
1

Robot Behavior Personalization from
Sparse User Feedback

Maithili Patel1, Sonia Chernova1

Fig. 1. Task Adaptation using Abstract Concepts (TAACo) learns user preferences regarding how they want the robot to assist with an open
set of household tasks from limited user feedback. This requires commonsense reasoning to extract relevant semantic information regarding a
novel task, and personalization based on limited feedback. In addition, TAACo can explain its predictions to the user in an intuitive manner.

Abstract—As service robots become more general-purpose,
they will need to adapt to their users’ preferences over a large
set of all possible tasks that they can perform. This includes
preferences regarding which actions the users prefer to delegate
to robots as opposed to doing themselves. Existing personalization
approaches require task-specific data for each user. To handle
diversity across all household tasks and users, and nuances
in user preferences across tasks, we propose to learn a task
adaptation function independently, which can be used in tandem
with any universal robot policy to personalize robot behavior.
We create Task Adaptation using Abstract Concepts (TAACo)
framework. TAACo can learn to predict the user’s preferred
manner of assistance with any given task, by mediating reasoning
through a representation composed of abstract concepts built
based on user feedback. TAACo can generalize to an open set of
household tasks from small amount of user feedback and explain
its inferences through intuitive concepts. We evaluate our model
on a dataset we collected of 5 people’s preferences, and show that
TAACo outperforms GPT-4 by 16% and a rule-based system by
54%, on prediction accuracy, with 40 samples of user feedback

Index Terms—Human-Centered Robotics, Domestic Robotics

I. INTRODUCTION

SERVICE robots have the potential to assist diverse users
across warehouses, homes, assisted living facilities, etc.,

by performing tasks based on user commands [1]–[4]. How-
ever, these methods require unambiguous commands [1], [2],
such as ‘pick up the cereal box from the pantry and bring
it here’, or need the user to resolve ambiguities during
operation [3], [4]. For complex, high-level tasks, such as
‘help me with breakfast’, unambiguous definition of every
detail is impractical, and robots must autonomously adapt
to user preferences to assist with under-specified tasks. Such
adaptation includes determining ‘when’ a task should be done,
‘how’ it should be done, and ‘who’ should do it. Prior works
have explored questions of anticipating ‘when’ a task should
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be done [5]–[7], and details of ‘how’ the user prefers a task to
be executed [8]–[11], but the final question of ‘who’ should
do a given task, between humans and robots [12]–[15], is
relatively under-explored in the context of personal household
preferences. This problem involves two main challenges: the
diversity in preferences across users, and diversity across the
vast space of tasks that a robot might encounter. Given the
growing demand for robotic support in homes and assisted
living facilities, we focus on older adults, a demographic
that prior studies [16] have shown differ in their preferences
regarding high-level activities, such as meal preparation, that
they prefer delegating to a robot. We examine preferences over
more granular tasks, such as wiping the table and preparing
coffee, through a case study involving interviews with five
older adults, and find low agreement on preferences between
users, indicated by an average pairwise Cohen’s Kappa of 0.23,
underscoring the need for personalization to each user.

Although users prefer to customize robots [17], existing
methods on task allocation [12], [13] in human-robot teaming
primarily focus on optimizing task efficiency rather than user
preferences, and methods that consider user preferences [14],
[15] require exhaustive annotation or prior experience across
the space of tasks, which becomes intractable for general
robots that can perform a multitude of tasks. If users were
required to set explicit rules for the preferences we gath-
ered, they would require on average 76.5 rules for every
100 scenarios. Our key insight is that while the space of
all actions is diverse and intractable, people’s preferences
associated with them are anchored in a relatively smaller space
of abstract concepts (e.g. fragility of an object, mundaneness
of a task, etc.). Moreover, an understanding of such abstract
concepts can be bootstrapped from prior knowledge sources,
and utilizing them in an intermediate representation helps the
robot align its reasoning with the user’s, and leverage user-
generated explanations to further improve such alignment.
Ultimately, this not only helps generalization, but enables such
a model to intuitively explain model inferences to the user.

We contribute TAACo, which leverages prior knowledge
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to create a semantically-rich low-dimensional intermediate
representation to personalize robot behavior to align with
user preferences from sparse user feedback. We define robot
behavior personalization as adaptation of any given task, by
determining who should perform it, and any communication
involved in this allocation. In this regard, TAACo can adapt
any robot task, generated by any universal policy, to the
particular user, from small amounts of verbal user feedback
on prior tasks. For instance, a user’s preference that the robot
should prepare ingredients for an omelet but not cook it, can
be inferred from past feedback, such as asking it to not cook
pasta, and requesting help with tasks like clearing the kitchen
counter after cooking. For a given task, TAACo can help a
robot decide whether it should perform the action, and whether
it should do so right now or later, or should it allow the user
to execute it, and whether it should remind them about it.
It also accounts for known constraints on capabilities of the
user or robot, which might prevent them from being able to
execute a task, in addition to user preferences in making this
decision. Moreover, TAACo trains only on target user’s data,
eliminating the need for data sharing, and allowing data to be
stored and used locally.

The TAACo framework1, outlined in Figure 1, can learn
to predict the preferred robot behavior adaptation for any
given task, by reasoning through a space of abstract concepts.
Concretely, it offers the following key advancements

1) The ability to generalize user preferences to an open set
of tasks from a small amount of user feedback

2) The ability to explain its decisions faithfully through
abstract concepts that a user can understand

Evaluations on a custom dataset2 show that TAACo out-
performs GPT-4 by 16% and a rule-based system by 54%,
on accuracy of correctly predicting the preferred manner of
assistance based on 40 samples of user feedback.

II. BACKGROUND AND RELATED WORK

In this section, we discuss prior work on personalizing
robot behavior to user preferences and bootstrapping prior
knowledge contained in Large Language Models (LLMs).

A common approach to personalization of robot tasks is
for users to directly codify their preferences through end-
user programming methods. Interfaces that support ‘if...then...’
style rules based on abstract semantic conditions, such as
food is being prepared [17], or IoT sensor triggers [18],
have enabled personalized scheduling of behaviors. However,
giving users total control over robot actions, requires them
to be accurate and exhaustive in defining their expectations.
For complex behaviors, user-specification of tasks have been
shown to fail due to unforeseen repercussions [19], [20].

More generally, personalization in human robot interaction
involves adapting to user’s task preferences on ‘how’ and
‘when’ a task should be executed, as well as ‘who’ should
execute a given task. Towards addressing the ‘how’ question,
prior works have learned to adapt to the user’s preferred
manner of executing various tasks, such as learning preferred

1The code for TAACo is available at https://github.com/Maithili/TAACO
2The dataset is available at https://github.com/Maithili/TAACO data.git

trajectories, object locations, or action ordering, based on
demonstrations [8]–[10], interactive feedback [11], [21], [22],
facial expressions [23], or scene context [24], [25]. Prior works
have also explored the ‘when’ question to enable proactivity
through behavior prediction. In collaborative settings [7],
[26]–[28], such as robot handovers, short-term predictions
have been used to improve task efficiency and fluency, and
in household assistance [5], [6] long-term predictions have
enabled timely robot assistance without direction.

The final question of accounting for user preferences while
determining ‘who’ a task should be allocated to, remains
relatively under-explored in the context of household robots.
The field of task allocation has extensively addressed assign-
ment of tasks in multi-robot and human-robot teams [12]–[14].
However, existing works primarily weigh the utilities and costs
of various allocations, aiming to optimize the efficiency of
achieving task goals. While this is useful in factory settings,
in domestic settings, the goal shifts from task efficiency to
promoting user comfort and satisfaction. In such settings, the
robot must understand allocation preferences of which tasks
the users prefer doing themselves, as opposed to delegating to
a robot. Closest to our work are methods that seek to recover
hidden human preferences, by learning a reward function [15],
[29]. But these works are limited to pre-specified tasks and
require past collaboration experience with the particular user
on those tasks. Transferring user preferences across tasks
has been investigated towards optimizing handovers [28],
and expanding user capabilities [30]. We aim to generalize
allocation preferences of the user across an open set of tasks.

Finally, foundational models have benefited various robotic
applications, but most related to our work is task-related
assistance. By enabling direct user-robot interaction, these
models have supported teaching various tasks to the robot [4],
natural instruction following [31], [32], queryable scene rep-
resentations [33], [34], and explaining robot failures [35].
Knowledge of human norms encoded in LLMs has been used
to personalize robot behavior [36] and to model humans [37].
These works employ the LLMs to directly perform the en-
tire target task [35], [37] or to solve parts of it [4], [36].
Alternatively, prior works [2], [38] have used LLMs to embed
inputs into semantically rich latent spaces. In addition to using
latent embeddings, we use an LLM to create an intermediate
representation composed of explicit abstract concepts.

III. PROBLEM FORMULATION

The primary aim of this work is to learn a model Φ to
predict the desired task adaptation ϕ to regulate execution of t
to match user preferences and user’s or robot’s capability con-
straints, and produce an explanation Erobot for its prediction.
We assume that the high-level robot behavior of the robot is
governed by a plan or policy π, which suggests task t that the
robot should perform, given world state s, and robot’s goal. As
the robot performs various tasks t in the household, produced
by π either proactively or reaction to a command, the user can
provide feedback u, about their preferred adaptations. Over
time, using u, the robot must learn a function Φ to predict the
preferred task adaptation ϕ for novel tasks that it encounters.
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TABLE I. Data collected and parsed from user interviews.
State Task

User Utterance Task Description t = (ca, ch, {co}, {cl}) Constraint Sc Adaptation ϕ
1 “Yep, same [as other cooking tasks], it should do it. I don’t

like cooking.”
Pouring oil in a pan to cook food, Preparing a Meal, {Oil
Bottle, Pan, Stove}, {Kitchen}

- do now

2 “No, the robot shouldn’t ever operate the stove; it is a
serious fire hazard.”

Turning on the stove, Preparing a Meal, {Stove, Stove
knobs}, {Kitchen}

- no action

3 “Yes, I would love for the robot to do such mundane
activities... But it shouldn’t cause ruckus when I’m asleep.”

Arranging pots and pans in the kitchen shelves, Organizing
the Kitchen, {Pots, Pans, Kitchen Shelves}, {Kitchen}

user not asleep do now
user is asleep do later

4 “Sure, the robot can do it... I trust the robot to follow a
recipe when baking.”

mixing cake batter to bake a birthday cake, baking, {cake
batter, mixing bowl, wooden spoon}, {kitchen}

- do now

5 “No, I’m particular about cooking and such, I’d rather do
it myself.”

mixing cake batter to bake a birthday cake, baking, {cake
batter, mixing bowl, wooden spoon}, {kitchen}

- no action

6 “I don’t mind the robot folding my laundry... But it is tight
around my closet, so if I’m there, I wouldn’t like it moving
around me so much.”

Folding and putting away clothes in the dresser, Doing
Laundry, {Pants, Shirt, Jackets, Dresses, Dresser}, {Closet}

user is nearby do later
user not
nearby

do now

We represent task t, through a tuple of the components de-
scribing it, t = (ca, ch, {co}, {cl}). ca is an action description,
e.g. dusting the mantel. ch is the corresponding high-level
activity, e.g. cleaning the living room. {co} is a set of objects
involved in the action, e.g. {mantel, duster, porcelain jar, photo
frame}. {cl} is a set of locations involved in executing the
action, e.g. {living room}. We allow each component to be
any natural language phrase and so the task is not confined to
a closed set, and can be generated by open-set language-based
planners, as well as classical or RL-based planners for which
language labels are available. The state s ∈ S is comprised of
a set of binary variables s = {si}, and can include predicates
such as ‘user is asleep’, ‘guests are present’, ‘weekend’ etc.

We use task adaptation Φ(t, s) → ϕ to represent adaptation
of robot behavior over a task t. Task adaptation ϕ can be one
of acting on task t immediately (do now), acting on t later
(do later), reminding the user to do t (remind), and not doing
anything about t (no action). This set of four adaptations is
based on preferences people expressed in our pilot case study
(Section V-A), but it can be extended as needed. A function Φ
which predicts a task adaptation is used to personalize robot
behavior in one of two ways: as a filter to determine whether
or not to execute the action selected by π, or as an external
constraint to π, allowing it to optimize for user preferences,
similar to user schedules [39] or motion constraints [40].

To adapt a given task, the robot has access to user feedback
u over prior tasks (examples shown in Table I), and optionally,
some context about constraints on user’s capability in natural
language (e.g. has asthma and is sensitive to dust), and which
tasks π can support. User feedback samples (ϕ, t, Sc, Euser)
include the preferred task adapter ϕ for a task t, and can
optionally include a state constraint Sc and user-generated
explanation Euser. State constraint Sc identifies a subset of the
state space where the preference applies. The user-generated
explanation, (examples shown in Table II), expresses the user’s
reasoning behind the given preference Euser = {(cx, θx)}, and
includes a set of abstract concepts θx associated with compo-
nents cx of the task, for any type of component x ∈ {a, h, o, l}.
Similar to the user generated explanation, the robot should
also be able to offer an explanation Erobot = Ψ(Φ, t, s) for its
prediction.

IV. METHOD

The Task Adaptation using Abstract Concepts framework
(TAACo), addresses the two main challenges in learning Φ,

portrayed in Figure 1: 1) generalization to an open-set of
tasks by extracting relevant semantic information, and 2)
personalized prediction of preferred task adaptation based on
limited feedback. As outlined in Figure 2, TAACo is composed
of a Commonsense module and a Personalization module to
address the two challenges. Based on the idea that people’s
preferences are grounded in abstract semantic concepts, such
as fragility of objects or mundaneness of tasks, we use such
concepts to create an intermediate representation between
the two modules. This representation helps explain model
decisions in an intuitive manner, and leverage user-generated
explanations to align the personalization model with the user.
Unlike prior works [41], [42], we do not restrict the set of
concepts to a predefined closed set, instead allowing the user
to define new concepts as needed through natural language.

The aim of the Commonsense Module is to extract relevant
semantic information about the task t into an intermediate
representation t̃ = {(x, θx,m)}. To create t̃ we distill semantic
information from each task component cx, which can be of one
of four component types x ∈ {a, h, o, l} (action, high level
activity, object, location), by predicting a score m of how
well it matches each of a set of relevant abstract concepts
{θx}. For every θx-cx (concept-component) pair, we prompt
GPT-4 to predict a score on a scale of 1-10, and linearly
rescale it to [0,1], to obtain m. We use this to compose a tuple
(x, θx,m), such as (object, is fragile, 0.85) for cx=mug and
θx = is fragile. Each θx-cx match prompt is independent of
other task components, concepts or prior feedback, allowing
responses to be cached and reused across tasks. We create an
initial set of concepts for each component type, emulating a
factory configuration, and adapt to each user by adding new
concepts obtained from user feedback to these sets.

The Personalization Module predicts the preferred adap-
tation for each task, given the task and world state. The
task input is represented in the form of abstract concepts
t̃ = {(x, θx,m)}, and the world state as a set of binary
variables S = {si}. We first embed each input element of
task representation and state variables, individually into a
set of three latent vectors: a type embedding hx, a concept
embedding hθ, and a score embedding hm. The three vectors
are concatenated to form inputs to a transformer encoder with
a classification head to predict the final task adaptation.

For the task representation, we embed each element of the
tuple (x, θx,m) to create hx, hθ and hm. We create hx by
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Fig. 2. TAACo generates a concept-based representation for a given
task through a Commonsense Module, and uses it to predict the
preferred action adaptation through a Personalization Module.

learning custom embedding vectors to identify each compo-
nent type x∈{a, h, o, l}. We create hθ = ρc(γLLM (θ)) using
an off-the-shelf language embedder γLLM , and projecting
the resulting embedding into latent space using a learned
concept projection function ρc. We create hm=ρm(m) using
a feedforward magnitude projection function ρm to project
the match scores m. To embed the state variables, we learn
custom embeddings hθ for each binary state variable si ∈S,
and a single embedding for hx. To create hm, we reuse ρm to
project the binary state value hm = ρm(m), m ∈ {0, 1}. We
process the final latent embedding for each input component
hx|hθ|hm, along with an output token, <OUT>, through a
transformer encoder. We use the output feature at <OUT> to
classify the desired task adaptation through a classification
head. We train the Personalization Module in a supervised
manner using preference data obtained from the user. We train
the model for the four adaptations in our data, but it can be
extended to accommodate additional adaptations by modifying
the dimensions of the classifier head. Note that the user is not
required to use every available adaptation.

We generate model explanations using the human-
interpretable intermediate representation, and align the
model’s reasoning with the user’s by explicitly training the
model’s explanations. Such training not only improves the
model’s ability to explain, but also improves its ability to
generalize to new actions, by learning the correct underly-
ing structure of the data and avoiding spurious correlations.
Results in Section VI-D empirically verify this claim.

We define the space of all explanations to be the set of all
inputs to the Personalization Module, namely all component-
concept pairs that form the task representation and all state
variables E ∈ {(cx, θx)} ∪ {s}. Extracting an explanation is
equivalent to finding the most important component. We use
attention weights wa between the output token <OUT> and
each input to compute the probability of that input component
to be the explanation as 1− e−wa. The input component with
the highest probability is used as the explanation. We add
an auxiliary loss to motivate the explanation probabilities to
align with user feedback, through a binary cross entropy loss
evaluated based on whether each input component is a part of
explanations Euser or constraints s ∈ Sc provided by the user
for that task. We use attention weights wa from the final layer
of the transformer encoder to allow context from other inputs

to influence the attention weights through previous layers.
Finally, capability constraints of the user and the robot might

render some adaptations unusable. If information about these
capabilities is available, we infer whether the user or robot
can perform the task and constrain the set of valid adaptations
accordingly. We assume that the robot policy π applies to
only those tasks which it can perform, allowing it to indicate
task support. To assess user’s ability to do a given task, we
prompt GPT-4 for a binary yes/no response, using known
context about the user. If the robot cannot perform the task,
we constrain the valid options to ‘no action’ and ‘remind’; if
the user cannot, we constrain them to ‘do now’ and ‘do later’.
We mask classifier outputs to enforce these constraints.

V. EVALUATION

We conduct quantitative evaluation of TAACo on custom
data obtained from real users. In this section, we describe
evaluation data, baselines and metrics, and model training.
A. Case Study

To evaluate TAACo on real user data, we conducted an
IRB approved case study about older adults’ preferences across
various household tasks through in-depth interviews with five
people3. The resulting documentation D contains preferences
of each person across 74-85 household tasks each, adding up
to 173 distinct household tasks. All tasks have a unique action
description, are associated with one of 60 high level activities,
and utilize 265 objects and 14 locations in the household. The
interview was based on scenarios, such as ‘You asked the robot
to help you prepare a meal... the robot is about to pour oil in a
pan on the stove.’ In context of each scenario, we asked four
questions: 1) ‘In the given scenario, how would you prefer
Stretch to respond?’, 2) ‘Why? Please provide a reason why
you picked the above.’, 3) ‘Would you respond differently in
certain conditions and how?’, and 4) ‘In what other scenarios
would you want Stretch to behave in this manner?’. We parse
their responses into a set of datapoints {(ϕ, Euser, Sc)}, as
shown in Table I and II. To ensure that tasks are relevant to
the participants’ daily lives and are not confined to a closed
set, we allow the participants to skip or add tasks. We extract
concepts from freeform text, to avoid restricting participants to
a fixed concept vocabulary. Ultimately, for each persona, this
process results in a set of tasks, along with the preferred task
adaptation, and optionally an explanation and state constraints.
We find that the resulting preferences vary significantly across
personas (low average pairwise Cohen’s Kappa of 0.23), and
across tasks (76.5 rules for every 100 scenarios).

None of our participants had any significant constraints
affecting their ability to perform household tasks. In order
to validate how well our system accounts for capability
constraints of the user or robot, we create dataset D̂, in
which we simulate particular constraints on either the user’s
or the robot’s capability, including 1) a persona sensitive to
dust due to asthma, 2) a persona who cannot comfortably
bend down due to back problems and arthritis, and 3) a
robot with limited vertical reach, such as a stretch robot.
Ultimately D̂ includes data for three personas, created by
manually modifying preferred adaptations in D.

3Gender and age ranges: M 80-85, M 70-75, F 70-75, F 65-70, F 75-80.
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TABLE II. Examples of predictions and explanations generated by TAACo and baselines.
Task t State s Ground Truth TAACo GPT RuleBased

1 putting fruits in the
blender to make a
smoothie, Making a
smoothie, {blender,
kitchen counter, apple,
banana, strawberry},
{kitchen}

user is in
a rush &
weekend

ϕ: no action
E : putting fruits in the blender to make a
smoothie is an action that a user might pre-
fer doing themselves if they enjoy making
food.

ϕ: no action ✓
E : putting fruits in the
blender to make a smoothie
is an action that a user
might prefer doing them-
selves if they enjoy making
food. ✓

ϕ: do now ✗
E : Making a smoothie is
a/an activity which is falls
under food preparation
tasks. ✗

ϕ:
do now ✗
E : - ✗

2 drilling holes in the
wall to put up a coat
hook, home decoration,
{electric drill, hammer,
screws}, {living room}

adverse
weather &
guests are
present &
weekend

ϕ: no action
E : drilling holes in the wall to put up a
coat hook is an action that can cause major
damage or harm if done imprecisely, and
electric drill is an object that can easily hurt
someone without intending to

ϕ: no action ✓
E : drilling holes in the wall
to put up a coat hook is an
action that can cause major
damage or harm if done
imprecisely ✓

ϕ: no action ✓
E : Drilling holes in the wall
to put up a coat hook is a/an
action which can cause ma-
jor damage or harm if done
imprecisely ✓

ϕ:
no action ✓
E : Object
electric
drill is
involved ✓

3 arranging pots and pans
in the kitchen shelves,
organizing the kitchen,
{pots, pans, kitchen
shelves}, {kitchen}

user is
asleep &
weekend

ϕ: do later
E : Arranging pots and pans in the kitchen
shelves is an action that makes a lot of
noise, and user is asleep

ϕ: no action ✗
E : Pot is an object which
involves an open flame ✗

ϕ: do now ✗
E : Arranging pots and pans
in the kitchen shelves is a/an
action which is is very tir-
ing ✗

ϕ:
do now ✗
E : - ✗

4 watering house plants,
maintaining house
plants, {watering can,
house plants}, {living
room}

user is in a
rush

ϕ: do now
E : watering house plants is a task that
a user might want to be carried out in
a particular manner if they are particular
about their house plants, and the user is in
a rush

ϕ: do now ✓
E : user is in a rush ✓

ϕ: do now ✓
E : Watering house plants is
an activity under maintain-
ing house plants, which is
a mundane chore that robots
can assist with effectively ✗

ϕ:
do now ✓
E : - ✗

B. Baselines
We benchmark TAACo against two baselines: end-to-end

GPT-4 [43] and a rule-based system [17], and also compare
against an oracle commonsense version with privileged access
to concept matches. The GPT-4 baseline, uses a few-shot
prompting approach. The prompt includes a full history of in-
teractions including user responses and explanations from the
training set, and asks for a response to a novel evaluation task.
Inspired by end-user programming methods [17], the rule-
based baseline creates explicit rules to predict desired behavior
conditioned upon a component of the task and, optionally, a
state variable, from explanations present in the training set.
During inference, we use majority vote over applicable rules
to predict the response. If no rules are applicable, we select
a default response. Finally, the oracle commonsense version
of our model corrects match scores in the intermediate task
representation using ground truth explanations provided by the
user, wherever available. This tests our personalization model’s
performance, assuming it has access to a perfect user-aligned
scores, particularly for concepts deemed important by the user.

C. Metrics
We evaluate prediction and explanation accuracy of TAACo

on our dataset. We measure prediction accuracy as the
fraction of tasks where predicted label matches the ground
truth label, and explanation accuracy as the fraction of tasks
for which the top explanation offered by a model is a part of
the ground truth set. For each model, we measure explanation
accuracy only for tasks where ground truth explanations are
available, and the model’s prediction is correct, to avoid penal-
izing models for explaining their wrong answers incorrectly.
Our explanation accuracy metric evaluates the top explanation
alone, and not whether all ground truth explanations are
generated, measuring whether the robot’s response aligns with
the user’s expectation if it uses the top explanation.

D. Model Implementation and Training
All models, including TAACo as well as the baselines,

are person-specific, and are trained and tested individually

on each person’s data using k-fold cross-validation. We eval-
uate performance across varying user feedback amounts by
randomly selecting subsets of the training data. Starting with
a base concept vocabulary, we expand it per person based
on feedback, resulting in 23-27 concepts each. The state
representation consists of 8 binary variables, combining all
variables that participants used to define their preferences.

The Personalization Module uses 32-dimensional embed-
dings for type, concept, and score, creating 96-dimensional
inputs for a 2-layer transformer encoder. We use Roberta
sentence embeddings as the language encoder γLLM . The
model, with 909K parameters, is trained for 1700 epochs
with the Adam optimizer and a learning rate of 10−4. We
employ a linear combination of cross-entropy loss for pre-
dictions and auxiliary explanation loss for attention weights,
with the latter given a weight of 20 against unit weight for
the former. TAACo’s Personalization module only takes on
average 0.13s for inference, but Commonsense Module takes
about 16s to predict match scores (for an average 29 θx-cx

pairs per task) using GPT-4, because queries can only be run
sequentially. Batch-processing on a Llama3.1 model instead
takes on average 2.1s.

VI. RESULTS

In this section, we compare the prediction and explanation
performance of TAACo against baselines and an oracle version
of our model, and perform an analysis of the kinds of errors
each model makes. We study how performance improves as
more user feedback becomes available, by varying the number
of user preference samples used in training, with each sample
consisting of data pertaining to one task. We conduct all
experiments on the original dataset D, and evaluate TAACo’s
ability to handle capability constraints using dataset D̂ in
Section VI-A. Finally, we empirically show the importance of
using concepts and training on user-generated explanations.

A. Prediction Accuracy
Figure 3a shows a comparison of prediction accuracy across

10 to 40 labels obtained as user feedback. When little user
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(a) (b)
Fig. 3. Comparison of our model against GPT and rule-based baselines, as well as against using an oracle version of commonsense, on (a)
overall prediction accuracy over varying amounts of user feedback, and (b) a breakdown of the errors, with 40 feedback samples, with the
each bars representing the total error rate and each color representing an error type, along with an example in a box of the same color

data is available, TAACo’s performance is similar to GPT-4;
TAACo outperforms both baselines as more samples become
available. Owing to the vast commonsense knowledge, GPT-4
has a strong commonsense prior which is useful in guessing
common preferences, but as some feedback becomes available,
TAACo can learn nuances of the user’s preferences better, de-
spite GPT-4 having access to the exactly the same information.

Generalization to novel tasks is difficult because each new
task has little direct overlap with those seen previously. This
is evidenced in the rule-based baseline, which fails to improve
with more examples because very few rules created from past
examples are applicable to novel situations. Even with 40
training samples, it can only match learned rules for 17%
responses, while the default ‘do now’ happens to be correct
for the remaining 29% correct tasks (e.g. row 4 in Table II).

TAACo achieves an accuracy of 0.71, while the oracle
commonsense version achieves 0.89. This gap in performance
results from misalignment between concept scores generated
by the GPT-based commonsense module and that provided by
the user. Despite the vast commonsense knowledge, GPT-4
can produce unusual or erroneous predictions, such as that the
object ‘pot’ involves an open flame (row 3 in Table II). Also,
there could be subjective differences between people’s notions,
such as whether being particular about food is applicable to
mixing cake batter (rows 4,5 in Table I), causing the universal
commonsense model to fail for some persona.

Even with the oracle commonsense, the model can fail due
to lack of data or limited expressiveness of our representation.
TAACo sometimes fails to learn a complex dependency on
multiple variables which occur less frequently, such as task
involving moving around, when the location is a tight space,
and the user is present (row 6 in Table I). In rare cases,
the preference may have never been seen in the train set.
For instance, a person didn’t want the robot to touch their
pet, but neither of the two pet grooming tasks were seen in
the training set. Other times, failures can occur when user
preferences depend on details which can not expressed in our
task representation, such as the difference in the role of the
object stove in pouring oil in a pan on the stove, compared to
turning on the stove (row 1,2 in Table I).

Finally, we evaluate TAACo on D̂, which accounts for

capability constraints, with 40 feedback samples. We aug-
ment the prompt for the baseline GPT-4 model with the
information about user context, and which adaptations should
be disallowed if a constraint applies. TAACo achieves an
average prediction accuracy of 0.708, compared to the GPT-4
baseline’s accuracy of 0.642. Over the two personas with user
capability constraints, we find that TAACo is able to identify
whether the user can do the task with 91.4% accuracy.

B. Error Analysis
While prediction accuracy reflects overall model perfor-

mance, different kinds of errors can carry different costs. To
further investigate mistakes made by each model, we catego-
rize errors, based on the their practical impact, as follows.
1) Performed Prohibited Task when the robot classified a task

as do now or do later, but was supposed to be no action
or remind, implying that the robot would perform a task
which the user meant to prevent it from executing.

2) Skipped Task when the robot misclassifies anything as
no action, risking the task remaining unfinished as the user
might be expecting the robot to do it or remind them of it.

3) Unnecessary Delay or Disturbance when the robot misclas-
sifies one of do now and do later as the other, disturbing
the user or delaying the task unnecessarily.

4) Unnecessary Interaction when the robot wrongly predicts
remind. While a system can be designed to allow the user
to correct the robot, it involves interaction with the user.

Note that the four categories are mutually exclusive and
exhaustively cover all errors. Figure 3b shows the distribution
of errors made by each model, when trained on 40 samples,
along with an example of each error type. The total height of
each bar is the total error rate, and the colors represent the rate
of each error type. Notably, most errors for the both baselines
are of the least desirable type: performed prohibited task. The
rule-based system’s default ‘do now’ action, helps prediction
performance, due to the prevalence of ‘do now’ actions, but
causes majority of its errors to fall under this category. In
contrast, TAACo only makes the performed prohibited task
error 9% of the time, while a majority of its errors fall under
skipped task. Overall, this implies that a robot using our model
will be more conservative and err towards not acting when
uncertain, rather than executing tasks which a user might
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Fig. 4. Comparison of Explanation Accuracy against baselines.

not want it to do. Our method also shows a lower rate of
unnecessary delay or disturbance and unnecessary interaction
errors, compared to GPT-4, reducing smaller inconveniences
such as interrupting the user by asking questions and making
a ruckus, and adding to its conservative nature.

C. Explanation Quality
TAACo’s explanations constitute a task component and

associated concept, matching the ground truth explanation
format, but our baselines’ explanations do not. The rule-based
baseline can use the applied rule to offer the task component
as explanation, as seen in row 2 in Table II, but has no
understanding of concepts, so we use a relaxed metric which
deems an explanation to be correct if the right component
is identified. For the GPT-4 baseline, despite prompting the
system to generate an explanation in the given format, we were
unable to fully constrain its responses (e.g. row 1 in Table II).
So we employed GPT-4 to evaluate its own responses against
ground truth through pairwise similarity queries.

Figure 4 shows a comparison of explanation accuracy of
our model against both baselines and the oracle version,
across varying levels of feedback. Our model outperforms both
baselines, reaching an accuracy of 0.74 compared to 0.53 and
0.41 by GPT-4 and Rule-based conditions, respectively. The
rule based baseline’s inability to generalize rules from past
feedback causes its explanation performance to be the lowest,
despite a significantly relaxed evaluation metric.

D. Ablations

The core advancement of our model is the explicit use
of abstract concepts, both for mediating reasoning and for
explicit supervision from user feedback. Figure 5 summarizes
performance benefits of both these elements on prediction and
explanation accuracy, when trained on 40 feedback samples.

Our first hypothesis was that mediating reasoning through
abstract concepts aids generalization by bootstrapping more
relevant prior knowledge than directly using language embed-
dings. To test this, we compare against a ‘No Concepts’ ver-
sion of our model which directly uses language embeddings of
each component, instead of explicit concepts, as inputs to the
Personalization Module, replacing the concept embedding and
match score embedding. The no-concept model achieves only
58.5% prediction accuracy, compared to the 70.9% achieved
by our model. Second, we hypothesized that explicitly training
our model using explanations that the user provides can help

Fig. 5. Ablation results of our model, removing explanation training,
and removing the use of concepts entirely.

it reason in a manner similar to the user, not only improving
the model’s explanation performance, but also its prediction
performance. To test this, we compare our model against
‘No Concept Training’ version of our model, by removing
the auxiliary explanation loss on the attention weights. This
reduces the accuracy of explanations from 73.6% to 26.4%,
and the prediction accuracy from 70.9% to 64.4%.

VII. ROBOT DEMONSTRATION

Finally, we show a proof-of-concept of our system on a
stretch robot4, showcasing personalization across a diverse ar-
ray of tasks and associated concepts, as shown in the video and
Figure 6. With our framework, the robot can accept feedback
over a few tasks to personalize behavior, and generalize to a
wider set of tasks across the household.

Fig. 6. Robot demo generalizing user feedback for different preferred
task adaptations to novel household tasks.

VIII. DISCUSSION AND FUTURE WORK

In this work, we propose TAACo, which can help cus-
tomize robot behavior to user preferences, conditioned on
state context and capability constraints, by picking between
four ways of assisting with a task: doing it now, doing it
later, reminding the user about it, or not doing anything.
Our core contribution is the use of abstract concept-based
representation and training, which allows generalization to
an open-set of household tasks and enables explainability.
TAACo, by combining the generalization ability of an LLM
with a tailored module to enable personalization, performs

4Full demo available at https://youtu.be/bFqubhycs-c
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better than a baseline end-to-end LLM model, with today’s
leading LLMs. As LLMs improve in the future, both TAACo
as well as the baseline would improve, but it is unclear which
would benefit more.

For implementation on a real robot system, TAACo relies
on access to 1) objects, action, locations and high-level activity
information in the description for each task, 2) an NLP module
which can parse user feedback in natural language to extract
concepts, 3) a general robot policy or set of policies capable
of performing the necessary tasks, and 4) perception modules
which can infer user presence and activity. While TAACo
relies on a functional robot policy, it can be extended to
provide feedback to policy learning methods regarding which
tasks the robot is more likely to perform. Future work can
explore how such feedback can be incorporated in continual
policy learning and measure the benefit of such feedback.

Our design of the TAACo framework also has some limi-
tations, opening avenues for future work. First, our input task
representation includes a textual action and activity descrip-
tion, and a set of objects and locations, which cannot capture
details, such as the role of an object in the given task, which
might be pertinent to some preferences. Second, for some
individuals or environments, the notion of component-concept
alignment might diverge from the norm. Since we do not
customize the commonsense module, we cannot model such
preferences. Future work should explore ideas of modeling
change in user preferences, lifelong learning in context of this
problem, as well as evaluate TAACo more extensively over
more diverse domains.
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