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Abstract

Many state of the art self-supervised learning approaches fundamentally rely on trans-
formations applied to the input in order to selectively extract task-relevant information.
Recently, the field of equivariant deep learning has developed to introduce structure into
the feature space of deep neural networks by designing them as homomorphisms with re-
spect to input transformations. In this work, we observe that many existing self-supervised
learning algorithms can be both unified and generalized when seen through the lens of
equivariant representations. Specifically, we introduce a general framework we call Homo-
morphic Self-Supervised Learning, and theoretically show how it may subsume the use of
input-augmentations provided an augmentation-homomorphic feature extractor. We validate
this theory experimentally for simple augmentations, demonstrate the necessity of represen-
tational structure for feature-space SSL, and further empirically explore how the parameters
of this framework relate to those of traditional augmentation-based self-supervised learning.
We conclude with a discussion of the potential benefits afforded by this new perspective on
self-supervised learning.

Figure 1: Overview of Homomorphic-SSL (left) and its relation to traditional Augmentation-based SSL
(right). Positive pairs extracted from the lifted dimension (θ) of a rotation equivariant network (G-conv) are
equivalent to pairs extracted from the separate representations of two rotated images.

1 Introduction

Many self-supervised learning (SSL) techniques can be colloquially defined as representation learning algo-
rithms which extract approximate supervision signals directly from the input data itself (LeCun & Misra, 2021).
In practice, this supervision signal is often obtained by performing symmetry transformations of the input with
respect to task-relevant information, meaning the transformations leave task-relevant information unchanged,
while altering task-irrelevant information. Numerous theoretical and empirical works have shown that by com-
bining such symmetry transformations with contrastive objectives, powerful lower dimensional representations
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can be learned which support linear-separability (Wang et al., 2022; Lee et al., 2021; Tian et al., 2020b; Arora
et al., 2019; Tosh et al., 2020), identifiability of generative factors (von Kügelgen et al., 2021; Tsai et al., 2020;
Federici et al., 2020; Ji et al., 2021), and reduced sample complexity (Grill et al., 2020; Chen et al., 2020).

One rapidly developing domain of deep learning research which is specifically focused on learning structured
representations of the input with respect to symmetry transformations is that of equivariant neural networks
(Cohen & Welling, 2016; 2017; Weiler et al., 2018; Worrall & Welling, 2019; Finzi et al., 2020; 2021; van der
Pol et al., 2020). Formally, equivariant neural networks are designed to be group homomorphisms for
transformation groups which act on the input space – meaning that their output explicitly preserves the
structure of the input with respect to these transformations. Traditionally, equivariant neural networks have
been contrasted with data augmentation in the supervised setting, and proposed as a more robust and data
efficient method for incorporating prior symmetry information into deep neural networks (Worrall et al.,
2017). In the self-supervised setting, however, where data augmentation is itself implicitly responsible for
extracting the supervision signal from the data, the relationship between data augmentation and equivariance
is much more nuanced.

In this work, we study self-supervised learning algorithms when equivariant neural networks are used as
backbone feature extractors. Interestingly, we find a convergence of existing loss functions from the literature,
and ultimately generalize these with the framework of Homomorphic Self-Supervised Learning. Experimentally,
we show that, when the assumption of an augmentation-homomorphic backbone is satisfied, this framework
subsumes input augmentation, as evidenced by identical performance over a range of settings. We further
validate this theory by showing that when our assumption is not satisfied, the framework fails to learn
useful representations. Finally, we explore the new generalized parameters introduced by this framework,
demonstrating an immediate path forward for improvements to existing SSL methods which operate without
input augmentations.

2 Background

In this section, we introduce the concept of equivariance and show how structured representations can be
obtained via G-convolutions (Cohen & Welling, 2016). We then review general self-supervised frameworks
and how prior literature differs with respect to its use of input augmentations.

2.1 Equivariance

Formally, a map which preserves the structure of the input space in the output space is termed a homomorphism.
The most prominent example of a homomorphism in modern deep learning is the class of group equivariant
neural networks, which are analytically constrained to be group homomorphisms for specified transformation
groups (such as translation, rotation, mirroring, and scaling). The map f : X → Z is said to be equivariant
with respect to the group G = (G, ·) if

∃Γg such that f(Tg[x]) = Γg[f(x)] ∀g ∈ G , (1)

where G is the set of all group elements, · is the group operation, Tg is the representation of the transformation
g ∈ G in input space X , and Γg is the representation of the same transformation in output space Z. If Tg

and Γg are formal group representations (Serre, 1977) such maps f are termed group-homomorphisms since
they preserve the structure of the group representation Tg in input space with the output representation Γg.
There are many different methods for constructing group equivariant neural networks, resulting in different
representations of the transformation in feature space Γg. In this work, we consider only discrete groups G
and networks which admit regular representations for Γ. In the following paragraph we outline one method
by which such networks can be built, and thereby demonstrate how the regular representation behaves.

Group-Convolutional Neural Networks One common way in which group-equivariant networks are
constructed is via the group-convolution (G-conv) Cohen & Welling (2016). For a discrete group G, we
denote the pre-activation output of a G-equivariant convolutional layer l as zl, with a corresponding input
yl. In practice these values are stored in finite arrays with a feature multiplicity equal to the order of the
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Figure 2: Visualization of a ‘fiber’ (left), a ‘fiber bundle’ (center) and a group representation Γg acting on a
fiber bundle (right). We see that a fiber is defined as all features at an individual group element (in this case
all feature channels at an individual spatial dimension), while a fiber bundle is all features at a set of ordered
group elements. In this figure, we depict feature channels stacked along the z-dimension, different from the
‘lifted’ dimension in Figure 1 (left).

group in each space. Explicitly, zl ∈ RCout×|Gout|, and yl ∈ RCin×|Gin| where Gout and Gin are the set of
group elements in the output and input spaces respectively. We use the following shorthand for indexing
zl(g) ≡ zl,:,g ∈ RCout and yl(g) ≡ yl,:,g ∈ RCin , denoting the vector of feature channels at a specific group
element (sometimes called a ‘fiber’ (Cohen & Welling, 2017)). Then, the value zl,c(g) ∈ R of a single output
at layer l, channel c and element g is

zl,c(g) ≡ [yl ⋆ ψl,c](g) =
∑

h∈Gin

Cin∑
i

yl,i(h)ψl,c
i (g−1 · h) , (2)

where ψl,c
i is the filter between the ith input channel (subscript) and the cth output channel (superscript),

and is similarly defined (and indexed) over the set of input group elements Gin. We highlight that the
composition g−1 · h = k ∈ Gin is defined by the action of the group and yields another group element
by closure of the group. The representation Γg and can then be defined as Γg[zl(h)] = zl(g−1 · h) for
all l > 0 when Gl

in = Gl
out = G0

out. From this definition it is straightforward to prove equivariance from:
[Γg[yl] ⋆ψl](h) = Γg[yl ⋆ψl](h) = Γg[zl](h). Furthermore, we see that Γg is a ‘regular representation’ of the
group, meaning that it acts by permuting features along the group dimension while leaving feature channels
intact. Group equivariant layers can then be composed with pointwise non-linearities and biases to yield a
fully equivariant deep neural network (e.g. yl+1

i = ReLU(zl + b) where b ∈ RCout is a learned bias shared
over the output group dimensions). For l = 0, y0 is set to the raw input x, and typically the input group is
set to the group of all 2D integer translations up to height H and width W : G0

in = (Z2
HW ,+). The output

group G0
out is then chosen by the practitioner and is typically a larger group which includes translation as

a subgroup, e.g. the roto-translation group, or the group of scaling & translations. In this way, the first
layer of a group-equivariant neural network is frequently called the ‘lifting layer’ since it lifts the input from
the translation group, containing only spatial dimensions, to a larger group by adding an additional ‘lifted’
dimension.

Example As a simple example, a standard convolutional layer would have all height (H) and width (W )
spatial coordinates as the set Gout, giving z ∈ RC×HW . A group-equivariant neural network (Cohen &
Welling, 2016) which is equivariant with respect to the the group of all integer translations and 90-degree
rotations (p4) would thus have a feature multiplicity four times larger (z ∈ RC×4HW ), since each spatial
element is associated with the four distinct rotation elements (0o, 90o, 180o, 270o). Such a rotation equivariant
network is depicted in Figure 1 with the ‘lifted’ rotation dimension extended along the vertical axis (θ). In
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both the translation and rotation cases, the regular representation Γg acts by permuting the representation
along the group dimension, leaving the feature channels unchanged.

Notation In the remainder of this paper we will see that it is helpful to have a notation which allows for
easy reference to the sets of features corresponding to multiple group elements simultaneously. These sets
are sometimes called ‘fiber bundles’ and are visually compared with individual fibers in Figure 2. In words,
a fiber (left) can be described as all features values at a specific group element (such as all channels at a
given spatial location), and a fiber bundle (center) is then all features at an ordered set of group elements
(such as all channels for a given spatial patch). We denote the set of fibers corresponding to an ordered set of
group elements g as: z(g) = [z(g) | g ∈ g] ∈ R|g|Cout . Using this notation, we can define the action of Γg as:
Γg[z(g0)] = z(g−1 · g0). Thus Γg can be seen to move the fibers from ‘base’ locations g0 to a new ordered set
of locations g−1 · g0, as depicted in on the right side of Figure 2. We highlight that order is critical for our
definition since a transformation such as rotation may simply permute g0 while leaving the unordered set
intact.

2.2 Self-Supervised Learning

As mentioned in Section 1, self-supervised learning can be seen as extracting a supervision signal from
the data itself, often by means of transformations applied to the input. Many terms in self-supervised
learning objectives can thus often be abstractly written as a function I(V (1),V (2)) of two batches of vectors
V (1) = {v(1)

i }N
i=1 and V (2) = {v(2)

i }N
i=1 where there is some relevant relation between the elements of the two

batches. In this description, we see that there are two main degrees of freedom which we will explore in the
following paragraphs: the choice of function I, and the precise relationship between V (1) and V (2).

SSL Loss Functions: IC and INC The most prominent SSL loss terms in the literature are often
segregated into contrastive IC (Chen et al., 2020; Oord et al., 2018) and non-contrastive INC (Grill et al.,
2020; Chen & He, 2020) losses. At a high level, contrastive losses frequently rely on a vector similarity
function sim(·, ·) (such as cosine similarity), and ‘contrast’ its output for ‘positive’ and ‘negative’ pairs. A
general form of a contrastive loss, inspired by the ‘InfoNCE’ loss (Oord et al., 2018), can be written as:

IC
i (V (1),V (2)) = − 1

N
log

exp
(

sim
(
h(v(1)

i ), h(v(2)
i )

)
/τ

)
∑N

j ̸=i

∑2
k,l exp

(
sim

(
h(v(k)

i ), h(v(l)
j )

)
/τ

) (3)

where h is a non-linear ‘projection head’ h : Z → Y and τ is the ‘temperature’ of the softmax. We see that
such losses can intuitively be thought of as trying to classify the correct ‘positive’ pair (given by v(1)

i & v
(2)
i )

out of a set of negative pairs (given by all other pairs in the batch). Comparatively, non-contrastive losses are
often applied to the same sets of representations V (1) and V (2), but crucially forego the need for ‘negative
pairs’ through other means of regularization (such as a stop-gradient on one branch (Chen & He, 2020; Tian
et al., 2021) observed to regularize the eigenvalues of the representation covariance matrix). Fundamentally
this often results in a loss of the form:

INC
i (V (1),V (2)) = − 1

N
sim

(
h(v(1

i ),SG(v(2)
i )

)
, (4)

where SG denotes the stop-gradient operation. In this work we focus the majority of our experiments on the
INCE loss specifically. However, given this general formulation which decouples the specific loss from the
choice of pairs V (1) & V (2), and the fact that our framework only operates on the formulation of the pairs,
we will see that our analyses and conclusions extend to all methods which can be written this way. In the
following, we will introduce the second degree of freedom which captures many SSL algorithms: the precise
relationship between V (1) and V (2).

Relationship Between SSL Pairs: V (1) & V (2) Similar to our treatment of SSL loss functions I, in
this section we separate the existing literature into two categories with respect to the leveraged relationship
between positives pairs. Specifically, we compare methods which rely on input augmentations, which we call
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Augmentation-based SSL (A-SSL), to methods which operate entirely within the representation of a single
input, which we call Feature-space SSL (F-SSL). An influential framework which relies on augmentation is
the SimCLR framework (Chen et al., 2020). Using the above notation, this is given as:

LA-SSL
i (X) = E

g1,g2∼G
IC

i

({
f

(
Tg1 [xn]

)}N

n
,
{
f

(
Tg2 [xn]

)}N

n

)
, (5)

where Tg[x] denotes the action of the sampled augmentation g on the input, G is the set of all augmentations,
and f(x) = v is the backbone feature extractor to be trained. This loss is then summed over all elements i in
the batch before backpropagation. In this work, we consider this SimCLR loss given in Equation 5 as the
canonical A-SSL method given its broad adoption and similarity with other augmentation-based methods.
The second class of SSL methods we consider in this work are those which operate without the use of explicit
input augmentations, but instead compare subsets of a representation for a single image directly. Models such
as Deep InfoMax (DIM(L)) (Hjelm et al., 2019), Greedy InfoMax (GIM) (Löwe et al., 2019), and Contrastive
Predictive Coding (CPC) (Oord et al., 2018)1 can all be seen to be instantiations of such Feature-space SSL
methods. At a low level, these methods vary in the specific subsets of the representations which are used
in the loss (from single spatial elements to larger ‘patches’), and vary in the similarity function (with some
using a log-bilinear model sim(a, b) = exp

(
aTWb

)
, instead of cosine similarity). In this work we define a

general Feature-space SSL (F-SSL) loss in the spirit of these models which similarly operates in the feature
space of a single image, uses an arbitrary spatial ‘patch’ size |g|, and a cosine similarity function. Formally:

LF-SSL
i (X) = E

g1,g2∼Z2
HW

IC
i

({
zn

(
g1

)}N

n
,
{
zn

(
g2

)}N

n

)
, (6)

where g ∼ Z2
HW refers to sampling a contiguous patch from the spatial coordinates of a convolutional

feature map, and zn is the output of our backbone f(xn). In the following section, we show how equivariant
backbones unify these two losses into a single loss, helping to explain both their successes and limitations
while additionally demonstrating clear directions for their generalization.

3 Homomorphic Self-Supervised Learning

In this section we introduce Homomorphic Self-Supervised Learning (H-SSL) as a general framework for SSL
with homomorphic encoders, and further show it both generalizes and unifies many existing SSL algorithms.

To begin, consider an A-SSL objective such as Equation 5 when f is equivariant with respect to the input
augmentation. By the definition of equivariant maps in Equation 1, the augmentation commutes with the
feature extractor: f(Tg[x]) = Γg[f(x)]. Thus, replacing f(xn) with its output zn = zn(g0), and applying the
definition of the operator, we get:

LH-SSL
i (X) = E

g1,g2∼G
IC

i

({
zn

(
g−1

1 · g0
)}N

n
,
{
zn

(
g−1

2 · g0
)}N

n

)
. (7)

Ultimately, we see that LH-SSL subsumes the use of input augmentations by defining the ‘positive pairs’
as two fiber bundles from the same representation zn, simply indexed using two differently transformed
base spaces g−1

1 · g0 and g−1
2 · g0 (depicted in Figure 1, and Figure 2, center & right). Interestingly, this

loss highlights the base space g0 as a parameter choice previously unexplored in the A-SSL frameworks.
In Section 4 we empirically explore different choices of g0 and comment on their consequences.

A second interesting consequence of this derivation is the striking similarity of the LH-SSL objective and other
existing SSL objectives which operate without explicit input augmentations to generate multiple views. This
can be seen most simply by comparing LH-SSL from Equation 7 with the LF-SSL objective from Equation
6. Specifically, since g1 & g2 from the F-SSL loss can be decomposed as a single base patch g0 offset by two
single translation elements g1 & g2 (e.g. g1 = g−1

1 g0 and g2 = g−1
2 g0), we see that Equation 6 can be derived

1In CPC, the authors use an autoregressive encoder to encode one element of the positive pairs. In GIM, they find that in the
visual domain, this autoregressive encoder is not necessary, and thus the loss reduces to simple contrasting the representations
from raw patches with one another, as defined here.
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directly from Equation 7 by setting G = Z2
HW and the size of the base patch |g0| equal to the size of the

patches used for each F-SSL case. Consequently, these F-SSL losses are contained in our framework where the
set of ‘augmentations’ (G) is the 2D translation group, and the base space (g0) is a small subset of the spatial
coordinates. Since LH-SSL is also derived directly from LA-SSL (when f is equivariant), we see that it provides
a means to unify these previously distinct sets of SSL objectives. In Section 4 we validate this theoretical
equivalence empirically. Furthermore, since LH-SSL is defined for transformation groups beyond translation, it
can be seen to generalize F-SSL objectives in a way that we have not previously seen exploited in the literature.
In Section 4 we include a preliminary exploration of this generalization to scale and rotation groups.

4 Experiments

In this section, we empirically validate the derived equivalence of A-SSL and H-SSL in practice, and
further reinforce our stated assumptions by demonstrating how H-SSL objectives (and by extension F-SSL
objectives) are ineffective when representational structure is removed. We study how the parameters of
H-SSL (topographic distance) relate to those traditionally used in A-SSL (augmentation strength), and finally
explore how the new parameter generalizations afforded by our framework (such as choices of g0 and G)
impact performance.

4.1 Empirical Validation

For perfectly equivariant networks f , and sets of transformations which exactly satisfy the group axioms, the
equivalence between Equations 5 and 7 is exact. However, in practice, due to aliasing, boundary effects, and
sampling artifacts, even for simple transformations such as translation, equivariance has been shown to not
be strictly satisfied (Zhang, 2019). In Table 1 we empirically validate our proposed theoretical equivalence
between LA-SSL and LH-SSL, showing a tight correspondence between the downstream accuracy of linear
classifiers trained on representations learned via the two frameworks.

Precisely, for each transformation (Rotation, Translation, Scale), we use a backbone network which is
equivariant specifically with respect to that transformation (e.g. rotation equivariant CNNs, regular CNNs,
and Scale Equivariant Steerable Networks (SESN) (Sosnovik et al., 2020)). For A-SSL we augment the input
at the pixel level by: randomly translating the image by up to ± 20% of its height/width (for translation),
randomly rotating the image by one of [0o, 90o, 180o, 270o] (for rotation), or randomly downscaling the image
to a value between 0.57 & 1.0 of its original scale. These two augmented versions of the image are then fed
through the backbone separately, and a single fiber (meaning |g0| = 1) is randomly selected. We investigate
the impact of the base space size separately in Section 4.3. For H-SSL we use no input augmentations and
instead rely on differently indexed base patches (formed by shifting the randomly selected fiber g0 by two
separate randomly selected group elements g1 & g2). For example, for A-SSL with translation, we compare
the feature vectors for two translated images at the same pixel location g0. For H-SSL with translation,
we compare the feature vectors of a single image at two translated locations g−1

1 · g0 & g−1
2 · g0. Ultimately,

we see an equivalence between the performance of the A-SSL models and H-SSL models which significantly
differs from the frozen and supervised baselines, validating our theoretical conclusions from Section 3.

4.2 H-SSL Without Structure

To further validate our assertion that LH-SSL requires a homomorphism, in Table 2 we show the same models
from Table 1 without equivariant backbones. Explicitly, we use the same overall model architectures but
replace the individual layers with non-equivariant counterparts. Specifically, for the MLP, we replace the
convolutional layers with fully connected layers (slightly reducing the total number of activations from 6272
to 2048 to reduce memory consumption), and replace the SESN kernels of the scale-equivariant models with
fully-parameterized, non-equivariant counterparts, otherwise keeping the output dimensionality the same
(resulting in the 6 × larger output dimension). Furthermore, for these un-structured representations, in the
H-SSL setting, we ‘emulate’ a group dimension to sample ‘fibers’ from. For the MLP we do this by reshaping
the 2048 dimensional output to (16,128), and select one of the 16 rows at each iterations. For the CNN, we
similarly use the 6 times larger feature space to sample 1

6
th of the elements as if they were scale-equivariant.
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Table 1: MNIST (LeCun & Cortes, 2010), CIFAR10 (Krizhevsky et al.) and Tiny ImageNet (Le & Yang,
2015) top-1 test accuracy (mean ± std. over 3 runs) of a detached classifier trained on the representations
from SSL methods with different backbones. We compare A-SSL and H-SSL with random frozen and fully
supervised backbones. We see equivalence between A-SSL and H-SSL from the first two columns, as desired,
and often see a significant improvement in performance for H-SSL methods when moving from Translation
to generalized groups such as Scale.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST
Rotation Rot-Eq. 68.2 ± 2.5 70.3 ± 5.4 87.2 ± 0.8 99.4 ± 0.1

Translation CNN 95.9 ± 0.3 96.0 ± 1.3 94.1 ± 0.3 99.2 ± 0.1
Scale SESN 98.6 ± 0.1 98.3 ± 0.2 94.7 ± 0.6 99.3 ± 0.1

CIFAR10
Rotation Rot-Eq. 46.1 ± 0.6 48.3 ± 0.5 38.4 ± 0.1 73.0 ± 1.1

Translation CNN 39.2 ± 0.5 36.3 ± 1.1 40.4 ± 0.2 76.2 ± 1.4
Scale SESN 59.4 ± 0.2 56.7 ± 0.4 41.1 ± 0.6 78.0 ± 0.2

Tiny ImageNet Rotation Rot-Eq. 14.9 ± 0.3 13.5 ± 0.5 6.1 ± 0.2 22.5 ± 0.1
Scale SESN 16.2 ± 0.4 14.0 ± 1.3 6.4 ± 0.2 23.7 ± 0.2

We thus observe that when equivariance is removed, but all else remains equal, LH-SSL models perform
significantly below their input-augmentation counterparts, and similarly to a ‘frozen’ randomly initialized
backbone baselines, indicating the learning algorithm is no longer effective. Importantly, this indicates why
existing F-SSL losses (such as DIM(L) (Hjelm et al., 2019)) always act within equivariant dimensions (e.g.
between the spatial dimensions of feature map pixels) – these losses are simply ineffective otherwise. An
intuitive understanding of this result can be given by viewing arbitrary features as being related by some
unknown input transformation which may not preserve the target information about the input. In contrast,
however, since equivariant dimensions rely on symmetry transforms, contrast over such dimensions is known
to be equivalent to contrasting transformed inputs.

Table 2: An extension of Table 1 with non-equivariant backbones. We see that the H-SSL methods perform
similar to, or worse than, the frozen baseline when equivariance is removed, as expected.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST Translation MLP 87.6 ± 0.2 58.2 ± 0.5 83.0 ± 0.8 98.6 ± 0.1
Scale CNN (6 × CHW ) 95.2 ± 0.1 87.2 ± 2.4 87.2 ± 0.6 99.3 ± 0.1

CIFAR10 Scale CNN (6 × CHW ) 53.6 ± 0.2 37.5 ± 0.1 43.6 ± 0.3 67.9 ± 2.1

4.3 Parameters of H-SSL

Base size |g0| As discussed in Section 3, The H-SSL framework identifies new parameter choices such as the
base space g0. This parameter specifically carries special importance since it is the main distinction between
the A-SSL and F-SSL losses in the literature. Specifically, the size of g0 is set to the full representation size
in the SimCLR framework, while it is typically a small patch or an individual pixel in F-SSL losses such
as DIM(L) or GIM. To investigate the impact of this difference, we explore the performance of the H-SSL
framework as we gradually increase the size of g0 from 1 (akin to DIM(L) losses) to |G| − 1 (akin to SimCLR),
with no padding. In each setting, we similarly increase the dimensionality of the input layer for the non-linear
projection head h to match the multiplicative increase in the dimension of the input representation z(g). In
Figure 3 (left) we plot the %-change in top-1 accuracy on CIFAR-10 for each size. We see a minor increase in
performance as we increase the size, but note relative stability, again suggesting greater unity between A-SSL
and H-SSL.
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Topographic Distance Each augmentation in a standard SimCLR augmentation stack is typically
associated with a scalar or vector valued ‘strength’. For example, this can correspond to the maximum number
of pixels translated, the range of rescaling, or the maximum number of degrees to be rotated. We note that
the same concept is present in the H-SSL framework and is defined by the associated latent representation
of the transformation. For networks which use regular representations (as in this work), the degree of a
transformation corresponds exactly to the degree of shift within the representation. We thus propose that an
analagous concept to augmentation strength is topographic distance in equivariant networks, meaning the
distance between the two sampled fiber bundles as computed along the group dimensions (i.e. the ‘degree of
shift’). For example, for convolution, this would correspond to the number of feature map pixels between two
patches. For scale, this would correspond to the number of scales between two patches. In Figure 3 (right), we
explore how the traditional notion of augmentation ‘strength’ can be equated with the ‘topographic distance’
between g1 and g2 and their associated fibers (with a fixed base size of |g0| = 1). Here we approximate
topographic distance as the maximum euclidean distance between sampled group elements for simplicity
(||g1 − g2||22), where a more correct measure would be computed using the topology of the group. We see, in
alignment with prior work (Tian et al., 2020a; 2019), that the strength of augmentation (and specifically
translation distance) is an important parameter for effective self supervised learning, likely relating to the
mutual information between fibers as a function of distance.

4.4 Methods

Model Architectures All models presented in this paper are built using the convolutional layers from
the SESN (Sosnovik et al., 2020) library for consistency and comparability. For scale equivariant models,
we used the set of 6 scales [1.0, 1.25, 1.33, 1.5, 1.66, 1.75]. To construct the rotation equivariant backbones,
we use only a single scale of [1.0] and augment the basis set with four 90-degree rotated copies of the basis
functions at [0o, 90o, 180o, 270o]. These rotated copies thus defined the group dimension. This technique of
basis or filter-augmentation for implementing equivariance is known from prior work and has been shown
to be equivalent to other methods of constructing group-equivariant neural networks (Li et al., 2021). For
translation models, we perform no basis-augmentation, and again define the set of scales used in the basis
to be a single scale [1.0], thereby leaving only the spatial coordinates of the final feature maps to define
the output group. On MNIST (LeCun & Cortes, 2010), we used a backbone network f composed of three
SESN convolutional layers with 128 final output channels, ReLU activations and BatchNorms between layers.
The output of the final ReLU is then considered our z for contrastive learning (for LA-SSL and LH-SSL) and
is of shape (128, S × R, 8, 8) where S is the number of scales for the experiment (either 1 or 6), and R is
the number of rotation angles (either 1 or 4). On CIFAR10 and Tiny ImageNet we used SESN-modified
ResNet18 and ResNet20 models respectively where the output of the last ResNet blocks were taken as z for
contrastive learning. For all models where translation is not the studied transformation, we average pool over
the spatial dimensions to preserve consistent input-dimensionality to the nonlinear projection head.

Training Details For training, we use the LARS optimizer (You et al., 2017) with an initial learning rate
of 0.1, and a batch size of 4096 for all models. We use an NCE temperature (τ) of 0.1, half-precision training,
a learning rate warm-up of 10 epochs, a cosine lr-update schedule, and weight decay of 1 × 10−4. On MNIST
we train for 500 epochs and on CIFAR10 and Tiny ImagNet (TIN) we train for 1300 epochs.

5 Related Work

Our work is built upon the literature from the fields equivariant deep learning and self-supervised learning as
outlined in Sections 1 and 2. Beyond this background, our work is highly related in motivation to a number
of studies specifically related to equivariance in self-supervised learning.

Undesired Invariance in SSL One subset of recent prior work has focused on the undesired invariances
learned by A-SSL methods (Xiao et al., 2021; Tsai et al., 2022) and on developing methods by which to avoid
this through learned approximate equivariance (Dangovski et al., 2022; Wang et al., 2021). Our work is,
to the best of our knowledge, the first to suggest and validate that the primary reason for the success of
feature-space SSL objectives such as DIM(L) (Hjelm et al., 2019) and GIM (Löwe et al., 2019) is due to their
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Figure 3: Study of the impact of new H-SSL parameters on top-1 test accuracy. (Left) Test accuracy
marginally increases as we increase total base space size g0. (Right) Test accuracy is constant or decreases as
we increase the maximum distance between fiber bundles considered positive pairs.

exploitation of (translation) equivariant backbones (i.e. CNNs). Furthermore, while prior work shows benefits
to existing augmentation-based SSL objectives when equivariance is induced, our work investigates how
equivariant representations can directly be leveraged to formulate new theoretically-grounded SSL objectives.
In this way, these two approaches may be complimentary.

Data Augmentation in Feature Space There exist multiple works which can similarly be interpreted
as performing data augmentation in feature space both for supervised and self-supervised learning. These
include Dropout (Srivastava et al., 2014), Manifold Mixup (Verma et al., 2018), and others which perform
augmentation directly in feature space (DeVries & Taylor, 2017; Hendrycks et al., 2020), or through generative
models (Sandfort et al., 2019). We see that our work is fundamentally different from these in that it is not
limited to simply performing an augmentation which would have been performed in the input in latent space.
Instead, it maximally leverages structured representations to generalize all of these approaches and show
how others can be included under this umbrella. Specifically, a framework such as DIM(L) is not explicitly
performing an augmentation in latent space, but rather comparing two subsets of a representation which are
offset by an augmentation. As we discuss in Section 6, this distinction is valuable for developing novel SSL
algorithms which can substitute learned homomorphisms for learned augmentations – potentially sidestepping
challenges associated with working in input-space directly.

Hybrid A-SSL + F-SSL Some recent work can be seen to leverage both augmentation-based and
feature-space losses simultaneously. Specifically, Augmented Multiview Deep InfoMax (Bachman et al., 2019)
achieves exactly this goal and is demonstrated to yield improved performance over its non-hybrid counterparts.
Although similar in motivation, and perhaps performance, to our proposed framework, the Homomorphic
SSL framework differs by unifying the two losses into a single objective, rather than a sum of two separate
objectives.

6 Discussion

In this work we have studied the impact of combining augmentation-homomorphic feature extractors
with augmentation-based SSL objectives. In doing so, we have introduced a new framework we call
Homomorphic-SSL which illustrates an equivalence between previously distinct SSL methods when the
homomorphism constraint is satisfied. Using this framework, we demonstrated that when the constraint
is not satisfied, feature-space based SSL methods fail to learn valuable representations, shedding some light
on why existing F-SSL methods do succeed. Furthermore, we investigated the new parameters highlighted
by our model, such as the base size |g0| and the transformation group G for F-SSL, showing unexploited
potential for improvement of existing methods by tuning of these parameters.

We present this work as an attempt to renew interest in SSL objectives which operate without multiple
inferences of a transformed image, such as Deep InfoMax (Hjelm et al., 2019) and Greedy InfoMax (Löwe
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et al., 2019), by allowing them to exploit the theoretical foundations developed for multi-view SSL (Tosh
et al., 2020; Tian et al., 2020b; Tsai et al., 2020; von Kügelgen et al., 2021; Federici et al., 2020). Although
F-SSL methods have to-date not yielded the same performance as their A-SSL counterparts, we believe the
coupling between objective and network architecture is likely to yield more parallelizable algorithms which
are therefore more scalable and biologically plausible, as has been demonstrated in prior work (Löwe et al.,
2019). In this way, such algorithmic advances could additionally yield potential insights into how biological
neural networks could perform a type of self-supervised learning.

Limitations Despite the unification of existing methods, and benefits from generalization, we note that
this approach is still limited. Specifically, the equivalence between LA-SSL and LH-SSL, and the benefits
afforded by this equivalence, can only be realized if it is possible to analytically construct a neural network
which is equivariant with respect to the transformations of interest. Since it is not currently known how to
construct neural networks which are analytically equivariant with respect to all input augmentations used in
modern SSL, this constraint is precisely the greatest current limitation of this framework. Although the field
of equivariant deep learning has made significant progress in recent years, state of the art techniques are still
restricted to E(n) and continuous compact and connected Lie Groups (Finzi et al., 2020; 2021; Cesa et al.,
2022; Weiler & Cesa, 2019). We believe in this regard, our analysis sheds some light on the success of methods
which perform data augmentation over those which operate directly in feature space in recent literature – it
is simply too challenging with current methods to construct models with structured representations for the
diversity of transformations needed to induce a sufficient set of invariances for linear separability of classes.
We therefore propose this work not as an immediate improvement to the state of the art, but rather as a new
perspective on SSL which provides a bridge to previously distant literature.

Future Work In light of this, we believe that our framework specifically suggests a novel path forward via
learned homomorphisms, (Keller & Welling, 2021; Keurti et al., 2022; Connor et al., 2021; Dehmamy et al.,
2021; Pal & Savvides, 2018). In the H-SSL framework, a learned homomorphism can be seen as equivalent to
a learned augmentation, providing a potential new avenue for approaching the extremely challenging (Blaas
et al., 2021) but fruitful (Shi et al., 2022) goal of learned image augmentations.
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A Experiment Details

Model Architectures All models presented in this paper were built using the convolutional layers from the
SESN Sosnovik et al. (2020) library for consistency and comparability (https://github.com/ISosnovik/
sesn). For scale equivariant models, we used the set of 6 scales [1.0, 1.25, 1.33, 1.5, 1.66, 1.75]. To construct
the rotation equivariant backbones, we use only a single scale of [1.0] and augment the basis set with four
90-degree rotated copies of the basis functions at [0o, 90o, 180o, 270o]. These rotated copies thus defined the
group dimension. This technique of basis or filter-augmentation for implementing equivariance is known from
prior work and has been shown to be equivalent to other methods of constructing group-equivariant neural
networks Li et al. (2021). For translation models, we perform no basis-augmentation, and again define the
set of scales used in the basis to a single scale [1.0], thereby leaving only the spatial coordinates of the final
feature maps to define the output group.

On MNIST LeCun & Cortes (2010), we used a backbone network f composed of three SESN convolutional
layers with # channels (32, 64, 128), kernel sizes (11, 7, 7), effective sizes (11, 3, 3), strides (1, 2, 2), padding
(5, 3, 3), no biases, basis type ‘A’, BatchNorm layers after each convolution, and ReLU activations after each
BatchNorm. The output of this final ReLU was then considered our z for contrastive learning (with LA−SSL

and LH−SSL) and was of shape (128, S×R, 8, 8) where S was the number of scales for the experiment (either
1 or 6), and R was the number of rotation angles (either 1 or 4). For experiments where the transformation
studied was not translation, we average pool over the spatial dimensions before applying the projection head
h to achieve a consistent dimensionality of 128. For classification, an additional SESN convolutional layer
was placed on top with kernel size 7, effective size 3, stride 2, and no padding, thereby reducing the spatial
dimensions to 1, and the total dimensionality of the input to the final linear classifier to 128.

On CIFAR10 we used a ResNet20 model composed of an initial SESN lifting layer with kernel size 7,
effective size 7, stride 1, padding 3, no bias, basis type ‘A’, and 9 output channels. This lifted representation
was then processed by a following SESN convolutional layer of kernel size 7, effective size 3, stride 1,
padding 3, no bias, basis type ‘A’, and 64 output channels. This initial layer was followed by a BatchNorm
and ReLU before being processed by three ResNet blocks of output sizes (128, 256, 512) and initial
strides of (1, 2, 2). Each ResNet block is composed of 3 SESN Basic blocks as defined here (https:
//github.com/ISosnovik/sesn/blob/master/models/stl_ses.py#L19). The output of the third ResNet
block was taken as our z for contrastive learning (again for LA−SSL and LH−SSL) of shape (512, S ×R, 7, 7).
Again, as for MNIST, for experiments where the transformation studied was not translation, we average
pool over the spatial dimensions before applying the projection head h to achieve a consistent dimensionality
of 512. For classification, the vector z was first max-pooled along the scale/rotation group-axis (S × R),
followed by a BatchNorm, a ReLU, and average pooling over the remaining 7 × 7 spatial dimensions. Finally,
we apply BatchNorm to this 512-dimensional vector before applying the non-linear projection head h.

On Tiny ImageNet we use a Resnet20 model which has virtually the same structure as the CIFAR10 model,
but instead uses 4 ResNet blocks of output sizes (64, 128, 256, 512) and strides (1, 2, 2, 2). Furthermore,
each ResNet block is composed of only 2 BasicBlocks for TIN instead of 3 for CIFAR10. Overall this results
in a z of shape (512, S × R, 4, 4), and a final vector for classification of size 512. We note that we do not
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include Translation results in Table 1 for Tiny ImageNet precisely because the spatial dimensions of the
feature map with this architecture are too small to allow for effective H-SSL training in the settings we used
for other methods.

All models used a detached linear classifier for computing the reported downstream classification accuracies,
while the Supervised baselines used an attached linear layer (implying gradients with respect to the classification
loss back-propagated though the whole network). All models additionally used an attached non-linear
projection head h constructed as an MLP with three linear layers. For MNIST these layers have of output
sizes (128, 128, 128), while for CIFAR10 and TIN they have sizes (512, 2048, 512). There is a BatchNorm
after each layer, and ReLU activations between the middle layers (not at the last layer).

Training Details For training we use the LARS optimizer with an initial learning rate of 0.1, and a batch
size of 4096 for all models. We use an NCE temperature (τ) of 0.1, half-precision training, a learning rate
warm-up of 10 epochs, a cosine lr-update schedule, and weight decay of 1 × 10−4. On MNIST we train for 500
epochs and on CIFAR10 and Tiny ImagNet (TIN) we train for 1300 epochs. On average each MNIST run
took 1 hour to complete distributed across 8 GPUs, and each CIFAR10/TIN run took 10 hours to complete
distributed across 64 GPUs. In total this amounts to roughly 85,000 GPU hours.

Empirical Validation For the experiments in Table 1, we use two different methods for data augmentation,
and similarly two different methods for selecting the representations ultimately fed to the contrastive loss for
the A-SSL and H-SSL settings.

For A-SSL we augment the input at the pixel level by: randomly translating the image by up to ± 20% of
its height/width (for translation), randomly rotating the image by one of (0o, 90o, 180o, 270o) (for rotation),
or randomly downscaling the image between 0.57 and 1.0 of its original scale. For S-SSL we use no input
augmentations.

For both methods we use only a single fiber, meaning the base size |g0| is 1. For A-SSL, we randomly select
the location g0 for each example, but we use the same g0 between both branches. For example, in translation,
we compare the feature vectors for two translated images at the same pixel location. Similarly, for scale and
rotation, we pick a single scale or rotation element to compare for both branches. For H-SSL, we randomly
select the location g independently for each example and independently for each branch, effectively mimicing
the latent operator.

H-SSL Without Structure In Table 2, we use the same overall model architectures defined above (3-layer
model or ResNet20), but replace the individual layers with non-equivariant counterparts. Specifically, for the
MLP, we replace the convolutional layers with fully connected layers with outputs (784, 1024, 2048). For the
convolutional models (denoted CNN (6 × CHW )), we replace the SESN kernels with fully-parameterized,
non-equivariant counterparts, otherwise keeping the output dimensionality the same (resulting in the 6 ×
larger output dimension).

Furthermore, for these un-structured representations, in the H-SSL setting, we ‘emulate’ a group dimension
to sample ‘fibers’ from. Specifically, for the MLP we simply reshape the 2048 dimensional output to (16,128),
and select one of the 16 rows at each iterations. For the CNN, we similarly use the 6 times larger feature
space to sample 1

6
th of the elements as if they were scale-equivariant.

Parameters of H-SSL For Figure 3 (left), we select patches of sizes from 1 to |G| − 1 with no padding. In
each setting, we similarly increase the dimensionality of the input layer for the non-linear projection head h
to match the multiplicative increase in the dimension of the input representation z(g). For the topographic
distance experiments (right), we keep a fixed base size of |g0| = 1 and instead vary the maximum allowed
distance between randomly sampled pairs g1 & g2.

B Extended Background

Related Work Our work is undoubtedly built upon the the large literature base from the fields equivariant
deep learning and self-supervised learning as outlined in Sections 1 and 2. Beyond this background, our work
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is highly related in motivation to a number of studies specifically related to equivariance in self-supervised
learning. Most prior work, however, has focused on the undesired invariances learned by A-SSL methods Xiao
et al. (2021); Tsai et al. (2022) and on developing methods by which to avoid this through learned approximate
equivariance Dangovski et al. (2022); Wang et al. (2021). Our work is, to the best of our knowledge, the
first to suggest and validate that the primary reason for the success of feature-space SSL objectives such as
DIM(L) Hjelm et al. (2019) and GIM Löwe et al. (2019) is due to their exploitation of equivariant backbones.

Group-Convolutional Neural Networks As discussed in Section 2, we assume that the backbones
used in this work are equivariant with respect to input augmentations, and further that they admit regular
representations of those transformations in feature space. In this section we detail how such group-equivariant
convolutional neural networks may be constructed via the group-convolution Cohen & Welling (2016): For a
discrete group G, we denote the pre-activation output of a G-equivariant convolutional layer l as zl, with a
corresponding input yl. In practice these values are stored in finite arrays with a feature multiplicity equal to
the order of the group in each space. Explicitly, zl ∈ RCout×|Gout|, and yl ∈ RCin×|Gin| where Gout and Gin

are the set of group elements in the output and input spaces respectively. We use the following shorthand for
indexing zl(g) ≡ zl,:,g ∈ RCout and yl(g) ≡ yl,:,g ∈ RCin , denoting the vector of feature channels at a specific
group element (‘fiber’). Then, the value zl,c(g) ∈ R of a single output at layer l, channel c and element g is

zl,c(g) ≡ [yl ⋆ψl,c](g) =
∑

h∈Gin

Cin∑
i

yl,i(h)ψl,c
i (g−1 · h) , (8)

where ψl,c
i is the filter between the ith input channel (subscript) and the cth output channel (superscript),

and is similarly defined (and indexed) over the set of input group elements Gin. We highlight that the
composition g−1 · h = k ∈ Gin is defined by the action of the group and yields another group element
by closure of the group. The representation Γg and can then be defined as Γg[zl(h)] = zl(g−1 · h) for
all l > 0 when Gl

in = Gl
out = G0

out. From this definition it is straightforward to prove equivariance from:
[Γg[yl] ⋆ψl](h) = Γg[yl ⋆ψl](h) = Γg[zl](h). Furthermore, we see that Γg is a ‘regular representation’ of the
group, meaning that it acts by permuting features along the group dimension while leaving feature channels
intact. Group equivariant layers can then be composed with pointwise non-linearities and biases to yield a
fully equivariant deep neural network (e.g. yl+1

i = ReLU(zl + b) where b ∈ RCout is a learned bias shared
over the output group dimensions). For l = 0, y0 = x, the raw input, and typically G0

in = (Z2
HW ,+), the

group of all 2D integer translations up to height H and width W . G0
out is then chosen by the practitioner and

is typically a larger group which includes translation as a subgroup, e.g. the roto-translation group, or the
group of scaling & translations.

DIM(L) in H-SSL In this section we outline precisely how the Deep Infomax Local loss DIM(L) relates to
the H-SSL framework proposed in Section 3. Specifically, in Deep InfoMax (DIM(L)) the same general form
of the loss function is applied (often called InfoNCE), but the cosine similarity is replaced with a log-bilinear
model: sim(a, b) = exp

(
aTWb

)
. Additionally, and most importantly to this work, rather than computing

the similarity between two differently augmented versions on an image, the loss is applied between different
spatial locations of the representation for a single image, again with a head h applied afterwards. If we let
g ∼ Z2

HW refer to sampling a contiguous patch from the spatial coordinates of a convolutional feature map,
we can write this general Feature-Space InfoMax loss (LFSIM) as:

LFSIM(X) = −
1
N

N∑
i

Eg1,g2∼Z2
HW

log
exp

(
sim

(
h(zi(g1)), h(zi(g2))

)
/τ

)
∑N

k ̸=i

∑2
j,l

exp
(

sim
(
h(zi(gj)), h(zk(gl))

)
/τ

) . (9)

To show that this is equivalent to our LH-SSL, we see that the randomly sampled spatial patches g1, g2 can
equivalently be described as a single base patch g0 shifted by randomly sampled translations g1 and g2.
Explicitly,

LFSIM(X) = −
1
N

N∑
i

Eg1,g2∼G log
exp

(
sim

(
h(zi(g−1

1 · g0)), h(zi(g−1
2 · g0))

)
/τ

)
∑N

k ̸=i

∑2
j,l

exp
(

sim
(
h(zi(g−1

j · g0)), h(zk(g−1
l

· g0))
)
/τ

) . (10)
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Thus, we see that Feature-Space InfoMax losses are included in our framework, and can therefore be seen to be
equivalent to input-augmentation based losses with an equivariant backbone, where the set of augmentations
is limited to the translation group G ≡ Z2

HW , and the g0 base size is a single spatial coordinate (|g0| = 1)
rather than the size of the full representation (|g0| = |G|).

C Broader Impact

This work is primarily related to understanding and improving self-supervised learning – a training method
for deep neural networks which is able to leverage large amounts of unlabeled data from the internet, making
it one of the most used methods for state of the art image and text generative models today Radford
et al. (2021); Ramesh et al. (2021). Such models have significant broader impact and potential negative
consequences which are beyond the scope of this work. We refer readers to discussions of those paper for
further information. Specifically, this work aims to improve such SSL techniques, thereby inheriting the
broader impact of these models.
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