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ABSTRACT

Pre-trained vision-language models (VLMs), such as CLIP, have demonstrated
remarkable zero-shot generalization, enabling deployment in a wide range of real-
world tasks without additional task-specific training. However, in real deployment
scenarios with evolving environments or emerging classes, these models inevitably
face distributional shifts and novel tasks. In such contexts, static zero-shot capabil-
ities are insufficient, and there is a growing need for continual learning methods
that allow models to adapt over time while avoiding catastrophic forgetting. We
introduce NuSA-CL (Null Space Adaptation for Continual Learning), a lightweight
memory-free continual learning framework designed to address this challenge.
NuSA-CL employs low-rank adaptation and constrains task-specific weight updates
to lie within an approximate null space of the model’s current parameters. This
strategy minimizes interference with previously acquired knowledge, effectively
preserving the zero-shot capabilities of the original model. Unlike methods relying
on replay buffers or costly distillation, NuSA-CL imposes minimal computational
and memory overhead, making it practical for deployment in resource-constrained,
real-world continual learning environments. Experiments show that our frame-
work not only effectively preserves zero-shot transfer capabilities but also achieves
highly competitive performance on continual learning benchmarks. These results
position NuSA-CL as a practical and scalable solution for continually evolving
zero-shot VLMs in real-world applications.

1 INTRODUCTION

Vision-language foundation models such as CLIP(Radford et al., 2021) have brought about a ma-
jor shift in artificial intelligence by enabling zero-shot generalization. Their powerful text-image
aligned representations now serve as the perceptual core for a new generation of systems, including
Multimodal Large Language Models (MLLMs) like LLaVA and Vision-Language Action (VLA)
models for robotics. However, these advanced systems inherit a critical limitation from their static
backbones: In settings where data distributions and user requirements are constantly evolving, their
knowledge is frozen. To bridge the gap between static foundation models and the demands of
real-world deployment without resorting to massive retraining, Continual Learning (CL) has emerged
as a promising solution. CL allows models to incrementally acquire new knowledge while preventing
catastrophic forgetting of both pre-trained and previously learned tasks.

Existing CL paradigms, however, face a fundamental scalability wall. Storage-based methods,
which rely on experience replay or reference data(Saha et al., 2021; Wang et al., 2021), are inherently
constrained by storage costs that grow linearly with the number of tasks. On the other hand, expansion-
based methods introduce new modules for each task, such as adapters or prompts(Yu et al., 2024;
Tang et al., 2024), forcing a model’s parameters and architectural complexity to grow unbounded
over time. While effective on short-term benchmarks, these dominant approaches are ill-suited for
true lifelong learning. Even many parameter-efficient fine-tuning (PEFT) techniques still depend on
explicitly storing prior task information to mitigate interference(Liang & Li, 2024; Lu et al., 2024).

We argue that overcoming this scalability wall requires a paradigm shift from relying on external
resources to enabling a model to adapt using only its intrinsic structure. We propose NuSA-CL (Null
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Figure 1: The NuSA-CL framework. Starting with the weights from the previous task Wt−1, we
first perform SVD to identify the intrinsic null space. A new low-rank update ∆Wt is then learned
under a persistent constraint that confines it to this space. Finally, the update is merged to produce
the new weights Wt ←Wt−1 +∆W , completing the cycle.

Space Adaptation for Continual Learning), a continual learning framework that enables a model
with a fixed capacity to efficiently reorganize its own knowledge to accommodate new information.
NuSA-CL dynamically identifies an underutilized null space in the model’s current weights via
SVD before each new task and strictly confines all weight updates within these interference-free
dimensions throughout training. This data-agnostic process concludes by merging the update into
the backbone, maintaining a fixed parameter budget. By preserving the model’s core knowledge,
NuSA-CL enables stable continual adaptation, offering the ultimate form of scalability with zero
storage overhead, zero auxiliary model load, and zero parameter growth which is a crucial set of
properties for resource-constrained environments such as autonomous agents or on-device AI.

Our contributions are summarized as follows:

• We propose NuSA-CL, a novel memory-free and resource-efficient continual learning method
for vision-language foundation models, designed to operate effectively in resource-constrained
environments without relying on memory buffers or knowledge distillation.

• NuSA-CL introduces a null space-constrained low-rank update strategy that integrates new
knowledge into an approximate null space of the pre-trained parameters, thereby preserving
zero-shot generalization while enabling stable and incremental learning.

• Our method demonstrates significant computational and memory efficiency, making it well-
suited for real-world applications that demand lifelong adaptability under limited resources.

2 RELATED WORK

2.1 CONTINUAL LEARNING WITH PARAMETER-EFFICIENT FINE-TUNING

Continual learning (CL) aims to adapt models to a sequence of tasks without the catastrophic
forgetting of previously acquired knowledge (Li & Hoiem, 2017; Rebuffi et al., 2017; Chaudhry
et al., 2019; Ding et al., 2022). A central challenge is the stability-plasticity trade-off, which is
amplified in foundation models like CLIP, where forgetting undermines not only past tasks but
also the general-purpose zero-shot capabilities acquired during pre-training (Wortsman et al., 2022;
Zhang et al., 2023; Tan et al., 2024). While full fine-tuning methods like ZSCL (Zheng et al.,
2023) can be effective, they often require resource-intensive techniques, hindering their scalability.
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Parameter-Efficient Fine-Tuning (PEFT) offers a lightweight alternative by restricting updates to a
small subset of parameters. This family includes prompt-based methods that isolate task-specific
knowledge (Wang et al., 2022b;a) and adapter-based methods that insert small, trainable modules for
each task (Yu et al., 2024; Tang et al., 2024; Wu et al., 2025; Wei et al., 2024). However, many of
these approaches still externalize new knowledge into task-specific modules, which contributes to
parameter growth over long task sequences. In contrast, our work focuses on adapting the model’s
core weights within a fixed parameter budget.

2.2 ORTHOGONAL PROJECTION AND NULL SPACE APPROACHES

To explicitly mitigate interference, orthogonal projection techniques constrain parameter updates
to subspaces that are orthogonal to those encoding prior knowledge. Prior works typically project
new updates away from subspaces identified using stored information, such as past data, features,
or gradients (Wang et al., 2021; Saha et al., 2021; Zhao et al., 2023). For instance, InfLoRA (Liang
& Li, 2024) adapts this concept to LoRA but still necessitates a memory bank of past gradients to
enforce orthogonality. This reliance on external memory contrasts with our strictly memory-free
approach. Our method is distinct in that it derives the approximate null space intrinsically from the
model’s current weight structure via SVD, requiring no access to or storage of past data, features, or
gradients.

2.3 SVD-GUIDED ADAPTATION IN FOUNDATION MODELS

Several recent methods explore using the spectral properties of a model’s weights to guide adaptation,
primarily for single-task fine-tuning (Lingam et al., 2024; Yang et al., 2025; Tang et al., 2025). These
approaches involve adapting either principal components (Meng et al., 2024) or, conversely, minor
low-energy components to minimize interference with pre-trained knowledge (Wang et al., 2025).
While insightful, these methods differ from our work in two fundamental ways. First, they are
designed for single-task adaptation, not the long-term, sequential learning required in CL. Second,
and most critically, they use the low-energy subspace only for initialization, allowing the weight
updates to deviate from this subspace during training. Our method, in contrast, enforces a persistent
constraint, ensuring updates are strictly confined to the dynamically identified null space. This
enables stable, lifelong learning within a fixed-capacity model.

3 METHOD: NULL SPACE ADAPTATION FOR CONTINUAL LEARNING

The core of NuSA-CL is a cyclical, data-agnostic adaptation process that enables a model to learn
from a new task while preserving previously acquired knowledge. For each task in a sequence, the
process unfolds in three stages as illustrated in Figure 1: (1) Null Space Identification via SVD: We
begin with the model’s current weights, Wt−1, and perform Singular Value Decomposition (SVD) to
identify a low-energy subspace, that is, the intrinsic null space where prior knowledge is minimally
encoded. (2) Constrained Adaptation: We then train a task-specific, low-rank update, ∆Wt, for the
current task. Crucially, this update is persistently constrained to lie strictly within the identified null
space throughout training. (3) Weight Merging: After training, the learned update is merged directly
into the backbone weights, producing the updated model Wt ←Wt−1 +∆Wt. This evolved model,
with its fixed parameter budget, then serves as the starting point for the next task, where the cycle
repeats.

3.1 IDENTIFYING THE INTRINSIC NULL SPACE

Let W ∈ Rm×n be a weight matrix from the model. We compute its SVD, W = UΣV ⊤, to analyze
its spectral properties. We posit that the principal components, associated with high-energy singular
values, encode the core knowledge of the model. To provide a principled basis for our approach, we
first verify the existence of a sufficiently large low-energy subspace. We identify the dimension k
of the principal space by finding the smallest integer that captures at least a ρ fraction of the total
spectral energy:

k∑
i=1

σ2
i ≥ ρ · ∥W∥2F (1)
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The remaining d − k dimensions constitute the intrinsic null space, spanned by the basis vectors
(Un, Vn). For practical stability and to maintain a consistent number of trainable parameters across
all layers and tasks, we cap the dimension of our update by a hyperparameter rmax. The effective
rank r of our update is thus defined as r = min

(
d− k, rmax

)
.

We can now express the decomposition as:

U = [Up Un], V = [Vp Vn], Σ =

[
Σp 0
0 Σn

]
, (2)

where (Up, Vp) represent the top-k components of the principal subspace, and (Un, Vn) span the
approximate null space.

3.2 CONSTRAINED ADAPTATION WITHIN THE NULL SPACE

To prevent interference with existing knowledge during continual learning, we impose a persistent
constraint that strictly confines all new parameter updates to the identified null space. We formulate
the task-specific adaptation as a LoRA-like low-rank update ∆W ∈ Rm×n, but with a critical
modification. Instead of learning two projection matrices, we define the update as:

∆W = UnMV ⊤
n (3)

Here, the basis matrices Un and Vn are derived from the SVD of the frozen weight W and are
themselves kept frozen during training for the current task. The intermediate matrix M ∈ Rr×r is
the only trainable component and is initialized as a zero matrix for each new task. This formulation
ensures that the update ∆W is mathematically guaranteed to be orthogonal to the principal subspace
of W , thereby minimizing interference. This persistent constraint is a key distinction from prior
work (Wang et al., 2025) that uses such subspaces only for initialization, after which updates are free
to deviate.

3.3 CONTINUAL ADAPTATION VIA UPDATE MERGING

A core component of NuSA-CL’s scalability is its ability to operate within a fixed parameter budget.
This is achieved by merging the learned low-rank update ∆W directly into the base weights after
training on each task is complete. For a given task t, the new weight matrix Wt is computed as:

Wt ←Wt−1 +∆Wt (4)
This update-and-merge cycle allows the model to sequentially accumulate knowledge from new tasks
without adding any new parameters or modules. The resulting model, with its updated weights Wt,
then becomes the starting point for the next task, t+ 1. At the beginning of the new task, the entire
process repeats: the now-updated weights Wt are decomposed via SVD to identify a new intrinsic
null space, ensuring that the model is always adapting in directions that are least disruptive to its full,
accumulated knowledge.

4 THEORETICAL MOTIVATION

In this section, we provide a theoretical motivation for our approach. We analyze the degree of
interference in parameter space to demonstrate how our persistent constraint provides a principled
mechanism for mitigating catastrophic forgetting. Our analysis shows that by freezing the null space
basis vectors (Un, Vn) and only learning the small intermediate matrix M defined in Eq. 3, the update
direction is guaranteed to be nearly orthogonal to the dominant components of the existing model
weights.

4.1 INTERFERENCE BOUND FOR A SINGLE UPDATE

We first present a lemma that characterizes the interaction between the existing weights and a single
task-specific update.
Lemma 1 (Bounded Interference via Null Space Constraint). Let W = UΣV ⊤ be the SVD of a
weight matrix, and let ∆W = UnMV ⊤

n be an update restricted to its intrinsic null space. The
interference in parameter space, measured by the Frobenius inner product, is bounded by:

|⟨W,∆W ⟩F | ≤ σnull
max · ∥M∥F (5)
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where σnull
max := σk+1 is the largest singular value within the null space.

Proof. Expanding the inner product: ⟨W,∆W ⟩F = Tr(W⊤∆W ) = Tr(V ΣU⊤UnMV ⊤
n ). Since

U⊤Un = [0; Ir] and V ⊤Vn = [0; Ir], the trace simplifies to: Tr(ΣnM) ≤ ∥Σn∥2 · ∥M∥F =
σnull
max · ∥M∥F .

4.2 FORGETTING CONTROL IN CONTINUAL LEARNING

The above lemma naturally generalizes to the continual learning setting, where multiple tasks are
learned sequentially.
Theorem 2 (Cumulative Interference Bound). Let Wt = Wt−1 + ∆Wt, where ∆Wt =
Ut−1,nMtV

⊤
t−1,n is the update for task t. The cumulative interference across T tasks is bounded by:

T∑
t=1

|⟨Wt−1,∆Wt⟩F | ≤
T∑

t=1

σnull
t,max · ∥Mt∥F . (6)

This result demonstrates that by constraining updates to low-energy subspaces, NuSA-CL bounds
the cumulative parameter-level interference across tasks. This provides a principled mechanism for
mitigating catastrophic forgetting, as it minimizes disruptions to the dominant weight structures that
encode prior knowledge.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. Our primary evaluation is conducted on the Multimodal Task Incremental Learn-
ing (MTIL) benchmark (Zheng et al., 2023), a sequence of 11 diverse vision datasets designed to
test a model’s ability to learn new tasks while preserving its core zero-shot capabilities. To assess
long-sequence scalability, we also evaluate on the standard Class-Incremental CIFAR100 bench-
mark (Krizhevsky et al., 2009), splitting 100 classes into sequences of 10, 20, and 50 tasks. We report
three key metrics: Transfer, the zero-shot accuracy on unseen tasks; Avg., the average accuracy across
all tasks during training; and Last, the final average accuracy, which measures forgetting.

Implementation and Baselines. All experiments use the CLIP ViT-B/16 backbone. Our method,
NuSA-CL, identifies the null space for each task using a cumulative energy cutoff and caps the LoRA
update rank at rmax = 128. We compare NuSA-CL against three categories of baselines. (1) Full
Fine-Tuning Models (e.g., Continual-FT, ZSCL) update all 150M parameters and require significantly
more computational resources (e.g., 4 GPUs in our experiments) compared to the single GPU usage
of PEFT methods. (2) Storage-based PEFT Models require additional, often expanding, storage,
including MoE-Adapters (Yu et al., 2024), DIKI (Tang et al., 2024), and InfLoRA (Liang & Li,
2024). (3) Storage-Free PEFT Models, the most practical and challenging setting, includes standard
LoRA (Hu et al., 2021), MiLoRA (Wang et al., 2025), and our method. For methodological relevance,
we re-implemented the most comparable LoRA-based methods within a unified framework, applying
adapters to both vision and text encoders with a consistent rank and merging them after each task.

5.2 RESULTS

NuSA-CL Demonstrates a Superior Efficiency-Performance Tradeoff. Table 1 presents our
main results on the full-shot MTIL benchmark. As shown, storage-based PEFT methods like MoE-
Adapters (Yu et al., 2024) achieve the highest final accuracy. However, this comes at a significant cost:
MoE-Adapters requires nearly 60M parameters and an expanding router library, while ZSCL (Zheng
et al., 2023) incurs a massive computational overhead of 47.24 GPU-Hours. In contrast, NuSA-CL
establishes a new state-of-the-art within the practical and challenging storage-free setting, significantly
outperforming other competitors like LoRA and MiLoRA. The key finding is that NuSA-CL achieves
performance highly competitive with the storage-based SOTA while being orders of magnitude more
efficient. Specifically, compared to MoE-Adapters, NuSA-CL uses 40x fewer parameters (1.5M vs.
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Table 1: Performance and Computational Efficiency Analysis on the MTIL Benchmark. Boldface
indicates the top storage-free performer

Computation & Memory Cost Performance (%)
Method # Params Additional Storage Peak GPU (GB) GPU-Hours Transfer Avg. Last
Storage-based Models

ZSCL (Zheng et al., 2023) 149.6M Data&Model (10.5GB) 43.1 47.24 68.1 75.4 83.6
MoE-Adapters (Yu et al., 2024) 59.8M Routers (4.8GB) 15.5 3.42 68.9 76.7 85.0
DIKI (Tang et al., 2024) 1.8M Task Stats (159MB) 10.2 4.40 68.7 76.3 85.1
InfLoRA (Liang & Li, 2024) 7.8M Grad. Proj. Mem. (9MB) 6.6 4.29 66.2 74.2 83.6

Storage-Free Models
Continual-FT 149.6M None 14.6 12.76 44.6 55.9 77.3
LoRA (Hu et al., 2021) 15.7M None 6.7 1.21 63.9 70.1 79.9
MiLoRA (Wang et al., 2025) 15.7M None 6.7 1.24 62.8 68.7 77.4
NuSA-CL (Ours) 1.5M None 6.6 1.21 68.6 75.1 82.8

Table 2: Transfer, Avg., and Last (%) for Storage-free PEFT continual learning methods on the 5-shot
MTIL benchmark. † marks methods reproduced on CLIP.
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AVG.

Zero-shot CLIP 24.3 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.2 65.3

Transfer

LoRA (Hu et al., 2021) - 85.9 63.0 42.3 39.5 55.9 80.5 63.7 76.0 49.5 57.1 60.4
MiLoRA† (Wang et al., 2025) - 84.8 59.6 43.2 37.7 50.6 78.3 61.4 80.2 42.4 55.6 59.4
InfLoRA† (Liang & Li, 2024) - 87.2 65.9 44.5 52.1 64.3 85.3 63.4 83.8 58.9 62.5 66.8
NuSA-CL (Ours) - 88.2 67.5 43.3 55.8 65.3 86.2 62.8 84.9 62.2 64.7 68.1

Avg.

LoRA (Hu et al., 2021) 15.9 90.6 68.1 54.1 69.1 74.3 81.8 73.6 81.9 58.3 62.0 66.8
MiLoRA† (Wang et al., 2025) 13.6 89.4 66.8 53.8 66.4 73.5 81.4 71.9 83.5 56.2 62.5 66.0
InfLoRA† (Liang & Li, 2024) 18.7 91.0 73.0 55.4 67.8 78.2 86.1 72.7 85.1 61.1 63.4 68.9
NuSA-CL (Ours) 28.9 90.5 73.2 56.1 71.9 76.9 87.2 72.9 86.8 63.5 65.3 70.3

Last

LoRA (Hu et al., 2021) 21.3 89.6 65.3 58.0 76.8 83.9 83.2 90.4 85.6 67.4 72.1 72.2
MiLoRA† (Wang et al., 2025) 17.5 88.8 66.0 56.3 72.3 82.4 82.1 87.3 87.7 68.2 72.0 71.0
InfLoRA† (Liang & Li, 2024) 21.9 91.3 73.3 58.9 77.8 90.0 87.9 88.6 89.8 71.3 72.6 74.8
NuSA-CL (Ours) 27.2 90.2 74.0 59.7 81.3 85.9 88.9 90.2 92.0 69.1 71.2 75.4

59.8M), zero additional storage, less than half the peak GPU memory, and is nearly 3x faster (1.21 vs.
3.42 GPU-Hours). This result highlights a vastly superior performance-to-cost tradeoff, positioning
NuSA-CL as a powerful and scalable solution.

NuSA-CL Excels in Data-Efficient, Few-Shot Learning. To further probe the robustness of our
approach, we conduct a focused analysis on the challenging 5-shot MTIL benchmark, with results in
Table 2. As established in Table 1, Storage-free PEFT strategies represent the most practical paradigm
for efficient continual learning. We therefore focus our analysis on this category to determine which
low-rank adaptation strategy is most effective when data is scarce. This setting acts as a stress test,
magnifying the fundamental differences between each approach. The results clearly demonstrate the
superiority of our null-space adaptation strategy. NuSA-CL achieves the best performance across all
summary metrics, decisively outperforming InfLoRA, the strongest competitor in this group. This
indicates that our persistent null-space constraint is a fundamentally more robust and data-efficient
strategy for mitigating forgetting than alternatives like subspace initialization (MiLoRA) or gradient
projection (InfLoRA), validating the core mechanism of NuSA-CL.

Scalability in Long-Sequence Incremental Learning. Finally, to address the critical question of
long-sequence scalability, we evaluate NuSA-CL on the Class-Incremental CIFAR100 benchmark
(Table 4). The advantage of our method becomes increasingly pronounced as the task sequence
lengthens. In the most challenging 50-step scenario, NuSA-CL achieves a final ‘Last‘ accuracy of
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Figure 2: Our method actively accumulates knowledge by utilizing the model’s intrinsic capacity,
while other methods overwrite it. The plots track the evolution of the effective rank (solid lines, left
axis) and the null ratio (dashed lines, right axis) for the text and vision encoders. NuSA-CL is the
only method to show a steady increase in effective rank, demonstrating that it fills the underutilized
null space to learn new tasks. This provides direct evidence for its ability to mitigate catastrophic
forgetting.

71.85%, significantly outperforming the strongest baseline, ZSCL, by a large margin of over 4.4%.
This result provides strong empirical evidence that our dynamic, task-wise re-computation of the
null space is an effective and scalable strategy for lifelong learning, confirming the longevity of our
approach even after 50 sequential tasks.

6 ANALYSIS

In this section, we analyze the effectiveness of NuSA-CL from multiple angles. We first visual-
ize and explain how NuSA-CL’s learning dynamics—knowledge accumulation versus overwrit-
ing—fundamentally differ from conventional methods. We then establish why adapting within the
null space is a superior strategy for continual learning. Finally, we experimentally validate our core
mechanisms and justify the choice of key hyperparameters.

6.1 NULL SPACE DYNAMICS: ACCUMULATION VS. OVERWRITING

Figure 2 illustrates a fundamental divergence in the learning dynamics of NuSA-CL compared
to conventional fine-tuning approaches. The plots track the model’s effective rank (solid lines),
representing the capacity used to encode core knowledge, and the null ratio (dashed lines), the
remaining underutilized capacity. The effective rank is defined as the minimum percentage of
dimensions required to capture 95% of the weight matrix’s total spectral energy (r95/d).

Conventional methods like LoRA and Full-FT exhibit a "lazy learning" behavior. As shown in
Figure 2 and detailed in Appendix Table 10, their spectral properties remain almost static across all
11 tasks. For instance, the effective rank of LoRA’s vision output projection layer barely changes,
shifting trivially from an initial 447.42 to 447.58. This spectral inertia suggests that these methods do
not exploit the model’s underutilized capacity; instead, they primarily overwrite knowledge within
the existing principal subspace, leaving the vast null space dormant.

In contrast, our method actively accumulates knowledge by progressively filling this underutilized
space. For the same vision output layer, NuSA-CL’s effective rank shows a clear and consistent
increase. This trend, observed across all attention layers, provides direct quantitative evidence that
NuSA-CL dynamically reshapes the parameter space to integrate new information. This additive
learning process is the core mechanism behind NuSA-CL’s ability to mitigate catastrophic forgetting
and build a more informationally dense representation over time.

A natural question arises regarding the long-term viability of this approach: does the null space
eventually become exhausted? Our analysis indicates that it does not. The "null space" is a low-energy
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(a) Subspace Selection (b) Maximum Update Rank (rmax)

Figure 3: Ablations on subspace and rank. (Left) Subspace selection. Across ranks, Tail (null-like)
consistently yields the lowest forgetting than Top and Random). (Right) Update rank. On the Tail
subspace, overall CL performance peaks around rmax=128 (cf. Transfer/Avg./Last), indicating that a
moderate rank balances retention (stability) and on-task adaptation (plasticity).

spectral region, not a finite, empty container; it shrinks but is never fully depleted. The quantitative
data in Appendix Table 10 confirms this. Even after learning 10 diverse and challenging tasks, the
number of available null directions in the most saturated layer (vision output projection) is still 313.58.
This is more than double our empirically chosen update rank (rmax = 128), demonstrating that a
substantial, low-interference subspace persists for future adaptation. This confirms the scalability and
long-term robustness of our approach.

6.2 WHY THE NULL SPACE? SUBSPACE SELECTION STRATEGY

Tail outperforms Top and Random in mitigating forgetting. To identify an update subspace
that mitigates catastrophic forgetting, we study how the choice of directions affects both knowledge
retention and adaptation. We evaluate three initialization strategies for low-rank adaptation—Top
(largest singular directions), Tail (smallest, null-like directions), and Random—using fixed rank
r=128 and 1,000 training iterations per task on 11 MTIL datasets. We report Forgetting (average
drop from post-task to final performance) in Fig. 3a and provide full per-rank numbers in Appx.
Table 9. The Tail strategy, which exploits the null space, consistently yields the lowest forgetting
across all ranks we tested, indicating that low-energy directions provide a safe region for updates
with minimal interference to previously acquired knowledge. Quantitatively, Tail increases from
1.46% at r=32 to 5.11% at r=256, while remaining below both Top and Random at every rank (e.g.,
at r=128: Tail 2.57% vs. Top 4.44% and Random 4.57%). The mild rise with larger ranks suggests
that a purer, lower-dimensional null subspace better preserves past information.

Balancing stability and plasticity for continual learning. Does this imply that “the smaller (purer)
the null space, the better” for continual learning? Not necessarily. As shown in Fig. 3b, overall CL
performance is maximized around an update rank of rmax=128, which balances stability (retention)
and plasticity (on-task adaptation). Consistent with Table 9, we observe a stability–plasticity trade-
off at both the update-rank dimension and the subspace choice: increasing rank improves Target
performance but induces more forgetting, and Top attains marginally higher Target accuracy on
the current task yet suffers substantially larger forgetting. Because continual learning is ultimately
constrained by retention, these results motivate our design in NuSA-CL: operate in the null space
(Tail) and cap the update rank at rmax to maintain stability while preserving competitive adaptation.

6.3 VALIDATION OF NUSA-CL’S DESIGN PRINCIPLES

Core Mechanisms are Critical. As shown in Table 3a, our core design choices are essential for
success. The persistent constraint is vital; unfreezing the null space bases (Un, Vn) to make them
trainable leads to a significant drop in performance, confirming that a strict, persistent constraint is

8
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Table 3: Ablation studies validating NuSA-CL’s design principles. (a) Core mechanisms such as the persistent
constraint and multimodal adaptation are shown to be critical. (b) The method is practical, with negligible
initialization overhead, and robust to hyperparameter choices.

(a) Core Mechanism Ablations

Persistent Constraint Ablation

Condition Transfer Avg. Last

Train only M (Ours) 68.58 75.08 82.79
Train M & Vn 66.37 73.11 82.04
Train M, Un, Vn 62.60 68.12 77.32

Modality Ablation

Modality Transfer Avg. Last

Both (Ours) 68.58 75.08 82.79
Text-only 68.47 72.62 79.09
Vision-only 65.14 70.49 77.86

(b) Robustness and Practicality

Robustness to Cutoff Threshold (ρ)

threshold Transfer Avg. Last

0.80 68.29 74.87 82.28
0.90 68.82 75.07 82.74
0.95 68.58 75.08 82.79
0.99 68.49 74.89 82.70
0.999 68.11 72.89 79.16

SVD Efficiency Analysis

Method Init. Time Train Time (hr) Avg.

InfLoRA ∼81 min 4.29 74.2
Ours <1 min 1.21 75.1

necessary to prevent forgetting. Similarly, multimodal adaptation is superior, as jointly updating both
text and vision encoders is key to maintaining cross-modal alignment.

Practicality and Robustness. A potential concern for our method is the overhead of SVD and
sensitivity to hyperparameters. However, our analysis shows NuSA-CL is both practical and robust,
shown in Table 3b. The SVD initialization is exceptionally lightweight. While our data-agnostic SVD
is a one-time calculation per task with negligible overhead, competing methods like InfLoRA require
heavy, data-dependent computations that scale poorly to design subspace using training dataset before
learning. Furthermore, results show that performance is remarkably stable across a wide range of
energy cutoff thresholds, demonstrating that NuSA-CL does not require sensitive hyperparameter
tuning.

7 CONCLUSION

This paper tackles the challenge of adapting vision-language models to evolving tasks without
catastrophic forgetting and without the unsustainable resource costs of methods whose storage or
parameter counts grow linearly with the number of tasks, rendering them impractical for lifelong
learning. We introduce NuSA-CL, a memory-free framework based on intrinsic adaptation. NuSA-
CL identifies underutilized null space directions and constrains low-rank updates to this subspace,
integrating new knowledge while preserving pre-trained capabilities. The learned update is then
merged into the base model, maintaining a fixed parameter budget.

Across benchmarks, our method delivers a superior performance-efficiency trade-off: it outperforms
other storage-free methods and rivals resource-intensive, storage-based approaches at a fraction of
the cost. Strong results on long task sequences validate its scalability and effectiveness for lifelong
learning, positioning NuSA-CL as a practical solution for deploying adaptable vision–language
models in resource-constrained settings.

Limitations and future work. NuSA-CL remains robust on sequences of up to 50 tasks with
ViT-B, but its capacity under extreme lifelong settings where the available null space directions may
saturate warrants further study. We also note that the SVD step, while negligible with our reduced
SVD on ViT-B, could become a bottleneck for substantially larger models. Future work includes (i)
quantifying sensitivity to task order and semantic relatedness, as highly correlated sequences may
concentrate usage of specific null-space dimensions; and (ii) developing lightweight, more reversible
integration strategies, enabling selective forgetting without relying on persistent external memory.

9
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A LLM USAGE STATEMENT

We disclose that Large Language Models (LLMs) were utilized as an auxiliary tool in the preparation
of this manuscript. The use of LLMs was limited to writing assistance, such as improving the clarity
of English expressions, correcting grammatical errors, and refining sentence structure for better
readability. Specifically, LLMs were employed to rephrase complex sentences for conciseness and to
receive suggestions for appropriate vocabulary fitting an academic tone. All scientific contributions
including the core research ideas, experimental design, analysis of results, and drawing of conclusions
were made entirely by the authors. The LLMs did not influence the originality or the core scientific
content of this work.

B DATASET & IMPLEMENTATION DETAILS

B.1 BENCHMARKS AND METRICS.

Our primary evaluation is conducted on the Multimodal Task Incremental Learning (MTIL) bench-
mark (Zheng et al., 2023), which requires a model to sequentially train on 11 tasks while main-
taining CLIP’s zero-shot performance. The benchmark comprises Aircraft (Maji et al., 2013),
Caltech101 (Fei-Fei et al., 2004), CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2019), Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014),
MNIST (Deng, 2012), OxfordPet (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), and
SUN397 (Xiao et al., 2010). We report three metrics after completing the entire sequence:

• Transfer: Measures zero-shot transfer capability. After training on task t, we evaluate on
the test sets of all future, unseen tasks t+ 1, . . . , 11 and average the results.

• Avg.: The mean test accuracy across all 11 datasets, recorded immediately after training on
each task.

• Last: The mean test accuracy of the final model on each task’s test set, capturing perfor-
mance degradation (forgetting).

To test for long-sequence scalability, we also evaluate on the standard Class-Incremental CIFAR100
benchmark (Krizhevsky et al., 2009), following the setup in ZSCL (Zheng et al., 2023).

B.2 IMPLEMENTATION DETAILS.

All experiments use the CLIP ViT-B/16 backbone with adapters applied to every query, key, value,
and output projection. We use the AdamW optimizer (learning rate 3× 10−4, weight decay 10−2,
β1 = 0.9, β2 = 0.999), with a linear learning rate warmup for the first 5% of iterations followed by a
cosine decay schedule. For NuSA-CL, we identify the null-space using a cumulative energy ratio
cutoff (99% for 5-shot, 95% for full-shot) and cap the maximum rank at rmax = 128.

In the 5-shot MTIL setting (Yu et al., 2024), we sample five examples per class and train for 500
iterations with a batch size of 1. We scale each low-rank update by α/

√
r with α = 1, apply a

dropout rate of 0.25 to the adapter branches, and use label smoothing of 0.2. In the full-shot setting,
we use all training samples, train for 1000 iterations, and use a scaling factor of α = 2, keeping all
other hyperparameters identical. All experiments were conducted on a single NVIDIA RTX 3090
GPU.

B.3 BASELINES.

We categorize baselines into three groups.

The first, Full Fine-Tuning Models, includes Continual-FT, which naively fine-tunes all parameters,
and ZSCL (Zheng et al., 2023), which uses knowledge distillation.

The second group, Storage-based PEFT Models, require additional storage. This includes MoE-
Adapters (Yu et al., 2024) and DIKI (Tang et al., 2024). It also includes InfLoRA (Liang & Li,
2024); while originally proposed for ViTs, we adapt its gradient projection memory mechanism to
the multimodal CLIP architecture for a direct conceptual comparison.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Class-incremental CIFAR100 results: Last and Avg. accuracies (%) for 10/20/50-step splits.
Bold = best, underline = second best.

10 steps 20 steps 50 steps

Methods Last Avg Last Avg Last Avg

CLIP (Radford et al., 2021) 65.92 74.47 65.74 75.20 65.94 75.67
Continual-FT 53.23 65.46 43.13 59.69 18.89 39.23
LwF (Li & Hoiem, 2017) 48.04 65.86 40.56 60.64 32.90 47.69
iCaRL (Ding et al., 2022) 70.97 79.35 64.55 73.32 59.07 71.28
LwF-VR (Ding et al., 2022) 70.75 78.81 63.54 74.54 59.45 71.02
ZSCL (Zheng et al., 2023) 73.65 82.15 69.58 80.39 67.36 79.92
NuSA-CL (Ours) 74.51 80.25 73.84 81.03 71.85 80.19

The final group, Storage-Free PEFT Models, operates without additional storage. This includes the
standard LoRA (Hu et al., 2021) method and MiLoRA (Wang et al., 2025), an LLM adaptation method
we implemented on CLIP due to the relevance of its subspace initialization strategy. Our proposed
method, NuSA-CL, also belongs to this category.

For a rigorous and fair comparison across all LoRA like methods (LoRA, MiLoRA, InfLoRA, and
NuSA-CL), we implemented them within an identical framework: adapters were applied to both
vision and text encoders with a consistent rank, and the updated weights were merged into the
backbone after each task.

C ADDITIONAL EVALUATION RESULTS

C.1 CLASS-INCREMENTAL LEARNING (CIL) RESULTS

We further evaluate on the standard CIFAR100 class-incremental splits (Krizhevsky et al., 2009),
following ZSCL (Zheng et al., 2023). The 100 classes are grouped into 10, 20, or 50 tasks (10, 5, or
2 classes per task respectively). As the number of tasks increases, catastrophic forgetting becomes
more severe. We use a learning rate of 3× 10−3, maximum rank rmax = 256, dropout of 0.05, batch
size 128, and no label smoothing.

Table 4 shows that, although CLIP’s zero-shot predictions already exceed naïve fine-tuning (FT)
and LwF (Li & Hoiem, 2017), those baselines exhibit severe forgetting as tasks increase. Even
ZSCL(Zheng et al., 2023)’s Last accuracy falls below 68% in the 50-step split. By contrast, our
method yields the best Last performance across all splits (74.5%, 73.8%, and 71.9% for 10/20/50
steps) while maintaining very competitive Avg. scores. Remarkably, even in the prolonged 50-
step regime, our method continues to recompute and leverage a fresh low-interference subspace,
preserving prior knowledge effectively. This demonstrates that our method not only scales to the
11-task MTIL setting but also remains robust across very long class-incremental sequences.

C.2 MTIL COMPLETE RESULTS

Table 5 reports the results on all eleven tasks in the 5-shot MTIL regime (500 iterations per task).
Our method maintains strong zero-shot retention (Transfer = 68.1%), while achieving an Average
accuracy of 70.3% and a Last accuracy of 75.4%. The per-dataset breakdown confirms that our method
uniformly preserves performance: no task suffers a dramatic collapse, and gains over baselines appear
across both domain-shifted benchmarks (e.g., EuroSAT, Flowers) and in-domain benchmarks (e.g.,
CIFAR100, MNIST). Table 6 presents the analogous results in the full-shot regime (1000 iterations
per task), showing the same pattern of robust Transfer, Avg., and Last scores.

C.3 MTIL ORDER-2 RESULTS

To assess sensitivity to task ordering, Table 7 and Table 8 report 5-shot and full-shot MTIL results,
respectively, under a different task sequence (Order-2). In both settings, our method again achieves the
highest Transfer, Average, and Last metrics, matching the original ordering (Order-1). Crucially, Last
accuracy remains above 80% even in this permuted protocol, confirming that our method mitigates
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Metric

Transfer 88.2 67.5 43.3 55.8 65.3 86.2 62.8 84.9 62.2 64.7 68.1
Aircraft 33.4 88.2 68.2 44.4 56.2 66.1 87.4 57.3 85.9 63.9 65.8
Caltech101 28.6 91.8 66.8 41.9 53.4 53.1 82.9 57.3 72.6 62.1 64.0
CIFAR100 31.1 91.4 76.1 43.7 57.3 70.2 86.9 62.5 86.1 62.1 66.7
DTD 30.0 90.9 75.6 62.1 56.2 68.7 87.0 66.4 87.5 62.5 66.0
EuroSAT 29.2 90.8 75.1 62.0 82.4 68.2 86.3 66.2 86.6 62.2 65.2
Flowers 28.2 91.1 74.4 61.5 80.9 88.1 86.6 65.2 86.7 62.0 64.9
Food 28.1 90.8 74.0 60.9 81.6 86.7 88.6 64.8 86.6 61.9 64.3
MNIST 27.7 90.6 73.9 60.8 81.0 87.2 88.5 90.7 87.1 61.9 64.4
OxfordPet 27.3 89.6 73.5 60.1 80.1 85.5 88.2 90.6 91.8 61.2 61.9
StanfordCars 27.0 89.8 73.6 60.3 80.0 86.5 88.3 90.6 91.7 69.1 64.1
SUN397 27.2 90.2 74.0 59.7 81.3 85.9 88.9 90.2 92.0 69.1 71.2 75.4
Average 28.9 90.5 73.2 56.1 71.9 76.9 87.2 72.9 86.8 63.5 65.3 70.3

Table 5: Accuracy (%) of our method on the MTIL benchmark (5-shot, 500 iterations). Metrics for
the Transfer, Last and Avg. are shown in the rightmost column.
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Metric

Transfer 88.3 66.8 44.0 55.5 67.9 85.8 66.7 84.8 60.7 65.2 68.6
Aircraft 49.7 88.3 67.5 44.3 53.6 69.9 88.3 58.0 87.7 63.2 65.5
Caltech101 42.9 96.7 66.0 42.3 53.2 64.5 85.2 55.5 83.9 60.7 63.8
CIFAR100 41.0 96.1 82.2 45.4 59.8 69.2 86.2 73.7 85.1 61.6 66.4
DTD 41.6 96.2 81.6 74.2 55.6 68.2 85.6 71.2 84.6 61.5 65.8
EuroSAT 39.9 95.6 81.0 73.6 97.0 67.9 85.0 69.7 84.3 60.6 65.1
Flowers 38.8 95.7 80.6 72.1 96.9 96.4 84.8 69.9 82.9 60.1 64.7
Food 38.6 95.5 80.7 73.5 96.9 95.9 91.1 68.7 85.4 60.3 65.7
MNIST 34.3 95.9 79.8 72.4 96.6 95.9 91.1 98.9 84.9 59.6 65.7
OxfordPet 33.2 95.9 79.6 72.3 96.6 95.2 90.6 98.9 94.8 59.0 64.4
StanfordCars 33.2 95.6 79.7 71.8 96.6 94.6 90.6 98.9 95.1 79.2 64.9
SUN397 35.0 95.2 79.4 71.5 96.2 94.0 90.6 98.8 95.0 78.1 76.9 82.8
Average 38.9 95.2 78.0 64.9 81.7 82.9 88.1 78.4 87.6 64.0 66.3 75.1

Table 6: Accuracy (%) of our method on the MTIL benchmark (full dataset, 1 000 iterations). The
rightmost column shows the overall Transfer, Last, and Average metrics.

forgetting regardless of task order. This order-agnostic stability underscores the general applicability
of our approach.

D FURTHER ABLATION

This section provides detailed results for the analysis in Section 6. Table 9 presents the numerical
data corresponding to the observations in Figure 3a. Table 10 lists the specific dimension numbers
plotted in Figure 2.
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Table 7: Transfer, Avg., and Last (%) for continual learning methods on the Order-2 sequence of the
5-shot MTIL benchmark. † marks methods reproduced on CLIP.
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SAT
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R10

0

AVG.

Zero-shot 64.7 88.5 59.4 89.0 71.0 65.2 24.3 88.4 44.6 54.9 68.2 65.3

Transfer

LoRA (Hu et al., 2021) 87.6 63.0 86.6 63.5 63.2 19.8 87.4 43.8 44.0 61.3 62.0
MiLoRA† (Wang et al., 2025) 88.1 62.9 87.4 87.4 62.6 18.3 86.8 41.0 45.1 59.2 61.4
InfLoRA† (Liang & Li, 2024) 88.2 58.8 84.1 65.4 65.4 20.7 87.7 44.2 49.3 66.9 62.9
NuSA-CL (Ours) 87.6 60.0 86.3 65.8 63.8 21.9 88.3 43.6 53.8 68.3 63.9

Avg.

LoRA (Hu et al., 2021) 55.8 80.3 86.5 84.3 72.5 66.3 21.9 88.4 48.3 50.1 62.4 65.2
MiLoRA† (Wang et al., 2025) 51.0 76.7 83.8 81.7 71.7 64.3 19.2 87.7 44.1 50.7 60.1 62.8
InfLoRA† (Liang & Li, 2024) 65.3 85.5 85.3 85.6 80.4 67.1 25.3 89.3 48.3 54.4 67.6 68.6
NuSA-CL (Ours) 66.3 87.6 84.1 89.9 78.5 67.3 27.1 89.4 47.5 58.5 68.9 69.6

Last

LoRA (Hu et al., 2021) 46.7 76.7 89.3 82.1 71.3 67.9 23.7 90.0 59.1 72.4 73.3 68.4
MiLoRA† (Wang et al., 2025) 28.6 63.1 69.5 73.0 58.2 61.6 14.0 87.7 49.1 71.6 69.0 58.7
InfLoRA† (Liang & Li, 2024) 60.4 83.3 90.0 86.6 87.1 69.6 30.7 91.2 59.4 76.7 73.7 73.5
NuSA-CL (Ours) 64.6 86.7 89.4 91.7 84.7 70.1 32.7 91.8 58.0 79.2 75.1 74.9

Table 8: Transfer, Avg., and Last (%) for continual learning methods on the Order-2 sequence of the
the full dataset MTIL benchmark. † marks methods reproduced on CLIP.
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0

AVG.

Zero-shot 64.7 88.5 59.4 89.0 71.0 65.2 24.3 88.4 44.6 54.9 68.2 65.3

Transfer

LoRA (Hu et al., 2021) 88.2 59.7 86.9 65.9 65.1 20.7 88.3 44.8 58.6 62.0 62.0
MiLoRA† (Wang et al., 2025) 88.2 61.9 87.7 63.3 64.5 19.1 87.6 47.0 63.4 62.6 62.6
InfLoRA† (Liang & Li, 2024) 88.2 62.1 86.7 65.2 66.0 20.9 88.3 45.1 65.2 63.4 63.4
NuSA-CL (Ours) 88.1 57.7 87.0 66.2 64.8 21.9 89.2 49.4 66.9 63.4 63.4

Avg.

LoRA (Hu et al., 2021) 71.6 85.2 91.8 91.4 77.9 70.2 18.6 91.5 53.3 51.0 60.9 69.4
MiLoRA† (Wang et al., 2025) 67.0 85.3 92.3 90.9 76.0 69.6 20.2 90.8 51.8 55.9 65.3 69.6
InfLoRA† (Liang & Li, 2024) 80.0 89.2 92.4 92.2 82.8 71.9 30.8 91.5 53.5 55.4 67.0 73.3
NuSA-CL (Ours) 73.8 89.7 91.2 92.1 84.4 70.8 32.9 91.6 51.3 58.0 68.2 73.1

Last

LoRA (Hu et al., 2021) 52.5 78.1 96.8 91.9 72.5 71.6 3.9 97.0 73.4 84.7 84.3 73.3
MiLoRA† (Wang et al., 2025) 42.5 77.1 97.7 87.5 65.6 69.6 13.2 96.1 72.5 93.2 84.2 72.6
InfLoRA† (Liang & Li, 2024) 75.1 87.2 98.4 93.6 88.1 75.5 30.7 96.4 74.8 95.5 84.7 82.2
NuSA-CL (Ours) 64.6 88.6 98.4 93.4 93.9 75.8 44.8 95.8 72.5 96.4 80.9 82.9
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Rank Subspace Forgetting (%) Target (%)

32
Tail 1.46 78.05
Top 3.30 79.66
Random 2.08 78.70

64
Tail 1.91 81.99
Top 3.69 82.96
Random 3.08 82.77

128
Tail 2.57 85.22
Top 4.44 85.50
Random 4.57 85.49

196
Tail 3.85 86.46
Top 4.65 86.76
Random 6.15 86.67

256
Tail 5.11 87.34
Top 5.36 87.46
Random 6.23 87.44

Table 9: Per-rank results by subspace type. Lower is better for Forgetting; higher is better for Target.

Method Encoder Param r95 Null@95

CLIP

TEXT

q 279.67 232.33
k 284.83 227.17
v 311.33 200.67
o 311.17 200.83

VISION

q 354.08 413.92
k 358.42 409.58
v 432.75 335.25
o 447.42 320.58

LoRA (After Learning)

TEXT

q 279.75 232.25
k 284.92 227.08
v 311.58 200.42
o 311.33 200.67

VISION

q 354.17 413.83
k 358.75 409.25
v 432.92 335.08
o 447.58 320.42

NuSA-CL (After Learning)

TEXT

q 282.58 229.42
k 288.25 223.75
v 316.67 195.33
o 318.75 193.25

VISION

q 357.75 410.25
k 362.42 405.58
v 438.83 329.17
o 454.42 313.58

Table 10: Effective rank r95 and corresponding null directions (Null@95 = d− r95) for CLIP, LoRA
and NuSA-CL across encoders and projection parameters.
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