,𝑥
=

𝑚∑︁
𝑗=1

𝜕𝐿 𝑗

𝜕𝜇𝑖,𝑥
(7)

where𝑚 is the number of pixels covered by 𝐺𝑖 , 𝐿𝑗 is the loss com-
puted by 𝑗-th pixel. Our key observation is that the per-pixel gradi-
ents 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
may have different directions. The proof is as follows.

Proof. We simplify the proving goal to demonstrating that the
signs of gradients may differ, which is equivalent to proving that
the gradient directions are different. Per-pixel gradient 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
can

be calculated as:

𝜕𝐿 𝑗

𝜕𝜇𝑖,𝑥
=

3∑︁
𝑙=1

𝜕𝐿 𝑗

𝜕𝑐
𝑗

𝑙

×
𝜕𝑐

𝑗

𝑙

𝜕𝛼𝑖
× 𝜕𝛼𝑖

𝜕𝜇𝑖,𝑥
(8)

The sign of 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
is determined by the multiplication of signs of

three individual terms.
For the first term, since 𝐿𝑗 is L1 loss, the sign of first term 𝜕𝐿𝑗

𝜕𝑐
𝑗

𝑙

depends on the comparison result of rendered and real RGB values.

For the second term
𝜕𝑐

𝑗

𝑙

𝜕𝛼𝑖
, according to Equ.3, it can be further

calculated as follows:

𝜕𝑐
𝑗

𝑙

𝜕𝛼𝑖
=

𝑖−1∏
𝑙=1

(1 − 𝛼𝑙)𝑐𝑖 +
𝑁∑︁

𝑝=𝑖+1
𝑐𝑝

𝜕𝑤𝑝

𝜕𝛼𝑖
, (9)

𝜕𝑤𝑝

𝜕𝛼𝑖
= −𝛼𝑝

𝑝−1∏
𝑙=1,𝑙≠𝑖

(1 − 𝛼𝑙), (10)

Thus, the two additions to Equ.9 have opposite signs, and the sign

of
𝜕𝑐

𝑗

𝑙

𝜕𝛼𝑖
is uncertain. Here 𝑐𝑖 and 𝑐𝑝 are Gaussian colors, 𝑐 𝑗

𝑙
is the

color of the pixel.
For the third term 𝜕𝛼𝑖

𝜕𝜇𝑖,𝑥
, according to Equ.4, it is calculated as:

𝜕𝛼𝑖

𝜕𝜇𝑖,𝑥
= 𝜎 (𝑜𝑖) ×

𝜕𝐺2𝑑
𝑖

(𝜇𝑖,𝑥)
𝜕𝑥

= 𝜎 (𝑜𝑖) ×
(𝜇𝑖,𝑥 − 𝑝 𝑗)𝐺2𝑑

𝑖
(𝜇𝑖,𝑥)

𝜎21
(11)

where 𝑝 𝑗 is the coordinate of 𝑗-th pixel. Therefore, the sign of the
third term 𝜕𝛼𝑖

𝜕𝜇𝑖,𝑥
is determined by the relative x-axis coordinate

difference (𝜇𝑖,𝑥 − 𝑝 𝑗).
Overall, the sign of first term is determined by to the rendered

pixel value, the sign of second term is related all the Gaussians’s
that participate in calculation, and the sign of third term is related
to the projection point, so these three terms do not always have
the same sign, and the per-pixel gradient 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
may have different

directions for different pixels.
We design a simple experiment to verify the above analysis, as

illustrated in 3. An image is randomly selected from the 𝑓 𝑙𝑜𝑤𝑒𝑟𝑠

scene fromMip-NeRF360[3] and is reduced to a resolution of 100×65
in Fig. 3 (a). Then we optimize only one Gaussian to fit this image,
and the final rendering result is shown in Fig. 3 (b). The overall L1
loss is large and this Gaussian leads to a typical over-reconstruction
issue, in Fig. 3 (c). we show the x-axis gradient direction 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
in

Fig. 3 (d), where the pixel color means the x-axis direction of the
gradient contributed by this pixel, and red is for positive x-axis
direction and green for negative x-axis direction. The different
directions of per-pixel gradient 𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
results the sum ∇𝜇𝑖𝐿 may

have a small-scale magnitude . Especially for large Gaussians that
covering many pixels, maintaining consistent gradient directions
for each pixel becomes exceptionally challenging. Consequently,

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AbsGS: Recovering Fine Details for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Quantitative results on Mip-NeRF 360[1], Tanks & Temples[18], and Deep Blending[13]. All scores of the rest of the
baselines are directly sourced from the original 3D-GS paper[17] to make a fair comparison. INGP-Base and INGP-Big are
Instant-NGP versions with default settings and increased network size respectively. The 1st, 2nd, and 3rd-best performances
are indicated by red, orange, and yellow highlights respectively.

Datasets Mip-NeRF360 Tanks & Temples Deep Blending
Methods SSIM PSNR LPIPS Mem SSIM PSNR LPIPS Mem SSIM PSNR LPIPS Mem
Plenoxels 0.626 23.08 0.463 2.1GB 0.719 21.08 0.379 2.3GB 0.795 23.06 0.510 2.7GB
INGP-Base 0.671 25.30 0.371 13MB 0.723 21.72 0.330 13MB 0.797 23.60 0.423 13MB
INGP-Big 0.699 25.59 0.331 48MB 0.745 21.92 0.305 48MB 0.817 24.96 0.390 48MB
Mip-NeRF360 0.792 27.69 0.237 8.6MB 0.759 22.22 0.257 8.6MB 0.901 29.40 0.245 8.6MB
3D-GS 0.815 27.21 0.214 734MB 0.841 23.14 0.183 411MB 0.903 29.41 0.243 676MB
3D-GS* 0.809 27.36 0.220 760MB 0.842 23.64 0.179 374MB 0.897 29.57 0.240 624MB
AbsGS-0008 0.815 27.41 0.211 450MB 0.844 23.54 0.1831 202MB 0.903 29.69 0.241 380MB
AbsGS-0004 0.820 27.49 0.191 728MB 0.853 23.73 0.162 304MB 0.902 29.67 0.236 444MB

the gradient magnitude fails to surpass the densification threshold
𝜏𝑝 , thereby hindering the split of over-reconstructed Gaussians.

3.3 Homodirectional Gradient
Based on the above analysis, we design AbsGS, which can accu-
rately reflects the representation state and identify Gaussians in
over-reconstructed regions. The overall review of our method is
shown in Fig. 2. AbsGS aims to eliminate gradient collision by eras-
ing the influence of gradient direction while retaining only the
influence of gradient magnitude. Specifically, AbsGS computes the
homodirectional view-space positional gradient 𝑔𝑖 by taking the
absolute value of each component before summing:

𝑔𝑖 = (𝑔𝑖,𝑥 , 𝑔𝑖,𝑦) (12)

𝑔𝑖,𝑥 =

𝑚∑︁
𝑗=1

|
𝜕𝐿𝑗

𝜕𝜇𝑖,𝑥
|, 𝑔𝑖,𝑦 =

𝑚∑︁
𝑗=1

|
𝜕𝐿 𝑗

𝜕𝜇𝑖,𝑦
| (13)

The absolute operation constrains the gradient directions of all
pixels to be in the same direction along the x and y axes, thereby
avoiding gradient collision. It uses the magnitudes of the gradient
components along the x and y axes to jointly express the state of rep-
resentation, and finally combines these two components through
the 𝐿2 norm. This value directly reflects the expression state of
all the pixels covered by the Gaussian, thus accurately identify-
ing Gaussians with subpar expression, such as over-reconstructed
Gaussians. Note that the𝑔𝑖 is not used in backpropagation of compu-
tation graph, it is an extra variable that only related to densification.

Fig. 4 presents a real example to compare the selected Gaussians
that need densification between 3D-GS and ours. We first optimize
the scene 𝑡𝑟𝑒𝑒ℎ𝑖𝑙𝑙 of Mip-NeRF360 for 7000 iterations using 3D-GS.
then we select over-reconstructed Gaussians by original 𝑔𝑖 and
ours homodirectional 𝑔𝑖 . The selected Gaussians are highlight with
white, as shown in Fig. 4 (d) and (e). It shows that 3D-GS selects
69,269 Gaussians for densification but it missed most of the large
Gaussians in over-reconstructed areas. In contrast, our proposed
AbsGS only select 16,488 Gaussians while covering the majority of
over-reconstructed areas. This experiment effectively demonstrates
that our method is better suited as the criteria for densification.

4 EXPERIMENTS
4.1 Setup

Datasets. Following 3D-GS[17], we select scenes with highly
diverse capture styles, spanning from enclosed indoor environments
to expansive outdoor settings without clear boundaries. Specifically,
we use all 9 unbounded indoor and outdoor scenes presented in
Mip-NeRF360[3], two scenes from [18] and two scenes provided by
[13], totaling 13 distinct environments.

Baselines. Across all dataset, we benchmark our proposedmethod
against multi-level hash grid based Instant-NGP[21], the current
state-of-the-art NeRF-basedmethodMip-NeRF360, andwidely-used
3D GS[17]. To ensure a fair comparison, all numerical data of these
methods presented in tables are directly sourced from the original
publication[17] unless otherwise specified. In addition, we observe
that the scale of some scene details is smaller than the default radius
threshold 𝜏𝑆 that used to control split operation, and thus 3D-GS
is hindered in sufficient split for these regions. To further improve
enhance the ability of 3D-GS. we reduced the 𝜏𝑆 from default 0.01 to
0.001 and retrain 3D-GS, which is denoted as 3D-GS* in following
experiments. Our method AbsGS is also trained with 𝜏𝑆 set as 0.001.
Since 𝜏𝑝 is a hyper-parameter that impact the behavior of AbsGS,
we present the results when 𝜏𝑝 is set to different values. Specifically,
AbsGS-0004 and AbsGS-0008 represent the results when 𝜏𝑝 is set
to 0.0004 and 0.0008 respectively.

Implementation Details. Our experiments is measured on a sin-
gle NVIDIA V100 GPU with 32GB memory. Following common
practice, we stop the Gaussian densification after 15k iterations and
stop training at 30k iterations. We report the novel view synthesis
metrics PSNR, SSIM, and LPIPS, and we also show the number of
Gaussians and the memory used to store the parameters of opti-
mized Gaussians to demonstrate the trade-off between efficiency
and memory. To highlight the effectiveness of AbsGS in addressing
over-reconstruction, homodirectional gradients are only used as
guidance for split operation while clone operation follows the origi-
nal strategy of 3D-GS directly. We select a larger gradient threshold
𝜏𝑝 for split operation since AbsGS will increase the magnitude of
∇𝜇𝑖𝐿 than that in 3D-GS.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

GTOurs3D-GSMip-NeRF360

Figure 5: Qualitative comparisons of different methods on scenes from Mip-NeRF360[3] and Tanks&Temples[18] datasets. The
rendering result of 3D Gaussian Splatting is blurry at regions containing high-frequency details. Our AbsGS yields significantly
better rendering quality with sharper details.

4.2 Performance Evaluation
Quantitative Results. We report the quantitative results in Ta-

ble. 1. Both AbsGS-0004 and AbsGS-0008 outperform other base-
lines in most cases. It’s noteworthy that our method consistently
yields better result in terms of SSIM and LPIPS metrics, which cap-
ture more reliable human perception differences in images than
PSNR metric. Additionally, it can be observed from the memory
consumption that the effectiveness of AbsGS does not stem from
an increased number of Gaussians. Compared to original 3D-GS,
AbsGS-0008 only maintains roughly half the memory consumption
and AbsGS-0004 also consistently maintains lower memory, while
the quantitative result of them remain highly competitive.

Qualitative Results. First, we show novel view synthesis results
in Fig. 5. The results indicate that our method significantly reduces
the rendering blurring phenomenon and improves rendering qual-
ity across all scenes, such as weeds under the bench and uneven
concrete ground. Second, to demonstrate the effectiveness of our
method in eliminating large Gaussians in over-reconstructed re-
gions, we select stump scene and visualize the point clouds and
ellipsoids along with the number of Gaussians in Fig. 7. We can
observe that 3D-GS exhibits over-reconstruction in areas with sim-
ilar colors but rich textures, such as the grassy area, where the
point cloud is very sparse and the ellipsoids are excessively large.
In contrast, our method effectively utilizes smaller Gaussians for

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AbsGS: Recovering Fine Details for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

GT Rendered # of Ellipsoid: 1210196

(a
)

𝜏𝜏: 0.0002, #: 77969 𝜏𝜏: 0.00015, #:13943
8

𝜏𝜏: 0.00010, #: 255136 𝜏𝜏: 0.00005, #: 470455 𝜏𝜏: 0.00001, #: 887443

(b
) 3

D
-G

S

𝜏𝜏: 0.001, #: 37390 𝜏𝜏: 0.00075 #: 64665 𝜏𝜏: 0.0005, #: 127393 𝜏𝜏: 0.00025 #: 301182 𝜏𝜏: 0.0001 #: 557857

(c
) A

bs
G

S

Figure 6: Comparison of identified Gaussians under different gradient thresholds. (a) The result of training the 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 scene for
3000 iterations using 3D-GS with a gradient threshold of 0.0002, showing significant over-reconstruction. (b) and (c) respectively
show the selection results of 3D-GS and AbsGS with different gradient thresholds at this stage. White represents Gaussians that
are selected for densification while black represents those that do not. The threshold and the number of selected Gaussians are
both annotated.

representing those areas. It is worth mentioning that the number
of Gaussians of AbsGS is less than that of 3D-GS, with Abs-0008
even being less than half of 3D-GS. This indicates that our method
does not rely on more Gaussians to solve the problem of over-
reconstruction. Additionally, the scale threshold for Abs-0008* is
set to 0.01 as same as 3D-GS, to demonstrate that the effectiveness
of our method does not depend on adjusting the hyperparameter.
We provide more qualitative comparisons in the supplementary
material.

Ablation Studies. In this section, we conduct ablation experi-
ments to study the impact of scale threshold 𝜏𝑆 and gradient thresh-
old 𝜏𝑝 on our method. We present quantitative results in in Tab.2.
The experimental results demonstrate that lowering any of 𝜏𝑝 and
𝜏𝑆 improves rendering quality at the cost of memory. Additionally,
to qualitatively illustrate the impact of 𝜏𝑆 on rendering quality, we
show rendering result in Fig.8. The visualization demonstrates that
a smaller 𝜏𝑆 helps to mitigate large Gaussians in over-reconstructed
regions. The reason is that the scale of some scene details is smaller
than 𝜏𝑆 ; consequently, the Gaussions on those regions that have
larger radius than 𝜏𝑆 will not split and thus lead to blurry rendering.

4.3 Analysis
Why not solve the over-reconstruction problem by simply lower-

ing the threshold 𝜏𝑝? Since over-reconstruction issue is caused by

(b) Points(a) Rendered (c)Ellipsoids

A
bs

G
S-

00
04

A
bs

G
S-

00
08

*
3D

-G
S

#: 4663360

#: 2296499

#: 4784825

Figure 7: The visualization of rendered images, point clouds,
and ellipsoids. The scale threshold for both AbsGS-0008* and
3D-GS is 0.01, while the scale threshold for AbsGS is 0.001.

gradient collision that make it difficult for the gradient of large Gaus-
sions to exceed threshold 𝜏𝑝 , a straightforward solution is lowering
threshold 𝜏𝑝 to identify more large Gaussians in over-reconstructed
regions. However, we have observed that this solution doesn’t per-
form well in practice and leads to significant memory consumption.
Fig. 9 (a) shows the LPIPS and memory consumption of 3D-GS

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Quantitative studies for different scale threshold 𝜏𝑆 and gradient threshold 𝜏𝑝 . The 1st and 2nd performances are
indicated by red and orange highlights respectively.

Datasets Mip-NeRF360 Tanks & Temples Deep Blending
Methods SSIM PSNR LPIPS Mem SSIM PSNR LPIPS Mem SSIM PSNR LPIPS Mem
𝜏𝑆=0.01 𝜏𝑝=0.0008 0.817 27.38 0.212 374MB 0.842 23.64 0.190 159MB 0.902 29.55 0.249 265MB
𝜏𝑆=0.001 𝜏𝑝=0.0008 0.815 27.41 0.211 450MB 0.845 23.54 0.183 202MB 0.903 29.69 0.241 380MB
𝜏𝑆=0.01 𝜏𝑝=0.0004 0.820 27.52 0.202 637MB 0.8531 23.86 0.173 314MB 0.903 29.45 0.247 386MB
𝜏𝑆=0.001 𝜏𝑝=0.0004 0.821 27.49 0.191 728MB 0.853 23.73 0.162 304MB 0.902 29.67 0.236 444MB

(a) 𝜏𝑆=0.001, 𝜏𝑝=0.0004 (b) 𝜏𝑆=0.01, 𝜏𝑝=0.0004

Figure 8: Comparison of results for AbsGS under different
scale thresholds.

at different thresholds 𝜏𝑝 in the 𝑓 𝑙𝑜𝑤𝑒𝑟𝑠 scene of Mip-NeRF360.
The gradually increased memory requirements make the simple
solution impractical for real-world applications. Additionally, we
show rendering result when 𝜏𝑝 is set to 0.0001 in Fig. 9 (b). It’s
observed that the over-reconstruction issue is still evident even at
the cost of 2.47GB memory. Further lowering the threshold below
0.0001 result in out of CUDA memory error when training a single
V100 GPU. Above analysis reveals that simply lowering gradient
threshold 𝜏𝑝 is impractical to eliminate over-reconstruction.

Why does addressing over reconstruction require a large amount
of memory for 3D-GS while AbsGS does not? As illustrated above, di-
rectly reducing the threshold for 3D-GS 𝜏𝑝 is highly inefficient and
impractical while our methodmanages to solve over-reconstruction.
Next, we uncover the reasons behind it by visualizing selected Gaus-
sians for split. In Fig. 6 (a), we train the 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 scene with 3D-GS
using default parameters for 3000 steps. The rendering image and
ellipsoid image reveal that there are numerous over-reconstructed
areas in the scene, such as lawn and trees. Fig. 6 (b) and (c) re-
spectively show the Gaussians selected under different gradient
thresholds for 3D-GS and AbsGS, with the number of selected Gaus-
sians inset. In the case of 3D-GS with the default threshold of 0.0002,
although it selected 77969 Gaussians, it did not effectively encom-
pass over-reconstructed region. In contrast, AbsGS can select most
of the over-reconstructed region by selecting only 37390 Gaussians
at the threshold of 0.001. Besides this, lowering the threshold indeed
allows for the selection of more over-reconstructed areas for 3D-GS,
but the number of selected Gaussians increases rapidly, and the
rate of noise in all selected Gaussians is also apparent, resulting in
large memory cost. In particular, see Fig. 6 (b) and Fig. 6 (c), it can
be observed that when we lower the threshold, 3D-GS selects many
Gaussians that do not need split but still can not select large Gaus-
sians in over-reconstructed regions. Above analysis demonstrates
that the homodirectional gradient used by AbsGS offers a much

gradient threshold (× 10−3)

(a) Impact of 𝜏𝑝

LPIPS: 0.286
 Mem: 2.47GB

(b) rendered image (𝜏𝑝 = 0.0001)

Figure 9: Comparison of results for 3D-GS under different
gradient thresholds.

more accurate reflection of the representation quality, leading to
fewer mistakenly selected Gaussians. This fundamental distinction
proves why AbsGS is more efficient than 3D-GS.

5 CONCLUSION
3D-GS has made significant strides in novel view synthesis tasks,
but it frequently encounters issues such as blurriness and loss of de-
tail stemming from over-reconstruction. This paper delves into the
phenomenon of over-reconstruction and identifies gradient colli-
sion in 3D-GS’s adaptive density control strategy as a primary cause.
Specifically, the view-space positional gradient used in this strategy
is the sum of sub-gradients of all pixels covered by a Gaussian, and
these gradient directions cannot always remain consistent, lead-
ing to mutual cancellation. To tackle this challenge, our proposed
AbsGS utilizes homodirectional view-space positional gradient by
taking the absolute values of the x and y components of pixel-wise
sub-gradients separately, eliminating the influence of direction. Ex-
tensive experiments conducted on multiple datasets against 3D-GS
demonstrate the significant advantages of our method in elimi-
nating over-reconstruction and restoring fine details. Moreover,
our approach boasts lower memory consumption compared to 3D-
GS, largely attributable to AbsGS’s more accurate identification of
over-reconstruction through the use of homodirectional gradients.

REFERENCES
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo

Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale repre-
sentation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Repre-
sentation for Anti-Aliasing Neural Radiance Fields. ICCV (2021).

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5470–5479.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

AbsGS: Recovering Fine Details for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. ICCV
(2023).

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).

[6] Hanlin Chen, Chen Li, and Gim Hee Lee. 2023. NeuSG: Neural Implicit Sur-
face Reconstruction with 3D Gaussian Splatting Guidance. arXiv preprint
arXiv:2312.00846 (2023).

[7] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee.
2023. Luciddreamer: Domain-free generation of 3d gaussian splatting scenes.
arXiv preprint arXiv:2311.13384 (2023).

[8] Tianchen Deng, Yaohui Chen, Leyan Zhang, Jianfei Yang, Shenghai Yuan, Danwei
Wang, and Weidong Chen. 2024. Compact 3d gaussian splatting for dense visual
slam. arXiv preprint arXiv:2403.11247 (2024).

[9] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Bao-
quan Chen. 2024. 4D Gaussian Splatting: Towards Efficient Novel View Synthesis
for Dynamic Scenes. arXiv preprint arXiv:2402.03307 (2024).

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5501–5510.

[11] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa.
2022. Monocular dynamic view synthesis: A reality check. Advances in Neural
Information Processing Systems 35 (2022), 33768–33780.

[12] Antoine Guédon and Vincent Lepetit. 2023. Sugar: Surface-aligned gaussian
splatting for efficient 3d mesh reconstruction and high-quality mesh rendering.
arXiv preprint arXiv:2311.12775 (2023).

[13] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Dret-
takis, and Gabriel Brostow. 2018. Deep blending for free-viewpoint image-
based rendering. ACM Transactions on Graphics (Dec 2018), 1–15. https:
//doi.org/10.1145/3272127.3275084

[14] Jiarui Hu, Xianhao Chen, Boyin Feng, Guanglin Li, Liangjing Yang, Hujun Bao,
Guofeng Zhang, and Zhaopeng Cui. 2024. CG-SLAM: Efficient Dense RGB-D
SLAM in a Consistent Uncertainty-aware 3D Gaussian Field. arXiv preprint
arXiv:2403.16095 (2024).

[15] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2024.
2D Gaussian Splatting for Geometrically Accurate Radiance Fields. arXiv preprint
arXiv:2403.17888 (2024).

[16] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. 2022.
Zero-shot text-guided object generation with dream fields. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 867–876.

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM
Transactions on Graphics 42, 4 (2023).

[18] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (ToG) 36, 4 (2017), 1–13.

[19] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. 2023. Spacetime Gaussian Feature
Splatting for Real-Time Dynamic View Synthesis. arXiv preprint arXiv:2312.16812
(2023).

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[21] ThomasMüller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with amultiresolution hash encoding. TOG 41, 4 (2022),
1–15.

[22] Hao Ouyang, Kathryn Heal, Stephen Lombardi, and Tiancheng Sun. 2023.
Text2Immersion: Generative Immersive Scene with 3D Gaussians. arXiv preprint
arXiv:2312.09242 (2023).

[23] Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. 2017. A survey
of structure from motion*. Acta Numerica 26 (2017), 305–364.

[24] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5865–5874.

[25] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M Seitz. 2021. Hypernerf:
A higher-dimensional representation for topologically varying neural radiance
fields. arXiv preprint arXiv:2106.13228 (2021).

[26] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

[27] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. Kilonerf:
Speeding up neural radiance fields with thousands of tiny mlps. In Proceedings of
the IEEE/CVF international conference on computer vision. 14335–14345.

[28] Johannes L Schonberger and Jan-Michael Frahm. 2016. Structure-from-motion
revisited. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4104–4113.

[29] Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing.
2024. 3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming
of Photo-Realistic Free-Viewpoint Videos. arXiv preprint arXiv:2403.01444 (2024).

[30] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and
Ziwei Liu. 2024. LGM: Large Multi-View Gaussian Model for High-Resolution
3D Content Creation. arXiv preprint arXiv:2402.05054 (2024).

[31] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. 2023. Dream-
gaussian: Generative gaussian splatting for efficient 3d content creation. arXiv
preprint arXiv:2309.16653 (2023).

[32] Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu,
and Juho Kannala. 2024. DN-Splatter: Depth and Normal Priors for Gaussian
Splatting and Meshing. arXiv preprint arXiv:2403.17822 (2024).

[33] Shimon Ullman. 1979. The interpretation of structure frommotion. Proceedings of
the Royal Society of London. Series B. Biological Sciences 203, 1153 (1979), 405–426.

[34] Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. 2022.
Clip-nerf: Text-and-image driven manipulation of neural radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3835–3844.

[35] PengWang, Lingjie Liu, Yuan Liu, Christian Theobalt, TakuKomura, andWenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. Advances in Neural Information Processing Systems
34 (2021), 27171–27183.

[36] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt,
and Lingjie Liu. 2023. Neus2: Fast learning of neural implicit surfaces for multi-
view reconstruction. In ICCV. 3295–3306.

[37] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,
Wenyu Liu, Qi Tian, and XinggangWang. 2023. 4d gaussian splatting for real-time
dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023).

[38] Yuxi Xiao, Nan Xue, Tianfu Wu, and Gui-Song Xia. 2023. Level-S2fM: Structure
From Motion on Neural Level Set of Implicit Surfaces. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17205–17214.

[39] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yu-
jun Shen, and GordonWetzstein. 2024. Grm: Large gaussian reconstruction model
for efficient 3d reconstruction and generation. arXiv preprint arXiv:2403.14621
(2024).

[40] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang, Bin Zhao, and Xuelong
Li. 2023. Gs-slam: Dense visual slam with 3d gaussian splatting. arXiv preprint
arXiv:2311.11700 (2023).

[41] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of
neural implicit surfaces. Advances in Neural Information Processing Systems 34
(2021), 4805–4815.

[42] Heng Yu, Joel Julin, Zoltán Á Milacski, Koichiro Niinuma, and László A Jeni. 2023.
Cogs: Controllable gaussian splatting. arXiv preprint arXiv:2312.05664 (2023).

[43] Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang,
Deqing Sun, and Ming-Hsuan Yang. 2024. GALA3D: Towards Text-to-3D Com-
plex Scene Generation via Layout-guided Generative Gaussian Splatting. arXiv
preprint arXiv:2402.07207 (2024).

[44] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei
Cao, and Song-Hai Zhang. 2023. Triplane meets gaussian splatting: Fast and
generalizable single-view 3d reconstruction with transformers. arXiv preprint
arXiv:2312.09147 (2023).

https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084

	Abstract
	1 Introduction
	2 Related Works
	3 Method
	3.1 Preliminary
	3.2 Gradient Collision
	3.3 Homodirectional Gradient

	4 Experiments
	4.1 Setup
	4.2 Performance Evaluation
	4.3 Analysis

	5 Conclusion
	References

