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ABSTRACT

Bayesian methods provide an elegant framework for estimating parameter posteri-
ors and quantification of uncertainty associated with probabilistic models. However,
they often suffer from slow inference times, rendering them impractical for scal-
able applications. To address this challenge, Bayesian Pseudo-Coresets (BPC)
have emerged as a promising solution. BPC methods aim to create a small syn-
thetic dataset, known as pseudo-coresets, that approximates the posterior inference
achieved with the original dataset. This approximation is achieved by optimizing a
divergence measure between the true posterior and the pseudo-coreset posterior.
Various divergence measures have been proposed for constructing pseudo-coresets,
with forward Kullback-Leibler (KL) divergence being the most successful. How-
ever, using forward KL divergence necessitates sampling from the pseudo-coreset
posterior, often accomplished through approximate Gaussian variational distri-
butions. Alternatively, one could employ Markov Chain Monte Carlo (MCMC)
methods for sampling, but this becomes challenging in high-dimensional param-
eter spaces due to slow mixing. In this study, we introduce a novel approach for
constructing pseudo-coresets by utilizing contrastive divergence. Importantly, opti-
mizing contrastive divergence eliminates the need for approximations in the pseudo-
coreset construction process. Furthermore, it enables the use of finite-step MCMC
methods, alleviating the requirement for extensive mixing to reach a stationary dis-
tribution. To validate our method’s effectiveness, we conduct extensive experiments
on multiple datasets, demonstrating its superiority over existing BPC techniques.
Our implementation is available at https://anonymous.4open.science/r/BPC-CD-
E762

1 INTRODUCTION

In recent years, contemporary deep learning models have demonstrated exceptional effectiveness
in a wide array of applications, spanning computer vision, natural language processing, and speech
analysis (Krizhevsky et al., 2017b; Devlin et al., 2018; Amodei et al., 2016; He et al., 2016a;
Dosovitskiy et al., 2020; Radford et al., 2021). Conventional deep learning methods rely on one-time
training of models providing point estimates (Szegedy et al., 2013). These point estimates are prone
to overfitting and often provide overconfident or under-confident outputs (Gawlikowski et al., 2023;
Kabir et al., 2018). This prohibits the use of deep learning models in critical applications such as
medical, finance, etc (Ker et al., 2017; Cavalcante et al., 2016). Bayesian methods furnish a systematic
framework for parameter estimation and quantification of associated uncertainty. Bayesian inference
entails sampling from parameter posterior distributions using Markov Chain Monte Carlo (MCMC)
techniques (Robert et al., 1999; Robert & Casella, 2011). However, conducting inference based on
parameter posterior conditioned on the entire dataset is computationally demanding, particularly as
the dataset size, denoted by N , increases. The computational complexity of MCMC methods scales
with N as Θ(NS), where S denotes the number of samples (Campbell & Broderick, 2018). This
complexity becomes prohibitively high for large N . To mitigate this, one often resorts to using a
random subset of M ≪ N data points for likelihood computation at each iteration (Bardenet et al.,
2017; Korattikara et al., 2014; Maclaurin & Adams, 2014; Welling & Teh, 2011; Ahn et al., 2012;
Bierkens et al., 2019; Pollock et al., 2020). However, such approximations introduce errors and lead
to slow mixing of Markov chains (Johndrow et al., 2020; Nagapetyan et al., 2017; Betancourt, 2015).

1

https://anonymous.4open.science/r/BPC-CD-E762
https://anonymous.4open.science/r/BPC-CD-E762


Under review as a conference paper at ICLR 2024

Bayesian coresets (Huggins et al., 2016) were introduced to solve the aforementioned problem.
Particularly, Huggins et al. (2016) proposed to select a subset of original dataset (also called a
coreset) that uniformly approximates the log-likelihood of the original dataset. These coresets are
significantly smaller in size than the original dataset, leading to vastly improved sampling efficiency.
Further, Campbell & Beronov (2019) proposed to identify the coreset by minimizing Kullback-Leibler
(KL) divergence between full data posterior and coreset posterior. However, most of such methods
do not scale with data dimension (Manousakas et al., 2020). Particularly, the KL-divergence between
the (optimal) coreset posterior and true posterior increases with data dimension. Meaning that for
large data dimension, even with the optimal coresets, the KL-divergence is far from optima (zero),
implying that the true posterior is not approximated correctly. However, recently few methods have
tried to overcome the scalability issue by using lightweight coresets (Bachem et al., 2018).

The Bayesian Pseudo-Coreset (BPC) (Manousakas et al., 2020) approach, as a distinct category of
methods, has been proposed to synthesise a smaller dataset from the original one, as opposed to
selecting a subset, which is the case with coreset methods. The fundamental idea of BPC involves
solving an optimization problem over the data space, leading to creation of a ‘pseudo’ dataset that
appropriately approximates the true posterior. The said optimization problem pertains to minimization
of a divergence metric between the true posterior and pseudo-coreset posterior. Such a framework
removes the constraint for the pseudo-coresets to be a subset of the original dataset. This additional
degree of freedom aids in better optimization of the divergence measure. Further, in addition to
better approximation of true posterior, pseudo-coreset also come with privacy benefits. Specifically,
since pseudo-coresets are not part of original dataset, one can outsource these pseudo-coreset without
revealing the original dataset for an user to run inference. Manousakas et al. (2020) also provided
theoretical guarantees showing pseudo-coresets are differentially private.

Recently, Kim et al. (2022a) analyzed the BPC construction under different divergence measures
such as reverse-KL and Wasserstein divergence. Their analysis revealed that BPC methods under
different divergence measures are equivalent to their non-bayesian counterparts. These non-bayesian
frameworks are often referred to as ‘Dataset Condensation’ or ‘Dataset Distillation’ (Zhao et al.,
2021; Zhao & Bilen, 2023; Cazenavette et al., 2022; Wang et al., 2022; Nguyen et al., 2021). In
particular, Kim et al. (2022a) showed that minimization of reverse-KL is equivalent to gradient
matching (Zhao et al., 2021) and minimization of wasserstein measure is equivalent to matching
training trajectory (Cazenavette et al., 2022). They also proposed to use forward-KL for better
pseudo-coreset construction due to its ability to capture the support of the distribution, contrasting
with reverse-KL, which tends to focus on the distribution’s modes. However, computing the gradient
of forward-KL requires sampling from the intractable pseudo-coreset posterior. While this can be
achieved using MCMC methods, the extensive mixing time of MCMC in high-dimensional parameter
spaces renders this approach impractical. As a remedy, Gaussian variational approximation around
SGD solutions was employed to simplify and expedite the sampling process. However, the quality of
such approximation is unknown and remains a matter of concern.

In our current work, we propose a novel approach: using contrastive divergence instead of forward-
KL divergence for pseudo-coreset learning. This has two advantages: (1) It eliminates the need for
approximating the pseudo-coreset posterior, enabling the straightforward use of MCMC methods,
(2) The Markov chain used in this approach does not require extensive mixing to reach a stationary
distribution; only a finite number of steps is needed. These advantages effectively address the
challenges associated with using forward-KL divergence. Furthermore, our rigorous experiments
demonstrate that our proposed method significantly outperforms previous state-of-the-art BPC
methods, thereby confirming that the pseudo-coreset posterior using contrastive divergence better
approximates the true posterior. Our contributions can be summarized as follows:

• We propose a new framework for the construction of Bayesian Pseudo-Coreset using
contrastive divergence.

• The proposed method avoids any approximation of pseudo-coreset posterior and facilitates
the use of finite step MCMC methods during learning phase.

• Extensive experimentation reveals that our method surpasses state-of-the-art BPC methods
by substantial margins, affirming the better approximation of the true posterior using
contrastive divergence.
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2 RELATED WORK

2.1 BAYESIAN INFERENCE AND OPTIMIZATION

The objective of Bayesian methods is the model the parameter posterior distribution of a probabilistic
model. However, apart from some simple models, the exact posterior distributions are generally
intractable (Campbell & Broderick, 2019). In such scenarios, one often relies on inference tech-
niques like MCMC methods (Robert et al., 1999; Robert & Casella, 2011) and Variational Inference
(VI) (Jordan et al., 1998; Wainwright et al., 2008). Historically, these inference techniques require
model-specific tuning based on the path-length parameters, step size (Neal et al., 2011a), and the
choice of the variational families (Jaakkola & Jordan, 1997; Jordan et al., 1999). Recent meth-
ods (Ranganath et al., 2014; Kucukelbir et al., 2017; Hoffman et al., 2014) have circumvented these
issues by introducing a black box approach that requires only basic specifications about the model.
For instance, the traditional variational inference methods (Jaakkola & Jordan, 1997; Jordan et al.,
1999) relied on closed form gradients of the model (Ranganath et al., 2014) and an approximate
distribution for the posterior of the data. Ranganath et al. (2014); Baydin et al. (2018); Kucukelbir
et al. (2017) addressed these issues by employing standard transformation over a multivariate Gaus-
sian distribution and used automatic differentiation techniques to calculate the associated gradients.
Similarly, for MCMC methods like Hamiltonian Monte Carlo (HMC) (Neal et al., 2011a) traditional
practices involved manually tuning of parameters like step size and path length to achieve accurate
posterior estimation. Hoffman et al. (2014) addressed this challenge by automatically estimating both
of these parameters.

In many modern applications, these methods are required to scale with the size of the datasets. The
standard MCMC algorithms are computationally expensive for large datasets, and the sampling
process scales linearly with the data size. Recent works (Bardenet et al., 2017; Korattikara et al.,
2014; Maclaurin & Adams, 2014; Welling & Teh, 2011; Ahn et al., 2012; Bierkens et al., 2019;
Pollock et al., 2020), have tried to mitigate the computational cost associated with inference models
by considering only a random subset of data points during MCMC iterations. One of the initial studies
in this direction has been conducted by Welling & Teh (2011) where the authors proposed to use
stochastic gradient langevin dynamics (SGLD). This iterative learning algorithm utilizes mini-batches
of dataset for Bayesian inference. However, unlike other MCMC methods, their approach often
leads to a slow mixing rate. Ahn et al. (2012) addressed this issue by sampling from the Gaussian
approximation of posterior for a high mixing rate and mimicking the behavior of SGLD using a
pre-conditioner matrix for a slow mixing rate. However, Korattikara et al. (2014); Bardenet et al.
(2014) have shown that such a sampling approach often leads to a stationary distribution that can have
bounded errors under strong conditions of rapid mixing (Maclaurin & Adams, 2014). In contrast,
they proposed a new accept/reject strategy to select a subset of the dataset for Bayesian inference. On
a similar line, Maclaurin & Adams (2014) proposed to use a collection of Bernoulli latent variables
to select a subset of the dataset for likelihood estimation. Bierkens et al. (2019); Pollock et al.
(2020) have further proposed to use a zig-zag process and quasi-stationary distribution along with the
subsampling approaches for bayesian inference.

2.2 BAYESIAN CORESETS

Bayesian coresets (Huggins et al., 2016; Campbell & Broderick, 2018; Campbell & Beronov, 2019;
Campbell & Broderick, 2019; Zhang et al., 2021; Naik et al., 2022; Chen et al., 2022) present an
alternative strategy to address aforementioned challenges by selecting a small weighted subset of
the original dataset which can closely approximate the posterior of the full dataset (Zhang et al.,
2021; Huggins et al., 2016). The idea was introduced in Huggins et al. (2016), where a weighted
subset of original data was selected to approximate the log-likelihood of the entire dataset up to some
multiplicative error over the parameter space. However, the subset produced by such a technique
underestimates the posterior distribution and can result in large approximation errors for some models
regardless of the coreset size. Campbell & Broderick (2018) addressed this issue using greedy iterative
geodesic ascent (GIGA), that optimally scales the log-likelihood of the coreset to better approximate
the entire log-likelihood of the dataset. It further provided a uniform bounded error for all the models.
To further enhance the scalability, Campbell & Broderick (2019) tackled the model and data-specific
assumptions made in prior work regarding coreset construction. They constructed Bayesian coreset
by solving a sparse vector sum based approximation using frank-wolfe (Frank et al., 1956) based
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solvers. Recent works (Zhang et al., 2021; Naik et al., 2022; Chen et al., 2022) have focused on
improving the speed of coreset construction using accelerated optimization methods, quasi-newton
refinement, and sparse-hamiltonian flows. However, since the KL divergence between the posteriors
of the optimal coreset and the original dataset increases with the data dimensionality (Manousakas
et al., 2020), these methods do not easily scale up in high-dimensions.

2.3 BAYESIAN PSEUDO-CORESET

Manousakas et al. (2020) proposed to use a collection of synthetic data to scale the Bayesian inference
to high dimensional datasets. Particularly, they frame the problem as divergence minimization between
the posteriors associated with the synthetic and the original dataset. The synthetic set generated
through this technique is called ‘Bayesian Pseudo-Coreset’ (BPC). Compared to Bayesian coresets,
these methods scale more efficiently with data dimensions and yield a more accurate posterior
approximation.

Manousakas et al. (2020) formalized the given problem by minimizing the reverse-KL divergence
between the posterior of original data and the posterior of synthetic data. On similar lines, Kim et al.
(2022a) demonstrated that other divergence metrics, such as Wasserstein distance and forward-KL
divergence, can be used to generate pseudo-coreset. In contrast to reverse-KL, which primarily
focuses on the modes of the distributions, forward-KL provides a mechanism to better capture the
support of the posterior distribution. To efficiently calculate the forward-KL divergence Kim et al.
(2022a) used a Gaussian variational approximation of the posterior distribution. However, the quality
of such an approximation and its impact on the overall performance of the pseudo-coreset is unknown.
Further, computing the gradient of forward-KL requires sampling from an intractable posterior of
pseudo-coreset using MCMC methods, which is not straightforward in practice.

2.4 CORESETS AND DATASET CONDENSATION

While Bayesian coreset focuses on selecting data points to facilitate Bayesian inference, coreset
selection strategies have been proposed for other algorithms like geometric approximation (Agarwal
et al., 2005), mixture models (Feldman et al., 2011), K-means clustering (Feldman & Langberg,
2011; Feldman et al., 2020; Bachem et al., 2016) and DP means (Bachem et al., 2015). Similarly,
for deep learning models, Mirzasoleiman et al. (2020); Killamsetty et al. (2021a;b) have introduced
subset selection techniques that leverage gradient matching and meta-learning algorithms. Recent
works (Welling, 2009; Castro et al., 2018; Rebuffi et al., 2017; Belouadah & Popescu, 2020; Sener
& Savarese, 2017; Farahani & Hekmatfar, 2009), have further proposed strategies to choose a
representative and diverse set of samples from the original dataset. These methods aim to create
a generic subset by removing redundant data points. Herding-based coreset methods (Welling,
2009; Castro et al., 2018; Rebuffi et al., 2017; Belouadah & Popescu, 2020) select such samples
by minimizing the distance between the feature centroids of the coreset, and the original dataset.
While K-center-based coreset techniques (Sener & Savarese, 2017; Farahani & Hekmatfar, 2009;
Guo et al., 2022) pick the most diverse and representative samples by optimizing a submodular
function (Farahani & Hekmatfar, 2009). Contrary to K-center and herding-based coreset selection
methods, forgetting-based coreset (Toneva et al., 2018) removes the easily forgettable samples from
the training dataset.

Rather than selecting a subset of data points from the training set, dataset condensation methods aim
to generate a synthetic set that emulates the characteristics of the original dataset. For example, in
gradient based dataset condensation techniques (Zhao et al., 2021; Yu et al., 2023; Lee et al., 2022;
Jiang et al., 2022) the synthetic samples are generated by aligning the gradients of a model trained
using original and synthetic datasets. Similarly, meta-learning based methods (Wang et al., 2018;
Deng & Russakovsky, 2022; Nguyen et al., 2021; Loo et al., 2022; Zhou et al., 2022) generate these
synthetic samples by matching the validation performance of a model trained using the entire dataset
with the performance of a model trained using the synthetic set. Cazenavette et al. (2022); Li et al.
(2022); Du et al. (2023) propose generating the synthetic dataset using long-horizon trajectories,
ensuring that the models learn similar trajectories during optimization. While distribution matching
methods (Zhao & Bilen, 2023; Wang et al., 2022; Zhao & Bilen, 2022; Zhao et al., 2023) generate a
condensed synthetic set with a similar feature distribution as the original dataset. Recent works (Liu
et al., 2023; Zhang et al., 2023; Cazenavette et al., 2023) have further focused on improving the
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performance and computational complexity of existing dataset condensation techniques by using
representative samples from the training set, model augmentation techniques, and generative model
for learning the synthetic set.

3 PROPOSED METHODOLOGY

3.1 BAYESIAN PSEUDO-CORESETS

Consider a dataset (x,y) = {(xi, yi)}ni=1 consisting of n data points. Now consider a synthetic
(learnable) dataset (x̃, ỹ) = {x̃i, ỹi}mi=1 such that y and ỹ share the same label space and m≪ n.
Let, θ ∈ Θ be the parameter of a discriminative / classification model. Then the parameter posteriors
corresponding to original and synthetic data, π(θ|x) and π(θ|x̃) are given by

πx ≜ π(θ|x) = π0(θ)

Z(x)
exp

(
n∑

i=1

log π(yi|xi, θ)

)
(1)

πx̃ ≜ π(θ|x̃) = π0(θ)

Z(x̃)
exp

(
m∑
i=1

log π(ỹi|x̃i, θ)

)
=

π0(θ)

Z(x̃)
exp (−E(x̃, θ)) (2)

where,

Z(x) =

∫
Θ

π0(θ) exp

(
n∑

i=1

log π(yi|xi, θ)

)
dθ, Z(x̃) =

∫
Θ

π0(θ) exp (−E(x̃, θ))dθ (3)

are appropriate normalizing constants. Here, π0(θ) is the prior distribution and E(x̃, θ) =

−
m∑
i=1

log π(ỹi|x̃i, θ) is the sum of negative log-likelihoods which can be treated as a generic potential

or energy function. Since n is often very large, the posterior estimation using πx is computationally
expensive and infeasible. However, an appropriate approximation such as πx̃ where m≪ n, allows
one to overcome this hurdle. In particular, this approximation is carried out by solving the following
optimization problem:

x̃∗ = argmin
x̃

D (πx, πx̃) (4)

where, D(·, ·) is a divergence measure between two distributions. Recently, Kim et al. (2022a) showed
the results for above optimization problem under different divergence metrics. Specifically, they
analyzed the results with reverse-KL and wasserstein divergence; consequently drawing equivalence
with dataset condensation methods like gradient matching (Zhao et al., 2021) and MTT (Cazenavette
et al., 2022). Further, they propose an alternative solution by using forward-KL divergence as it
encourages a model to cover the entire target distribution in contrast to reverse-KL which encourages
mode capturing models. The gradient of the forward-KL divergence, as derived in Kim et al. (2022a),
is expressed as follows:

∇x̃DKL (πx||πx̃) = Eπx̃
[−∇x̃E(x̃, θ)] +∇x̃Eπx [E(x̃, θ)] (5)

This gradient computation necessitates the calculation of expectations with respect to the probability
distributions πx and πx̃. However, the presence of intractable partition functions (Z(x) and Z(x̃))
poses challenges in efficiently sampling from these posterior distributions. One can resort to MCMC
methods such as langevin dynamics or hamiltonian monte-carlo for sampling, however, due to
large dimension of Θ-space, the mixing-time of these methods is very large and in-efficient in
practice. To overcome this issue, Kim et al. (2022a) employs gaussian variational approximations
for these posteriors, rendering the sampling process computationally feasible. Specifically, gaussian
distributions are used, centered around parameters obtained from Stochastic Gradient Descent (SGD)
trajectories of x and x̃ (cf. (Kim et al., 2022a) for details).

In practice, since m (number of samples in pseudo-coreset) is generally very small, the SGD
trajectories of x̃ might overfit, leading to erroneous approximations. Therefore, it is preferable
to bypass such approximations and sample directly from the exact posteriors. In this work, we
propose to work with contrastive divergence (Hinton, 2002) instead of forward-KL to construct the
pseudo-coreset. Specifically, using contrastive divergence leads to a loss objective where πx̃ can
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be used as it is without any approximation. The key idea behind this is that instead of minimizing
forward-KL, contrastive divergence minimizes difference between two forward-KL terms, that results
in cancellation of expectation w.r.t πx̃ allowing us to circumvent this approximation. We describe
this in detail in next section.

3.2 CONTRASTIVE DIVERGENCE FOR BPC

As mentioned earlier, we propose to work with contrastive divergence instead of forward-KL for
construction of pseudo-coresets. The concept of contrastive divergence was initially introduced
by seminal work in Hinton (2002).The central premise behind contrastive divergence hinges on a
straightforward insight: whereas minimizing forward KL divergence necessitates a term that involves
sampling from πx̃, minimizing the difference between two forward KL divergences leads to the
nullification of this term. More explicitly, the contrastive divergence is defined as:

LCD = DKL(πx||πx̃)−DKL(Π
k
Eπx||πx̃) (6)

where, Πk
E(·) is an MCMC transition kernel for πx̃ and Πk

Eπx represents k sequential MCMC
transitions starting from πx. For brevity, let us denote π̄x as Πk

Eπx. As shown in Hinton (2002), the
gradient of the above objective is approximately given by:

∇x̃LCD = Eπx [∇x̃E(x̃, θ)]− Eπ̄x [∇x̃E(x̃, θ)] (7)

It is worth noting that the gradient estimation in the above equation does not necessitate sampling
from πx̃. Instead, it calls for sampling from πx and π̄x. In this context, we can employ a variational
posterior to approximate πx and use MCMC sampling techniques (e.g. langevin dynamics (Bohdal
et al., 2020)) starting from πx to sample from π̄x. Notably, unlike in Eq. 5, the MCMC sampling
utilized here only needs to run for finite k steps, alleviating the requirement for substantial Markov
chain mixing.

In particular, we use gaussian variational posterior (qx) to approximate πx. Then, a k-step MCMC
starting from qx should be used as a variational substitute for π̄x:

qx(θ) = N (θ; θx,Σx), q̄x(θ) = Πk
E qx(θ) (8)

where, θx is the MAP solution computed for x. Here, one can note that making an approximation
for πx is enough unlike previous methods where additional approximations for πx̃ is also required.
Hence, the final gradient estimate is obtained as

∇x̃LCD ≈ Eqx [∇x̃E(x̃, θ)]− Eq̄x [∇x̃E(x̃, θ)] (9)

≈ ∇x̃
1

N

N∑
j=1

[
E
(
x̃, θx +Σ1/2

x ε(j)x

)
− E

(
x̃,sg

(
θ̄(j)
))]

(10)

where, sg(·) denotes stop-gradient operator, ε(j)x ∼ N (0, I) and θ̄(j) is obtained via running k-step
MCMC starting from

(
θx +Σ

1/2
x ε

(j)
x

)
.

For computational efficiency, we assess the parameter posterior with x using expert trajectories similar
to Kim et al. (2022a). In essence, expert trajectories represent sequences of parameters obtained while
training a model on the dataset (x, y). Each of these sequences is termed as ‘parameter trajectory,’
and the collection of these trajectories, acquired through various training instances, is known as
‘expert trajectories.’ This eliminates the need to compute MAP solutions for x (θx) at each training
step. During training, we randomly pick a parameter from these trajectories to calculate the objective
function.

4 EXPERIMENTS AND RESULTS

4.1 EVALUATION DETAILS

We evaluate our method both quantitatively and qualitatively on several BPC-benchmark datasets
with different compression ratios, i.e., the number of images generated per class (ipc). In particular,
we perform our experiments on six different datasets, namely, CIFAR10 (Krizhevsky & Hinton,
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Table 1: Comparison of the proposed method with BPC baselines. The results are noted in the
form of (mean ± std. dev) where we have obtained test accuracy over five independent runs on the
pseudo-coreset. The best performer across all methods is denoted in bold (x± s).

ipc Ratio(%) BPC-rKL(sghmc) BPC-W (sghmc) BPC-fKL (hmc) BPC-fKL (sghmc) Ours
Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓)

1 0.017 74.8± 1.17 1.90± 0.01 83.59± 1.49 1.91± 0.02 90.46± 1.5 1.54± 0.03 82.98± 2.2 1.87± 0.03 93.42± 0.09 1.53± 0.01
10 0.17 95.27± 0.17 1.53± 0.01 91.72± 0.55 1.52± 0.01 89.8± 0.82 1.52± 0.01 92.05± 0.42 1.51± 0.02 97.71± 0.24 1.57± 0.02MNIST
50 0.83 94.18± 0.26 1.36± 0.02 93.72± 0.55 1.48± 0.02 95.58± 1.63 1.37± 0.02 40.63± 1.8 1.36± 0.02 98.91± 0.22 1.36± 0.01

1 0.017 70.53± 1.09 2.47± 0.02 72.39± 0.87 2.15± 0.01 78.24± 1.02 1.95± 0.04 72.51± 2.53 2.30± 0.02 77.29± 0.5 1.90± 0.03
10 0.17 78.81± 0.17 1.64± 0.01 83.69± 0.51 1.64± 0.03 82.06± 0.44 1.53± 0.02 83.29± 0.55 1.54± 0.03 88.40± 0.21 1.56± 0.01FMNIST
50 0.83 76.97± 0.59 1.48± 0.02 74.41± 0.48 1.52± 0.03 82.40± 0.35 1.32± 0.02 74.82± 0.52 1.47± 0.02 89.47± 0.06 1.30± 0.02

1 0.014 18.34± 1.79 3.01± 0.02 33.52± 1.15 2.89± 0.01 48.02± 5.62 2.44± 0.03 21.48± 6.58 2.57± 0.02 66.74± 0.09 2.38± 0.04
10 0.14 60.68± 5.07 2.00± 0.01 74.75± 1.27 1.95± 0.02 65.64± 2.92 2.13± 0.01 75.49± 0.84 1.84± 0.01 82.32± 0.56 1.81± 0.01SVHN
50 0.7 78.27± 0.62 1.89± 0.01 79.49± 0.54 1.90± 0.01 79.6± 0.53 1.86± 0.01 77.08± 1.8 1.72± 0.01 88.41± 0.12 1.88± 0.02

1 0.02 21.62± 0.83 2.57± 0.01 29.34± 1.21 2.14± 0.03 35.57± 0.95 1.97± 0.03 29.3± 1.1 2.10± 0.03 46.87± 0.2 1.87± 0.02
10 0.2 37.89± 1.54 2.13± 0.02 48.9± 1.72 1.73± 0.02 43.07± 1.06 1.89± 0.02 49.85± 1.37 1.73± 0.01 56.39± 0.7 1.72± 0.03Cifar10
50 1 37.54± 1.32 1.93± 0.03 46.17± 0.67 1.62± 0.02 50.92± 1.49 1.70± 0.03 42.30± 2.87 1.54± 0.01 71.93± 0.17 1.57± 0.03

1 0.2 3.56± 0.04 4.69± 0.02 12.19± 0.22 4.20± 0.01 7.57± 0.54 4.25± 0.04 12.07± 0.16 4.27± 0.02 23.97± 0.11 4.01± 0.02Cifar100
10 2 - - - - - 28.42± 0.24 3.14± 0.02

1 0.2 - - - - - 8.39± 0.07 4.72± 0.01T-ImageNet
10 2 - - - - - 17.82± 0.39 3.64± 0.05

2009), SVHN (Sermanet et al., 2012), MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al.,
2017), CIFAR100 (Krizhevsky & Hinton, 2009) and Tiny Imagenet (T-Imagenet) (Le & Yang, 2015).
All the experiments perform multi-class classification tasks with ipc=1, 10, and 50 which is in line
with previous baselines.We employ Langevin dynamics (Neal et al., 2011b; Teh et al., 2003) during
training as well as inference and report accuracy (Acc) and negative log-likelihood (NLL) with
respect to the ground truth labels. For our primary experiments, we use a CNN architecture (ConvNet)
exactly as described in the previous works (Kim et al., 2022b; Manousakas et al., 2020; Cazenavette
et al., 2023) (cf. Appendix for details) for a fair comparison.

Further, we assess the robustness of the BPC methods on out-of-distribution dataset in Section 4.4.
We also examine the cross-architecture performance of the proposed method in Section 4.5. Lastly,
since bayesian methods are often sensitive to the number of parameters being sampled from the
posterior, we observe the effect of number of parameters on the proposed method and compare it
with previous BPC baselines in Section 4.6. We refer the reader to Appendix for details regarding
these experiments.

4.2 BASELINES AND COMPARISONS

We consider the state-of-the-art BPC methods using reverse-KL (BPC-rKL), forward-KL (BPC-fKL),
and Wasserstein distance (BPC-W) (Kim et al., 2022a; Manousakas et al., 2020) for comparison.
Further comparison with other coreset methods and dataset condensation is provided in the Appendix.
All the baselines are implemented using the official codebase provided by respective methods if
available, otherwise, we directly take the reported numbers. In cases, neither the codebase nor the
numbers are reported, we exclude them from our tables.

4.3 RESULTS AND COMPARISON

Table 1 presents the results of the comparative analysis between our approach and other BPC baselines.
We observe that the proposed method significantly outperforms all the BPC baselines by large margins.
For instance, we observe an improvement of 11.3%, 6.54%, and 21.01% in accuracy for CIFAR10
with ipc values of 1, 10, and 50, respectively. Additionally, there is a decrease of 0.1 and 0.01
points in negative log-likelihood for ipc values of 1 and 10, respectively, in comparison to the best-
performing BPC baseline. Similarly, on SVHN, we notice an improvement in accuracy and negative
log-likelihood. Specifically, we observe gains of 18.72%, 6.83% in accuracy and reduction of 0.06,
0.03 point in negative log-likelihood for ipc 1, 10 respectively, compared to the BPC counterparts. A
similar trend can be seen for MNIST and FMNIST as well. We attribute this boost in performance to
the flexible formulation of the proposed method.

We present the qualitative visualizations for MNIST, FMNIST, SVHN, and CIFAR10 datasets with 1
image per class and 10 image per class in Fig. 1. It can be seen that the constructed pseudo-coreset
is identifiable but inherits some artifacts due to the constraints on the dataset size. As the number
of images per class increases, the model can induce more variations across all the classes and thus
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(a) Images generated with
ipc=1 for MNIST

(b) Images generated with
ipc=10 for MNIST

(c) Images generated with
ipc=1 for FMNIST

(d) Images generated with
ipc=10 for FMNIST

(e) Images generated with
ipc=1 for SVHN

(f) Images generated with
ipc=10 for SVHN

(g) Images generated with
ipc=1 for CIFAR10

(h) Images generated with
ipc=10 for CIFAR10

Figure 1: Visualizations of pseudo-coreset generated from our method with one image per class (top)
and ten images per class (bottom) for MNIST, FMNIST, SVHN and CIFAR10. It can be seen that the
class labels are identifiable to a large extent.

Table 2: Comparison of the proposed method with BPC baselines for the performance on out-of-
distribution data. The classifier model is trained on pseudo-coresets generated using CIFAR10.
However, the model is evaluated on CIFAR10-C dataset with different types of corruption.

Corruption BPC-rKL (sghmc) BPC-W (sghmc) BPC-fKL (hmc) BPC-fKL (sghmc) Ours
Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓)

Gaussian Blur 31.02± 2.65 2.132± 0.77 35.66± 1.21 2.04± 0.12 34.76± 1.86 1.899± 0.0436 39.73± 2.72 1.94± 0.051 41.36± 0.72 1.73± 0.83
Gaussian Noise 25.49± 1.89 2.28± 0.08 33.21± 0.89 2.11± 0.03 36.7± 1.0 1.86± 0.02 35.71± 2.29 2.00± 0.05 38.01± 1.26 1.82± 0.11

JPEG Compression 30.40± 0.9 2.13± 0.02 26.33± 1.34 2.26± 0.04 36.2± 1.92 1.85± 0.03 37.26± 2.87 1.95± 0.06 37.33± 0.19 1.71± 0.03
Snow 26.85± 1.71 2.2± 0.07 37.5± 3.5 1.93± 0.08 33.99± 1.91 1.91± 0.03 35.68± 2.71 2.0± 0.07 37.84± 0.64 1.91± 0.05

Impulsive Noise 28.39± 1.48 2.15± 0.06 36.71± 1.93 1.96± 0.05 33.81± 1.58 1.94± 0.02 38.26± 2.34 1.92± 0.05 37.98± 2.15 1.89± 0.07
Zoom Blur 31.74± 1.24 2.09± 0.04 36.22± 2.08 1.99± 0.05 31.3± 3.64 1.98± 0.08 35.05± 2.90 2.04± 0.07 38.30± 0.77 1.93± 0.13

Pixelate 28.98± 2.26 2.19± 0.07 27.98± 1.77 2.20± 0.05 35.59± 1.94 1.88± 0.03 39.14± 3.15 1.93± 0.06 38.97± 1.51 1.92± 0.07
Speckle Noise 29.88± 0.59 2.09± 0.02 33.33± 2.18 2.05± 0.05 34.37± 2.02 1.90± 3.57 40.54± 1.93 1.89± 0.04 42.66± 0.83 1.95± 0.03
Defocus Blur 27.57± 1.31 2.20± 0.05 33.80± 4.21 2.09± 0.11 33.6± 2.93 1.93± 0.06 36.72± 3.68 1.99± 0.08 37.15± 1.03 1.87± 0.04
Motion Blur 17.38± 2.51 2.73± 0.14 35.22± 3.35 2.01± 0.08 34.33± 1.89 1.92± 0.042 35.24± 3.30 2.01± 0.05 37.06± 0.49 1.92± 0.04

produce a diverse pseudo-coreset. Additional qualitative visualizations for pseudo-coreset generated
with 50 images per class on CIFAR100 and T-ImageNet dataset are presented in the Appendix.

4.4 RESULTS ON OUT OF DISTRIBUTION (OOD) DATASET

We present the results of the proposed method on out-of-distribution (OOD) dataset in Table 2. We use
CIFAR10-C (Hendrycks & Dietterich, 2019) dataset for this experiment. In particular, we sample the
parameters from the pseudo-coreset posterior obtained using clean CIFAR10 (ipc=10) and perform
inference on the corrupted CIFAR10-C, which consists of CIFAR10 images afflicted with different
types of corruption including Gaussian Blur, Gaussian Noise, etc. It is evident from Table 2 that our
method demonstrates robustness to various types of corruption and exhibits superior performance
compared to other baselines. Notably, for corruptions like Gaussian Blur, our method achieves a
1.63% increase in accuracy and a 0.17-point reduction in negative log-likelihood compared to the
best-performing BPC baseline. Likewise, for JPEG Compression, Zoom Blur, and Defocus Blur, our
method yields an improvement of 0.07%, 2.08%, and 0.43% in accuracy, along with a reduction of
0.14, 0.05, and 0.06 points in negative log-likelihood, respectively. The robustness of the proposed
method to different forms of corruption highlights its ability to provide a better approximation of
underlying posterior distribution when compared to other baselines.

4.5 RESULTS ON CROSS-ARCHITECTURE EXPERIMENTS

Here, we present the cross-architecture results pertaining to various BPC methods. In these experi-
ments, we construct the pseudo-coreset using the said ConvNet model, while during inference, we
use different architectures such as ResNet (He et al., 2016b), VGG-Net (Simonyan & Zisserman,
2014) and AlexNet (Krizhevsky et al., 2017a) for evaluation. We perform these experiments for
CIFAR10 (ipc = 10). The results of the cross-architecture experiments are presented in Table 3. It can
be seen that previous BPC methods fail to generalize across different network architectures, whereas
our method demonstrates the ability to adapt to various architectures. For instance, the performance
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Table 3: Cross-architecture generalization
analysis of BPC methods.

ConvNet ResNet VGG AlexNet

Ours 56.39± 0.7 41.65± 1.03 47.51± 0.89 30.58± 1.43

BPC-fKL(hmc) 44.34± 1.11 10.15± 0.21 10.43± 0.33 10.0± 0.0

BPC-rKL(sghmc) 34.48± 0.48 10.06± 0.08 10.26± 0.35 10.0± 0.0

Table 4: Performance comparison of the proposed
method and other BPC baselines for different pa-
rameterized architectures.

Methods CN-D3W128 CN-D3W256 CN-D5W128 AlexNet VGG11 ResNet
320,010 1,229,834 596,490 1,872,202 9,231,114 11,173,962

Ours 56.39± 0.70 55.93± 1.30 56.01± 0.69 52.88± 1.39 49.26± 2.33 48.67± 0.52
BPC-rKL (sghmc) 37.89± 1.54 35.82± 1.88 35.92± 1.88 32.60± 1.45 27.66± 0.73 24.98± 1.53
BPC-W (sghmc) 48.90± 1.72 43.71± 1.42 46.01± 0.92 39.01± 0.51 35.11± 1.82 32.84± 1.38
BPC-fKL (hmc) 49.85± 1.37 45.87± 0.78 47.92± 1.27 41.22± 1.62 37.05± 1.24 35.10± 2.03

of BPC-fKL and BPC-rKL drop by 34.19% and 24.42% respectively on ResNet, resulting in random
predictions with an accuracy of almost 10%, whereas our method observes a drop of only 14.74%
while giving an accuracy of 41.65%.

4.6 EFFECT OF DIFFERENT NUMBER OF PARAMETERS

Lastly, we analyze the performance of BPC methods across differently parameterized networks.
Specifically, we generate pseudo-coresets for CIFAR10 (ipc=10) by employing ConvNets with
different parameter configurations. These configurations encompass ConvNets with different depth
and width. We also conduct a comparative analysis with other deep learning architectures, including
AlexNet (Krizhevsky et al., 2017a), VGG11 (Simonyan & Zisserman, 2014), and ResNet (He et al.,
2016b). Bayesian inference techniques generally encounter scalability issues when dealing with large
parametric networks (Jospin et al., 2022). This experiment is conducted to ascertain the impact of
both large and small architectures on the performance of pseudo-coresets.

The results for different parameterized architectures are presented in Table 4. Here, CN-DxWy
denotes a ConvNet architecture with a depth of ‘x’ and width of ‘y’. It is evident from the results
that the performance of all BPC methods declines as the number of parameters in the architectures
increases. However, our model exhibits relatively better performance in comparison to other methods.
Specifically, while our method demonstrates a 7.72% decrease in performance for the ResNet
architecture, other BPC baselines such as BPC-fKL, BPC-W, and BPC-rKL experience declines of
approximately 14.75%, 16.06%, and 12.91%, respectively. This observation underscores the greater
tolerance of our method to large parametric models when compared to other baselines. We again
highlight that the performance gain achieved by our proposed method can be attributed to the current
formulation, which can generate better approximation to the true posterior.

5 CONCLUSION

In this work, we propose a novel approach to generate pseudo-coreset using contrastive divergence.
Our approach addresses the need to approximate the posterior of pseudo-coreset and uses a finite
number of steps in MCMC methods to sample the parameters from the underlying posterior distribu-
tion. Subsequently, these parameters are used to construct pseudo-coreset via contrastive divergence.
The empirical evidence presented in our study illustrates that our proposed method surpasses previous
BPC baselines by substantial margins across multiple datasets.

Limitations and Future Work: While our approach effectively removes variational assumptions
associated with the pseudo-coreset posterior and utilizes MCMC methods for parameter sampling,
our study still relies on certain assumptions about the posterior of the original dataset. Since there
remains a significant performance gap between the pseudo-coreset and the original dataset, a potential
avenue for future research could be to relax these assumptions to enhance the performance of BPC
methods.

Broader Impact: BPC methods have positive applications in democratization and privacy-related
concerns by reducing the dependence on the original dataset. We don’t believe that our method has
any associated negative societal impact.

Reproducibility Statement: To ensure that the proposed work is reproducible, we have included an
Algorithm (cf. Algorithm 1) in the Appendix. We have included the training details and hyperparam-
eters in Section A.1 in the Appendix. We have clearly defined our loss function in Eq. 10. The code
for the proposed method can be found at https://anonymous.4open.science/r/BPC-CD-E762.

9

https://anonymous.4open.science/r/BPC-CD-E762


Under review as a conference paper at ICLR 2024

REFERENCES

Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via
coresets. Combinatorial and computational geometry, 52(1):1–30, 2005.

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling via stochastic
gradient fisher scoring. arXiv preprint arXiv:1206.6380, 2012.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182. PMLR, 2016.

Olivier Bachem, Mario Lucic, and Andreas Krause. Coresets for nonparametric estimation-the case
of dp-means. In International Conference on Machine Learning, pp. 209–217. PMLR, 2015.

Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Approximate k-means++ in
sublinear time. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via lightweight
coresets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1119–1127, 2018.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards scaling up markov chain monte carlo:
an adaptive subsampling approach. In International conference on machine learning, pp. 405–413.
PMLR, 2014.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On markov chain monte carlo methods for tall
data. Journal of Machine Learning Research, 18(47), 2017.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,
18:1–43, 2018.

Eden Belouadah and Adrian Popescu. Scail: Classifier weights scaling for class incremental learning.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 1266–
1275, 2020.

MJ Betancourt. The fundamental incompatibility of hamiltonian monte carlo and data subsampling.
arXiv preprint arXiv:1502.01510, 2015.

Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process and super-efficient sampling
for bayesian analysis of big data. The Annals of Statistics, 47(3), jun 2019. doi: 10.1214/
18-aos1715. URL https://doi.org/10.1214%2F18-aos1715.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. arXiv preprint arXiv:2006.08572, 2020.

Trevor Campbell and Boyan Beronov. Sparse variational inference: Bayesian coresets from scratch.
Advances in Neural Information Processing Systems, 32, 2019.

Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative geodesic
ascent. In International Conference on Machine Learning, pp. 698–706. PMLR, 2018.

Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference via hilbert coresets.
The Journal of Machine Learning Research, 20(1):551–588, 2019.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Rodolfo C Cavalcante, Rodrigo C Brasileiro, Victor LF Souza, Jarley P Nobrega, and Adriano LI
Oliveira. Computational intelligence and financial markets: A survey and future directions. Expert
Systems with Applications, 55:194–211, 2016.

10

https://doi.org/10.1214%2F18-aos1715


Under review as a conference paper at ICLR 2024

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750–4759, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. General-
izing dataset distillation via deep generative prior. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2023.

Naitong Chen, Zuheng Xu, and Trevor Campbell. Bayesian inference via sparse hamiltonian flows.
Advances in Neural Information Processing Systems, 35:20876–20888, 2022.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. DC-BENCH: Dataset condensation benchmark.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. URL https://openreview.net/forum?id=Bs8iFQ7AM6.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. arXiv preprint arXiv:2206.02916, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Yidi Jiang, Vincent TF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
lated trajectory error to improve dataset distillation. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2023.

Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models, algorithms and
case studies. Springer Science & Business Media, 2009.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
In Proceedings of the forty-third annual ACM symposium on Theory of computing, pp. 569–578,
2011.

Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable training of mixture models via
coresets. Advances in neural information processing systems, 24, 2011.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca, and projective clustering. SIAM Journal on Computing, 49(3):601–657,
2020.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, pp. 1–77, 2023.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4367–4375,
2018.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. In Database and Expert Systems Applications: 33rd International
Conference, DEXA 2022, Vienna, Austria, August 22–24, 2022, Proceedings, Part I, pp. 181–195.
Springer, 2022.

11

https://openreview.net/forum?id=Bs8iFQ7AM6


Under review as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016b.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
regression. Advances in neural information processing systems, 29, 2016.

Tommi S Jaakkola and Michael I Jordan. A variational approach to bayesian logistic regression
models and their extensions. In Sixth International Workshop on Artificial Intelligence and
Statistics, pp. 283–294. PMLR, 1997.

Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z Pan. Delving into effective gradient matching for
dataset condensation. arXiv preprint arXiv:2208.00311, 2022.

James E Johndrow, Natesh S Pillai, and Aaron Smith. No free lunch for approximate mcmc. arXiv
preprint arXiv:2010.12514, 2020.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Learning in graphical models, pp. 105–161, 1998.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37:183–233, 1999.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022.

HM Dipu Kabir, Abbas Khosravi, Mohammad Anwar Hosen, and Saeid Nahavandi. Neural network-
based uncertainty quantification: A survey of methodologies and applications. IEEE access, 6:
36218–36234, 2018.

Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in medical image
analysis. Ieee Access, 6:9375–9389, 2017.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
Grad-match: Gradient matching based data subset selection for efficient deep model training. In
International Conference on Machine Learning, pp. 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 8110–8118, 2021b.

Balhae Kim, Jungwon Choi, Seanie Lee, Yoonho Lee, Jung-Woo Ha, and Juho Lee. On divergence
measures for bayesian pseudocoresets. arXiv preprint arXiv:2210.06205, 2022a.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In International Conference on Machine Learning, pp. 11102–11118. PMLR, 2022b.

Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in mcmc land: Cutting the metropolis-
hastings budget. In International conference on machine learning, pp. 181–189. PMLR, 2014.

12



Under review as a conference paper at ICLR 2024

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017a.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017b.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. Journal of machine learning research, 2017.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensa-
tion with contrastive signals. In International Conference on Machine Learning, pp. 12352–12364.
PMLR, 2022.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Dataset distillation using parameter
pruning. arXiv preprint arXiv:2209.14609, 2022.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
distillation by representative matching. arXiv preprint arXiv:2302.14416, 2023.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
random feature approximation. arXiv preprint arXiv:2210.12067, 2022.

Dougal Maclaurin and Ryan P Adams. Firefly monte carlo: Exact mcmc with subsets of data. arXiv
preprint arXiv:1403.5693, 2014.

Dionysis Manousakas, Zuheng Xu, Cecilia Mascolo, and Trevor Campbell. Bayesian pseudocoresets.
Advances in Neural Information Processing Systems, 33:14950–14960, 2020.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

Tigran Nagapetyan, Andrew B Duncan, Leonard Hasenclever, Sebastian J Vollmer, Lukasz Szpruch,
and Konstantinos Zygalakis. The true cost of stochastic gradient langevin dynamics. arXiv preprint
arXiv:1706.02692, 2017.

Cian Naik, Judith Rousseau, and Trevor Campbell. Fast bayesian coresets via subsampling and
quasi-newton refinement. Advances in Neural Information Processing Systems, 35:70–83, 2022.

Radford M Neal, S Brooks, A Gelman, G Jones, XL Meng, et al. Handbook of markov chain monte
carlo. Press C, editor, 22011, 2011a.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011b.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=l-PrrQrK0QR.

Murray Pollock, Paul Fearnhead, Adam M Johansen, and Gareth O Roberts. Quasi-stationary
monte carlo and the scale algorithm. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 82(5):1167–1221, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

13

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=l-PrrQrK0QR
https://openreview.net/forum?id=l-PrrQrK0QR


Under review as a conference paper at ICLR 2024

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
intelligence and statistics, pp. 814–822. PMLR, 2014.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Christian Robert and George Casella. A short history of markov chain monte carlo: Subjective
recollections from incomplete data. Statistical Science, 26(1), feb 2011. doi: 10.1214/10-sts351.
URL https://doi.org/10.1214%2F10-sts351.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2.
Springer, 1999.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to
house numbers digit classification. In Proceedings of the 21st international conference on pattern
recognition (ICPR2012), pp. 3288–3291. IEEE, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260,
2003.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12196–12205, 2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128, 2009.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. arXiv
preprint arXiv:2301.07014, 2023.

Jacky Zhang, Rajiv Khanna, Anastasios Kyrillidis, and Sanmi Koyejo. Bayesian coresets: Revisiting
the nonconvex optimization perspective. In International Conference on Artificial Intelligence and
Statistics, pp. 2782–2790. PMLR, 2021.

14

https://doi.org/10.1214%2F10-sts351


Under review as a conference paper at ICLR 2024

Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao
Li, and Dongkuan Xu. Accelerating dataset distillation via model augmentation. Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2023.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. arXiv preprint
arXiv:2204.07513, 2022.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=mSAKhLYLSsl.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2023.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=2clwrA2tfik.

A APPENDIX

A.1 TRAINING DETAILS AND HYPER PARAMETERS

In this section, we provide the implementation details of the proposed method. Our implementation
can be found https://anonymous.4open.science/r/BPC-CD-E762. During the training process, we
randomly initialize the synthetic dataset using samples from the original training set. The overall
cardinality of these synthetic sets is determined by the number of images considered for every class
(ipc). For our experiments, we have considered ipc values of 1, 10 and 50. Furthermore, similar to
previous works Kim et al. (2022a); Cazenavette et al. (2022), we have used Differentiable Siamese
Augmentation (DSA) (Zhao & Bilen, 2021) strategies to enhance the performance of our model.
DSA strategies include random crop, random flip, random brightness, random scale, and rotation.
At any instant, we apply one of these augmentations to train our network. These augmentation
techniques ensure that the model does not overfit on the given synthetic set and generates optimal
parameters. DSA is applied to the synthetic set while running langevin dynamics and calculating the
contrastive-divergence-based loss function.

We have also conducted additional experiments to evaluate the effectiveness of our method and
other BPC baselines in the absence of DSA. The findings of the experiment are reported in Table 5.
The results clearly indicate that the DSA has a positive impact on the performance of all BPC
methods, which align with the observation made by Cui et al. (2022). Nevertheless, even without the
DSA-based augmentation strategy, our method outperforms other BPC baselines for 1 ipc.

As for the network used to calculate the energy, we take inspiration from previous works (Kim et al.,
2022a; Wang et al., 2018; Lee et al., 2022; Cazenavette et al., 2022) and use a ConvNet architec-
ture (Gidaris & Komodakis, 2018). This architecture consists of multiple blocks of convolutional
layer with filter dimension of 3×3 and channel size of 128. The network uses instance normalization,
maxpool layer with stride 2, and RELU activation. In our experiments, we have used an architecture
with three such blocks of convolution layers.

Next, we create a buffer of trajectories to sample parameters from the posterior of the original dataset.
For this, we generate 100 different trajectories, each with 50 epochs trained using SGD optimizer
with a batch size of 256 on the original training set. These parameters are used to obtain the gaussian
variational approximation to estimate the loss function. Further, we use diagonal covariance matrix
with diagonal entry of 0.001 for the re-parameterization trick used in gaussian approximation.
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The pseudocode of the implementation is presented in Algorithm 1. The hyperparameters used are
as follows: P = 2000, λ = 0.01, n = 50, L = 100, Σ1/2

x = 0.001I . These hyper-parameters are
fixed across all the datasets. Further, we observe that there γ that can be fine-tuned for marginal
improvements in performance. Specifically, γ is varied between {1, 10, 100, 1000}. Note that, we
use same set of parameter to sample parameters during inference. All the experiments are conducted
on a single NVIDIA RTX A6000 GPUs with 48GB memory.

Table 5: Comparison of the proposed method against other BPC baselines without using DSA on
CIFAR10 dataset.

BPC-rkl (sghmc) BPC-w (sghmc) BPC-fkl (hmc) BPC-fkl (sghmc) Ours
ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10

19.70± 1.06 36.41± 0.75 27.66± 0.8 39.61± 1.12 32.61± 1.50 38.12± 1.19 28.25± 0.92 41.85± 1.47 34.94± 0.72 41.02± 0.66

Algorithm 1 Proposed Algorithm
Input : Set of SGD trajectories obtained from original dataset (τ), Number of langevin steps (L)
needed to sample parameter from πx̃, Langevin step size (λ), Step size to modify pseudo-coreset (γ),
Number of epochs (P)

1: Initialize pseudo-coreset (x̃) using samples from original dataset x.
2: for step in [1... P] : do
3: Sample τi ∼ τ
4: Sample θ+k ∼ τi where θ+k are parameters associated with kth epoch for ith trajectory.
5: Let θ+ = θ+k +Σ

1/2
x εx, ε ∼ N (0, I)

6: Let θ−0 = θ+

7: for t in [0 .... L] : do
8: Calculate energy associated with x̃ and parameter θ−t i.e. E(θ−t , x̃))
9: θ−t+1 = θ−t − λ(∇θE(θ−t , x̃)) + η, η ∼ N (0, I)

10: Let θ− = θ−L
11: Calculate L = E((θ+, x̃))− E((θ−, x̃))
12: x̃← x̃− γ∇x̃L

A.2 EXPERIMENTAL SETUP

A.2.1 BASELINE SETUP

We primarily present the results for different BPC frameworks. The experiment of Table 1 in the
main manuscript uses the original hyperparameters mentioned in the respective papers. In cases
where hyperparameters were not explicitly specified, we employed the default hyperparameters of
CIFAR10. We have presented the results for BPC methods with only 1 and 10 ipc for the CIFAR100
and T-ImageNet datasets. We could not report the result for other scenarios due to the computational
limitations. These methods demand a significant amount of GPU memory, which we currently lack,
making it impractical to compute the desired results.

A.2.2 GPU AND TIME CONSUMPTION

We assess the computational efficiency of our method relative to other baselines by comparing the
GPU memory consumption and the training time required to generate the pseudo-coresets for a single
iteration. The findings of our results are presented in Fig. 2, where the iteration time is calculated by
taking the average of the total time for 100 different iterations.

As illustrated in Fig. 2, our method requires relatively less time compared to other BPC methods for
low ipc values and outperforms BPC-W for higher ipc values. Additionally, in our examination of
GPU memory usage, we observe that BPC-W shows linear scaling in GPU memory consumption as
the number of images per class increases. In contrast, our method maintains consistent memory usage
across all ipc values. In our experiment, we found that our method utilizes only 37GB of memory,
even for higher images per class. It’s worth noting that other BPC baselines such as BPC-fKL and
BPC-rKL are more memory-efficient than our method and deliver consistent performance across
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(a) (b)

Figure 2: Computing GPU memory costs along with training time for different image per class.

all the ipc values. We attribute this observation to the fact that BPC-fkl and BPC-rkl avoid MCMC
sampling during training by making use of relevant approximations. Whereas, our method makes use
of gradient-based MCMC sampling (langevin dynamics) for estimation of the objective function. For
this reason, the GPU consumption of the proposed method is relatively higher than that of BPC-fkl
and BPC-rkl.

A.3 COMPARISON WITH CORESET METHODS

We have conducted a comparative analysis of our method with other coreset techniques such as
Herding (Chen et al., 2012), K-Center (Sener & Savarese, 2017), and Forgetting (Toneva et al., 2018).
The outcomes of our experiments are listed in Table 6. The result clearly shows that our method
outperforms other coreset techniques on all the dataset.

Table 6: Comparison of the proposed method with coreset baselines. The results are noted in form
of (mean ± std. dev) where we have obtained test accuracy over five independent runs on the
pseudo-coreset. The best performer across all methods is denoted in bold (x ± s). For ease of
comparison, we color the second best performer with blue color.

ipc Ratio(%) Herding K-Center Forgetting Ours
1 0.017 89.2± 1.6 89.3± 1.5 35.5± 5.6 93.42± 0.09

10 0.17 93.7± 0.3 84.4± 1.7 68.1± 3.3 97.71± 0.24MNIST
50 0.83 94.8± 0.2 97.4± 0.3 88.2± 1.2 98.91± 0.22

1 0.017 67.0± 1.9 66.9± 1.8 42.0± 5.5 77.29± 0.5
10 0.17 71.1± 0.7 54.7± 1.5 53.9± 2.0 88.40± 0.21FMNIST
50 0.83 71.9± 0.8 68.3± 0.8 55.0± 1.1 89.47± 0.06

1 0.014 20.9± 1.3 21.0± 1.5 12.1± 1.7 66.74± 0.09
10 0.14 50.5± 3.3 14.0± 1.3 16.8± 1.2 82.32± 0.56SVHN
50 0.7 72.6± 0.8 20.1± 1.4 27.2± 1.5 88.41± 0.12

1 0.02 21.5± 1.2 21.5± 1.3 13.5± 1.2 46.87± 0.2
10 0.2 31.6± 0.7 14.7± 0.9 23.3± 1.0 56.39± 0.7Cifar10
50 1 23.3± 1.0 27.0± 1.4 23.3± 1.1 71.93± 0.17

1 0.2 8.4± 0.3 8.3± 0.3 4.5± 0.2 23.97± 0.11Cifar100
10 2 17.3± 0.3 7.1± 0.2 15.1± 0.3 28.42± 0.24

1 0.2 2.8± 0.2 3.03± 0.0 1.6± 0.1 8.39± 0.07T-ImageNet
10 2 6.3± 0.2 11.38± 0.0 5.1± 0.2 17.82± 0.39

A.4 COMPARISON WITH DATASET CONDENSATION TECHNIQUES

We have also compared our method with other data condensation (DC) techniques like Distillation
(DD) (Wang et al., 2018), Flexible Dataset Distillation (LD) (Bohdal et al., 2020), Gradient Matching
(DC) (Zhao et al., 2021), Differentiable Siamese Augmentation (DSA) (Zhao & Bilen, 2021), Distri-
bution Matching (DM) (Zhao & Bilen, 2023), Neural Ridge Regression (KIP) (Nguyen et al., 2021),
Condensed data to align features (CAFE) (Wang et al., 2022) and Matching Training Trajectories
(MTT) (Cazenavette et al., 2022). The results of the experiment are shown in Table 7. We find that
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Table 7: Comparison of the proposed method with dataset-condensation baselines. The results are
noted in form of (mean ± std. dev) where we have obtained test accuracy over five independent runs
on the pseudo-coreset. The best performer across all methods is denoted in bold (x± s). For ease of
comparison, we color the second best performer with blue color.

Img/cls Ratio% DD LD GM DSA DM CAFE CAFE+DSA KIP MTT Ours
1 0.017 - 60.6± 2.86 92.01± 0.25 87.6± 0.07 88.89± 0.57 93.1± 0.3 90.8± 0.5 85.46± 0.04 89.85± 0.01 93.42± 0.09

10 0.17 79.71± 8.3 87.05± 0.5 97.58± 0.1 97.39± 0.06 96.58± 0.11 97.2± 0.2 97.5± 0.1 97.15± 0.11 97.7± 0.02 97.71± 0.24MNIST
50 0.83 - 93.3± 0.3 98.81± 0.03 98.97± 0.04 98.22± 0.05 98.6± 0.2 98.9± 0.2 98.36± 0.08 98.6± 0.006 98.91± 0.22

1 0.017 - - 70.83± 0.01 70.45± 0.57 71.92± 0.7 77.1± 0.9 73.7± 0.7 - 77.14± 0.007 77.29± 0.5
10 0.17 - - 81.93± 0.07 84.7± 0.11 83.25± 0.09 83.0± 0.4 83.0± 0.3 - 88.768± 0.00158 88.40± 0.21FMNIST
50 0.83 - - 83.26± 0.17 88.55± 0.56 87.65± 0.03 84.8± 0.4 88.2± 0.3 - 89.332± 0.151 89.47± 0.06

1 0.014 - - 30.49± 0.57 31.18± 0.43 19.25± 1.39 42.6± 3.3 42.9± 3.0 - 57.55± 0.02 66.74± 0.09
10 0.14 - - 75.1± 0.4 78.39± 0.3 71.42± 1.01 75.9± 0.6 77.9± 0.6 - 72.56± 0.005 82.32± 0.56SVHN
50 0.7 - - 81.7± 0.14 82.5± 0.34 82.41± 0.52 81.3± 0.3 82.3± 0.4 - 83.731± 0.334 88.41± 0.12

1 0.02 - 25.38± 0.2 28.10± 0.56 29± 0.64 26.40± 0.42 30.3± 1.1 31.6± 0.8 40.5± 0.4 46.08± 0.8 46.87± 0.2
10 0.2 39.14± 2.3 37.5± 0.6 44.14± 0.6 51.85± 0.43 48.66± 0.03 46.3± 0.6 50.9± 0.5 53.1± 0.5 64.27± 0.8 56.39± 0.7CIFAR10
50 1 - 41.7± 0.5 53.73± 0.44 60.77± 0.45 62.7± 0.07 55.5± 0.6 63.3± 0.4 58.6± 0.4 71.26± 0.5 71.93± 0.17

1 0.2 - 11.5± 0.4 12.65± 0.32 13.88± 0.29 11.35± 0.18 12.04± 0.0 12.9.± 0.3 14.0± 0.3 23.62± 0.63 23.97± 0.11CIFAR100
10 2 - - 25.28± 0.29 32.34± 0.4 29.38± 0.26 29.04± 0.0 27.8± 0.3 31.5± 0.2 36.96± 0.155 28.42± 0.24

1 0.2 - - 5.27± 0.0 5.67± 0.0 3.82± 0.0 - - - 8.27± 0.0 8.39± 0.07T-ImageNet
10 2 - - 12.83± 0.0 16.43± 0.0 13.51± 0.0 - - - 20.11± 0.0 17.82± 0.39

the performance of our method is better than almost all the DC baselines, whereas MTT stands out
to be a close second in most of the cases. This shows that our method, although falling under the
category of Bayesian pseudo-coreset, achieves a performance that is comparable to that of heuristic
DC methods. It is to be noted that the DC methods are not the direct competitors of our method.
However, we have shown that our method, although a BPC, surpasses (or comes very close to) the
SoTA DC methods such as MTT (Cazenavette et al., 2022).

A.5 VISUALIZATIONS FOR CIFAR100 AND TINY-IMAGENET

In this section, we present the visualizations for pseudo-coresets of large datasets like CIFAR100 and
Tiny-Imagenet datasets. We present generated synthetic images for both 1 and 10 images per class.
We provide the visualization for 1 image per class on both datasets in Fig. 3 and Fig. 4, respectively.
Fig. 5a and Fig. 5b include visualization for CIFAR100 datasets with 10 ipc wherein each image
is divided based on the number of classes. Similarly, we split the image into 50 classes for the
Tiny-ImageNet dataset for 10 ipc in Fig. 6 and Fig. 7.
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Figure 3: Visualizations of pseudo-coresets for CIFAR100 with 1 Image Per Class.
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Figure 4: Visualizations of pseudo-coresets for Tiny ImageNet with 1 Image Per Class.
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(a) Classes 0-50 (b) Classes 50-100

Figure 5: Visualizations for pseudo-coresets for CIFAR100 with 10 Images Per Class
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(a) Classes 0-50 (b) Classes 50-100

Figure 6: Visualizations of psuedo-coresets for Tiny ImageNet with 10 Images Per Class
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(a) Classes 100-150 (b) Classes 150-200

Figure 7: Visualizations of pseudo-coresets for Tiny ImageNet with 10 Images Per Class
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