
Improving Convergence Guarantees of Ran-
dom Subspace Second-order Algorithm for
Nonconvex Optimization

Rei Higuchi ∗1, Pierre-Louis Poirion †2, and Akiko Takeda ‡1,2

1Graduate School of Information Science and Technology, The University of Tokyo
2Center for Advanced Intelligence Project, RIKEN

Abstract

In recent years, random subspace methods have been actively studied for
large-dimensional nonconvex problems. Recent subspace methods have im-
proved theoretical guarantees such as iteration complexity and local con-
vergence rate while reducing computational costs by deriving descent direc-
tions in randomly selected low-dimensional subspaces. This paper proposes
the Random Subspace Homogenized Trust Region (RSHTR) method with
the best theoretical guarantees among random subspace algorithms for non-
convex optimization. RSHTR achieves an ε-approximate first-order station-
ary point in O(ε−3/2) iterations, converging locally at a linear rate. Fur-
thermore, under rank-deficient conditions, RSHTR satisfies ε-approximate
second-order necessary conditions in O(ε−3/2) iterations and exhibits a lo-
cal quadratic convergence. Experiments on real-world datasets verify the
benefits of RSHTR.

1 Introduction

We consider unconstrained nonconvex optimization problems as follows:

min
x∈Rn

f(x), (1.0.1)

where f : Rn → R is a possibly nonconvex C2 function and bounded below. Nonconvex
optimization problems are often encountered in real-world applications, such as training
deep neural networks, and they are often high-dimensional in recent years. Therefore, there
is a growing need for nonconvex optimization algorithms with low complexity relative to
dimensionality.

Figure 1: Illustration
of our random subspace
method on R2. Each it-
eration restricts the up-
date to a 1-dim. ran-
domly selected subspace.

Recently, subspace methods have been actively investigated for
problems with large dimension n; they compute the search di-
rection at each iteration on a low s-dimensional space (i.e.,
s � n), reducing the computational cost involved in gradient
computation and Hessian matrices. Among these methods, the
method using random projection, where the function f is re-
stricted at each iteration k to a subspace P >

k Rs with the use
of a random matrix Pk ∈ Rs×n, is referred to as random sub-
space method. When finding the search direction at the it-
erate xk, mind̃∈Rs f(xk + P >

k d̃) can be considered instead of
mind∈Rn f(xk + d) in the random subspace method, and various
solution methods can be derived depending on how a solution d̃
is found.

∗higuchi-rei714@g.ecc.u-tokyo.ac.jp
†pierre-louis.poirion@riken.jp
‡takeda@mist.i.u-tokyo.ac.jp, akiko.takeda@riken.jp

1

Table 1: Comparison of random subspace algorithms for nonconvex optimization. The
SOSP column indicates whether the convergence point is a second-order stationary point
or not. The "Feas." column indicates whether numerical experiments were given, implying
the implementation is possible. The number in the "Local" column indicates the rate of
convergence: 1 for linear, 1+ for superlinear, and 2 for quadratic. The † represents the
condition that the Hessian at the local minimizer is rank deficient. The ∗ signifies that the
objective function has low effective dimensionality. The ��indicates that in addition to the
same assumption as the previous work in ✓, this property holds under another assumption.

Underlying algo. Subprob. cost/iter Global Local SOSP Feas.
Roberts & Royer (2023) Direct search Multi. line-search O(ε−2) ✓
Dzahini & Wild (2024) Zeroth order Finite diff. grad. O(ε−2) ✓

Kozak et al. (2023) Zeroth order Finite diff. grad. O(ε−2) 1 ✓
Kozak et al. (2021) Grad. descent Gradient O(ε−2) 1 ✓
Cartis et al. (2020) Gauss-Newton Cond.quad.prog. (QP) O(ε−2) ✓

Shao (2022) Cubic Newton Cond. cubic.reg.QP O(ε−3/2) ✓
Zhao et al. (2024) Cubic Newton Cubic.reg.QP O(ε−3/2) ✓ ✓
Fuji et al. (2022) Reg. Newton Solve eq. O(ε−2) 1+† ✓

Ours Trust Region Min eigenvalue O(ε−3/2) 2∗ �� ✓

Overview of existing random subspace methods: We can use ideas from existing
optimization algorithms for dealing with mind̃∈Rs f(xk+P >

k d̃), and various random subspace
optimization methods have been proposed for convex optimization in e.g., Berahas et al.
(2020); Gower et al. (2019); Grishchenko et al. (2021); Lacotte & Pilanci (2022); Pilanci &
Wainwright (2014). Recently, some random subspace algorithms have started to be devel-
oped for nonconvex optimization and the main ones related to our research are summarized
in Table 1. It may not be so challenging to construct a random subspace variant for each
optimization method. What is difficult is to show that the sequence of iterates computed
in subspaces converges with high probability to a stationary point of the original problem.
The derivation of the faster local convergence rate (e.g., superlinear rate) is complicated
when it comes to subspace methods. Indeed, Fuji et al. (2022) proved that even for strongly
convex f locally around a strict local minimizer, we cannot aim, with high probability, at
local superlinear convergence using random subspace, even though the full dimensional reg-
ularized Newton method allows it. Based on the above and the discussion in Section 1.1
shown later, the following question naturally arises:

To what extent can theoretical guarantees be improved by performing gradient-vector and
Hessian-matrix operations in a low-dimensional subspace?

Our research idea: Trust region methods are known to be fast and stable with excellent
theoretical guarantees. Nevertheless, with conventional methods of solving subproblems, it
is challenging to develop a subspace algorithm with convergence guarantees. In fact, prior
to a recent series of subspace method studies, Erway & Gill (2010) proposed a trust region
method based on projection calculations onto a low-dimensional subspace, but there was
no discussion of convergence speed. To the best of our knowledge, random subspace trust
region methods with complexity analysis have not been developed until now. Only recently,
a new type of trust region method was developed by Zhang et al. (2022), and we realized
that we could develop a subspace variant with convergence guarantees based on this method.
However, deriving local convergence rates is still tricky. The trust region method in Zhang
et al. (2022) treats the trust region subproblem as a basic minimum eigenvalue problem,
which makes theoretical analysis possible. This approach contrasts with the intricate design
of update rules in the previous trust region methods and makes the theoretical analysis of
dimension reduction using the random subspace method more concise.

Contribution: We propose a new random subspace method, Random Subspace Homog-
enized Trust Region (RSHTR), which efficiently solves high-dimensional nonconvex opti-
mization problems by identifying descent directions within randomly selected subspaces.
RSHTR does not need to compute the restricted Hessian, P∇2f(x)P > ∈ Rs×s, making
our algorithm more advantageous than other second-order methods numerically. It also has
excellent theoretical properties as in Table 1: more concretely,

2

• convergence to an ε–approximate first-order stationary point with a global convergence
rate of O(ε−3/2), giving an analysis of the total computational complexity and confirming
that the total computational complexity, as well as space complexity, are improved over
the existing algorithm (Zhang et al., 2022) in full space,

• convergence to a second-order stationary point under the assumption that the Hessian
at the point is rank-deficient or under the same assumption as Shao (2022),

• local quadratic convergence under the assumption on f being strongly convex within its
low effective subspace.

This rank-deficient assumption includes cases commonly observed in recent machine-learning
optimization problems. Indeed, the structure of the Hessian in neural networks has been
studied both theoretically and experimentally, revealing that it often possesses a low-rank
structure (Wu et al., 2020; Sagun et al., 2017; 2016; Ghorbani et al., 2019). Thus, our
theoretical guarantee is considered important from a practical perspective.

1.1 Existing random subspace algorithms for nonconvex optimization

As summarized in Table 1, various types of random subspace methods have been proposed
in recent years to tackle high-dimensional machine learning applications characterized by
over-parametrization. Several papers (Hanzely et al., 2020; Shao, 2022) investigate subspace
cubic regularization algorithm. It can be noticed that Shao (2022) achieves the current best
global convergence rate for a random subspace method of O(ε−3/2) for a nonconvex function.
Although it guarantees the convergence to a second-order stationary point under some strong
assumptions on the condition number and the rank of the Hessian around that point, it does
not discuss local convergence rates. We also noticed a concurrent work (Zhao et al., 2024),
which was uploaded after finishing our project, ensuring the convergence rate of O(ε−3/2) to
a second-order stationary point. However, their algorithm requires a subspace size s = Ω(n)
in general for the guarantee, which is larger than ours s = Ω(log n), and leads to larger
computation cost per iteration (see Theorem 3.2).
In contrast, the study by Fuji et al. (2022) proves that a subspace variant of the regu-
larized Newton method achieves linear local convergence in general and superlinear local
convergence under the rank-deficiency assumption for the Hessian. However, the global con-
vergence rate is limited to O(ε−2), and they only guarantee the convergence to a first-order
stationary point. Other random subspace algorithms for nonconvex optimization include
Roberts & Royer (2023), where the algorithm converges to first-order stationary points with
O(ε−2) and the local convergence rates are not studied. A series of studies (Cartis et al.,
2022; 2023; Cartis & Otemissov, 2021) assume the use of a global optimization method to
solve subproblems, and do not discuss local convergence rates.

Notations. We define I as the identity matrix. For related quantities α and β, we write
α = O (β) if there exists a constant c > 0 such that α ≤ cβ for all β sufficiently small.
We also write α = o(β) if limβ→0

α
β = 0 holds, and α = Ω(β) if β = O (α). For a positive

semi-definite matrix S, we denote by
√

S its squared root, i.e.,
√

S
√

S = S.

2 Proposed method

2.1 Existing algorithm: HSODM

Before proposing our method, we briefly describe a new type of trust region method, a homo-
geneous second-order descent method (HSODM), for the nonconvex optimization problem
(1.0.1); see Appendix A for the details. One of the exciting points of HSODM (Zhang et al.,
2022) is that it uses eigenvalue computations to solve trust region subproblems (TRSs). The
TRS is a subproblem constructed and solved in each iteration of the trust region method.
Various solution methods have been proposed for TRS so far, and due to the improvement
in eigenvalue computation, solving the TRS with eigenvalue computation has recently at-
tracted much attention (see, e.g., Adachi et al. (2017); Lieder (2020)). HSODM is a method
that incorporates the idea of homogenization into TRS and solves it by eigenvalue compu-
tation in the trust region method.

3

2.2 Random Subspace Homogenized Trust Region: RSHTR

Now we propose Random Subspace Homogenized Trust Region (RSHTR), which is an al-
gorithm that reduces the dimension of the subproblems solved in HSODM with random
projection and solves it by eigenvalue computations.
For the sake of detail, we will first define by f̃k the function f restricted to a low s-
dimensional subspace P >

k Rs (i.e., s� n) containing the current iterate xk, that is, ∀u ∈ Rs,
f̃k(u) := f(xk + P >

k u), using a random matrix Pk ∈ Rs×n, where each element follows an
independent normal distribution N (0, 1/s). Random Gaussian matrices Pk are sampled in-
dependently at each iteration k. Using the notation gk := ∇f(xk) and Hk := ∇2f(xk), we
can write the gradient and Hessian matrix of f̃k as g̃k := Pkgk, H̃k := PkHkP >

k . The tilde
symbol denotes the subspace counterpart of the corresponding variable. Using the notation,
the subproblem we need to solve at each iteration can be written as:

min‖[ṽ;t]‖≤1

[
ṽ
t

]> [
H̃k g̃k

g̃>
k −δ

] [
ṽ
t

]
, (2.2.1)

where δ ≥ 0 is a parameter appropriately selected to meet the desired accuracy. The relation
between δ and the accuracy will be shown in Section 3. This subproblem is a lower dimen-
sional version of the subproblem solved in Zhang et al. (2022). We explain in Appendix A
the motivation of the above subproblem. Similar to the subproblem solved in Zhang et al.
(2022), (2.2.1) can also be regarded as a problem of finding the leftmost eigenvector of a
matrix. Hence, (2.2.1) is solved using eigenvalue solvers, such as Lanczos tridiagonalization
algorithm (Golub & Van Loan, 2013) and the randomized Lanczos algorithm (Kuczyński
& Woźniakowski, 1992). The random projection decreases the subproblem dimension from
n + 1 to s + 1. Therefore, unlike HSODM, RSHTR allows for other eigensolvers beyond the
Lanczos method.
Using the solution of (2.2.1) denoted by [ṽk, tk], we can approximate the solution of the full-
space subproblem by [P >

k ṽk, tk]. We then define the descent direction dk and the iterates
update as1

dk :=
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise & xk+1 =

{
xk + ηkdk, if ‖dk‖ > ∆
xk + dk, if ‖dk‖ ≤ ∆ . (2.2.2)

In RSHTR, the step size selection is fixed to ηk = ∆/‖dk‖, and we do not address line
search strategy. However, it should be noted that it is also possible to give theoretical
guarantees when we adopt a usual line search strategy in RSHTR to compute ηk. The
complete algorithm is given in Algorithm 1.
As shown in Section 3, the output x̂ of our algorithm is an ε–approximate first-order sta-
tionary point (ε–FOSP), i.e., it satisfies ‖∇f(x̂)‖ ≤ O(ε). If some assumption is satis-
fied, it will be an ε–approximate second-order stationary point (ε–SOSP), i.e., it satisfies
λmin(∇2f(x̂)) ≥ Ω(−

√
ε). More precisely,

• if the condition ‖dk‖ ≤ ∆ is satisfied, the algorithm can either terminate and output
xk+1, thereby obtaining an ε–FOSP (or ε–SOSP if stronger Assumption 2 holds),

• or reset δ = 0, fix the update rule to xk+1 = xk + dk and continue, thereby achieving
local linear convergence (or quadratic convergence if stronger Assumption 4 holds).

2.3 Total computational complexity and space complexity

We also discuss the computational cost per iteration in Algorithm 1. The main cost involving
Pk and P >

k is dominated by the computation of PkHkP >
k v for a vector v in Line 6 of

Algorithm 1. Indeed, we notice that it is not needed to compute the whole matrix PkHkP >
k

1 It might seem to be more natural to describe |tk| > ν instead of tk 6= 0 as in HSODM (see
Algorithm 2) for pure random subspace variant of HSODM. However, in the fixed-radius strategy,
on which we focus (see (2.2.2)), even if we obtain theoretical guarantees for any ν ∈ (0, 1/2), the
results do not depend on ν. Therefore, we discuss the case with ν → +0 for simplicity and clarity.
Theoretical guarantees regarding a general ν are provided in Appendix C.

4

Algorithm 1 RSHTR: Random Subspace Homogenized Trust Region Method
1: function RSHTR(s, n, δ, ∆, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation

7: dk ←
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise

8: if global_mode and ‖dk‖ > ∆ then
9: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search

10: xk+1 ← xk + ηkdk

11: else
12: terminate ▷ or continue with (δ, global_mode)← (0, False) for local conv.
13: xk+1 ← xk + dk

in order to solve the subproblem (2.2.1) by the Lanczos algorithm. This can be done by
computing the Hessian-vector product ∇2f̃k(0)v where we recall that f̃k(u) = f(xk +P >

k u).
Assuming the use of the Hessian-vector product operation, we discuss below the computation
cost of Line 6, as well as the total computational complexity of Algorithm 1.
Assuming that the full-space Hessian-vector product can be computed in O(n) using back-
propagation (see (Pearlmutter, 1994)), the total complexity of computing ∇2f̃k(0)v becomes
O(sn). Furthermore, Lanczos tridiagonalization algorithm solves, using a random initial-
ization, (2.2.1) exactly (Golub & Van Loan, 2013, Theorem 10.1.1). The computational
cost boils down to computing s + 1 matrix vector products. Hence, by using Hessian-vector
product, the computational complexity to solve (2.2.1) exactly is (s + 1) ·O(sn) = O

(
s2n
)

.
Furthermore, the iteration complexity, under the gradient and Hessian Lipschitz assump-
tions (Assumption 1) and the low effective setting (Assumption 4), is O((n/s)3/4ε−3/2) as
detailed in Section 3.1. Consequently, the total computational complexity of RSHTR in this
setting is O(ε−3/2s5/4n7/4). On the other hand, the total computational complexity of the
full-space algorithm HSODM (Zhang et al., 2022) is O(ε−3/2n2) because the complexity of
solving exactly the subproblem, using Hessian vector products, becomes O(n2). Therefore,
when s = o(n) (for example s = O(log(n))), the total computational complexity of the
proposed method is smaller than that of HSODM. Notice that in any case (for any value
of s < n) the actual execution time of the proposed method outperforms HSODM. This is
because HSODM’s space complexity2 explodes to O(n2) due to the Hessian, whereas the
proposed method’s space complexity is limited to O(sn) taking into account that the s× n
random matrix is larger than the restricted Hessian.

3 Theoretical analysis

We analyze the global and local convergence properties of RSHTR. First, we show that
RSHTR converges, with high probability, to an ε–FOSP in at most O(ε−3/2) iterations.
Secondly, we prove that, under some conditions, the algorithm actually converges to an ε–
SOSP. Lastly, we investigate local convergence: proving local linear convergence and, under
a rank deficiency condition, local quadratic convergence. Note that the analysis in this
section is inspired by Zhang et al. (2022).
Assumption 1. f has L-Lipschitz continuous gradient and M -Lipschitz continuous Hes-
sian, that is, for all x, y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,
∥∥∇2f(x)−∇2f(y)

∥∥ ≤M‖x− y‖.

2Here, we assume the Hessian matrix is stored because rigorously evaluating the space complexity
of the Hessian-vector product is challenging.

5

To prove the global convergence property, we first state that when ‖dk‖ > ∆ holds, the
objective function value decreases sufficiently at each iteration.
Lemma 3.1. Suppose that Assumption 1 holds. If ‖dk‖ > ∆, then for all δ > 0

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s+C)2
∆2δ + M

6 ∆3

with probability at least 1− 2 exp(−s). Here C3 is an absolute constant.

The following lemma shows that if the descent direction once get small enough, the norm
of the gradient in the subsequent iteration is bounded using δ and ∆.
Lemma 3.2. Suppose that Assumption 1 holds. If ‖dk‖ ≤ ∆ ≤ 1

2
√

2 , then

Pr
[
‖gk‖ ≤ 4∆

(
L
√

n/s + C + ∆δ√
n/s−C

)]
≥ 1− 2 exp

(
−C

4 s
)
− 2 exp(−s).

Notice that we can assume that ∆ ≤ 1
2

√
2 holds w.l.o.g. as we want to take ∆ as small as

possible to ensure a better convergence rate. Next, we show a lower bound on the minimum
eigenvalue of the Hessian.
Lemma 3.3. Suppose that Assumption 1 holds. If ‖dk‖ ≤ ∆ ≤ 1

2
√

2 , then we have

Pr
[
H̃k � −

(
8∆2

((√
n
s + C

)2
L + δ

)
+ δ
)

I
]
≥ 1− 2 exp

(
−C

4 s
)
− 2 exp (−s) .

Although Lemma 3.3 does not directly provide a lower bound on the eigenvalues of Hk, it
is proportional to the bound in Lemma 3.3 under certain conditions. We later discuss this
in Section 3.2.

3.1 Global convergence to an ε–FOSP

We now prove that our algorithm converges to an ε–FOSP under a general assumption.
Theorem 3.1 (Global convergence to an ε–FOSP). Suppose that Assumption 1 holds. Let

0 < ε ≤ M2

8 , δ =
(√

n
s + C

)2√
ε and ∆ =

√
ε

M . (3.1.1)
If there exists a positive constant τ such that s = O(nε1/τ), then RSHTR outputs an ε–FOSP
in at most O

(
ε−3/2) iterations with probability at least

1− 4 exp (−Cs/4)− (2Uε + 2) exp (−s) , (3.1.2)
where C and C are absolute constants and Uε := b3M2 (f(x0)− infx∈Rn f(x)) ε−3/2c+ 1.

Theorem 3.1 leads to the following corollary on the probability bound, which is confirmed
by rewriting (3.1.2) as 1− 4n−Cc/4 − (2Uε + 2)n−c with s = c log n for some c > 0. Notice
that s = O(nε1/τ) holds for a small value of τ if n is large and s is not too small.
Corollary 3.1. If s = Ω(log n), then the probability bound (3.1.2) is in the order of 1−o(1).

For comparison with the full-space algorithm HSODM (Zhang et al., 2022), when considering
the dependency on n and s, the norm of the gradient at the output point is O((n/s)(2+τ)/2ε).
This result is obtained by substituting the given parameters into Lemma 3.2. This is
O((n/s)(2+τ)/2) times worse than the HSODM. Since we want to obtain an ε–FOSP in-
stead of an ((n/s)(2+τ)/2ε)–FOSP, we need to scale down ε by O((n/s)−(2+τ)/2) leading
the number of iterations increased by a factor (n/s) 3

2 + 3τ
4 . We have added some detailed

explanations in Appendix D.3 just after the proof of Theorem 3.1. This is the price to pay
for utilizing random subspace.
We should emphasize that under the assumption of low-effectiveness (Assumption 4) intro-
duced in Section 3.4, the exponent of the n/s factor can be improved to 3/4. Therefore, the
total complexity of RSHTR becomes smaller than that of HSODM as discussed in Section
2.3. See Appendix D.4 for more details.
As mentioned in the footnote 1, these results (essentially Lemma 3.1) can also be demon-
strated for any ν ∈ (0, 1/2), i.e., the similar statement also holds for the pure random
subspace variant of HSODM shown in Algorithm 3. Refer to Appendix C for the proof.

3See Wainwright (2019) for more details.

6

3.2 Global convergence to an ε–SOSP

Section 3.1 demonstrated that RSHTR globally converges to an ε–FOSP. In this section, we
show that the output x∗ of RSHTR is also an ε–SOSP under one of two possible assumptions
about the Hessian at the point, one of which is presented in Shao (2022). For clarity and
brevity, we move the result under the assumption from Shao (2022) in Appendix D.5 while
focusing on the more practical one in this section.
Assumption 2. Let r = rank(∇2f(x∗)) for the output x∗ of RSHTR. We assume r ≤ s.

Notice that this includes many cases commonly observed in recent machine-learning opti-
mization problems. Indeed, the structure of the Hessian in neural networks has been studied
both theoretically and experimentally, revealing that it often possesses a low-rank structure
(Wu et al., 2020; Sagun et al., 2017; 2016; Ghorbani et al., 2019). We also introduce some
problems satisfying a stronger condition than Assumption 2 at the beginning of Section 3.4.
Thus, our theoretical guarantee is considered important from a practical perspective. We
guarantee in Theorem 3.2 that the output x∗ of RSHTR is a ε–SOSP when the Hessian
at x∗, denoted by H∗, is rank deficient. Before proceeding to the theorem, we show in
Lemma 3.4 that the lower bound of the minimum eigenvalue of H∗ is proportional to the
lower bound of the minimum eigenvalue of P ∗H∗P ∗> or non-negative with high probability.
Here P ∗ denotes the matrix Pk used at the last iteration of the algorithm.
Lemma 3.4. Let C̄ and c̄ be absolute constants4. If Assumption 2 holds, then for all ζ > 0,
the following inequality holds with probability at least 1− (C̄ζ)s−r+1 − e−c̄s.

λmin(H∗) ≥ ζ−2
(

1−
√

(r − 1)/s
)−2

min
{

λmin
(
P ∗H∗P ∗>) , 0

}
.

This lemma implies that under Assumption 2, it is sufficient to guarantee that the output of
RSHTR is ε–SOSP in full space if it is ε–SOSP in a subspace. Since the minimum eigenvalue
of H∗ is bounded as shown in Lemma 3.3, the following theorem holds.
Theorem 3.2 (Global convergence to an ε–SOSP under rank deficiency). Suppose that
Assumptions 1 and 2 hold. Set ε, δ and ∆ as in (3.1.1) of Theorem 3.1. If there exists a
positive constant τ such that s = O(nε1/τ), then RSHTR outputs an ε–SOSP in at most
O(ε−3/2) iterations with probability at least

1− 6 exp (−Cs/4)− (2Uε + 4) exp (−s)− exp (−s + r − 1)− exp(−c̄s),

where c̄ and C are absolute constants and Uε := b3M2 (f(x0)− infx∈Rn f) ε−3/2c+ 1.

For comparison with the full-space algorithm HSODM (Zhang et al., 2022), when considering
the dependency on n and s, the minimum eigenvalue of the Hessian at the output point
is Ω(−(n/s)

√
ε). This is n/s times worse than the full-space method. In other words, the

number of iterations required to achieve the same accuracy as the full-space algorithm is
(n/s)3 times larger. Unlike convergence to an ε–FOSP, convergence to an ε–SOSP requires
an additional assumption, Assumption 2. The convergence guarantee to ε–SOSP is not
easy because the algorithm is run until the termination condition is satisfied, considering
only subspaces, while convergence to ε–SOSP can be shown without any extra assumption
thanks to Johnson-Lindenstrauss lemma, Lemma B.1. Recall that other random subspace
algorithms (Zhao et al., 2024; Shao, 2022) also showed convergence to an ε–SOSP, but Zhao
et al. (2024) required the dimension of the subspace s to be Ω(n) in general, and Shao (2022)
required stronger assumptions as explained at the beginning of this subsection.

3.3 Local linear convergence

In this section, we discuss the local convergence of RSHTR to a strict local minimizer x̄.
Here, we consider the case when we continue to run Algorithm 1 after ‖dk‖ ≤ ∆ is satisfied,
by setting δ = 0 and global_mode = False. We consider a standard assumption for local
convergence analysis.
Assumption 3. Assume that RSHTR converges to a strict local minimizer x̄ such that
∇f(x̄) = 0,∇2f(x̄) � 0.

4We refer the reader to Rudelson & Vershynin (2009) for estimations on these constants.

7

We denote the Hessian at x̄ by H̄ and introduce the norm ‖x‖H̄ =
√

x>H̄x. This assumption
implies that for any δ > 0, there exists k0 such that o(‖xk−x̄‖)

‖xk−x̄‖ ≤ δ for ∀k ≥ k0.
Theorem 3.3 (Local linear convergence). Suppose Assumptions 1 and 3 hold. Then, for
k large enough, i.e., there exists k0 such that for all k ≥ k0,

Pr
[
‖xk+1 − x̄‖H̄ ≤

√
1− 1

4κ(H̄)(
√

n/s+C)2
‖xk − x̄‖H̄

]
≥ 1− 6 exp (−s) ,

where κ(H̄) := λmax(H̄)/λmin(H̄).

Trust region method closely resembles Newton’s method in a sufficiently small neighborhood
of a local minimizer. Consequently, we expect that the impossibility of achieving local
superlinear convergence for RSHTR in general can be shown, similar to Fuji et al. (2022).
Indeed, in order to prove local superlinear convergence, Zhang et al. (2022) decompose the
direction dk = dN

k + rk, where dN
k corresponds to the direction in a Newton step. In the

subspace setting, this strategy would fail because the dN
k part of the descent direction dk

would hinder superlinear convergence, as proved in Fuji et al. (2022).

3.4 Local convergence for strongly convex f in its effective subspace

We now consider the possibility of our algorithm achieving local quadratic convergence by
making stronger assumptions than Assumption 3 on the function f . Concretely, we focus
on so-called “functions with low dimensionality”5 (Wang et al., 2016), which satisfy the
following condition:

∃Π ∈ Rn×n, rank(Π) ≤ n− 1, s.t. ∀x ∈ Rn, f(x) = f(Πx), (3.4.1)
where Π is an orthogonal projection matrix. These are the functions that only vary over
a low-dimensional subspace (which is not necessarily be aligned with standard axes), and
remain constant along its orthogonal complement. Such functions are frequently encountered
in many applications. For instance, the loss functions of neural networks often have low rank
Hessians Gur-Ari et al. (2018); Sagun et al. (2017); Papyan (2018). This phenomenon is
also prevalent in other areas such as hyper-parameter optimization for neural networks
(Bergstra & Bengio, 2012), heuristic algorithms for combinatorial optimization problems
(Hutter et al., 2014), complex engineering and physical simulation problems as in climate
modeling (Knight et al., 2007), and policy search (Fröhlich et al., 2019).
Now we show a stronger assumption than Assumption 3 on the function f .
Assumption 4. f has s-low effective dimensionality as defined in (3.4.1) with an additional
restriction rank(Π) ≤ s. Furthermore, f is ρ–strongly convex within its effective subspace.

The assumption indicates that for R ∈ Rrank(Π)×n being a matrix whose columns form an
orthonormal basis for Im(Π), the function l(y) := f(R>y) is ρ–strongly convex. To measure
the distance within the effective subspace, we use the semi-norm ‖x‖Π =

√
‖x>Πx‖ = ‖Rx‖ .

Now we show the local quadratic convergence property of RSHTR with parameters δ and
global_mode being reset to 0 and False, respectively, similarly to the local convergence
discussion in Section 3.3. This is the first theoretical result of random subspace methods
having quadratic convergence properties for some classes of functions.
Theorem 3.4 (Local quadratic convergence under ρ–strong convexity in effective subspace).
Suppose Assumptions 1 and 4 hold. Then, for k large enough, i.e., there exists k0 such that
for all k ≥ k0, the following inequalities hold:

Pr
[
‖xk+1 − x̄‖Π ≤ 4Ml‖R‖ρ−1σmin(R>)−1‖xk − x̄‖2

Π
]
≥ 1− 3e−r − e−c̄s,

Pr
[
f(xk+1)− f(x̄) ≤ 8LlM

2
l ‖R‖2ρ−4σmin(R>)−2 (f(xk)− f(x̄))2

]
≥ 1− 3e−r − e−c̄s,

where r = rank(Π), c̄ is a universal constant, Ll and Ml are the Lipschitz constants of ∇l
and ∇2l respectively, and x̄ is the strict local minimizer of f .

5They are also called objectives with “active subspaces" (Constantine et al., 2014), or “multi-
ridge" (Fornasier et al., 2012).

8

Figure 2: Log plot of the convergence of RSHTR
on low effective Rosenbrock problems. The sub-
space dimension s is fixed at 100, and the prob-
lem rank r is varied (r = 25, 50, 100, 150).

Figure 3: The impact of the choice of
subspace dimension s (= 50, 100, 200) on
convergence in random subspace algo-
rithms (RSGD, RSRN, RSHTR) for MF.

4 Numerical experiments

We compare the performance of our algorithm and existing methods: HSODM (Zhang et al.,
2022), RSRN (Fuji et al., 2022), Gradient Descent (GD), and Random Subspace Gradient
Descent (RSGD) (Kozak et al., 2021). We used backtracking line search in all algorithms to
determine the step size. Unless otherwise noted, the subspace dimension s is set to 100 for
all the algorithms utilizing random subspace techniques. In HSODM and our method, we
solve subproblems using the Lanczos method. The numerical experiments were conducted
in the environment: CPU: Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz, GPU: NVIDIA
RTX A5000, RAM: 32 GB. The details of datasets we used are provided in Appendix F.

Low Effective Rosenbrock function (LER): To illustrate the theoretical properties
proved in this paper, we conducted numerical experiments on a Low Effective Rosenbrock
(LER) function, chosen for its property of satisfying Assumptions 1 and 2. This function is
defined as minx∈Rn R(A>Ax), where R(x) =

∑n−1
i=1 100(xi+1−x2

i)2 +(xi−1)2 and A ∈ Rr×n

with r < n. We set n = 10000 to represent a high-dimensional setting.
Figure 2 shows experiments varying r with fixed s. When the rank deficiency r ≤ s holds,
we observe the predicted quadratic convergence. However, when r > s, convergence slowed
significantly. In Figure 4a, we set r = 50 (≤ s = 100). The results show that the full-space
algorithm did not complete even a single step (and is thus omitted from the figure), while our
algorithm outperformed the other algorithms, which supports the discussion in Section 2.3.
Moreover, our method surpasses the other random subspace methods, consistently achieving
the fastest global convergence rate.

Matrix factorization (MF): We evaluate the real-world performance for MF us-
ing MovieLens 100k (Harper & Konstan, 2015): minU∈Rnu×k,V ∈Rk×nv ‖UV −R‖2

F /(nunv),
where R ∈ Rnu×nv and ‖·‖F denotes the Frobenius norm.
We first examine the effect of changing s on each algorithm. Figure 3 shows that despite
varying s, the relative performance among these methods remained consistent, and no par-
ticular method benefited from specific subspace dimensions. This finding justifies our choice
of a fixed subspace dimension (s = 100) for all subspace methods in all the other experi-
ments. Next, the performance of our proposed method is compared against other algorithms,
as shown in Figure 4b. Although RSGD initially exhibits the fastest decrease, likely due to
its advantage of not using the Hessian, our method soon surpasses RSGD.

Classification: We test classification tasks using cross-entropy loss:

minw∈Rn − 1
N

∑N
i=1
∑K

j=1 I[yi = j] log
(

exp(ϕj
w(xi))

/∑K
k=1 exp(ϕk

w(xi))
)

,

where N is the number of data and its label, K is the number of classes in the classification,
(xi, yi) is the i-th data, and ϕw(xi) = (ϕ1

w(xi), . . . , ϕK
w (xi)) is the model’s predicted logit.

We explore the following specific instances.

9

(a) LER
(dim: 10,000)

(b) MF: MovieLens
(dim: 131,250)

(c) LR: news20
(dim: 10,001)

(d) LR: RCV1
(dim: 10,001)

(e) SR: news20
(dim: 200,020)

(f) SR: scotus
(dim: 130,013)

(g) DNN: MNIST
(dim: 123,818)

(h) DNN: CIFAR-10
(dim: 416,682)

Figure 4: Comparison of our method to existing methods regarding the function value v.s.
computation time. Each plot shows the average ± the standard deviation for five runs.
Algorithms that did not complete a single iteration within the time limit are omitted.

• Logistic Regression (LR): K = 2 and ϕ1
w(xi) = wT [xi; 1] (with adaptation for the second

class). News20 (Lang, 1995) and RCV1 datasets (Lewis et al., 2004) were used.
• Softmax Regression (SR): K > 2 and ϕj

w(xi) = wT
j [xi; 1]. News20 (Lang, 1995) and

SCOTUS (Chalkidis et al., 2021) datasets were used.
• Deep Neural Networks (DNN): ϕw(xi) represents the output of a 16-layer fully connected

neural network. MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky, 2009) were used.
In all the experiments (Figures 4c, 4d, 4e, 4f, 4g, 4h) and additional ones in Appendix G,
our algorithm outperforms existing methods. A notable feature of our method is its rapid
escape from flat regions. This can be attributed to the algorithm’s second-order nature, the
homogenization of the subproblem and the utilization of random subspace techniques. In
addition, as discussed in the introduction, the rank-deficient assumptions (Assumptions 2
and 4) reflect scenarios commonly encountered in modern machine learning optimization
problems. Consequently, our method is well-suited to applying Theorems 3.2 and 3.4.

5 Future work

We proposed a new random subspace trust region method and confirmed its usefulness
theoretically and practically. We believe that our proposed method can be made faster by
incorporating various techniques if theoretical guarantees such as convergence rate are not
required. For example, the parameter δ is fixed, once and for all, at the beginning of the
algorithm. In some future work, it would be interesting to develop an adaptive version of
this algorithm where the parameter δ > 0 adapts to the current iterate.
Recently, authors of HSODM (Zhang et al., 2022) have been vigorously using the idea of
HSODM to develop various variants (He et al., 2023) of HSODM, application to stochastic
optimization (Tan et al., 2023), and generalization of the trust region method (Jiang et al.,
2023). We want to investigate whether random subspace methods can be developed similarly.

10

References
Satoru Adachi, Satoru Iwata, Yuji Nakatsukasa, and Akiko Takeda. Solving the trust-region

subproblem by a generalized eigenvalue problem. SIAM Journal on Optimization, 27(1):
269–291, 2017.

Albert S. Berahas, Raghu Bollapragada, and Jorge Nocedal. An investigation of Newton-
sketch and subsampled Newton methods. Optim. Methods Softw., pp. 1–20, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

Coralia Cartis and Adilet Otemissov. A dimensionality reduction technique for uncon-
strained global optimization of functions with low effective dimensionality. Information
and Inference: A Journal of the IMA, 11(1):167–201, 2021.

Coralia Cartis, Jaroslav Fowkes, and Zhen Shao. A randomised subspace Gauss-Newton
method for nonlinear least-squares. Workshop on “Beyond First-Order Methods in ML
Systems”at the 37th International Conference on Machine Learning. Vienna, Austria,
2020.

Coralia Cartis, Estelle Massart, and Adilet Otemissov. Bound-constrained global optimiza-
tion of functions with low effective dimensionality using multiple random embeddings.
Mathematical Programming, pp. 1–62, 2022.

Coralia Cartis, Estelle Massart, and Adilet Otemissov. Global optimization using random
embeddings. Mathematical Programming, 200:781–829, 2023.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos,
Daniel M. Katz, and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language
understanding in english. arXiv preprint arXiv:2110.00976, 2021.

Paul G Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and
practice: applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4):
A1500–A1524, 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kwassi Joseph Dzahini and Stefan M. Wild. Stochastic trust-region algorithm in ran-
dom subspaces with convergence and expected complexity analyses. SIAM Journal on
Optimization, 34(3):2671–2699, 2024. doi: 10.1137/22M1524072.

Jennifer B. Erway and Philip E. Gill. A subspace minimization method for the trust-region
step. SIAM Journal on Optimization, 20(3):1439–1461, 2010. doi: 10.1137/08072440X.

Massimo Fornasier, Karin Schnass, and Jan Vybiral. Learning functions of few arbitrary
linear parameters in high dimensions. Foundations of Computational Mathematics, 12:
229–262, 2012.

Lukas P Fröhlich, Edgar D Klenske, Christian G Daniel, and Melanie N Zeilinger. Bayesian
optimization for policy search in high-dimensional systems via automatic domain selec-
tion. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 757–764. IEEE, 2019.

Terunari Fuji, Pierre-Louis Poirion, and Akiko Takeda. Randomized subspace regu-
larized Newton method for unconstrained non-convex optimization. arXiv preprint
arXiv:2209.04170, 2022.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

11

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: Randomized Sub-
space Newton. Adv. Neural Inf. Process. Syst., 32:616–625, 2019.

Dmitry Grishchenko, Franck Iutzeler, and Jérôme Malick. Proximal gradient methods with
adaptive subspace sampling. Mathematics of Operations Research, 46(4):1303–1323, 2021.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny
subspace. arXiv preprint arXiv:1812.04754, 2018.

Filip Hanzely, Nikita Doikov, Peter Richtárik, and Yurii Nesterov. Stochastic subspace
cubic Newton method. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119, pp. 4027–4038. PMLR, 13–18
Jul 2020.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (tiis), 5(4):1–19, 2015.

Chang He, Yuntian Jiang, Chuwen Zhang, Dongdong Ge, Bo Jiang, and Yinyu Ye. Ho-
mogeneous second-order descent framework: A fast alternative to newton-type methods.
arXiv preprint arXiv:2311.11489, 2023.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In International conference on machine learning, pp. 754–
762. PMLR, 2014.

Yuntian Jiang, Chang He, Chuwen Zhang, Dongdong Ge, Bo Jiang, and Yinyu Ye. A
universal trust-region method for convex and nonconvex optimization. arXiv preprint
arXiv:2311.11489, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Christopher G Knight, Sylvia HE Knight, Neil Massey, Tolu Aina, Carl Christensen, Dave J
Frame, Jamie A Kettleborough, Andrew Martin, Stephen Pascoe, Ben Sanderson, et al.
Association of parameter, software, and hardware variation with large-scale behavior
across 57,000 climate models. Proceedings of the National Academy of Sciences, 104
(30):12259–12264, 2007.

Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith. Pre-
dicting risk from financial reports with regression. In Proceedings of Human Language
Technologies: the 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 272–280, 2009.

David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. A stochastic subspace
approach to gradient-free optimization in high dimensions. Computational Optimization
and Applications, 79(2):339–368, 2021.

David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-
order optimization with orthogonal random directions. Mathematical Programming, 199,
2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power
and lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and
Applications, 13(4):1094–1122, 1992.

Nicholas Kushmerick. Internet Advertisements. UCI Machine Learning Repository, 1998.
DOI: https://doi.org/10.24432/C5V011.

12

Jonathan Lacotte and Mert Pilanci. Adaptive and oblivious randomized subspace methods
for high-dimensional optimization: Sharp analysis and lower bounds. IEEE Transactions
on Information Theory, 68(5):3281–3303, 2022.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings 1995,
pp. 331–339. Elsevier, 1995.

David D. Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research, 5(Apr):
361–397, 2004.

Felix Lieder. Solving large-scale cubic regularization by a generalized eigenvalue problem.
SIAM Journal on Optimization, 30(4):3345–3358, 2020.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training
and sample size. arXiv preprint arXiv:1811.07062, 2018.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in Python. the Journal of Machine Learning Research, 12:
2825–2830, 2011.

Mert Pilanci and Martin J. Wainwright. Randomized sketches of convex programs with
sharp guarantees. In International Symposium on Information Theory (ISIT), pp. 921–
925, Piscataway, 2014. IEEE.

Lindon Roberts and Clément W. Royer. Direct search based on probabilistic descent in
reduced spaces. SIAM Journal on Optimization, 33(4):3057–3082, 2023.

Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular
matrix. Communications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, 62(12):1707–1739, 2009.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical anal-
ysis of the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454,
2017.

Zhen Shao. On random embeddings and their application to optimisation. arXiv preprint
arXiv:2206.03371, 2022.

Jiyuan Tan, Chenyu Xue, Chuwen Zhang, Qi Deng, Dongdong Ge, and Yinyu Ye. A
homogenization approach for gradient-dominated stochastic optimization. arXiv preprint
arXiv:2311.11489, 2023.

Roman Vershynin. High-dimensional probability, volume 47. Cambridge university press,
2018.

Martin J. Wainwright. Basic tail and concentration bounds, pp. 21 ‒ 57. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial
Intelligence Research, 55:361–387, 2016.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hes-
sian: Understanding common structure of hessian in neural networks. arXiv preprint
arXiv:2010.04261, 2020.

13

Yinyu Ye and Shuzhong Zhang. New results on quadratic minimization. SIAM Journal on
Optimization, 14(1):245–267, 2003.

Chuwen Zhang, Dongdong Ge, Chang He, Bo Jiang, Yuntian Jiang, Chenyu Xue, and Yinyu
Ye. A homogenous second-order descent method for nonconvex optimization. arXiv
preprint arXiv:2211.08212v3, 2022.

Chuwen Zhang, Dongdong Ge, Chang He, Bo Jiang, Yuntian Jiang, Chenyu Xue, and Yinyu
Ye. A homogenous second-order descent method for nonconvex optimization. arXiv
preprint arXiv:2211.08212v5, 2024.

Jim Zhao, Aurelien Lucchi, and Nikita Doikov. Cubic regularized subspace newton for
non-convex optimization. arXiv preprint arXiv:2406.16666, 2024.

14

A Existing work: HSODM

Homogeneous Second-Order Descent Method (HSODM) proposed by Zhang et al. (2022) is
a type of trust region method, which globally converges to an ε–SOSP at a rate of O(ε−3/2)
and locally converges at a quadratic rate. The algorithm determines the descent direction
based on the solution of the eigenvalue problem obtained by homogenizing the trust region
subproblem. The algorithm procedure is described below.
At each iteration, HSODM minimizes the homogenized quadratic model. In other words, it
solves the following subproblem:

min
‖[v;t]‖≤1

[
v
t

]> [
Hk gk

g>
k −δ

] [
v
t

]
, (A.0.1)

where δ ≥ 0 is a parameter appropriately determined according to the required accuracy.
The motivation behind is to force the Hessian matrix Hk to have negative curvature. To do
that (see Ye & Zhang (2003)), we homogenize the second order Taylor expansion, mk(d), of
f(xk + d):

mk(d) = g>
k d + 1

2
d>Hkd.

By rewriting d = v
t , we have

t2
(

mk(d)− 1
2

δ

)
= t2

(
g>

k (v/t) + 1
2

(v/t)>Hk(v/t)− 1
2

δ

)
= tg>

k v + 1
2

v>Hkv − 1
2

δt2

=
[
v
t

]> [
Hk gk

g>
k −δ

] [
v
t

]
.

Notice that (A.0.1) can be regarded as a problem of finding the leftmost eigenvector of
a matrix. Hence, the randomized Lanczos algorithm (Kuczyński & Woźniakowski, 1992)
can be utilized to solve (A.0.1). The solution of (A.0.1) is denoted by [vk; tk]. Using this
solution, HSODM calculates the direction as follows:

dF
k =

{
vk/tk, if |tk|> ν
sign(−g>

k vk)vk, if |tk| ≤ ν
,

where ν ∈ (0, 1/2) is an arbitrary parameter.
Then, the algorithm updates the iterates according to the following rule:

xk+1 =
{

xk + ηkdk, if
∥∥dF

k

∥∥ > ∆
xk + dk, if

∥∥dF
k

∥∥ ≤ ∆ .

Here, ηk denotes the step size, and ∆ ∈ [0,
√

2/2] is a parameter set to the appropriate value
to achieve the desired accuracy. If the first condition ‖dF

k‖ > ∆ is met, the step size can be
either set to ηk = ∆/‖dF

k‖ or determined by a line search. If the second condition ‖dF
k‖ > ∆

is satisfied, this algorithm can either terminate and output xk+1, thereby obtaining an ε–
SOSP, or reset both δ and ν to 0 and continue, thereby achieving local quadratic convergence.
These steps are shown in Algorithm 2.

B Preparation of the theoretical analysis

B.1 Existing lemmas

We introduce two important properties of random projections. The first property is that
random projections approximately preserve norms with high probability. Formally, the
following Johnson-Lindenstrauss (JL) lemma holds:

15

Algorithm 2 Homogeneous Second-Order Descent Method (HSODM) (Zhang et al., 2022)
1: function HSODM(n, δ, ∆, ν, max_iter)
2: for k = 1, . . . , max_iter do
3: (tk, vk)← solve_subproblem(gk, Hk, δ)

4: dk ←
{

vk/tk, if |tk| > ν
sign(−g̃>

k ṽk)vk, otherwise
5: if ‖dk‖ > ∆ then
6: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search
7: xk+1 ← xk + ηkdk

8: else
9: xk+1 ← xk + dk

10: terminate ▷ or continue with (δ, ν)← (0, 0) for local convergence

Lemma B.1. [Lemma 5.3.2 in Vershynin (2018)] Let P ∈ Rs×n be a random Gaussian
matrix and C be an absolute constant. Then, for any x ∈ Rn and any ξ ∈ (0, 1), the
following inequality holds with probability at least 1− 2 exp

(
−Cξ2s

)
:

(1− ξ) ‖x‖ ≤ ‖Px‖ ≤ (1 + ξ) ‖x‖ .

The second property is described by the following lemma, which states that P > is an ap-
proximate isometry with high probability.
Lemma B.2 (Theorem 4.6.1, Exercie 4.6.2, 4.6.3 in Vershynin (2018)). Let P ∈ Rs×n be a
random Gaussian matrix and C be an absolute constant. The following inequality holds with
probability at least 1− 2 exp(−s):

∀y ∈ Rs,

(√
n

s
− C

)
‖y‖ ≤

∥∥P >y
∥∥ ≤ (√n

s
+ C

)
‖y‖.

We recall the following lemma from Nesterov (2018).
Lemma B.3. Suppose Assumption 1 holds. Then for any x, y ∈ Rn, we have

|f(y)− f(x)−∇f(x)>(y − x)| ≤ L

2
‖y − x‖2,

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ M

2
‖y − x‖2,∣∣∣∣f(y)− f(x)−∇f(x)>(y − x)− 1

2
(y − x)>∇2f(x)(y − x)

∣∣∣∣ ≤ M

6
‖y − x‖3. (B.1.1)

B.2 The optimality conditions of the dimension-reduced subproblem

We recall the fundamental property in probability theory. For any events E1 and E2, we
have

Pr [E1 ∩ E2] ≥ 1− (1− Pr [E1])− (1− Pr [E2]) .

This is used throughout this paper without further explicit mention. The optimality con-
ditions of the dimension-reduced subproblem (2.2.1) are given by the following statements:
there exists a non-negative random variable θk such that

(
F̃k + θkI

) [ṽk

tk

]
= 0, (B.2.1)

F̃k + θkI � 0, (B.2.2)
θk (‖[ṽk; tk]‖ − 1) = 0, (B.2.3)

where

F̃k =
[

H̃k g̃k

g̃>
k −δ

]
.

16

It immediately follows from (B.2.2) that

λmin(F̃k) ≥ −θk. (B.2.4)
We also obtain from (B.2.2)

δ ≤ θk, (B.2.5)

by considering the direction [0, · · · , 0, 1]>.
We directly deduce the following result from (B.2.1).
Corollary B.1. (B.2.1) implies the following equations(

H̃k + θkI
)

ṽk = −tkg̃k, (B.2.6)
g̃>

k ṽk = tk (δ − θk) .

Furthermore, if tk = 0, then (
H̃k + θkI

)
ṽk = 0, (B.2.7)

g̃>
k ṽk = 0

hold. If tk 6= 0, then

g̃>
k

ṽk

tk
= δ − θk, (B.2.8)(

H̃k + θkI
) ṽk

tk
= −g̃k (B.2.9)

hold.

We also obtain a slightly stronger inequality δ < θk under an additional condition.
Lemma B.4. If gk 6= 0, then δ < θk holds with probability 1.

Proof. We first prove the following inequality:
λmin(F̃k) < −δ. (B.2.10)

To prove this inequality, it suffices to show that F̃k + δI has negative curvature. Let us
define

f(η, t) =
[
−ηg̃k

t

]> (
F̃k + δI

) [−ηg̃k

t

]
= η2g̃>

k (H̃k + δI)g̃k − 2ηt ‖g̃k‖2
.

Then for any fixed t > 0, we have

f(0, t) = 0,
∂f(0, t)

∂η
= −2t‖g̃k‖2.

Since gk 6= 0, we have ‖g̃k‖ 6= 0 with probability 1, which implies ∂f(0,t)
∂η < 0. Thus, for

sufficiently small η > 0, we have that f(η, t) < 0. This shows that F̃k + δI has negative
curvature. Finally, by combining (B.2.4) and (B.2.10), the proof is completed.

C Pure random subspace variant of HSODM

Unlike the pure random subspace variant of HSODM6, RSHTR excludes the parameter ν
present in HSODM. This exclusion is because our theoretical analysis in the fixed-radius
strategy, which we focus on, does not depend on ν. Therefore, we discussed it under ν → +0
for clarity. This section discusses that similar theoretical guarantees can be provided for
any ν ∈ (0, 1/2) as in the case of ν → +0.

6Here, we cite the algorithm used in Zhang et al. (2022). Notice that in the newest version,
Zhang et al. (2024), the stopping criterion is written differently, but it is equivalent to the one in
Zhang et al. (2022).

17

Algorithm 3 Pure random subspace variant of HSODM
1: function RSHTR(s, n, δ, ∆, ν, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation
7:

(
g̃k, H̃k, δ

)
8: dk ←

{
P >

k ṽk/tk, if |tk| > ν
sign(−g̃>

k ṽk)P >
k ṽk, otherwise

9: if ‖dk‖ > ∆ then
10: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search
11: xk+1 ← xk + ηkdk

12: else
13: xk+1 ← xk + dk

14: terminate ▷ or continue with (δ, ν, global_mode)← (0, 0, False) for local
conv.

C.1 Analysis on fixed radius strategy

Here, we consider the case of a fixed step size, ∆. When |tk| < ν, dk is given by dk = P >
k ṽk.

Lemma C.1. Suppose that Assumption 1 holds. Let ν ∈ (0, 1/2), dk = P >
k ṽk and ηk =

∆/‖dk‖. If |tk| < ν, gk 6= 0 and ‖dk‖ > ∆ , then we have

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

with probability at least 1− 2 exp(−s).

Proof. By Corollary B.1, we have

ṽ>
k H̃kṽk = −θk‖ṽk‖2 − tkṽ>

k g̃k, (C.1.1)
ṽ>

k g̃k = tk(δ − θk). (C.1.2)

Since we have δ < θk with probability 1 from Lemma B.4, it follows that

sign(−g̃>
k ṽk) = sign(tk) (C.1.3)

with probability 1. Therefore we obtain

d>
k Hkdk = ṽ>

k H̃kṽk (by definition of dk)
= −θk‖ṽk‖2 − tkṽ>

k g̃k (by (C.1.1))
= −θk‖ṽk‖2 − t2

k(δ − θ) (by (C.1.2)), (C.1.4)
g>

k dk = sign(−g̃>
k ṽk)g̃>

k ṽk (by definition of dk)
= sign(−g̃>

k ṽk)tk(δ − θk) (by (C.1.2))
= |tk|(δ − θk) (by (C.1.3)). (C.1.5)

Since ‖dk‖ > ∆, it follows that ηk = ∆/‖dk‖ ∈ (0, 1). Thus, we have ηk − η2
k/2 ≥ 0. Hence(

ηk −
η2

k

2

)
(δ − θk) ≤ 0. (C.1.6)

18

Algorithm 4 Backtracking Line Search
1: function BacktrackLineSearch(xk, dk, γ > 0, β ∈ (0, 1))
2: ηk = 1
3: for jk = 0, 1, . . . do
4: if f(xk + ηkdk)− f(xk) ≤ −γηk‖dk‖3/6 then
5: return ηk

6: else
7: ηk ← βηk

Hence, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= ηk|tk|(δ − θk)− η2
k

2
θk‖ṽk‖2 − η2

k

2
t2
k(δ − θk) + M

6
η3

k‖dk‖3 (by (C.1.4) and (C.1.5))

≤ ηkt2
k(δ − θk)− η2

k

2
θk‖ṽk‖2 − η2

k

2
t2
k(δ − θk) + M

6
η3

k‖dk‖3 (by 0 ≤ |tk| ≤ 1)

=
(

ηk −
η2

k

2

)
t2
k(δ − θk)− η2

k

2
θk‖ṽk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
θk ‖ṽk‖2 + M

6
η3

k‖dk‖3 (by (C.1.6))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

This completes the proof.

We now consider the case where |tk| ≥ ν. In this case, dk is given by dk = P >
k ṽk/tk. Since

|tk| ≥ ν implies tk 6= 0, we have the following result by using the same argument as in the
proof of Lemma D.2.
Lemma C.2. Suppose Assumption 1 holds. Let dk = P >

k ṽk/tk. If |tk| ≥ ν, ‖dk‖ > ∆ and
ηk = ∆/‖dk‖, then

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

holds with probability at least 1− 2 exp(−s).

By Lemmas C.1 and C.2, we can state that, when ‖dk‖ > ∆ holds, the objective function
value decreases by at least 1

2(
√

n/s+C)2
∆2δ − M

6 ∆3 at each iteration, with probability at
least 1− 2 exp(−s).

C.2 Analysis considering a line search strategy

In this subsection, we analyze the case where the step size is selected by the line search
algorithm shown in Algorithm 4. Specifically, we show that Algorithm 4 guarantees a
sufficient decrease in the function value, similar to the fixed step size case. As in the previous
subsection, we consider the cases |tk| < ν and |tk| ≥ ν separately, providing a guarantee of
function value decrease for each case (Lemma C.3 and Lemma C.4, respectively).
Lemma C.3. Suppose that Assumption 1 holds. Let ν ∈ (0, 1/2), |tk| < ν, dk =
sign(−g̃>

k ṽk)P >
k ṽk, β ∈ (0, 1), γ > 0, and ηk be chosen by Algorithm 4. Then, with probability

19

at least 1− 2 exp(−s), the number of iterations of Algorithm 4 is bounded above by⌈
logβ

(
3δ

M + γ

(√
n

s
+ C

)−3)⌉
,

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{√
3γ

16

(√
n

s
− C

)3

,
9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

Proof. Let jk be the number of iterations at which Algorithm 4 stops in the k-th outer
iteration. If the line search terminates with jk = 0, i.e., ηk = 1, then

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

≤ −γ

6
‖P >

k ṽk‖3

≤ −γ

6

(√
n

s
− C

)3

‖ṽk‖3 (by Lemma B.2)

≤ −
√

3γ

16

(√
n

s
− C

)3

(since ‖ṽk‖ =
√

1− |tk|2 ≥
√

1− ν2 =
√

3/2).

Let us consider the case where Algorithm 4 does not stop at the j-th (j ≥ 0) iteration. Then
f(xk + ηkdk)− f(xk) > −γ

6 η3
k‖dk‖3. Following the proof of Lemma C.1, we have

−γ

6
η3

k‖dk‖3 < f(xk + ηkdk)− f(xk)

≤ −η2
k

2
θk

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
δ

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3 (by (B.2.5)).

This implies ηk > 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2 and j < logβ

(
3δ

(M+γ)‖dk‖
(√

n
s + C

)−2
)

.
Since ‖dk‖ = ‖P >

k ṽk‖ ≤
(√

n
s + C

)
‖ṽk‖ ≤

(√
n
s + C

)
due to Lemma B.2 and

‖ṽk‖ ≤ 1, the number jk of iterations where Algorithm 4 stops is bounded above by⌈
logβ

(
3δ

M+γ

(√
n
s + C

)−3
)⌉

. Moreover, the decrease in the function value can be bounded
as follows:

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

= −γ

6
β3jk‖dk‖3

≤ − 9γβ3δ3

2(M + γ)3(
√

n/s + C)6
,

where the last inequality follows from βjk−1 ≥ 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2. Note that since we
used only Lemma B.2 as a probabilistic result, the probability that this proof holds is at
least 1− 2 exp(−s).

Lemma C.4. Suppose Assumption 1 holds. Let ν ∈ (0, 1/2), |tk| ≥ ν, dk = P >
k ṽk/tk, ‖dk‖ ≥

∆, β ∈ (0, 1), γ > 0, and ηk be chosen by Algorithm 4. Then, with probability at least
1− 2 exp(−s), the number of iterations of Algorithm 4 is bounded above by⌈

logβ

(
3δν

M + γ

(√
n

s
+ C

)−3)⌉
,

20

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{
γ∆3

6
,

9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

Proof. Let jk be the number of iterations at which Algorithm 4 stops in the k-th outer
iteration. If the line search terminates with jk = 0, i.e., ηk = 1, then

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

≤ −γ

6
∆3 (since ‖dk‖ ≥ ∆).

Let us consider the case where Algorithm 4 does not stop at the j-th (j ≥ 0) iteration. Then
f(xk + ηkdk)− f(xk) > −γ

6 η3
k‖dk‖3. Following the proof of Lemma C.2, we have

−γ

6
η3

k‖dk‖3 < f(xk + ηkdk)− f(xk)

≤ −η2
k

2
θk

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
δ

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3 (by (B.2.5)).

This implies ηk > 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2 and j < logβ

(
3δ

(M+γ)‖dk‖
(√

n
s + C

)−2
)

. There-
fore, jk, the number of iterations where Algorithm 4 stops, is bounded above by⌈
logβ

(
3δν

M+γ

(√
n
s + C

)−3
)⌉

. Here, we have used the fact that

‖dk‖ =
∥∥∥∥P >

k

ṽk

tk

∥∥∥∥
≤
(√

n

s
+ C

)
‖ṽk‖
|tk|

(by Lemma B.2)

=
(√

n

s
+ C

) √
1− |tk|2
|tk|

≤
(√

n

s
+ C

)
1
ν

(since |tk| ≥ ν).

The decrease in the function value can be bounded as follows:
f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

= − 9γβ3δ3

2(M + γ)3(
√

n/s + C)6
,

where the last inequality follows from βjk−1 ≥ 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2. Note that since we
used only Lemma B.2 as a probabilistic result, the probability that this proof holds is at
least 1− 2 exp(−s).

From the above two lemmas (Lemmas C.3 and C.4), we can bound the number of line search
iterations and the decrease in the function value for general tk as follows.
Corollary C.1. Suppose Assumption 1 holds. Let ν ∈ (0, 1/2), β ∈ (0, 1), γ > 0, ∆ > 0,
and δ > 0. Then, with probability at least 1− 2 exp(−s), the number of linesearch iterations
of Algorithm 4 is bounded above by⌈

logβ

(
3δν

M + γ

(√
n

s
+ C

)−3)⌉
,

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{√
3γ

16

(√
n

s
− C

)3

,
γ∆3

6
,

9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

21

D Proofs for theoretical analysis

D.1 Analysis of the case where ‖dk‖ > ∆

Let us consider the case where ‖dk‖ > ∆ and evaluate the amount of decrease of the objective
function value at each iteration (Lemmas D.1 and D.2, leading to Lemma 3.1). Note that,
under ‖dk‖ > ∆, the update rule is given by

xk+1 = xk + ηkdk,

ηk = ∆/‖dk‖.

First, we consider the case where tk = 0. In this case, dk is given by dk = P >
k ṽk.

Lemma D.1. Suppose that Assumption 1 holds. Let dk = P >
k ṽk and ηk = ∆/‖dk‖. If

tk = 0, gk 6= 0 and ‖dk‖ > ∆ , then we have

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

with probability at least 1− 2 exp(−s).

Proof. By tk = 0 and Corollary B.1, we have

ṽ>
k H̃kṽk = −θk‖ṽk‖2, (D.1.1)

ṽ>
k g̃k = 0. (D.1.2)

Therefore we obtain

d>
k Hkdk = ṽ>

k H̃kṽk (by definition of dk)
= −θk‖ṽk‖2 (by (D.1.1)), (D.1.3)

g>
k dk = sign(−g̃>

k ṽk)g̃>
k ṽk (by definition of dk)

= 0 (by (D.1.2)). (D.1.4)

Hence, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= 0− η2
k

2
θk‖ṽk‖2 + M

6
η3

k‖dk‖3 (by (D.1.3) and (D.1.4))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

This ends the proof.

Next, we consider the case where tk 6= 0. In this case, dk is given by dk = P >
k ṽk/tk.

Lemma D.2. Suppose Assumption 1 holds. Let dk = P >
k ṽk/tk. If tk 6= 0, ‖dk‖ > ∆ and

ηk = ∆/‖dk‖, then

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

holds with probability at least 1− 2 exp(−s).

22

Proof. Since tk 6= 0, we obtain from (B.2.9)

ṽ>
k

tk
H̃k

ṽk

tk
= −θk

‖ṽk‖2

t2
k

− g̃>
k ṽk

tk
. (D.1.5)

Therefore, it follows that

d>
k Hkdk = ṽ>

k

tk
H̃k

ṽk

tk

= −θk
‖ṽk‖2

t2
k

− g̃>
k ṽk

tk
(by (D.1.5))

= −θk
‖ṽk‖2

t2
k

− g>
k dk (by definition of dk) , (D.1.6)

g>
k dk = δ − θk (by (B.2.8))

≤ 0 (by (B.2.5)) . (D.1.7)

Since ηk = ∆/‖dk‖ ∈ (0, 1), we have ηk − η2
k/2 ≥ 0. Thus we obtain(

ηk −
η2

k

2

)
g>

k dk ≤ 0 (by (D.1.7)) . (D.1.8)

Therefore, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= ηkg>
k dk + η2

k

2

(
−θk
‖ṽk‖2

t2
k

− g>
k dk

)
+ M

6
η3

k‖dk‖3 (by (D.1.6))

=
(

ηk −
η2

k

2

)
g>

k dk −
η2

k

2
θk
‖ṽk‖2

t2
k

+ M

6
η3

k‖dk‖3

≤ −η2
k

2
θk
‖ṽk‖2

t2
k

+ M

6
η3

k‖dk‖3 (by (D.1.8))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

By Lemmas D.1 and D.2, we can state that, when ‖dk‖ > ∆ holds, the objective function
value decreases by at least 1

2(
√

n/s+C)2
∆2δ− M

6 ∆3 at each iteration with probability at least
1− 2 exp(−s). This proves Lemma 3.1.

D.2 Analysis of the case where ‖dk‖ ≤ ∆

Now we consider the case where RSHTR satisfies ‖dk‖ ≤ ∆ at the k-th iteration and outputs
xk. To investigate the property of xk, we analyze ‖gk‖ and λmin(H̃k).
We first derive an upper and lower bound on the eigenvalues of ∇2f(x).
Lemma D.3. Suppose Assumption 1 holds. Then for all x ∈ Rn,

λmin(∇2f(x)) ≥ −L, (D.2.1)
λmax(∇2f(x)) ≤ L

hold.

23

Proof. Let v be a unit eigenvector corresponding to the smallest eigenvalue. By definition
of ∇2f(x), we have

∇2f(x)v = lim
h→0

∇f(x + hv)−∇f(x)
h

.

To bound the right-hand side, we use the L-Lipschitz property. We obtain

‖∇2f(x)v‖ ≤ lim
h→0

‖∇f(x + hv)−∇f(x)‖
|h|

≤ L‖hv‖
|h|

= L‖v‖.

Finally, since ‖∇2f(x)v‖ = |λmin(∇2f(x))|‖v‖, we obtain λmin(∇2f(x)) ≥ −L. The proof
of the second inequality is similar.

Next, we derive upper and lower bounds on the eigenvalues of H̃k.
Lemma D.4. Suppose Assumption 1 holds. Then we have

λmin
(
H̃k

)
≥ −

(√
n

s
+ C

)2

L, (D.2.2)

λmax
(
H̃k

)
≤
(√

n

s
+ C

)2

L (D.2.3)

with probability at least 1− 2 exp(−s).

Proof. Let us consider the first inequality. Let E =
{

x̃ ∈ Rs
∣∣ x̃>H̃kx̃ < 0

}
. Then we have

λmin
(
H̃k

)
≥ min

{
0, min

x̃∈E

x̃>H̃kx̃

‖x̃‖2

}
. (D.2.4)

By Lemma B.2, we have

‖P >
k x̃‖2 ≤

(√
n

s
+ C

)2

‖x̃‖2 (D.2.5)

with probability at least 1− 2 exp(−s). Therefore, we obtain

min
{

0, min
x̃∈E

x̃>H̃kx̃

‖x̃‖2

}
≥
(√

n

s
+ C

)2

min
{

0, min
x̃∈E

x̃>PkHkP >
k x̃

‖P >
k x̃‖2

}
(by (D.2.5))

≥
(√

n

s
+ C

)2

min
{

0, min
x∈Rn

x>Hkx

‖x‖2

}
(by Im(P >

k) ⊂ Rn)

=
(√

n

s
+ C

)2

min {0, λmin (Hk)}

≥ −
(√

n

s
+ C

)2

L (by (D.2.1)).

Hence, by (D.2.4), the first inequality (D.2.2) holds with probability at least 1− 2 exp(−s).
The proof of (D.2.3) is similar.

Using this lemma, we can derive an upper bound on ‖gk‖.
Proof of Lemma 3.2

Proof. Notice that by Lemma B.1

Pkgk = PkHkdk + θk
ṽk

tk
.

24

Hence, by Lemma B.1 and B.2 we deduce that with probability at least 1− 2 exp
(
−C

4 s
)
−

2 exp(−s),

‖gk‖ ≤ 2L

√
n

s
+ C∆ + 2 θk√

n
s − C

∆.

Furthermore, by (B.2.9), we have that
θk ≤ δ + ∆‖gk‖.

Therefore, we have(
1− 2∆2√

n/s− C

)
‖gk‖ ≤ 2∆

(
L

√
n

s
+ C + ∆δ√

n/s− C

)
.

Combining with ∆ ≤ 1
2

√
2 , we deduce that

1
2
‖gk‖ ≤ 2∆

(
L

√
n

s
+ C + ∆δ√

n/s− C

)
,

which completes the proof.

We can also derive a bound on λmin(H̃k).
Proof of Lemma 3.3

Proof. By (B.2.2) and Cauchy’s interlace theorem, we have H̃k + θkI � 0. With (D.4.3)
and Lemma 3.2, it follows that

−θk ≥ −

[
8∆2

((√
n

s
+ C

)2

L + δ

)
+ δ

]
with probability at least 1− 2 exp

(
−C

4 s
)
− 2 exp (−s). This implies

H̃k � −

[
8∆2

((√
n

s
+ C

)2

L + δ

)
+ δ

]
I.

D.3 Proof of Theorem 3.1

Proof. Let us consider how many times we iterate the case where |dk| > ∆ at most. Ac-
cording to Lemma D.1 and Lemma D.2, the objective function decreases by at least

1

2
(√

n/s + C
)2 ∆2δ − M

6
∆3 = ε3/2

3M2

with probability at least 1− 2 exp (−s). Since the total amount of decrease does not exceed
D := f(x0) − infx∈Rn f(x), the number of iterations for the case where ‖dk‖ > ∆ is at
most b3M2Dε−3/2c with probability at least 1 − 2b3M2Dε−3/2c exp (−s). Also, since the
algorithm terminates once it enters the case ‖dk‖ ≤ ∆, the total number of iterations is at
most Uε = b3M2Dε−3/2c+ 1 at least with the same probability as the above.

We can compute an ε–FOSP with probability at least 1− 4 exp
(
−C

4 s
)
− 4 exp (−s), which

can be easily checked by applying Lemma 3.2 to the given δ and ∆.
Therefore, RSHTR converges in b3M2Dε−3/2c + 1 = O(ε−3/2) iterations with probability
at least

1− 2b3M2Dε−3/2c exp (−s)− 4 exp
(
−C

4
s

)
− 4 exp (−s)

≥ 1− 4 exp
(
−C

4
s

)
− (2Uε + 2) exp (−s) .

25

Algorithm 5 RSHTR (modified)
1: function modified_RSHTR(s, n, δ, ∆, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation

7: dk ←
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise

8: if global_mode and ‖dk‖ > ∆ then
9: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search

10: xk+1 ← xk + ηkdk

11: else
12: xk+1 ← xk + dk

13: terminate ▷ or continue with (δ, global_mode)← (0, False) for local conv.

Notice that by Theorem 3.1 and Lemma 3.2, we obtain that

‖gk∗‖ ≤ O
(

(n/s)(2+τ)/2ε
)

,

where k∗ denotes the last iteration, k, where ‖dk‖ > ∆. Therefore, in order to obtain an ε-
FOSP, we need to scale down ε by (n/s)(2+τ)/2. We obtain therefore an iteration complexity
of

O

(((n

s

)−(2+τ)/2
ε

)−3/2
)

= O

((n

s

)(6+3τ)/4
ε−3/2

)
.

This has (n/s)(6+3τ)/4 times the iteration complexity compared to a full-space algorithm.
Especially, when τ is sufficiently small, it becomes almost (n/s)3/2 times.

D.4 Improvement of Iteration Complexity under the Assumption of
Low-Effectiveness

In this section, we show that the total complexity is improved under the assumption of low-
effectiveness (Assumption 4) and the slight modification of the algorithm. The modified
algorithm is shown in Algorithm 5. The difference from the original Algorithm 1 is that the
algorithm updates x before stopping after the algorithm satisfies the stopping criterion. In
order to evaluate the gradient norm at the output point, we first introduce the following
lemma.
Lemma D.5. Assume that f satisfies (3.4.1) and assume that s ≥ m = rank(Π). If
tk 6= 0, dk = P >

k ṽk/tk, ‖dk‖ ≤ ∆, then we have

‖Hkdk + gk‖ ≤
1

ζ
(

1−
√

m−1
s

) δ∆ + ‖gk‖∆2√
n/s− C

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp (−s)− (C̄ζ)s−m+1 − e−c̄s for any ζ > 0.

Proof. Notice that since f(x) = f(Πx) for all x, where Π is a rank m projection matrix, we
have that there exists an orthogonal matrix U ∈ Rn×n such that

Hkdk + gk = U

(
rk

0

)
,

where rk ∈ Rm. Since Pk has the same distribution as PkU , we can assume that

Pk(Hkdk + gk) = Pk

(
rk

0

)
= P̃krk,

26

where P̃k is an s × m random matrix whose elements are sampled independently from
N (0, 1/s). By Lemma B.2, we deduce that

σmin(P̃k)‖Hkdk + gk‖ ≤ ‖Pk (Hkdk + gk)‖ , (D.4.1)

‖dk‖ = ‖P
>
k ṽk‖
|tk|

≥
(√

n

s
− C

)
‖ṽk‖
|tk|

(D.4.2)

with probability at least 1−2 exp
(
−C

4 s
)
−2 exp (−s). Moreover, by (B.2.8) in Corollary B.1,

we deduce
θk − δ = −g>

k dk ≤ ‖gk‖‖dk‖ ≤ ∆‖gk‖. (D.4.3)
Hence,

‖Hkdk + gk‖ ≤
1

σmin(P̃k)
‖Pk (Hkdk + gk)‖

= 1
σmin(P̃k)

θk

∥∥∥∥ ṽk

tk

∥∥∥∥ (by (B.2.9) in Corollary B.1)

≤ 1
σmin(P̃k)

θk√
n/s− C

‖dk‖ (by (D.4.2))

≤ 1
σmin(P̃k)

δ∆ + ‖gk‖∆2√
n/s− C

(by (D.4.3) and ‖dk‖ ≤ ∆).

Moreover, by (Rudelson & Vershynin, 2009, Theorem 1.1), we have

∀ζ > 0, Pr

[
σmin

(
P̃k

)
≥ ζ

(
1−

√
m− 1

s

)]
≥ 1− (C̄ζ)s−m+1 − e−c̄s

for some constants C̄, c̄. Therefore, for any ζ > 0, the following inequality holds with
probability at least 1− 2 exp

(
−C

4 s
)
− 2 exp (−s)− (C̄ζ)s−m+1 − e−c̄s.

‖Hkdk + gk‖ ≤
1

ζ
(

1−
√

m−1
s

) δ∆ + ‖gk‖∆2√
n/s− C

Here, we evaluate the gradient norm at the output point of RSHTR by using Lemma D.5.
Lemma D.6. Suppose that Assumption 1 holds. Assume that f satisfies (3.4.1) and assume
that s ≥ m = rank(Π). If ‖dk‖ ≤ ∆ ≤ 1

2
√

2 , then we have

‖gk+1‖ ≤ M
2 ∆2 + 1√

n/s−C

(
2δ∆ + 8∆3

ζ
(

1−
√

m−1
s

) (L
√

n/s + C + ∆δ√
n/s−C

))
with probability of at least 1− 4 exp

(
−C

4 s
)
− 4 exp (−s)− (C̄ζ)s−m+1 − e−c̄s for any ζ > 0.

Proof. This is proved by the following inequalities.

‖gk+1‖ ≤ ‖gk+1 −Hkdk − gk‖+ ‖Hkdk + gk‖

≤ M

2
‖dk‖2 + δ∆ + ‖gk‖∆2√

n/s− C
(by Lemma D.5)

≤ M

2
∆2 + 1√

n/s− C

δ∆ + 4∆3

ζ
(

1−
√

m−1
s

) (L
√

n/s + C + ∆δ√
n/s− C

) (by Lemma 3.2).

Here, ζ is any positive number. The second and the third inequalities both hold with
probability at least 1−2 exp

(
−C

4 s
)
−2 exp (−s)−(C̄ζ)s−m+1−e−c̄s. Therefore, this lemma

holds with probability at least 1− 4 exp
(
−C

4 s
)
− 4 exp (−s)− (C̄ζ)s−m+1 − e−c̄s .

27

To evaluate the iteration complexity using the same parameters as in Theorem 3.1, we substi-
tute these parameters into Lemma D.6. This shows that Algorithm 5 achieves

√
n/sε-FOSP

in O(ε−3/2) iterations. Therefore, by rescaling ε, it achieves ε-FOSP in O((n/s)3/4ε−3/2)
iterations.

D.5 ε–SOSP under the assumption of Shao (2022)

Let us introduce the following assumption.
Assumption 5. Let ξ ∈ (0, 1), define r = rank(∇2f(x∗)), λ1 be the maximum non-zero
eigenvalues of ∇2f(x∗), and λr be the minimum non-zero eigenvalues of ∇2f(x∗). Then,
the following inequality holds

1− ξ + 16r − 1
s

1 + ξ

1− ξ

λ1

λr
≥ 0.

By the contraposition of (Shao, 2022, Lemma 5.6.6), under Assumption 5, the lower bound
on the minimum eigenvalue of H∗ is proportional to the lower bound on the minimum
eigenvalue of P ∗H∗P ∗> with high probability. Therefore, Lemma 3.3 leads to the following
theorem.
Theorem D.1 (Global convergence to an ε–SOSP under Assumption 5). Suppose Assump-
tions 1 and 5 hold. Set ε, δ and ∆ the same as Theorem 3.1, i.e.,

0 < ε ≤ M2

8
, δ =

(√
n

s
+ C

)2√
ε and ∆ =

√
ε

M
.

If there exists a positive constant τ such that s = O(nε1/τ), then RSHTR converges to an
ε–SOSP in at most O(ε−3/2) iterations with probability at least

(0.9999)r−1
(

1− 2 exp
(
−sξ2

C3

))
− 6 exp

(
−C

4
s

)
− (2Uε + 2) exp (−s) ,

where Uε := b3M2Dε−3/2c+ 1.

Proof. By Theorem 3.1, RSHTR converges to an ε–FOSP in at most O(ε−3/2) iterations
with probability at least,

1− 4 exp
(
−C

4
s

)
− (2Uε + 2) exp (−s) .

Let x∗ denotes the ε–FOSP. We now proceed to prove that x∗ is also an ε–SOSP as well.
By applying Lemma 3.3 to the given δ and ∆, we have

λmin
(
P ∗H∗P ∗>) ≥ −(8ε

M2

(√
n

s
+ C

)2 (
L +
√

ε
)

+
(√

n

s
+ C

)2√
ε

)
(D.5.1)

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp (−s). Hence, by using the contraposition

of (Shao, 2022, Lemma 5.6.6) and denoting κH = min{0, λ1/λr}, we have

λmin (H∗) ≥ −
(

1− ξ + 16r − 1
s

1 + ξ

1− ξ
κH

)−1

·

(
8ε

M2

(√
n

s
+ C

)2 (
L +
√

ε
)

+
(√

n

s
+ C

)2√
ε

)
= Ω(−

√
ε)

28

with probability at least (0.9999)r−1
(

1− 2 exp
(
− sξ2

C3

))
. This shows that x∗ is an ε–SOSP

and the lower bound on the probability is given as follows:

(0.9999)r−1
(

1− 2 exp
(
−sξ2

C3

))
−
(

4 exp
(
−C

4
s

)
+ (2Uε + 2) exp (−s)

)
−
(

2 exp
(
−C

4
s

)
+ 2 exp (−s)

)
≥ (0.9999)r−1

(
1− 2 exp

(
−sξ2

C3

))
− 6 exp

(
−C

4
s

)
− (2Uε + 4) exp (−s) .

Proof of Lemma 3.4

Proof. H∗ can be expressed as H∗ = U∗D∗U∗> using an orthogonal matrix U∗ and a
diagonal matrix D∗. Here,

D∗ = diag(λ1, . . . , λr)
is the diagonal matrix with eigenvalues λ1, . . . , λr. Note that λr+1 = · · · = λn = 0. Hence,
it follows that

P ∗H∗P ∗> = P ∗U∗D∗U∗>P ∗>

= P̂ ∗D∗P̂ ∗>

= P̂ ∗
1 D∗

1P̂ ∗>
1 , (D.5.2)

where P̂ ∗
1 is the first r columns of P̂ ∗, and D∗

1 is the leading principal minor of order r of
D∗. Here, P̂ ∗ is also a random Gaussian matrix due to the orthogonality of U∗. Therefore,
P̂ ∗

1 is full column rank with probability 1. This implies that
∀y ∈ Rr,∃x ∈ Rs s.t. P̂ ∗>

1 x = y (D.5.3)
with probability 1. Hence, the following holds with probability 1.

λmin(H∗) = min
z∈Rn

z>H∗z

‖z‖2

= min
y∈Rr

y>D∗
1y

‖y‖2

≥ min
x∈Rs

x>P̂ ∗
1 D∗

1P̂ ∗>
1 x

‖P ∗>
1 x‖2 (by (D.5.3))

≥ min

{
min
x∈E

x>P̂ ∗
1 D∗

1P̂ ∗>
1 x

‖P ∗>
1 x‖2 , 0

}
where E :=

{
x ∈ Rs | x>P̂ ∗

1 D∗
1P̂ ∗>

1 x < 0
}

≥ min

min
x∈E

1

σmin

(
P̂ ∗

1

)2
x>P̂ ∗

1 D∗
1P̂ ∗>

1 x

‖x‖2 , 0

(
by‖P̂ ∗>

1 x‖2 ≥ σmin

(
P̂ ∗

1

)
‖x‖
)

= 1

σmin

(
P̂ ∗

1

)2 min
{

λmin

(
P̂ ∗

1 D∗
1P̂ ∗>

1

)
, 0
}

= 1

σmin

(
P̂ ∗

1

)2 min
{

λmin
(
P ∗H∗P ∗>) , 0

}
(by (D.5.2)) .

29

Moreover, by (Rudelson & Vershynin, 2009, Theorem 1.1), we have

∀ζ > 0, Pr

[
σmin

(
P̂ ∗

1

)
≥ ζ

(
1−

√
r − 1

s

)]
≥ 1− (C̄ζ)s−r+1 − e−c̄s

for some constants C̄, c̄. Therefore, for any ζ > 0, the following inequality holds with
probability at least 1− (C̄ζ)s−r+1 − e−c̄s.

λmin(H∗) ≥ 1

ζ2
(

1−
√

r−1
s

)2 min
{

λmin
(
P ∗H∗P ∗>) , 0

}
.

Proof of Theorem 3.2

Proof. By following the same argument as in the proof of Theorem D.1 up to (D.5.1), we
obtain

λmin
(
P ∗H∗P ∗>) ≥ Ω(−

√
ε)

with probability at least 1 − 6 exp
(
−C

4 s
)
− (2Uε + 4) exp (−s). Applying Lemma 3.4 with

ζ = C̄/e, we have λmin(H∗) ≥ Ω (−
√

ε) with probability at least

1− 6 exp
(
−C

4
s

)
− (2Uε + 4) exp (−s)− exp (−s + r − 1)− exp(−c̄s)

for some constant c̄. This completes the proof.

D.6 Local convergence

We note that under Assumption 3, there exists µ > 0 and R̄ > 0 such that

∀x ∈ B(x̄, R̄), ∇2f(x) � µI, (D.6.1)

where B(x, R) := {y ∈ Rn | ‖y − x‖ ≤ R}. Let us first discuss the special case, xk = x̄,
which is equivalent to gk = 0 by convexity from Assumption 3.
Lemma D.7. Suppose that Assumption 3 holds. If gk = 0, then xk+1 = xk with probability
1.

Lemma D.7 states that the iterates do not move away from x̄ once it is reached. Since
staying at x̄ achieves any local convergence rate, we ignore this case.

Proof. By applying (B.2.6) to gk = 0, we have (H̃k + θkI)ṽk = 0. This implies that ṽk = 0
or (−θk, ṽk) is an eigenpair of H̃k.
We show that the latter case is impossible by supposing it and leading to a contradiction.
Suppose that (−θk, ṽk) is an eigenpair of H̃k. This implies λmin

(
H̃k

)
≤ −θk ≤ 0. Thus, we

get

∃y ∈ Rs \ {0} s.t. y>H̃ky

‖y‖2 ≤ 0.

Since y 6= 0, we have 0 < ‖P >
k y‖ with probability 1. Therefore, ‖y2‖/‖P >

k y‖2 > 0 follows.
Thus, by multiplying (D.6.2) by ‖y2‖/‖P >

k y‖2 > 0, we obtain

∃y ∈ Rs s.t. y>H̃ky

‖P >
k y‖2 ≤ 0.

By taking z = P >
k y, it follows that

∃z ∈ Rn s.t. z>Hkz

‖z‖2 ≤ 0.

30

Therefore λmin(Hk) ≤ 0 follows. However, this contradicts Assumption 3.
From the above argument, we have ṽk = 0. Since ṽk = 0 implies tk 6= 0 from (B.2.3), dk is
defined as

dk = P >
k ṽk/tk = 0.

Therefore, ‖dk‖ ≤ ∆ holds and xk+1 = xk + dk = xk follows.

Next, we show that in a sufficiently small neighborhood of a local minimizer, we have
‖dk‖ ≤ ∆. To this end, we first present the following auxiliary lemma.
Lemma D.8. Under Assumption 3, tk 6= 0 with probability 1.

Proof. Suppose on the contrary that tk = 0, then (−θk, ṽk) is an eigenpair of H̃k by (B.2.7)
in Corollary B.1. Thus we have λmin(H̃k) ≤ −θk < −δ ≤ 0 with probability 1 by gk 6= 0
and Lemma B.4. This implies that

∃y ∈ Rs s.t. y>H̃ky

‖y‖2 < 0. (D.6.2)

Note that ‖y‖ 6= 0 and ‖P >
k y‖ 6= 0 hold since the numerator and denominator of (D.6.2)

are both non-zero. By multiplying (D.6.2) by ‖y‖2/‖P >
k y‖2 > 0, it follows that

∃y ∈ Rs s.t. y>H̃ky

‖P >
k y‖2 < 0.

By considering z = P >
k y, we obtain

∃z ∈ Rn s.t. z>Hkz

‖z‖2 < 0.

Therefore λmin(Hk) < 0 follows. However, this contradicts Assumption 3. The proof is
completed.

By Lemma D.8, under Assumption 3, we have dk = P >
k

ṽk

tk
with probability 1. This leads to

the following lemma.
Lemma D.9. Under Assumption 3, we have ‖dk‖ ≤ ∆ for sufficiently large k with proba-
bility at least 1− 2 exp

(
−C

4 s
)
− 4 exp (−s).

Proof. From Lemma D.8 and (B.2.9), we have the following with probability 1.

ṽk

tk
= −(H̃k + θkI)−1g̃k.

Therefore, by multiplying P >
k from the left, it follows that

dk = P >
k

ṽk

tk
= −P >

k (H̃k + θkI)−1g̃k.

Thus, we obtain

‖dk‖ ≤ ‖P >
k ‖‖(H̃k + θkI)−1‖‖g̃k‖

≤ ‖P >
k ‖‖(H̃k + θkI)−1‖‖gk‖/2 (by Lemma B.1)

≤
√

n/s + C
2

‖(H̃k + θkI)−1‖‖gk‖ (by Lemma B.2) .

Here the second and third inequalities hold with probability at least 1−2 exp
(
−C

4 s
)

and 1−
2 exp (−s) respectively. By Lemma D.10 and (D.6.1), we have H̃k +θkI �

(√
n
s − C

)2
µ+θk

31

with probability at least 1− 2 exp (−s). Hence, we have

‖dk‖ ≤
(
√

n/s + C)/2
(
√

n/s− C)2µ + θk

‖gk‖

≤
(
√

n/s + C)/2
(
√

n/s− C)2µ
‖gk‖

≤
(
√

n/s + C)
2(
√

n/s− C)2

‖gk‖
µ

.

We have ‖gk‖ → 0 by Assumption 3, which leads to ‖dk‖ ≤ ∆ for sufficiently large k.

Here, we present an auxiliary lemma for the proof of Theorem 3.3.
Lemma D.10. We have

λmin
(
H̃k

)
≥
(√

n

s
− C

)2

λmin(Hk),

λmax
(
H̃k

)
≤
(√

n

s
+ C

)2

λmax(Hk)

with probability at least 1− 2 exp (−s).

Proof. It follows that for any x ∈ Rn, we have x>Hkx
‖x‖2 ≥ λmin(Hk). Therefore, by set-

ting x = P >
k y, we have y>PkHkP >

k y

‖P >
k

y‖2 ≥ λmin(Hk) for any y ∈ Rs. Using Lemma B.2, we

have
(√

n
s − C

)2 ‖y‖2 ≤ ‖P >
k y‖2 with probability at least 1 − 2 exp (−s). This implies the

following inequality holds.

y>PkHkP >
k y

‖y‖2 ≥
(√

n

s
− C

)2

λmin(Hk).

This inequality holds for any y ∈ Rs, which proves the first equation. The proof of the
second equation follows a similar argument.

D.6.1 Proof of Theorem 3.3

Proof. √
H̄(xk+1 − x̄) =

√
H̄(xk+1 − xk) +

√
H̄(xk − x̄)

=
√

H̄dk +
√

H̄(xk − x̄)

= −
√

H̄P >
k (H̃k + θkI)−1Pkgk +

√
H̄(xk − x̄)

= −
√

H̄P >
k (H̃k + θkI)−1PkHk(xk − x̄)

−
√

H̄P >
k (H̃k + θkI)−1Pk(gk −Hk(xk − x̄k))

+
√

H̄(xk − x̄)

= −A−B +
√

H̄(xk − x̄).

Here, we define

A :=
√

H̄P >
k (H̃k + θkI)−1PkHk(xk − x̄)

and

B :=
√

H̄P >
k (H̃k + θkI)−1Pk(gk −Hk(xk − x̄k)).

32

To bound B, we give a bound to ‖P >
k (PkHkP >

k + θkI)−1Pk‖. By Lemma D.10, PkHkP >
k is

invertible with probability at least 1− 2 exp (−s). Therefore, we have

‖P >
k (PkHkP >

k + θkI)−1Pk‖ ≤ ‖P >
k (PkHkP >

k)−1Pk‖. (D.6.3)
Moreover, the right-hand side satisfies the following inequality.

‖P >
k (PkHkP >

k)−1Pk‖ ≤ ‖P >
k ‖2

((√
n

s
− C

)2

λmin(Hk)

)−1

(by Lemma D.10)

≤
(
√

n/s + C)2

(
√

n/s− C)2

1
µ

(by Lemma B.2 and (D.6.1)). (D.6.4)

Here, the first and the second inequalities both hold with probability at least 1−2 exp (−s).
Therefore, combining (D.6.3) and (D.6.4), we have

‖P >
k (PkHkP >

k + θkI)−1Pk‖ ≤
(
√

n/s + C)2

(
√

n/s− C)2
· 1

µ
(D.6.5)

with probability at least 1− 6 exp (−s).
By Taylor expansion at x̄ of ∇f , we obtain ‖gk −Hk(xk − x̄)‖ = O(‖xk − x̄‖2). Combining
this with (D.6.5), we get B = O(‖xk − x̄‖2) with probability at least 1− 6 exp (−s).
Next, to bound A, we further decompose A = A1 + A2 such that

A1 :=
√

H̄P >
k (PkH̄P >

k + θkI)−1PkH̄(xk − x̄)

A2 :=
√

H̄P >
k (PkH̄P >

k + θkI)−1Pk(Hk − H̄)(xk − x̄).

Since ‖Hk − H̄‖ tends to 0 and (D.6.5), we have ‖A2‖ = o(‖xk − x̄‖). This leads to∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤ ∥∥∥−A1 +

√
H̄(xk − x̄)

∥∥∥+ o(‖xk − x̄‖),

which holds with probability at least 1 − 6 exp (−s). Therefore, it remains to bound∥∥∥−A1 +
√

H̄(xk − x̄)
∥∥∥. This is further decomposed as ‖A3 −A4‖, where

A3 :=
(

I −
√

H̄P >
k (PkH̄P >

k)−1Pk

√
H̄
)√

H̄(xk − x̄),

A4 :=
√

H̄P >
k

(
(PkH̄P >

k + θkI)−1 − (PkH̄P >
k)−1)PkH̄(xk − x̄).

Here, ‖A4‖ = o(‖xk− x̄‖) holds for the following reason. By (B.2.8), Lemma D.8 and δ = 0,
we have θk = −gkdk with probability 1 and thus

‖θk‖ ≤ ‖gk‖‖dk‖
≤ ∆‖gk‖ (by Lemma D.9)

with probability at least 1 − 2 exp
(
−C

4 s
)
− 4 exp (−s). This leads to θk → 0 since ‖gk‖

tends to 0. Therefore,
∥∥(PkH̄P >

k + θkI)−1 − (PkH̄P >
k)−1

∥∥ tends to 0, which implies ‖A4‖ =
o(‖xk−x̄‖). Hence, it remains to bound ‖A3‖. Using the fact that

√
H̄P >

k (PkH̄P >
k)−1Pk

√
H̄

is an orthogonal projection, this is bounded from above by√
1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ .

Thus we obtain that∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥+ o(‖xk − x̄‖).

Therefore, when√
1− λmin(H̄)

4λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥−√1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ ≥ o(‖xk−x̄‖),

33

we have that ∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

4λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ . (D.6.6)

Notice that the condition above is implied when√
1− λmin(H̄)

4λmax(PkH̄P >
k)
−

√
1− λmin(H̄)

2λmax(PkH̄P >
k)
≥ o(‖xk − x̄‖)√

λmin(H̄)‖xk − x̄‖
.

Thus, we obtain (D.6.6) for sufficiently large k.

Since we have, by Lemma D.10, λmax(PkH̄P >
k) ≤

(√
n
s + C

)2
λmax(H̄) with probability at

least 1− 2 exp (−s), the upper bound can be rewritten as∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

4λmax(H̄)(
√

n/s + C)2

∥∥∥√H̄(xk − x̄)
∥∥∥ .

Since the probabilistically valid properties that we used in this proof are Lemmas B.2, D.8,
D.10 and D.9, the probability lower bound is given by 1− 2 exp

(
−C

4 s
)
− 8 exp (−s).

D.6.2 Local quadratic convergence

Let ȳ = Rx̄, where we recall that x̄ be the strict local minimizer of f . Then the following
properties hold:

f(x) = f(R>Rx) = l(Rx),
∇f(x) = ∇f(Πx) = Π>∇f(x) = Π∇f(x), (D.6.7)

‖∇f(x)‖ =
√
‖∇f(x)>∇f(x)‖2 =

√
‖∇f(x)>Π∇f(x)‖ = ‖R∇f(x)‖,

∃ρ > 0 s.t. ‖∇l(y)‖ ≥ ρ‖y − ȳ‖,
∃γ > 0 s.t. ‖∇f(x)‖ ≥ γ‖R(x− x̄)‖ (γ = σmin(R>)ρ). (D.6.8)

Next, we show some lemmas regarding Lipschitz continuity.
Lemma D.11. Suppose Assumptions 1 and 4 hold. There exist constants Ll, Ml > 0 such
that for any y1, y2 ∈ Rr, the following inequalities hold:

‖∇l(y1)−∇l(y2)‖ ≤ Ll‖y1 − y2‖, (D.6.9)
‖∇2l(y1)−∇2l(y2)‖ ≤Ml‖y1 − y2‖. (D.6.10)

Proof. Since l(y) = f(R>y), by the Lipschitz continuity of f , we have

‖∇l(y1)−∇l(y2)‖ =
∥∥∥R ∇f(x)|x=R>y1

−R ∇f(x)|x=R>y2

∥∥∥
≤ ‖R‖

∥∥∥∇f(x)|x=R>y1
− ∇f(x)|x=R>y2

∥∥∥
≤ ‖R‖L

∥∥R>y1 −R>y2
∥∥

≤ ‖R‖2
L ‖y1 − y2‖ .

Moreover, we have

‖∇2l(y1)−∇2l(y2)‖ =
∥∥∥R
(
∇2f(x)

∣∣
x=R>y1

− ∇2f(x)
∣∣
x=R>y2

)
R>
∥∥∥

≤ ‖R‖2
∥∥∥∇2f(x)

∣∣
x=R>y1

− ∇2f(x)
∣∣
x=R>y2

∥∥∥
≤ ‖R‖2

M
∥∥R>y1 −R>y2

∥∥
≤ ‖R‖3

M ‖y1 − y2‖ .

Therefore, by setting Ll = ‖R‖2
L and Ml = ‖R‖3

M , the lemma is proved.

34

Lemma D.12. Suppose Assumptions 1 and 4 hold. There exists a constant LΠ > 0 such
that for any x1, x2 ∈ Rn, the following inequality holds:

‖∇f(x1)−∇f(x2)‖Π ≤ LΠ‖x1 − x2‖Π.

Proof. Since

‖∇f(x1)−∇f(x2)‖Π =
√∥∥∥(∇f(x1)−∇f(x2))> Π (∇f(x1)−∇f(x2))

∥∥∥
=
√∥∥∥(∇f(x1)−∇f(x2))> (Π∇f(x1)−Π∇f(x2))

∥∥∥
=
√∥∥∥(∇f(x1)−∇f(x2))> (∇f(x1)−∇f(x2))

∥∥∥ (by (D.6.7))

≤ ‖∇f(x1)−∇f(x2)‖

=
∥∥∥R>

(
∇l(y)|y=Rx1

− ∇l(y)|y=Rx2

)∥∥∥
≤ Ll ‖R‖ ‖Rx1 −Rx2‖ ,

the lemma is proved by setting LΠ = Ll ‖R‖.

From this lemma, it immediately follows that ‖gk‖ = ‖gk‖Π = O(‖xk − x̄‖Π).
In the following, we analyze the convergence rate of ‖xk−x̄‖Π, which leads to the convergence
rate of f(xk)− f(x̄). First, note that t 6= 0 (a.s.) is derived from the fact that the Hessian
is positive semi-definite near x̄. However, the proof is omitted since it is similar to that of
Lemma D.8. This implies dk = P >

k
ṽk

tk
.

Next, we show two auxiliary lemmas.
Lemma D.13. Suppose Assumption 4 holds. Then,

‖Hkdk + gk‖ ≤
√

r/s + C

ζ
(

1−
√

r−1
s

)‖gk‖Π‖dk‖2
Π

holds for r = rank(Π), a universal constants C̄ and c̄, and any ζ > 0 with probability at
least 1− 2 exp(−r)− (C̄ζ)s−r+1 − e−c̄s.

Proof. Let UR be an orthogonal matrix whose first r rows are given by R. It follows that
URP >

k has the same distribution as P >
k , meaning that each element of URP >

k is distributed
according to N (0, 1/s). As RP >

k is the first r rows of URP >
k , RP >

k is an r×s random matrix
with elements independently drawn from N (0, 1/s). Define P̃ >

k := RP >
k , using (D.4.1), we

have

‖Hkdk + gk‖ ≤
1

σmin(P̃k)
‖Pk(Hkdk + gk)‖

≤ σmax(P̃k)
σmin(P̃k)

‖RP >
k Pk(Hkdk + gk)‖.

From (Rudelson & Vershynin, 2009, Theorem 1.1), we have

∀ζ > 0, Pr

[
σmin

(
P̃k

)
≥ ζ

(
1−

√
r − 1

s

)]
≥ 1− (C̄ζ)s−r+1 − e−c̄s

for some constants C̄, c̄ and from Lemma B.2, we have

Pr
[
σmax(P̃k) ≤

√
s

r
+ C

]
≥ 1− 2 exp(−r).

35

Therefore, for any ζ > 0, the following inequality holds with probability at least 1 −
2 exp(−r)− (C̄ζ)s−r+1 − e−c̄s.

‖Hkdk + gk‖ ≤
√

r/s + C

ζ
(

1−
√

r−1
s

)‖RP >
k Pk(Hkdk + gk)‖. (D.6.11)

By multiplying RP >
k to both sides of (B.2.8), we obtain

RP >
k Pk(Hkdk + gk) = −θkRdk. (D.6.12)

Thus we have

‖Hkdk + gk‖ ≤
√

r/s + C

ζ
(

1−
√

r−1
s

)‖RP >
k Pk(Hkdk + gk)‖ (by (D.6.11))

=
√

r/s + C

ζ
(

1−
√

r−1
s

)‖ − θkRdk‖ (by (D.6.12))

=
√

r/s + C

ζ
(

1−
√

r−1
s

)θk‖Rdk‖

=
√

r/s + C

ζ
(

1−
√

r−1
s

)θk‖dk‖Π. (D.6.13)

Moreover, from (B.2.8) and δ = 0, we have

θk = −g>
k dk

= −(Πgk)>dk

= −(Rgk)>(Rdk)
≤ ‖gk‖Π‖dk‖Π. (D.6.14)

Combining (D.6.13) and (D.6.14), we obtain

‖Hkdk + gk‖ ≤
√

r/s + C

ζ
(

1−
√

r−1
s

)‖gk‖Π‖dk‖2
Π.

Lemma D.14. Suppose Assumptions 1 and 4 hold. The following inequality holds:

‖gk+1 − (Hkdk + gk)‖ ≤ 1
2

Ml‖dk‖2
Π.

Proof. By considering the Taylor expansion of t 7→ ∇f(xk + tdk), we obtain the following
equation:

gk+1 = gk +
∫ 1

0
∇2f(xk + tdk)dkdt.

By subtracting Hkdk + gk from both sides, we obtain

gk+1 − (Hkdk + gk) =
∫ 1

0

(
∇2f(xk + tdk)−Hk

)
dkdt.

36

By evaluating the norm of both sides, we obtain the following inequality:

‖gk+1 − (Hkdk + gk)‖ ≤
∫ 1

0

∥∥(∇2f(xk + tdk)−Hk

)
dk

∥∥ dt

=
∫ 1

0

∥∥∥R>
(
∇2l(y)

∣∣
y=R(xk+tdk) − ∇

2l(y)
∣∣
y=Rxk

)
Rdk

∥∥∥ dt

≤
∫ 1

0
‖R‖

∥∥∥(∇2l(y)
∣∣
y=R(xk+tdk) − ∇

2l(y)
∣∣
y=Rxk

)∥∥∥ ‖Rdk‖ dt

≤ ‖R‖
∫ 1

0
Ml ‖R(xk + tdk)−Rxk‖ ‖Rdk‖ dt (by (D.6.10))

= Ml ‖R‖ ‖Rdk‖2
∫ 1

0
tdt

= 1
2

Ml ‖R‖ ‖dk‖2
Π .

Thus, the lemma is proved.

Proof of Theorem 3.4

Proof. At first, we will show the first inequality in Theorem 3.4. The following inequality
holds with probability at least 1− 2 exp(−r)− (C̄ζ)s−r+1 − e−c̄s for any ζ > 0:

‖xk+1 − x̄‖Π ≤
1
γ
‖gk+1‖ (by (D.6.8))

≤ 1
γ

(‖Hkdk + gk‖+ ‖gk+1 − (Hkdk + gk)‖)

≤ 1
γ

 √
r/s + C

ζ
(

1−
√

r−1
s

)‖gk‖Π‖dk‖2
Π + 1

2
Ml‖R‖‖dk‖2

Π

 (by Lemma D.13 and Lemma D.14)

= 1
γ

 √
r/s + C

ζ
(

1−
√

r−1
s

)‖xk − x̄‖Π + 1
2

Ml‖R‖

 ‖dk‖2
Π (by ‖gk‖Π = O(‖xk − x̄‖Π)).

(D.6.15)
Now, we have

‖dk‖Π ≤ ‖xk+1 − x̄‖Π + ‖xk − x̄‖Π

≤ 1
γ

 √
r/s + C

ζ
(

1−
√

r−1
s

)‖xk − x̄‖Π + 1
2

Ml‖R‖

 ‖dk‖2
Π + ‖xk − x̄‖Π,

which can be rearranged as1− ‖dk‖Π

γ

 √
r/s + C

ζ
(

1−
√

r−1
s

)‖xk − x̄‖Π + 1
2

Ml‖R‖

 ‖dk‖Π ≤ ‖xk − x̄‖Π.

Since ‖xk − x̄‖Π → 0 and ‖dk‖Π → 0, for sufficiently large k, we have 1
2‖dk‖Π ≤ ‖xk − x̄‖Π.

Combining this with (D.6.15), for sufficiently large k, we obtain

‖xk+1 − x̄‖Π ≤
4
γ

 √
r/s + C

ζ
(

1−
√

r−1
s

)‖xk − x̄‖Π + 1
2

Ml‖R‖

 ‖xk − x̄‖2
Π

≤ 4Ml‖R‖
γ

‖xk − x̄‖2
Π (since k is sufficiently large).

37

Therefore, we have derived the first statement in Theorem 3.4. Next, we move to the next
inequality in Theorem 3.4.

f(xk)− f(x̄) =
∫ 1

0
(∇f(x̄ + t(xk − x̄))−∇f(x̄))> (xk − x̄)dt

=
∫ 1

0

(
∇l(y)|y=R(x̄+t(xk+1−x̄)) − ∇l(y)|y=Rx̄

)>
R(xk+1 − x̄)dt.

(D.6.16)

(D.6.16) is bounded above by∫ 1

0

∥∥∥∇l(y)|y=R(x̄+t(xk−x̄)) − ∇l(y)|y=Rx̄

∥∥∥ ‖R(xk − x̄)‖ dt

≤ Ll‖R(xk − x̄)‖2
∫ 1

0
tdt (by (D.6.9))

= Ll

2
‖xk − x̄‖2

Π. (D.6.17)

(D.6.16) is bounded below by∣∣∣∣∫ 1

0

(
∇l(y)|y=R(x̄+t(xk−x̄)) − ∇l(y)|y=Rx̄

)> tR(xk − x̄)
t

dt

∣∣∣∣
≥
∫ 1

0

2ρ‖tR(xk − x̄)‖2

t
dt (by strong convexity of l)

= 2ρ‖xk − x̄‖2
Π

∫ 1

0
tdt

= ρ‖xk − x̄‖2
Π. (D.6.18)

We are now ready to prove the theorem.

f(xk+1)− f(x̄) ≤ Ll

2
‖xk+1 − x̄‖2

Π (by (D.6.17))

≤ 8LlM
2
l ‖R‖2

γ2 ‖xk − x̄‖4
Π (by Theorem 3.4)

≤ 8LlM
2
l ‖R‖2

γ2ρ2 (f(xk)− f(x̄))2. (by (D.6.18))

We recall that all of the above hold with probability at least 1−2 exp(−r)−(C̄ζ)s−r+1−e−c̄s

for any ζ > 0. If we set ζ sufficiently small, the probability is bounded from below by
1− 3 exp(−r)− e−c̄s, which ends the proof.

E Convergence theorems under Algorithm 6

We provide additional theoretical considerations regarding subspace dimension s such as s <
Ω(log n). In practice, s = Ω(log n) is sufficiently small, and Algorithm 1 works effectively;
this analysis is primarily of theoretical interest.
While setting s = o(log n) means that the success probability of each iteration is no longer
high, the algorithm can simply retry until success. Specifically, in this section, we present
a slight modification (see Algorithm 6) of Algorithm 1, where line 11-line 15 are added
to decrease the value of the objective function f at every iteration. For Algorithm 1, we
can prove the convergence to an ε-FOSP with arbitrarily high probability under the same
hypothesis even for small s independent of the dimension n (s needs only to be greater than
some constant). Notice that all the results proved for Algorithm 1 also hold for Algorithm
6. This is because the probability that the function decreases at each iteration is already
taken into account in the probabilistic results that we prove.

38

Algorithm 6 RSHTR: Random Subspace Homogenized Trust Region Method (variant)
1: function RSHTR(s, n, δ, ∆, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation

7: dk ←
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise

8: if global_mode and ‖dk‖ > ∆ then
9: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search

10: yk+1 ← xk + ηkdk

11: if f(yk+1) < f(xk) then
12: xk+1 = yk+1
13: else
14: xk+1 = xk

15: end if
16: else
17: xk+1 ← xk + dk

18: terminate ▷ or continue with (δ, global_mode)← (0, False) for local
convergence

Theorem E.1 (Global convergence to an ε–FOSP). Suppose that Assumption 1 holds. Let

0 < ε ≤ M2

8 , δ =
(√

n
s + C

)2√
ε and ∆ =

√
ε

M .

Then modified RSHTR (Algorithm 6) outputs an ε–FOSP in at most O
(
ε−3/2) iterations

with probability at least

1− exp
(
−1

8
(1− δs)Uε

)
− 4 exp

(
−C

4
s

)
− 4 exp (−s) ,

where C and C are absolute constants, Uε := b 6
δs

M2 (f(x0)− infx∈Rn f(x)) ε−3/2c+ 1, and
δs := 1− 2 exp(−s).

Proof. Let us consider how many times we iterate in the case where |dk| > ∆ at most.
According to Lemma D.1 and Lemma D.2, the objective function decreases by at least

1

2
(√

n/s + C
)2 ∆2δ − M

6
∆3 = ε3/2

3M2

with probability at least 1 − 2 exp (−s). Let Yk ∈ {0, 1} be a random variable equal to 1
if and only the objective function decreases at least by the above quantity. Then, after K
iterations, the objective function decreases by at least:

ε3/2

3M2

K∑
k=1

Yk.

Since, for all k, E[Yk] ≥ 1−2 exp(−s) := 1−δs, we have by a Chernoff bound (see Vershynin
(2018)) that for all δ ∈ (0, 1),

P

(
K∑

k=1

Yk ≥ (1− δ)(1− δs)K

)
≥ 1− exp

(
−δ2

2
(1− δs)K

)
.

Hence with probability at least 1 − exp
(
− 1

8 (1− δs)K
)
, after K iterations, the objective

function decreases by at least
ε3/2

6M2 (1− 2 exp(−s))K.

39

Since the total amount of decrease does not exceed D := f(x0)−infx∈Rn f(x), we deduce that
the number of iterations for the case where ‖dk‖ > ∆ is at most b 6M2Dε−3/2

1−2 exp(−s)c. Also, since
the algorithm terminates once it enters the case ‖dk‖ ≤ ∆, the total number of iterations is
at most Uε = b 6M2Dε−3/2

1−2 exp(−s)c+ 1 at least.

We can compute an ε–FOSP with probability at least 1− 4 exp
(
−C

4 s
)
− 4 exp (−s), which

can be easily checked by applying Lemma 3.2 to the given δ and ∆.

Therefore, RSHTR converges in b 6M2Dε−3/2

1−2 exp(−s)c+ 1 = O(ε−3/2) iterations with probability at
least

1− exp
(
−1

8
(1− δs)Uε

)
− 4 exp

(
−C

4
s

)
− 4 exp (−s) ,

where Uε = b 6M2Dε−3/2

1−2 exp(−s)c+ 1.

F Experimental Details

Throughout all experiments, the parameters of the algorithms were set as follows:
• HSODM: (δ, ∆, ν) = (10−3, 10−3, 10−1)
• RSGD: s = 100
• RSRN: (γ, c1, c2, s) = (1/2, 2, 1, 100)
• RSHTR: (δ, ∆, ν, s) = (10−3, 10−3, 10−1, 100)
Here, we denote the dimensionality of subspace as s.
The datasets and other details of each task are described below.

F.1 Matrix factorization

In this task, no preprocessing is performed. We chose 50 as the feature dimension k. Here
is the dataset we used for this task.

MovieLens 100k (Harper & Konstan, 2015)
• Shape of R: (943, 1682)
• Problem dimension: 131,250
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

F.2 Logistic regression

In this task, all datasets were preprocessed as follows:
• 10,000 features were selected to limit the problem dimensionality for the datasets with

features more than 10,000.
• 1,000 samples were selected to save the computational resource for the datasets with

samples of more than 1,000.
Here is a list of the datasets we used for this task.

news20.binary (Kogan et al., 2009)
• Problem dimension: 10,001
• Source: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

rcv1.binary (Lewis et al., 2004)
• Problem dimension: 10,001
• Source: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

40

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Internet Advertisements (Kushmerick, 1998)
• Problem dimension: 1,558
• Source: https://archive.ics.uci.edu/dataset/51/internet+advertisements

F.3 Softmax regression

In this task, all datasets were preprocessed in the same way as F.2.
• For datasets with more than 10,000 features, the first 10,000 features were selected to

limit problem dimensionality.
• For datasets with more than 1,000 samples, 1,000 samples were selected to conserve

computational resources.
Here is a list of the datasets we used for this task.

news20 (Lang, 1995)
• Number of classes: 20
• Problem dimension: 200,020
• Source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html

SCOTUS (Chalkidis et al., 2021)
• Number of classes: 13
• Problem dimension: 130,013
• Source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html

F.4 Deep Neural Networks

In this task, we used a 16-layer fully connected neural network with bias terms and the
widths of each layer are:

[input_dim, 128, 64, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, output_dim]

We utilized subsets of 1,000 images from each of the following datasets. Here is a list of the
datasets we used for this task. When using the test data, we sampled an additional 1000
data points.

MNIST (Deng, 2012)
• Input dimension: 28× 28 = 784
• Output dimension: 10
• Problem dimension: 123,818
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

CIFAR-10 (Krizhevsky, 2009)
• Input dimension: 32× 32× 3 = 3, 076
• Output dimension: 10
• Problem dimension: 416,682
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

G Additional Numerical Experiments

In all experiments in this section, the proposed method exhibited the fastest convergence.

41

https://archive.ics.uci.edu/dataset/51/internet+advertisements
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

Matrix factorization with mask (MFM): We first recall matrix factorization (without
mask) formulation:

min
U∈Rnu×k,V ∈Rk×nv

‖UV −R‖2
F /(nunv),

where R ∈ Rnu×nv and ‖·‖2
F denotes the squared Frobenius norm. The masked version

of the problem introduces a mask matrix X ∈ {0, 1}nu×nv to handle missing entries in R.
Using this mask matrix, MFM is formulated as

min
U∈Rnu×k,V ∈Rk×nv

‖(UV −R)�X‖2
F /(nunv),

where Xij = 1 if Rij is not null and Xij = 0 otherwise and the symbol � denotes element-
wise multiplication. The problem dimension is calculated as n = (nu + nv)k. The result of
MFM on MovieLens 100k dataset (Harper & Konstan, 2015) is shown in Figure 5a.

Classification: The formulation of this task is the same as Section 4. The result of
logistic regression on the Internet Advertisement dataset (Kushmerick, 1998) is shown in
Figure 5b.

(a) MFM: MovieLens 100k (dim=131,250) (b) Logistic reg.: Internet Ads (dim=1,558)

Figure 5: Comparison of our method to existing methods regarding the function value v.s.
computation time. Each plot shows the average ± the standard deviation for five runs.
Algorithms that did not complete a single iteration within the time limit are omitted.

Classification Accuracy To compare several methods from perspectives other than the
loss function, we also evaluated train and test classification accuracies at the end of training
(4,000 seconds for MNIST and 16,000 seconds for CIFAR-10), where training was stopped
due to the time limit. The results are presented in Table 2. While the limited training data
restricts generalization and results in moderate test accuracy, our approach still demon-
strates superior performance compared to other methods.

Table 2: Train and test accuracies on MNIST and CIFAR-10 datasets. Our method,
RSHTR, achieved the highest accuracy on both datasets.

MNIST CIFAR-10
Algorithm Train Test Train Test
RSGD 0.412 0.355 0.315 0.146
RSRN 0.735 0.376 0.523 0.150
RSHTR 0.998 0.680 0.959 0.211

Comparison with Heuristic Algorithms We conducted further experiments to evalu-
ate the performance of our algorithm against popular heuristics used in training deep neural
networks. Specifically, we compared our proposed method with Adam (Kingma, 2014) and
AdaGrad (Duchi et al., 2011) on the MNIST and CIFAR-10 datasets for classification using
a neural network. The formulation of the task is the same as Section 4. What differs is that,

42

to ensure a meaningful comparison with fast optimization methods beyond random subspace
methods, we adjusted the subspace dimension of our proposed algorithm to a smaller value
than used in Section 4. The result and the hyperparameter settings are shown in Figure 6.
While our proposed method does not surpass Adam in terms of convergence speed, it demon-
strates superior numerical stability. This is likely attributed to the method’s ability to avoid
directions with rapidly increasing gradient norm by utilizing Hessian information. Further-
more, our method can match or outperform AdaGrad in convergence speed depending on
the parameter settings. Specifically, when using numerically stable parameters for Ada-
Grad, our method exhibits a faster convergence rate. Moreover, our method saves time to
tune hyperparameters due to its consistent stability across different hyperparameter choices.
Conversely, Adam and AdaGrad can become drastically unstable with increased learning
rates aimed at faster convergence, necessitating trial and error for parameter optimization.

(a) DNN: MNIST (dim=123,818) (b) DNN: CIFAR-10 (dim=416,682)

Figure 6: Comparison of our method to heuristic algorithms.

43

	Introduction
	Existing random subspace algorithms for nonconvex optimization

	Proposed method
	Existing algorithm: HSODM
	Random Subspace Homogenized Trust Region: RSHTR
	Total computational complexity and space complexity

	Theoretical analysis
	Global convergence to an –FOSP
	Global convergence to an –SOSP
	Local linear convergence
	Local convergence for strongly convex f in its effective subspace

	Numerical experiments
	Future work
	Existing work: HSODM
	Preparation of the theoretical analysis
	Existing lemmas
	The optimality conditions of the dimension-reduced subproblem

	Pure random subspace variant of HSODM
	Analysis on fixed radius strategy
	Analysis considering a line search strategy

	Proofs for theoretical analysis
	Analysis of the case where dk >
	Analysis of the case where dk
	Proof of Theorem 3.1
	Improvement of Iteration Complexity under the Assumption of Low-Effectiveness
	–SOSP under the assumption of shao-2022
	Local convergence
	Proof of Theorem 3.3
	Local quadratic convergence

	Convergence theorems under Algorithm 6
	Experimental Details
	Matrix factorization
	Logistic regression
	Softmax regression
	Deep Neural Networks

	Additional Numerical Experiments

