

000 001 002 003 004 005 RESURFACING THE INSTANCE-ONLY DEPENDENT 006 LABEL NOISE MODEL THROUGH LOSS CORRECTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 We investigate the label noise problem in supervised binary classification settings
025 and resurface the underutilized instance-*only* dependent noise model through loss
026 correction. On the one hand, based on risk equivalence, the instance-aware loss
027 correction scheme completes the bridge from *empirical noisy risk minimization*
028 to *true clean risk minimization* provided the base loss is classification calibrated
029 (e.g., cross-entropy). On the other hand, the instance-only dependent modeling of
030 the label noise at the core of the correction enables us to estimate a single value per
031 instance instead of a matrix. Furthermore, the estimation of the transition rates be-
032 comes a very flexible process, for which we offer several computationally efficient
033 ways. Empirical findings over different dataset domains (image, audio, tabular)
034 with different learners (neural networks, gradient-boosted machines) validate the
035 promised generalization ability of the method.
036
037

1 INTRODUCTION

038 Label noise is one of the culprits for low-quality data in supervised classification settings where some
039 of the labels deviate from their true values. While it is relatively easy to collect data, it is as laborious
040 to label them correctly in a time-efficient manner, which inevitably results in errors in annotations.
041 The machines are prone to overfitting these mislabels which results in poor generalization (Arpit
042 et al., 2017; Belkin et al., 2018). The need for tackling noisy labels has thereby arisen.

043 Surrogate loss functions are one prominent way of handling label noise in a machine-agnostic man-
044 nner: given a possibly *noise intolerant* (Manwani & Sastry, 2013) loss function, “correct” it by de-
045 vising a new loss which is robust to label noise. For example, Ma et al. (2020) suggest a normalization
046 trick to symmetrize any loss function, which is a sufficient condition for noise tolerance (Ghosh
047 et al., 2015). A main advantage of these loss correction methods is their ease in implementation:
048 usually the correction of the base loss takes a few lines of code with very little computational over-
049 head, compared to, say, modifying an entire machinery.

050 To this end, we direct our attention to the ultimate aim in machine learning: generalization (Mohri
051 et al., 2012). In classification with label noise, one seeks a classifier trained on the noisy data that
052 generalizes well with respect to the clean data. *True risk* quantifies the generalization error of a
053 hypothesis under a loss function; the mathematical formulation of the desideratum is therefore the
054 following risk equivalence:

$$\mathbb{E}_{X, \tilde{Y}} [\tilde{\ell}(h(X), \tilde{Y})] = \mathbb{E}_{X, Y} [\ell_{01}(h(X), Y)], \quad (1)$$

055 where $X \in \mathcal{X}$ is the instance random variable, $Y, \tilde{Y} \in \{\pm 1\}$ are the (unknown) clean and (observed)
056 noisy label random variables, respectively; $\mathcal{H} \ni h : \mathcal{X} \rightarrow \mathbb{R}$ is any scorer function from the hypoth-
057 esis space \mathcal{H} ; $\ell_{01}(h(\mathbf{x}), y) = (1 - \text{sgn}(y \cdot h(\mathbf{x}))) / 2$ is the 0-1 loss function and $\tilde{\ell} : \mathbb{R} \times \{\pm 1\} \rightarrow \mathbb{R}$
058 is our target loss function that is minimized during the training of h . Ideally, one wants $\tilde{\ell} = \ell_{01}$,
059 which is in fact a noise-tolerant loss function (Manwani & Sastry, 2013). Nonetheless, optimiza-
060 tion against it is intractable in general (Ben-David et al., 2003) and the proposed direct optimizers
061 constrain the hypothesis space to be linear functions (Sastry et al., 2010; Nguyen & Sanner, 2013).
062 Therefore, *classification calibrated* (Bartlett et al., 2006) convex surrogate loss functions, e.g., lo-
063 gistic and hinge losses, are used instead. These loss functions (here denoted by ℓ) are not necessarily
064 noise tolerant, however. In fact, Manwani & Sastry (2013) showed that neither the logistic loss nor

054 the hinge loss is label-noise tolerant whether the noise is instance-dependent or not. This eliminates
 055 the possibility $\tilde{\ell} = \ell$, and devising a noise tolerant loss function is in order: noise tolerance, com-
 056 bined with classification calibratedness, form a path from *noisy empirical risk w.r.t. $\tilde{\ell}$* to *clean true*
 057 *risk w.r.t. ℓ_{01}* .
 058

059 Risk equivalence in equation 1 involves the transition probabilities to make a connection between
 060 Y and \tilde{Y} . This transition is an unknown process in general whose modeling roughly falls into four
 061 categories (Menon et al., 2018): RCN (random classification noise), CCN (class conditional noise),
 062 IDN (instance dependent noise) and ILDN (instance and label dependent noise). They are essentially
 063 distinguished by what they put on the right side of the conditional probability $\mathbb{P}(\tilde{Y} \neq Y \mid \cdot)$: RCN
 064 leaves it empty; CCN puts Y ; IDN puts X ; and ILDN puts X, Y . RCN is rather unrealistic as it
 065 assumes a uniform rate of transition independent of X and Y . CCN is the most widely studied
 066 noise model that assumes $\tilde{Y} \perp\!\!\!\perp X \mid Y$, i.e., the label noise depends *only* on the class but not on
 067 the specific instance. The more natural (Chen et al., 2021) and powerful yet challenging assumption
 068 involves a conditioning on X by assuming IDN or ILDN, which continues to attract attention in
 069 recent research (Bae et al., 2024; Li et al., 2025).
 070

071 The distinction between IDN and ILDN is worth emphasizing. When “instance dependent noise” is
 072 used, what is usually meant is instance *and* label dependent noise, i.e., ILDN and not IDN. IDN is
 073 driven by the plausible assumption that Y , being an aggregate statistic of X , does not convey any
 074 more information than X on the transition rate. That IDN involves less parameters might imply
 075 underfitting in modeling the noise; however, as empirically shown, it is not less powerful than ILDN
 076 while being much more computationally efficient. Interestingly, there are only a few works that
 077 model the noise in this instance-only dependent form (Bylander, 1998; Du & Cai, 2015), which
 078 both focused on linear machines. We generalize this underutilized noise model to be employable
 079 with any learning machine and provide practical ways to estimate its value per instance. This model
 080 complements the risk equivalence starting point to devise a noise tolerant surrogate loss function.
 081

082 We summarize our main contributions as follows.
 083

- 084 • We introduce an instance-aware loss correction mechanism based on risk equivalence to
 085 fortify a given loss function to combat instance-dependent label noise effectively (theory-
 086 wise) and efficiently (computation-wise).
- 087 • We resurface the underutilized instance-*only* dependent noise model to estimate the trans-
 088 ition probability of each instance to complement the surrogate loss function design. We
 089 also provide computationally efficient ways to model the transition rates.
- 090 • Empirically, we validate our approach with moderate and high noise rates over three
 091 datasets of different domains with neural networks and tree-based models, showing com-
 092 parable/better results against the current approaches while being dataset- and machine-
 093 agnostic.

094 2 RELATED WORK

095 **Noise models.** Angluin & Laird (1988) formalized the label noise problem and showed learnability
 096 under RCN where the transition rate is the same for all x, y pairs. The more realistic CCN model
 097 appoints a distinct rate for each possible transition among classes, which is the most widely studied
 098 noise model: Liu & Tao (2016) employed data reweighting; Zhang & Sabuncu (2018), Patrini et al.
 099 (2017) and Wang et al. (2019) focused on loss correction; and Han et al. (2018), Yu et al. (2019)
 100 and Li et al. (2020) introduced effective neural network machineries based on the difference of
 101 loss suffered among samples. The more natural noise model where labeling errors depend on the
 102 instance itself has also been heavily studied: Xia et al. (2020) and Yang et al. (2022) learn the
 103 transition matrix for ILDN via three stage training where the former learns partial matrices to be
 104 combined and the latter uses distillation to acquire Bayes-optimal labels; Zhang et al. (2021) and
 105 Cheng et al. (2021) progressively correct suspicious data pairs; Bae et al. (2024) perform Dirichlet-
 106 based resampling using the transition matrix; Du & Cai (2015) reinterpret linear classifiers from a
 107 distance-to-boundary perspective under IDN, which Bylander (1998) also studied under monotonic
 108 noise for perceptron learning; and Yao et al. (2021) and Li et al. (2025) took a causal graph viewpoint
 109 in ILDN modeling.

108 **Loss correction.** Many machine-agnostic loss correction methods have been proposed to deal with
 109 label noise. Natarajan et al. (2013) proposed a CCN-based surrogate loss. Zhang & Sabuncu (2018)
 110 and Wang et al. (2019) specifically modified the cross-entropy loss for robust learning based on
 111 CCN; the former used a Box-Cox-like transformation and the latter introduced an additive term
 112 based on the (reverse) KL divergence. Goldberger & Ben-Reuven (2017) introduced a noise-
 113 adaptation layer to a given neural network to make cross entropy more tolerant to label noise. Ma
 114 et al. (2020) proposed a normalization trick to symmetrize any loss function for noise tolerance and
 115 further improved it by weighted combinations of losses, which was generalized by Zhou et al. (2021)
 116 as asymmetric loss functions. Xu et al. (2019) introduced an information theory-centric loss involving
 117 the determinant of the transition matrix of a CCN noise model. Rooyen et al. (2015) proposed a
 118 modified hinged loss that is provably noise tolerant to combat RCN. Patrini et al. (2017) introduced
 119 two ways to correct a given loss function via CCN-based transition rates. Liu & Guo (2020) introduced
 120 peer losses without transition rates directly involved, which achieves risk equivalence up to a
 121 constant involving the transition rates.

122 Perhaps the closest studies to our work are Natarajan et al. (2013), Patrini et al. (2017); and Bylander
 123 (1998), Du & Cai (2015). The critical difference from Natarajan et al. (2013) is their lack of ex-
 124 pectation over the latent label variable Y , i.e., we would argue that it does not properly achieve risk
 125 equivalence (in fact, the expectation is present in Patrini et al. (2017)). Furthermore, it is a CCN-
 126 based model, i.e., the label noise is not instance-dependent, and the transition rates are assumed
 127 known or otherwise estimated via validation which is not scalable to IDN. Patrini et al. (2017) is
 128 also based on CCN and the estimation of the transition rates assumes the existence of anchor points,
 129 i.e., points whose annotations are almost surely correct, and involves a separate training stage, which
 130 incurs computational load and disconnection in learning. As for the latter IDN-based works of By-
 131 lander (1998) and Du & Cai (2015), they are focused on linear machines (former perceptron; latter
 132 logistic/probit regressors) with one way of estimating the noise (distance-based); we, however, not
 133 only generalize the learning to nonlinear machines with a generic loss correction mechanism but
 134 also formalize and propose several computationally efficient ways to estimate the noise rates.

135 3 METHODOLOGY

137 In this section, we first present the notation used, then introduce the instance-aware loss correction
 138 and lastly propose estimation approaches for the instance-only dependent noise.

140 3.1 PRELIMINARIES

142 We consider the supervised binary classification problem. \mathcal{X} denotes the feature space, $\mathcal{Y} = \tilde{\mathcal{Y}} =$
 143 $\{\pm 1\}$ the label space (clean and noisy, respectively). X, Y, \tilde{Y} denote the random variables and
 144 \mathbf{x}, y, \tilde{y} their specific samples associated with \mathcal{X} , \mathcal{Y} and $\tilde{\mathcal{Y}}$, respectively. $\mathcal{H} \ni h : \mathcal{X} \rightarrow \mathbb{R}$ is any
 145 scorer function from the hypothesis space \mathcal{H} ; 0-1 loss is given by $\ell_{01}(h(\mathbf{x}), y) = (1 - \text{sgn}(y \cdot h(\mathbf{x}))) / 2$. Given a loss function $\ell : \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$, $R_\ell(h) = \mathbb{E}_{X, Y} [\ell(h(X), Y)]$ is the true clean
 146 risk; $\tilde{R}_\ell(h) = \mathbb{E}_{X, \tilde{Y}} [\ell(h(X), \tilde{Y})]$ is the true noisy risk; and $\hat{R}_\ell(h) = \frac{1}{|S|} \sum_{i=1}^{|S|} \ell(h(\mathbf{x}_i), \tilde{y}_i)$ is the
 147 empirical noisy risk, where $S = \{(\mathbf{x}_i, \tilde{y}_i)\}$ is a realization of the noisy data pairs of cardinality $|S|$.
 148 When the subscript ℓ on the risk is omitted, it implies ℓ_{01} . $\rho_{\mathbf{x}} = \mathbb{P}(Y \neq \tilde{Y} \mid X = \mathbf{x})$ denotes the
 149 label flip probability of a given instance \mathbf{x} . We assume $\mathbb{E}_{\mathbf{x}} [\rho_{\mathbf{x}}] < 0.5$ for learning to take place¹.
 150

152 3.2 LOSS CORRECTION VIA RISK EQUIVALENCE

154 We aim to form a path from the *empirical noisy risk minimization* w.r.t. a surrogate loss $\tilde{\ell}$ to the *true clean risk minimization* w.r.t. ℓ_{01} . Since ℓ_{01} is hard to optimize, a classification calibrated loss
 155 function is used instead, e.g., logistic loss: $\ell_{\text{log}}(h(\mathbf{x}), y) = \log(1 + e^{-y \cdot h(\mathbf{x})})$; it is well-known
 156 that risk minimization w.r.t. the logistic loss parallels the minimization of the true risk w.r.t. ℓ_{01} ,
 157 i.e., $R(h) - R^*(h) \leq \sqrt{2(R_{\ell_{\text{log}}}(h) - R_{\ell_{\text{log}}}^*(h))}$, where R^* denotes the minimum possible risk, i.e.,
 158

160 ¹The machine would be indifferent to this assumption being invalidated, which amounts to the semantic flip
 161 of the positive and negative labels; its predictions on unseen data would simply need to be inverted.

the Bayes-optimal one. As the true distribution of \mathbf{x} 's are never known, empirical/structural risk minimization is instead used as a proxy backed up by the law of large numbers. Once the label noise comes into the picture, however, the connection between the $\hat{R}_{\ell_{\text{log}}}(h)$ and $R(h)$ is lost: logistic loss is not noise tolerant even when the noise rate is uniform, i.e., $\rho_{\mathbf{x}} = \rho \forall \mathbf{x}$ (Ghosh et al., 2015). To this end, we propose to devise an $\tilde{\ell}$ based on ℓ , which can be any classification calibrated loss function (e.g., logistic, hinge), such that the path is complete:

$$R_{\ell_{01}}(h) \xleftarrow[\text{Classification Calibratedness}]{} R_{\ell}(h) \xleftarrow[\text{Our } \tilde{\ell} \text{ design}]{} \tilde{R}_{\ell}(h) \xleftarrow[\text{Law of Large Numbers}]{} \hat{R}_{\ell}(h). \quad (2)$$

We now propose our loss correction scheme. (All proofs are in Appendix A.1.)

Proposition 1. *Let ℓ be any loss function. Define*

$$\tilde{\ell}(h(\mathbf{x}), \tilde{y}) = \frac{\mathbb{P}(Y = \tilde{y} \mid \mathbf{x})(\mathbb{P}(\tilde{Y} = -\tilde{y} \mid \mathbf{x}) - \rho_{\mathbf{x}})\ell(h(\mathbf{x}), \tilde{y}) - \mathbb{P}(Y = -\tilde{y} \mid \mathbf{x})\rho_{\mathbf{x}}\ell(h(\mathbf{x}), -\tilde{y})}{\mathbb{P}(\tilde{Y} = \tilde{y} \mid \mathbf{x})\mathbb{P}(\tilde{Y} = -\tilde{y} \mid \mathbf{x}) - \rho_{\mathbf{x}}}. \quad (3)$$

Then we have $\tilde{R}_{\ell}(h) = R_{\ell}(h)$, i.e., $\mathbb{E}_{X, \tilde{Y}}[\tilde{\ell}(h(X), \tilde{Y})] = \mathbb{E}_{X, Y}[\ell(h(X), Y)]$.

(The proof of Proposition 1 in Appendix A.1 also explains the rationale behind this choice for a modified loss function.)

In equation 3, there are three unknown probabilities: $\mathbb{P}(Y \mid \mathbf{x})$, $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ and $\rho_{\mathbf{x}}$. We now explain how we estimate them in practice.

3.2.1 MODELING $\mathbb{P}(Y \mid \mathbf{x})$ AND $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$

$\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ can be estimated directly from the data using any learning machine as we have direct access to (\mathbf{x}, \tilde{y}) pairs. This is not the case for $\mathbb{P}(Y \mid \mathbf{x})$ as we have no access to the clean labels. However, since the scorer h also models $\mathbb{P}(Y \mid \mathbf{x})$, we can set $\mathbb{P}(Y \mid \mathbf{x})$ in equation 3 to the standard logistic over the scorer, i.e., $\mathbb{P}(Y = z \mid \mathbf{x}) \approx \sigma(z \cdot h(\mathbf{x})) = (1 + e^{-z \cdot h(\mathbf{x})})^{-1}$. The rationale is that, ideally, when the training with $\tilde{\ell}$ finishes, the machine has converged to learn $\mathbb{P}(Y \mid \mathbf{x})$, i.e., the clean label probability for generalization. Since clean data pairs (despite being unknown) dominate the learning in the initial stage (Han et al., 2025), we spare a few epochs at the beginning (warm-up) where we only use the (unmodified) base loss ℓ to form a strong baseline for $\mathbb{P}(Y \mid \mathbf{x})$. As for $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$, one might train a normal model for \tilde{Y} , and then use its predictions inside the modified loss to train h (and hence implicitly also $\mathbb{P}(Y \mid \mathbf{x})$). This disjoint training for $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ and $\mathbb{P}(Y \mid \mathbf{x})$ / h , however, is not only time consuming but turns out to also lack in performance (as empirically shown in Appendix A.4). Therefore, in practice, we use $\sigma(z \cdot h(\mathbf{x}))$ for $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ also; as the machine is trained with the noisy labels to mimic the annotator's brain, it is expected to model $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ in the process (including and after warm-up). We provide a detailed argument for this modeling choice in Appendix A.4.1, and an analysis on the effect of the warm-up period in Appendix A.5.

With these estimates in place, the loss in equation 3 becomes

$$\tilde{\ell}(h(\mathbf{x}), \tilde{y}) = \frac{\sigma(\tilde{y} \cdot h(\mathbf{x}))(\sigma(-\tilde{y} \cdot h(\mathbf{x})) - \rho_{\mathbf{x}})\ell(h(\mathbf{x}), \tilde{y}) - \sigma(-\tilde{y} \cdot h(\mathbf{x}))\rho_{\mathbf{x}}\ell(h(\mathbf{x}), -\tilde{y})}{\sigma(\tilde{y} \cdot h(\mathbf{x}))\sigma(-\tilde{y} \cdot h(\mathbf{x})) - \rho_{\mathbf{x}}} \quad (4)$$

and we move to the modeling of the last unknown, $\rho_{\mathbf{x}}$.

3.2.2 MODELING $\rho_{\mathbf{x}}$

The transition rate $\rho_{\mathbf{x}} = \mathbb{P}(Y \neq \tilde{Y} \mid X = \mathbf{x})$ is only conditioned on X and not on Y . Therefore, per instance, we do not estimate a transition matrix but instead a single value. Furthermore, as $\rho_{\mathbf{x}}$ does not depend on the true label, there is nothing preventing the estimation of $\rho_{\mathbf{x}}$'s in an unsupervised manner, giving flexibility. Before providing ways to estimate $\rho_{\mathbf{x}}$, we formalize it over the notion of *difficulty* – the more difficult an instance \mathbf{x} is, the higher the label flip probability $\rho_{\mathbf{x}}$.

Definition 1 ($\rho_{\mathbf{x}}$). *Let $z : \mathcal{X} \rightarrow \mathbb{R}$ be a “difficulty” mapping such that the more difficult (to label) \mathbf{x} , the higher label flip probability $\rho_{\mathbf{x}} := \mathbb{P}(Y \neq \tilde{Y} \mid X = \mathbf{x})$, i.e.,*

$$\rho_{\mathbf{x}} = \phi(z(\mathbf{x})),$$

216 where $\phi : \mathbb{R} \rightarrow [0, 1]$ is a monotonically increasing function (not necessarily differentiable), which,
 217 together with z , also satisfies $\mathbb{E}_X[\phi(z(\mathbf{x}))] < 0.5$ so that there is more signal than noise for learning
 218 to take place.

219 An obvious choice would be to use the model h itself within the difficulty map $z(\cdot)$, as the model has
 220 some notion of which labels are harder to classify than others. As such, $z(\cdot)$ can be learned online
 221 during training of h (see below). In this case, we impose that $z(\cdot)$ is

- 223 • increasing when $h(\mathbf{x}) < 0$ and decreasing when $h(\mathbf{x}) \geq 0$, and
- 224 • differentiable and Lipschitz² such that $-\infty < \inf_{\mathbf{x} \in \mathcal{X}} \frac{\partial \rho_{\mathbf{x}}}{\partial h(\mathbf{x})} < 0 < \sup_{\mathbf{x} \in \mathcal{X}} \frac{\partial \rho_{\mathbf{x}}}{\partial h(\mathbf{x})} < \infty$.

225 The definition necessitates the design of two functions: z the difficulty metric and ϕ that turns that
 226 difficulty into a probability. We now provide several ways to model them (a nonexhaustive list).

228 **How to find the difficulty of an instance, i.e., $z(\mathbf{x})$?**

- 229 1. Offline (unsupervised)
 - 230 (a) Clustering, e.g., K-means (Lloyd, 1982): $z(\mathbf{x})$ is the (inverted) distance of \mathbf{x} to its
 231 cluster center.
 - 232 (b) Representation learning, e.g., sparse autoencoder (Lee et al., 2007): $z(\mathbf{x})$ is the
 233 reconstruction error. The learned representations are then used for the downstream
 234 classification task.
- 235 2. Online (while training h)
 - 236 (a) Distance to decision boundary: the further away the instance from the decision
 237 boundary formed by $h(\mathbf{x})$, the less error prone it is for label flips.
 - 238 (b) Proximity to uniform distribution of number of votes in an ensemble: the closer the
 239 vote distribution to 50/50, the higher the probability of label flip. KL divergence can
 240 be used to compute the desired proximity (inverted), for example.

241 **How to turn difficulties into probabilities, i.e., ϕ ?**

- 242 1. β -logistic function: $(1 + e^{-\beta z})^{-1}$ with $\beta > 0$.
- 243 2. Distribution functions: exponential PDF: $\frac{1}{\beta} e^{-z/\beta}$ with $\beta \geq 1$ (when the range of $z(\cdot)$ is
 244 \mathbb{R}_+); Gaussian CDF: $\frac{1}{2} + \frac{1}{2} \text{erf}\left(\frac{z-\mu}{\sigma\sqrt{2}}\right)$ with $\mu \in \mathbb{R}, \sigma > 0$.

247 We found empirically that *distance to decision boundary* for difficulty modeling and β -*logistic* function
 248 for turning them into probabilities work well (these are also used in the experiments in Section
 249 4). Finding the distance to the decision boundary is straightforward if h is linear, i.e., $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
 250 (it is $|h(\mathbf{x})| / \|\mathbf{w}\|_2$). For nonlinear models, however, this no longer applies. One can perform
 251 clever random perturbations on the sample until the decision under h changes, e.g., with DeepFool
 252 (Moosavi-Dezfooli et al., 2016) to approximate this distance. However, these approaches are time
 253 consuming given the distance needs calculating every iteration. Instead, we observe that if the net-
 254 work was a perfect classifier, then the embedded data in its last layer must be linearly separable.
 255 In fact, Li et al. (2019) showed that the last layer is solving an SVM problem in such a network.
 256 Building on this observation, we use $|h(\mathbf{x})|$ as a proxy for the distance of \mathbf{x} to the decision boundary
 257 of h , whether h is linear or not (note that this choice satisfies the conditions imposed on $\rho_{\mathbf{x}}$ earlier).
 258 As $h(\mathbf{x})$ already gets computed while learning, this approach is computationally highly efficient (a
 259 sample implementation in code is in Appendix A.10). We also observed that this proxy also works
 260 well for nonlinear machines that are not neural networks, e.g., LightGBM (Ke et al., 2017), as shown
 261 in Section 4.3.

262 On the theoretical side, we provide a mathematical ground for this design choice, due to Menon et al.
 263 (2018). They show that a “boundary-consistent noise” model, of which our distance-to-decision-
 264 boundary design is a special case, is not only consistent between noisy and clean domains for AU-
 265 ROC maximization (Proposition 1 in Menon et al. (2018)) but also lends itself to an explicit excess
 266 AUROC risk bound to quantify the said consistency (Theorem 2 in Menon et al. (2018)). Here, we
 267 restate the theorem by adapting to our notation for convenience:

268 **Theorem 1** (Menon et al. (2018), adapted). *Given $\rho_{\mathbf{x}} = \phi(d_h(\mathbf{x}))$ where $\phi : \mathbb{R}_0^+ \rightarrow [0, 1]$ is a
 269 monotonically decreasing function and $d_h(\mathbf{x})$ is the distance of \mathbf{x} to the decision boundary of h ,*

²The reason for this requirement will be clear in Section 3.2.4 (Lemma 1 in particular).

270 suppose that $\rho_{\max} := \max_{x \in \mathcal{X}} \rho_x < \frac{1}{2}$. Then, for any scorer h ,

$$272 \quad R_{\text{rank}}(h) - R_{\text{rank}}^* \leq \frac{\tilde{\pi} \cdot (1 - \tilde{\pi})}{\pi \cdot (1 - \pi)} \cdot \frac{1}{1 - 2 \cdot \rho_{\max}} \cdot (\tilde{R}_{\text{rank}}(h) - \tilde{R}_{\text{rank}}^*),$$

274 where $\tilde{\pi} = P(\tilde{Y} = +1)$, $\pi = P(Y = +1)$; $R_{\text{rank}}(h)$ denotes the true clean ranking risk of h , i.e.,
 275 $\mathbb{E}_{X|Y=+1, X'|Y'=-1} [\ell_{01}(h(X) - h(X'), 1)]$ and $\tilde{R}_{\text{rank}}(h)$ the true noisy ranking risk of h , defined
 276 similarly, and starred risks represent the Bayes optimal ones in the respective domains.

277 Theorem 1 lays down a theoretical ground for this particular choice of ρ_x along with its empirical
 278 support. We note that the assumption $\rho_{\max} < \frac{1}{2}$ is satisfiable trivially via, e.g., halving the output of
 279 the sigmoid or using an exponential PDF with a rate $< 1/2$.

282 3.2.3 INSIGHTS INTO THE MODIFIED LOSS FUNCTION

283 With our models for the unknown probabilities in place, we can analyze several limit cases, which
 284 give some insight in the behavior of the modified loss function:

- 286 • $\rho_x \rightarrow 0$, i.e., label flip seems highly unlikely: $\tilde{\ell}(\cdot, \tilde{y}) \rightarrow \ell(\cdot, \tilde{y})$, i.e, it suffers what it would
 287 normally suffer as the given label is (most likely) the true label.
- 288 • $\rho_x \in [0.5, 1]$, i.e., high probability for label flip: $\tilde{\ell}(\cdot, \tilde{y})$ is a (nontrivial) weighted combi-
 289 nation of $\ell(\cdot, \tilde{y})$ and $\ell(\cdot, -\tilde{y})$, which is reasonable as it is these “gray” areas that the machine
 290 should be careful about not leaning towards one side, which in turn is making it more robust
 291 for generalization.
- 292 • $\tilde{y} \cdot h(\mathbf{x}) \rightarrow \infty$, i.e., the machine is strongly agreeing with the given annotation: $\tilde{\ell}(\cdot, \tilde{y}) \rightarrow$
 293 $\ell(\cdot, \tilde{y}) = 0$, i.e., it suffers no loss as it would not normally.
- 294 • $\tilde{y} \cdot h(\mathbf{x}) \rightarrow -\infty$, i.e., the machine is strongly disagreeing with the given annotation:
 295 $\tilde{\ell}(\cdot, \tilde{y}) \rightarrow \ell(\cdot, -\tilde{y}) = 0$; this is a significantly different behavior from a label noise-
 296 intolerant loss function, e.g., ℓ_{\log} , which would make the network suffer the maximal loss.
 297 Here, though, we are facing an “obvious” mislabel. Instead of insisting on blindly agreeing
 298 with the annotation, the modified loss trusts the machine and moves on.

300 3.2.4 STABILIZING $\tilde{\ell}$

301 The division in the formulation of $\tilde{\ell}$ in equation 3 poses a danger – we have no mathematical control
 302 over the denominator and for some instances \mathbf{x} , it can become arbitrarily close to 0 leading to
 303 instability in practice. The same worry carries to the gradient, possibly exploding it. Therefore, we
 304 employ a regularization trick to address this: we approximate the division with repeated subtraction,
 305 and propose the *regularized* form of $\tilde{\ell}$, called $\tilde{\ell}^R$, as follows:

$$307 \quad \begin{aligned} \tilde{\ell}^R(h(\mathbf{x}), \tilde{y}) &:= \tilde{\ell}_{\text{numerator}} - \lambda \tilde{\ell}_{\text{denominator}} \\ 308 &= \sigma(\tilde{y} \cdot h(\mathbf{x}))(\sigma(-\tilde{y} \cdot h(\mathbf{x})) - \rho_x) \ell(h(\mathbf{x}), \tilde{y}) - \sigma(-\tilde{y} \cdot h(\mathbf{x})) \rho_x \ell(h(\mathbf{x}), -\tilde{y}) \\ 309 &\quad - \lambda(\sigma(\tilde{y} \cdot h(\mathbf{x})) \sigma(-\tilde{y} \cdot h(\mathbf{x})) - \rho_x), \end{aligned} \quad (5)$$

311 where $\lambda > 0$ is a hyperparameter. Even though the risk equivalence is hurt, the generalization ability
 312 with $\tilde{\ell}^R$ remains intact under sufficient conditions on λ , which we show next with a high probability
 313 generalization bound. To this end, we first establish the Lipschitz continuity of $\tilde{\ell}^R$.

314 **Lemma 1.** Let $\ell(h(\mathbf{x}), y)$ be an L -Lipschitz (w.r.t. $h(\mathbf{x})$) loss function with a finite upper and lower
 315 bound, i.e., there exists an ℓ_∞ such that $|\ell(\cdot, \cdot)| \leq \ell_\infty < \infty$. Assume $-\infty < \inf_{\mathbf{x} \in \mathcal{X}} \frac{\partial \rho_x}{\partial h(\mathbf{x})} =$
 316 $\alpha_{\min} \leq 0 \leq \alpha_{\max} := \sup_{\mathbf{x} \in \mathcal{X}} \frac{\partial \rho_x}{\partial h(\mathbf{x})} < \infty$. Then, $\tilde{\ell}^R(h(\mathbf{x}), \tilde{y})$ is Lipschitz w.r.t. $h(\mathbf{x})$ with the
 317 constant

$$318 \quad \tilde{L}_R := \left(1 + \frac{3}{2}(\alpha_{\max} - \alpha_{\min})\right) \ell_\infty + \frac{3}{2}L + \left(\frac{3}{8} + \alpha_{\max} - \alpha_{\min}\right) \lambda.$$

321 We note that the assumption $\alpha_{\min} \leq 0 \leq \alpha_{\max}$ is reasonable as $\alpha_{\min} \alpha_{\max} > 0$ would imply ρ_x as a
 322 monotonic function of $h(\mathbf{x})$, which is not realistic since the confidence (and the distance of \mathbf{x} to the
 323 decision boundary) of the machine is at its maximum when both $h(\mathbf{x}) \rightarrow +\infty$ and $h(\mathbf{x}) \rightarrow -\infty$.

We address the boundedness imposition on ℓ (and $\tilde{\ell}$) after the next proposition.

324 **Proposition 2.** Given a noisy training sample $S = \{(\mathbf{x}_i, \hat{y}_i)\}$, a base loss function ℓ , any hypothesis
 325 $\mathcal{H} \ni h : \mathcal{X} \rightarrow \mathbb{R}$, let the vectors $\tilde{\mathbf{n}}_S$ and $\tilde{\mathbf{d}}_S$ denote the evaluations of the numerator and the
 326 denominator of $\tilde{\ell}$ over S , respectively. Now define $\Delta_S := \langle \tilde{\mathbf{n}}_S, \tilde{\mathbf{d}}_S \rangle^2 - \|\tilde{\mathbf{n}}_S\|_2^2 \|\tilde{\mathbf{d}}_S\|_2^2$ and assume
 327 $|\tilde{\ell}(\cdot, \cdot)| \leq \tilde{\ell}_\infty < \infty$. For $\lambda > 0$, provided that $\lambda \tilde{\mathbf{d}}_S[i] \leq \tilde{\mathbf{n}}_S[i] \cdot (1 - 1/\tilde{\mathbf{d}}_S[i]) \forall i \in [1, |S|]$,
 328 $|\lambda - \frac{\langle \tilde{\mathbf{n}}_S, \tilde{\mathbf{d}}_S \rangle}{\|\tilde{\mathbf{d}}_S\|_2^2}| \leq \frac{\sqrt{\Delta_S + 4|S|\|\tilde{\mathbf{d}}_S\|_2^2}}{\|\tilde{\mathbf{d}}_S\|_2^2}$ and $2|S|\tilde{\ell}_\infty < \frac{-\Delta_S}{\|\tilde{\mathbf{d}}_S\|_2^2} < 4|S|$, the following inequality holds with
 329 probability at least $1 - \delta$ for any $\delta \in (0, 1)$:
 330

$$R_\ell(h) \leq \tilde{R}_{\tilde{\ell}^R}(h) + 2\tilde{L}_R \tilde{\mathcal{R}}_S(\mathcal{H}) + 3\tilde{\ell}_\infty \sqrt{\frac{\log 2/\delta}{2|S|}}, \quad (6)$$

335 where \tilde{L}_R is given by Lemma 1 and $\tilde{\mathcal{R}}_S(\mathcal{H})$ is the empirical Rademacher complexity of \mathcal{H} over S .
 336

337 Although the practical utility of this bound is limited, it serves as a theoretical sanity check for
 338 replacing the numerically unstable modified loss in equation 4 with the more stable regularized loss
 339 $\tilde{\ell}^R$. Indeed, Proposition 2 implies there exist settings for which there is a learning guarantee through
 340 empirical noisy risk minimization w.r.t. the regularized loss $\tilde{\ell}^R$ towards true clean risk minimization
 341 w.r.t. ℓ , i.e., as if the training was performed using the clean labels. If the base loss ℓ is classification
 342 calibrated (Bartlett et al., 2006), e.g., ℓ_{\log} , the path in 2 is completed to reach $R(h)$. We note that
 343 while no common loss function is bounded (e.g., logistic, hinge, squared), it is not uncommon to clip
 344 the losses (see, e.g., Rooyen et al. (2015); Wang et al. (2019)), which does not necessarily hinder
 345 the classification calibratedness (Rooyen et al., 2015). Then, if the base loss ℓ is upper-bounded (say
 346 by ℓ_∞ by thresholding and then possibly downscaling), then $\tilde{\ell}$ can be upper-bounded as well; an
 347 example is given in Appendix A.6.

4 EXPERIMENTS

351 Here, we first validate the proposed theory using synthetic noise over datasets from the image, audio
 352 and tabular domains using neural networks and decision tree-based models. We then experiment
 353 with a real-world dataset, i.e., a naturally noisy one. We note that we also perform a sanity check
 354 study to show the effectiveness of the loss correction scheme in Appendix A.2.

4.1 SETTINGS

355 We use the following datasets: on the synthetic noise side, CIFAR-10 (Krizhevsky, 2009) for images;
 356 Speakers (Rimi, 2023) for audio signals (to feature a time series dataset); and Adult (Becker &
 357 Kohavi, 1996), Diabetes (Bennett et al., 1971), Heart (Janosi et al., 1989), Splice (Towell et al.,
 358 1991) and Segmentation (Brodley, 1990) for tabular (to use a machine other than a neural network).
 359 For a naturally noisy dataset, we use Clothing1M (Xiao et al., 2015). As our method is aimed at
 360 binary classification, we split the multiclass-aimed datasets into arbitrary 2-class sub-datasets. The
 361 ratio of the positive class in sub-datasets is provided in Appendix A.7; most of the datasets are
 362 balanced. We use six-layer ReLU CNNs for CIFAR-10 and Clothing1M, and a three-layer ReLU
 363 MLP for the other datasets. For CIFAR-10 and Clothing1M, the provided training-test splits are used
 364 (no clean training data is used for the latter); for others, 80%-20% split is done, where only in the test
 365 set are the clean labels used. In all datasets, 10% of the (noisy) training split is spared for validation.
 366 In all the experiments, the base loss function to correct is the logistic loss ℓ_{\log} and the noise rates refer
 367 to the fraction of labels that are actually flipped. Details of the datasets, networks, preprocessing,
 368 optimization and hyperparameter tuning can be found in Appendix A.8; a hyperparameter sensitivity
 369 study of our method is presented in Appendix A.3.
 370

4.2 METHODS FROM THE LITERATURE

371 We compare our model with methods of different characteristics from the literature, on both syn-
 372 synthetic and real-world experiments. While the details of these methods are given in Appendix A.9,
 373 we list their names here: *BCN* (Du & Cai, 2015); *UB* (Natarajan et al., 2013); *DMI* (Xu et al., 2019);
 374 *Peer* (Liu & Guo, 2020); *APL* (Ma et al., 2020); *PTD* (Xia et al., 2020); *BLTM* (Yang et al., 2022);
 375 *Coteaching+* (Yu et al., 2019); *Forward & Backward* (Patrini et al., 2017); *GCE* (Zhang & Sabuncu,
 376 377

Method	CIFAR-10									
	0v1		2v3		4v5		6v7		8v9	
	28%	44%	28%	44%	28%	44%	28%	44%	28%	44%
Normal	76.12	64.23	53.42	50.00	61.58	50.00	64.50	52.73	68.38	57.00
BCN	56.82	50.00	56.43	51.33	55.92	52.58	70.28	55.78	57.98	52.73
UB	76.72	62.62	66.93	55.23	67.15	62.63	76.52	62.33	73.72	61.43
DMI	68.43	61.87	56.05	55.87	60.73	60.00	69.52	69.97	65.72	65.82
Peer	66.18	69.35	61.88	57.90	57.22	59.02	66.45	63.42	65.97	67.22
APL	79.82	70.47	70.37	54.48	75.02	64.77	82.13	70.42	78.85	67.53
PTD	76.88	56.85	66.98	55.43	70.17	57.55	78.07	62.90	76.65	68.98
BLTM	77.13	33.00	55.00	33.00	67.90	21.72	78.58	19.67	70.28	21.28
GCE	78.63	54.42	54.65	50.00	66.40	50.00	78.45	50.00	75.77	53.23
Coteaching+	80.22	67.23	64.58	55.00	73.57	65.17	82.43	65.53	80.57	65.40
Forward	73.00	53.40	63.85	50.00	71.90	50.00	80.77	50.98	81.00	50.00
PLC	74.87	66.48	54.73	52.97	68.88	65.52	70.75	68.78	69.18	63.98
NDX	83.43	77.33	72.38	56.45	76.77	66.70	83.27	70.23	82.98	64.78

Table 1: Mean test accuracy (%) comparisons on CIFAR-10’s five different binary sub-datasets with varying noise levels over three trials. Scores within 2% of the maximum (relative) are highlighted in bold.

Method	Speakers									
	0v1		2v3		4v5		6v7		8v9	
	28%	44%	28%	44%	28%	44%	28%	44%	28%	44%
Normal	69.29	56.68	62.94	55.13	69.49	54.17	58.47	51.85	60.55	52.83
BCN	81.40	62.30	62.70	44.41	45.22	45.22	67.90	58.25	52.25	52.25
UB	69.54	60.80	64.92	56.64	57.48	57.35	67.34	56.79	60.32	55.71
DMI	50.31	61.55	58.39	53.26	51.59	51.59	61.50	63.08	53.75	52.71
Peer	74.16	72.16	63.52	69.70	58.33	62.38	71.16	69.25	58.02	67.01
APL	82.65	62.55	78.09	56.99	69.98	60.05	79.69	58.92	69.78	57.55
PTD	83.65	67.42	79.14	51.63	60.91	50.00	76.99	60.72	73.01	59.63
BLTM	79.78	63.67	77.04	55.94	69.85	51.35	72.73	53.42	56.63	57.21
GCE	77.40	59.05	75.06	53.38	70.34	55.51	78.23	53.87	68.97	56.40
Coteaching+	79.03	67.04	72.14	49.65	68.26	60.78	77.55	56.12	65.97	62.86
Backward	77.15	60.67	71.10	52.10	66.54	55.02	71.16	52.30	66.67	54.90
PLC	75.03	64.29	75.29	58.16	68.50	61.52	73.85	54.10	61.48	56.52
NDX	83.77	72.16	80.30	64.10	74.51	66.91	79.35	69.70	72.32	65.40

Table 2: Mean test accuracy (%) comparisons on the Speakers dataset’s five different binary sub-datasets with varying noise levels over three trials. Scores within 2% of the maximum (relative) are highlighted in bold.

2018) and *PLC* (Zhang et al., 2021). We also compare against the *Normal* model trained with the logistic loss, which does nothing special for label noise.

4.3 SYNTHETIC LABEL NOISE EXPERIMENTS

We artificially inject label noise to the training sets of CIFAR-10, Speakers and Tabular datasets to simulate the problem. The injection is done by following the procedure in Xia et al. (2020) in an instance-dependent manner (that is *not* matched with the distance-to-decision boundary model we are using for ρ_x). We experiment with two noise rates: 28% and 44%, which are representatives of moderate and high noise rates for binary classification, respectively. Three independent trials per noise rate are made such that possibly different labels are flipped in each trial.

Image Results. We form 5 binary sub-datasets of CIFAR-10. Results in Table 1 suggest that not only the test set accuracy of NDX is overall better or comparable to other methods, it is also more “stable” – the performance does not sweep much across datasets as much as other models. It is also featuring in high noise regime – while some models go astray under 44% noise, NDX manages to learn from the signal present. The rationale for achieving these can be attributed to the promised risk equivalence accompanying better generalization provided that the noise model is fine. While knowing the exact flip rates is practically impossible, the flexibility in modeling it via the instance-only dependent model opens doors for good approximations, combined with the risk equalizer loss correction.

Audio Results. Over 5 binary sub-datasets of the Speakers dataset, Table 2 shows that NDX is always a top-2 performing method regardless of the sub-dataset or the noise level, which speaks for its robustness. Furthermore, since the method has no dataset-specific assumptions (e.g., image-based), it is effectively applicable to a dataset of audio signals.

Method	Tabular Datasets											
	Adult		Diabetes		Heart		Segmentation		Splice			
	28%	44%	28%	44%	28%	44%	28%	44%	28%	44%	28%	44%
Normal	82.72	66.06	64.94	65.58	51.37	49.18	57.94	65.01	52.02	46.19		
BCN	83.86	80.05	38.96	38.83	63.39	58.47	81.89	68.18	81.84	67.45		
UB	84.20	80.89	71.10	65.97	73.77	60.66	88.53	74.39	82.41	69.03		
DMI	76.38	75.64	65.58	68.40	59.02	49.73	66.88	71.50	70.24	67.72		
Peer	78.91	79.89	68.18	68.83	59.56	59.02	85.50	76.26	73.28	72.07		
APL	83.64	80.20	66.88	68.61	81.42	51.91	90.04	74.82	84.04	67.14		
PTD	78.00	76.39	66.45	67.75	59.56	54.10	78.07	47.11	82.31	55.33		
BLTM	84.05	69.57	64.94	64.94	49.18	49.18	65.01	59.60	55.85	45.83		
GCE	84.38	76.38	64.94	64.94	50.82	50.82	57.79	57.58	54.17	54.17		
Coteaching+	83.65	78.22	71.00	67.75	68.85	46.99	87.81	66.23	78.79	62.36		
Forward	83.17	78.39	65.37	54.98	52.46	52.46	74.39	57.79	83.62	55.22		
PLC	76.38	77.85	64.94	66.23	74.86	50.82	72.87	70.35	78.79	68.66		
NDX (NN)	84.59	80.33	73.16	69.48	81.97	61.20	91.20	71.28	82.73	67.30		
NDX (GBM)	82.63	82.23	73.34	68.83	77.05	73.77	85.06	72.73	88.35	78.90		

Table 3: Mean test accuracy (%) comparisons on five different tabular datasets with varying noise levels over three trials. Scores within 2% of the maximum (relative) are highlighted in bold.

Method	Clothing1M									
	6v8	6v7	6v9	1v6	2v6	0v2	2v9	2v11	1v7	0v11
Normal	62.79	74.85	69.03	73.53	67.10	65.67	68.42	71.97	72.88	71.46
BCN	63.24	73.10	61.56	69.60	60.46	61.59	55.42	69.50	70.20	67.21
UB	65.65	70.29	64.90	65.33	58.06	63.56	57.74	57.71	71.06	62.77
DMI	64.63	67.95	64.44	66.33	58.06	61.59	57.89	59.27	68.70	62.31
Peer	65.21	71.11	67.39	70.94	63.69	64.87	65.39	69.91	72.88	68.52
APL	76.06	78.95	76.73	79.73	80.37	69.97	77.35	79.23	79.42	77.34
PTD	66.35	78.95	68.40	77.39	71.89	58.82	62.60	77.49	75.35	72.24
BLTM	64.57	73.80	59.14	67.50	53.27	67.06	58.13	56.55	72.78	65.97
GCE	70.54	75.20	71.13	71.78	72.63	67.64	72.49	72.46	75.78	75.31
Coteaching+	75.17	78.36	66.54	82.83	78.25	67.78	75.12	77.82	79.53	77.20
Backward	69.59	80.70	77.43	83.08	80.83	65.96	74.80	76.83	78.56	76.88
PLC	66.22	74.50	64.75	70.69	61.29	65.89	67.07	75.52	73.95	68.13
NDX	78.10	79.88	78.37	81.57	80.92	72.96	78.71	79.80	78.78	78.25

Table 4: Test accuracy (%) comparisons on Clothing1M’s ten different binary sub-datasets. Scores within 2% of the maximum (relative) are highlighted in bold.

Tabular Results. Since a loss correction approach is generally machine-agnostic by design, here we experiment with several tabular datasets with LightGBM (Ke et al., 2017), a decision tree-based gradient-boosting machine, being the underlying learner h for our method. Since $\hat{\ell}_{\log}^R$ with $\rho_{\mathbf{x}} = \sigma(-\beta|h(\mathbf{x})|)$ is twice-differentiable w.r.t. $h(\mathbf{x})$, the gradient and Hessian values are available to customize the loss function used for LightGBM. We still use a neural network for the other methods since some of them are not compatible with machines other than neural networks (e.g., *PTD*, *Coteaching+*), and others only exposed implementations with neural networks (e.g., *GCE*, *PLC*).

The results are shown in Table 3, where *NDX (NN)* and *NDX (LGBM)* are our models with the learning machine being a neural network and a LightGBM model, respectively. We observe that NDX models perform quite well compared to the other methods across datasets and noise levels. GBM models are known for their effectiveness in tabular datasets (Shwartz-Ziv & Armon, 2022); here we also see it in action: in the *Heart* dataset with 44% label noise, for example, LightGBM performed more than 10% better than the runner-up in absolute terms. Overall, we were able to use an entirely different learning machine, a decision tree-based one, instead of a neural network thanks to the machine-agnostic nature of the loss correction.

4.4 REAL-WORLD LABEL NOISE EXPERIMENT

Here we experiment with a naturally noisy dataset, Clothing1M (Xiao et al., 2015). We use the $\sim 1,000,000$ noisy training pairs for training, and $\sim 10,000$ clean testing pairs for testing the models. Note that the dataset also comes with clean training and validation splits but we discard them for all models. We form 10 binary sub-datasets of Clothing1M, e.g., “Wind-breaker versus Down coat”. Results in Table 4 suggest that our model has also competitive performance in a real-world scenario by achieving comparable or mostly better testing accuracy metrics in comparison to the baseline models.

486 5 CONCLUSION
487

488 We introduced a risk-equivalence based instance-aware loss correction approach to address label
489 noise in supervised binary classification settings with the underutilized instance-*only* dependent
490 noise model. We showed that when the base loss ℓ is classification calibrated, the bridge from
491 empirical noisy risk minimization to true clean risk minimization is complete, i.e., training a
492 machine with the new loss $\tilde{\ell}$ on the noisy labels promises a generalization accuracy as if it was trained
493 on the clean labels. The instance-only dependent modeling of the transition rates is at the core of the
494 correction scheme, which is highly flexible in how it is approximated, for which we offered several
495 computationally efficient ways. The performance of the corrected loss is empirically validated over
496 a variety of datasets of different domains as well as different underlying machines. A natural step
497 forward is the multi-class/label generalization of the instance-only dependent noise model.

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Dana Angluin and Philip Laird. Learning from noisy examples. *Machine Learning*, 2(4):343–370,
543 April 1988.

544 Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
545 Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon
546 Lacoste-Julien. A closer look at memorization in deep networks. In *International Conference on
547 Machine Learning*, 2017.

548 HeeSun Bae, Seungjae Shin, Byeonghu Na, and Il chul Moon. Dirichlet-based per-sample weighting
549 by transition matrix for noisy label learning. In *International Conference on Learning Represen-
550 tations*, 2024.

551 Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe and. Convexity, classification, and risk
552 bounds. *Journal of the American Statistical Association*, 101(473):138–156, 2006.

553 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996.

554 Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to under-
555 stand kernel learning. In *International Conference on Machine Learning*, 2018.

556 Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of approximately maximizing
557 agreements. *Journal of Computer and System Sciences*, 66(3):496–514, May 2003.

558 Peter H. Bennett, Thomas A. Burch, and Max Miller. Diabetes mellitus in american (pima) indians.
559 *The Lancet*, 1971.

560 Carla Brodley. Image Segmentation. UCI Machine Learning Repository, 1990.

561 Tom Bylander. Learning noisy linear threshold functions. Technical report, The University of Texas
562 at San Antonio, 1998.

563 Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei Zhao, and Pheng-Ann Heng. Beyond class-
564 conditional assumption: A primary attempt to combat instance-dependent label noise. In *Pro-
565 ceedings of the AAAI Conference on Artificial Intelligence*, 2021.

566 Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning with instance-
567 dependent label noise: A sample sieve approach. In *International Conference on Learning Rep-
568 resentations*, 2021.

569 Jun Du and Zhihua Cai. Modelling class noise with symmetric and asymmetric distributions. In
570 *Proceedings of the AAAI Conference on Artificial Intelligence*, 2015.

571 Aritra Ghosh, Naresh Manwani, and P.S. Sastry. Making risk minimization tolerant to label noise.
572 *Neurocomputing*, 160:93–107, 2015.

573 Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
574 layer. In *International Conference on Learning Representations*, 2017.

575 Andi Han, Wei Huang, Zhanpeng Zhou, Gang Niu, Wuyang Chen, Junchi Yan, Akiko Takeda, and
576 Taiji Suzuki. On the role of label noise in the feature learning process. In *International Conference
577 on Machine Learning*, 2025.

578 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi
579 Sugiyama. Co-teaching: robust training of deep neural networks with extremely noisy labels. In
580 *Advances in Neural Information Processing Systems*, 2018.

581 Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano. Heart Disease. UCI
582 Machine Learning Repository, 1989.

583 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
584 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In *Advances in Neural
585 Information Processing Systems*, 2017.

594 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 595 of Toronto, 2009.

596

597 Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area
 598 v2. In *Advances in Neural Information Processing Systems*, 2007.

599

600 Jiahui Li, Tai-Wei Chang, Kun Kuang, Ximing Li, Long Chen, and Jun Zhou. Learning causal
 601 transition matrix for instance-dependent label noise. *Proceedings of the AAAI Conference on*

602 *Artificial Intelligence*, 2025.

603 Junnan Li, Richard Socher, and Steven C. H. Hoi. Dividemix: Learning with noisy labels as semi-
 604 supervised learning. In *International Conference on Learning Representations*, 2020.

605

606 Yu Li, Lizhong Ding, and Xin Gao. On the decision boundary of deep neural networks. *arXiv*
 607 preprint *arXiv:1808.05385*, 2019.

608

609 Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. In
 610 *IEEE Transactions on pattern analysis and machine intelligence*, 2016.

611

612 Yang Liu and Hongyi Guo. Peer loss functions: learning from noisy labels without knowing noise
 613 rates. In *International Conference on Machine Learning*, 2020.

614

615 Stuart Lloyd. Least squares quantization in PCM. *IEEE transactions on information theory*, 1982.

616

617 Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano Sarah Erfani, and James Bailey. Nor-
 618 malized loss functions for deep learning with noisy labels. In *International Conference on Ma-*

619 *chine Learning*, 2020.

620

621 Naresh Manwani and P. S. Sastry. Noise tolerance under risk minimization. *IEEE Transactions on*
 622 *Cybernetics*, 43(3):1146–1151, 2013.

623

624 Aditya Krishna Menon, Brendan Rooyen, and Nagarajan Natarajan. Learning from binary labels
 625 with instance-dependent noise. *Machine Learning*, 107(8–10):1561–1595, September 2018.

626

627 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*.
 628 The MIT Press, 2012.

629

630 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
 631 accurate method to fool deep neural networks. In *IEEE Conference on Computer Vision and*

632 *Pattern Recognition*, 2016.

633

634 Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
 635 noisy labels. In *Advances in Neural Information Processing Systems*, 2013.

636

637 Tan T. Nguyen and Scott Sanner. Algorithms for direct 0-1 loss optimization in binary classification.
 638 In *International Conference on Machine Learning*, 2013.

639

640 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 641 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 642 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 643 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
 644 deep learning library. In *Advances in Neural Information Processing Systems*, 2019.

645

646 Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
 647 deep neural networks robust to label noise: A loss correction approach. In *IEEE Conference on*

648 *Computer Vision and Pattern Recognition*, 2017.

649

650 Aklima Akter Rimi. Audio Classifier Dataset. Kaggle, 2023.

651

652 Brendan van Rooyen, Aditya Krishna Menon, and Robert C. Williamson. Learning with symmetric
 653 label noise: the importance of being unhinged. In *Advances in Neural Information Processing*

654 *Systems*, 2015.

648 P. S. Sastry, G. D. Nagendra, and Naresh Manwani. A team of continuous-action learning automata
 649 for noise-tolerant learning of half-spaces. *IEEE Transactions on Systems, Man, and Cybernetics,*
 650 *Part B (Cybernetics)*, 40(1):19–28, February 2010.

651

652 Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. *Information*
 653 *Fusion*, 2022.

654

655 G. Towell, M. Noordewier, and J. Shavlik. Molecular Biology (Splice-junction Gene Sequences).
 656 UCI Machine Learning Repository, 1991.

657

658 Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
 659 entropy for robust learning with noisy labels. In *IEEE International Conference on Computer*
 660 *Vision*, 2019.

661

662 Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu,
 663 Dacheng Tao, and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent
 664 label noise. In *Advances in Neural Information Processing Systems*, 2020.

665

666 Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
 667 labeled data for image classification. In *2015 IEEE Conference on Computer Vision and Pattern*
 668 *Recognition (CVPR)*, 2015.

669

670 Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L_dmi: a novel information-theoretic loss
 671 function for training deep nets robust to label noise. In *Advances in Neural Information Process-*
 672 *ing Systems*, 2019.

673

674 Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and Tongliang Liu. Estimating
 675 instance-dependent Bayes-label transition matrix using a deep neural network. In *International*
 676 *Conference on Machine Learning*, 2022.

677

678 Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, and Kun Zhang. Instance-dependent
 679 label-noise learning under a structural causal model. In *Advances in Neural Information Process-*
 680 *ing Systems*, 2021.

681

682 Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
 683 agreement help generalization against label corruption? In *International Conference on Machine*
 684 *Learning*, 2019.

685

686 Yikai Zhang, Songzhu Zheng, Pengxiang Wu, Mayank Goswami, and Chao Chen. Learning with
 687 feature-dependent label noise: A progressive approach. In *International Conference on Learning*
 688 *Representations*, 2021.

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
 703

704 **A.1 PROOFS**
 705

706 *Proof of Proposition 1.* We start from the desired risk equivalence:

707 $\mathbb{E}_{X, \tilde{Y}}[\tilde{\ell}(\cdot, \tilde{Y})] = \mathbb{E}_{X, Y}[\ell(\cdot, Y)] \quad (1)$
 708

709 $\mathbb{E}_X[\mathbb{E}_{\tilde{Y}|X}[\tilde{\ell}(\cdot, \tilde{Y}) | X]] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\ell(\cdot, Y) | X]] \quad (2)$
 710

711 $\int_{\mathcal{X}} \mathbb{E}_{\tilde{Y}|X}[\tilde{\ell}(\cdot, \tilde{Y}) | X = \mathbf{x}] d\mathbf{p}_X(\mathbf{x}) = \int_{\mathcal{X}} \mathbb{E}_{Y|X}[\ell(\cdot, Y) | X = \mathbf{x}] d\mathbf{p}_X(\mathbf{x}). \quad (3)$
 712

713 We now expand the integrands and require them to be equal for all $\mathbf{x} \in \mathcal{X}$, which is a sufficient
 714 condition for equation 3:

715 $\mathbb{P}(\tilde{Y} = +1 | X = \mathbf{x}) \tilde{\ell}(\cdot, +1) + \mathbb{P}(\tilde{Y} = -1 | X = \mathbf{x}) \tilde{\ell}(\cdot, -1)$
 716 $= \mathbb{P}(Y = +1 | X = \mathbf{x}) \ell(\cdot, +1) + \mathbb{P}(Y = -1 | X = \mathbf{x}) \ell(\cdot, -1). \quad (4)$
 717

718 To make use of $\rho_{\mathbf{x}} := \mathbb{P}(\tilde{Y} \neq Y | X = \mathbf{x})$, we employ the following trick based on a (trivial)
 719 equality: $\mathbb{P}(\tilde{Y} = +1 | \mathbf{x}) = (\mathbb{P}(\tilde{Y} = +1 | \mathbf{x}) - \rho_{\mathbf{x}}) + \rho_{\mathbf{x}}$, and similar for the $\tilde{Y} = -1$ case.
 720 Substituting these into equation 4, we get

721 $(\mathbb{P}(\tilde{Y} = +1 | X = \mathbf{x}) - \rho_{\mathbf{x}}) \tilde{\ell}(\cdot, +1) + \rho_{\mathbf{x}} \tilde{\ell}(\cdot, +1)$
 722 $+ (\mathbb{P}(\tilde{Y} = -1 | X = \mathbf{x}) - \rho_{\mathbf{x}}) \tilde{\ell}(\cdot, -1) + \rho_{\mathbf{x}} \tilde{\ell}(\cdot, -1)$
 723 $= \mathbb{P}(Y = +1 | X = \mathbf{x}) \ell(\cdot, +1) + \mathbb{P}(Y = -1 | X = \mathbf{x}) \ell(\cdot, -1). \quad (5)$
 724

725 We now split equation 5 into two parts and form the following linear system, which is a sufficient
 726 condition for equation 5:

727 $(\mathbb{P}(\tilde{Y} = +1 | X = \mathbf{x}) - \rho_{\mathbf{x}}) \tilde{\ell}(\cdot, +1) + \rho_{\mathbf{x}} \tilde{\ell}(\cdot, -1) = \mathbb{P}(Y = +1 | X = \mathbf{x}) \ell(\cdot, +1)$
 728 $\rho_{\mathbf{x}} \tilde{\ell}(\cdot, +1) + (\mathbb{P}(\tilde{Y} = -1 | X = \mathbf{x}) - \rho_{\mathbf{x}}) \tilde{\ell}(\cdot, -1) = \mathbb{P}(Y = -1 | X = \mathbf{x}) \ell(\cdot, -1). \quad (6)$
 729

730 Assuming a unique solution, equation 6 yields

731 $\tilde{\ell}(\cdot, +1) = \frac{\mathbb{P}(Y = +1 | \mathbf{x}) (\mathbb{P}(\tilde{Y} = -1 | \mathbf{x}) - \rho_{\mathbf{x}}) \ell(\cdot, +1) - \mathbb{P}(Y = -1 | \mathbf{x}) \rho_{\mathbf{x}} \ell(\cdot, -1)}{\mathbb{P}(\tilde{Y} = +1 | \mathbf{x}) \mathbb{P}(\tilde{Y} = -1 | \mathbf{x}) - \rho_{\mathbf{x}}}$
 732 $\tilde{\ell}(\cdot, -1) = \frac{\mathbb{P}(Y = -1 | \mathbf{x}) (\mathbb{P}(\tilde{Y} = +1 | \mathbf{x}) - \rho_{\mathbf{x}}) \ell(\cdot, -1) - \mathbb{P}(Y = +1 | \mathbf{x}) \rho_{\mathbf{x}} \ell(\cdot, +1)}{\mathbb{P}(\tilde{Y} = +1 | \mathbf{x}) \mathbb{P}(\tilde{Y} = -1 | \mathbf{x}) - \rho_{\mathbf{x}}}. \quad (7)$
 733

734 We unite the individual loss terms in equation 7 to arrive at

735 $\tilde{\ell}(\cdot, \tilde{y}) = \frac{\mathbb{P}(Y = \tilde{y} | \mathbf{x}) (\mathbb{P}(\tilde{Y} = -\tilde{y} | \mathbf{x}) - \rho_{\mathbf{x}}) \ell(\cdot, \tilde{y}) - \mathbb{P}(Y = -\tilde{y} | \mathbf{x}) \rho_{\mathbf{x}} \ell(\cdot, -\tilde{y})}{\mathbb{P}(\tilde{Y} = \tilde{y} | \mathbf{x}) \mathbb{P}(\tilde{Y} = -\tilde{y} | \mathbf{x}) - \rho_{\mathbf{x}}}. \quad (8)$
 736

737 \square

738 We make the following remarks about the proof.

739 *Why subtract $\rho_{\mathbf{x}}$ in the trick and not anything else?* In a CCN label noise model for a binary
 740 classification, we would have the two noise rates as $\rho_+ := \mathbb{P}(\tilde{Y} = -1 | Y = +1)$ and $\rho_- :=$
 741 $\mathbb{P}(\tilde{Y} = +1 | Y = -1)$. In Natarajan et al. (2013), the following relationship was then proposed to
 742 construct a modified loss for the CCN setting:

743 $(1 - \rho_+) \tilde{\ell}(\cdot, +1) + \rho_+ \tilde{\ell}(\cdot, -1) = \ell(\cdot, +1)$
 744 $\rho_- \tilde{\ell}(\cdot, +1) + (1 - \rho_-) \tilde{\ell}(\cdot, -1) = \ell(\cdot, -1). \quad (9)$
 745

746 We argue that equation 6 forms a natural extension of equation 9 to the IDN setting, including
 747 some additional corrections to ensure risk equivalence in equation 1. First, on the RHS we add
 748 probabilities on Y to take into account the expectation on Y in the RHS of equation 1. Similarly,
 749

on the LHS, the non-flip rates (set to 1 in equation 9) should take the uncertainty on \tilde{Y} into account according to the LHS of equation 1. Finally, the single probability of flip $\rho_{\mathbf{x}}$ is in lieu of two different ones in the CCN. The resulting system hosts a weighted combination of $\tilde{\ell}$ for a “robust” loss correction in the label noise sense, i.e., the weights are the label flip and non-flip probabilities in each of the ± 1 cases.

What if there is no solution to the linear system? That happens if and only if $\mathbb{P}(\tilde{Y} = \tilde{y} | \mathbf{x})\mathbb{P}(\tilde{Y} = -\tilde{y} | \mathbf{x}) = \rho_{\mathbf{x}}$ for a given \mathbf{x}, \tilde{y} pair. Mathematically, there is nothing preventing this (though, certain measures can be taken in generating $\rho_{\mathbf{x}}$ to satisfy, e.g., $\mathbb{P}(\tilde{Y} = \tilde{y} | \mathbf{x})\mathbb{P}(\tilde{Y} = -\tilde{y} | \mathbf{x}) > \rho_{\mathbf{x}}$ for any \mathbf{x}, \tilde{y}). However, since the existence of the division leads to numeric issues to begin with (e.g., being close to 0 for some instances \mathbf{x}), we go for the regularized version of the loss function and transfer the worry to the regularization coefficient’s selection, which is an easier issue to handle.

Proof of Lemma 1. Since $\tilde{\ell}^R$ is differentiable w.r.t. $h(\mathbf{x})$, it suffices to seek an upper bound to (the absolute value of) its derivative w.r.t. $h(\mathbf{x})$. We consider four cases of $\{\tilde{y} = \pm 1\} \times \{h(\mathbf{x}) \leq 0\}$ and take the maximum of the bounds found therein.

$$\begin{aligned} \left| \frac{\partial \tilde{\ell}^R(h(\mathbf{x}), \tilde{y})}{\partial h(\mathbf{x})} \right| &= \left| \sigma(h(\mathbf{x}))\tilde{y}\sigma(-h(\mathbf{x}))(\sigma(-\tilde{y}h(\mathbf{x})) - \rho_{\mathbf{x}})\ell(h(\mathbf{x}), \tilde{y}) \right. \\ &\quad + \sigma(\tilde{y}h(\mathbf{x})) \left((\sigma(h(\mathbf{x}))(-\tilde{y}\sigma(-h(\mathbf{x}))) - \frac{\partial \rho_{\mathbf{x}}}{\partial h(\mathbf{x})})\ell(h(\mathbf{x}), \tilde{y}) + (\tilde{y}\sigma(-h(\mathbf{x})) - \rho_{\mathbf{x}})\frac{\partial \ell(h(\mathbf{x}), \tilde{y})}{\partial h(\mathbf{x})} \right) \\ &\quad \left. - \left(\sigma(h(\mathbf{x}))(-\tilde{y}\sigma(-h(\mathbf{x})))\rho_{\mathbf{x}}\ell(h(\mathbf{x}), -\tilde{y}) \right. \right. \\ &\quad \left. \left. + (1 - \sigma(-\tilde{y}h(\mathbf{x})))\left(\frac{\partial \rho_{\mathbf{x}}}{\partial h(\mathbf{x})}\ell(h(\mathbf{x}), -\tilde{y}) + \rho_{\mathbf{x}}\frac{\partial \ell(h(\mathbf{x}), -\tilde{y})}{\partial h(\mathbf{x})} \right) \right) \right. \\ &\quad \left. - \lambda \left(\sigma(h(\mathbf{x}))(1 - \sigma(h(\mathbf{x})))^2 + \sigma(h(\mathbf{x}))^2(\sigma(h(\mathbf{x})) - \rho_{\mathbf{x}}) - \frac{\partial \rho_{\mathbf{x}}}{\partial h(\mathbf{x})} \right) \right|. \end{aligned} \tag{1}$$

Case 1: $\tilde{y} = +1, h(\mathbf{x}) > 0$.

$$\begin{aligned} \left| \frac{\partial \tilde{\ell}^R(h(\mathbf{x}), +1)}{\partial h(\mathbf{x})} \right| &\leq \max \left\{ \left(\frac{3}{4} - \alpha_{\min} \right) \ell_{\infty} + \frac{1}{2}L + \left(\frac{3}{8} + \alpha_{\max} \right) \lambda, \right. \\ &\quad \left. \left(\frac{1}{2} + \frac{3}{2}\alpha_{\max} \right) \ell_{\infty} + \frac{3}{2}L + \left(\frac{1}{8} - \alpha_{\min} \right) \lambda \right\}. \end{aligned} \tag{2}$$

Case 2: $\tilde{y} = -1, h(\mathbf{x}) > 0$.

$$\begin{aligned} \left| \frac{\partial \tilde{\ell}^R(h(\mathbf{x}), -1)}{\partial h(\mathbf{x})} \right| &\leq \max \left\{ \left(\frac{1}{4} - \frac{3}{2}\alpha_{\min} \right) \ell_{\infty} + \frac{1}{2}L + \left(\frac{3}{8} + \alpha_{\max} \right) \lambda, \right. \\ &\quad \left. \left(1 + \alpha_{\max} \right) \ell_{\infty} + L + \left(\frac{1}{4} - \alpha_{\min} \right) \lambda \right\}. \end{aligned} \tag{3}$$

Case 3: $\tilde{y} = +1, h(\mathbf{x}) < 0$.

$$\begin{aligned} \left| \frac{\partial \tilde{\ell}^R(h(\mathbf{x}), +1)}{\partial h(\mathbf{x})} \right| &\leq \max \left\{ \left(\frac{7}{8} - \frac{1}{2}\alpha_{\min} + \alpha_{\max} \right) \ell_{\infty} + \frac{3}{2}L + \left(\frac{1}{4} - \alpha_{\min} \right) \lambda, \right. \\ &\quad \left. \left(\frac{1}{4} + \frac{3}{2}\alpha_{\max} \right) \ell_{\infty} + \frac{3}{2}L + \left(\frac{3}{8} - \alpha_{\min} \right) \lambda \right\}. \end{aligned} \tag{4}$$

Case 4: $\tilde{y} = -1, h(\mathbf{x}) < 0$.

$$\begin{aligned} \left| \frac{\partial \tilde{\ell}^R(h(\mathbf{x}), -1)}{\partial h(\mathbf{x})} \right| &\leq \max \left\{ \left(\frac{1}{2} - \alpha_{\min} \right) \ell_{\infty} + \frac{1}{2}L + \left(\frac{1}{4} + \alpha_{\max} \right) \lambda, \right. \\ &\quad \left. \left(\frac{1}{2} + \frac{3}{2}\alpha_{\max} \right) \ell_{\infty} + \frac{3}{2}L + \left(\frac{3}{8} - \alpha_{\min} \right) \lambda \right\}. \end{aligned} \tag{5}$$

Combining the upper bounds in 2–5 with “element-wise” maximums yields the given \tilde{L}_R . \square

810 *Proof of Proposition 2.* The generic empirical Rademacher complexity-based generalization bound
 811 is (Mohri et al., 2012)

$$813 \quad \tilde{R}_{\tilde{\ell}}(h) \leq \tilde{\tilde{R}}_{\tilde{\ell}}(h) + 2\hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H}) + 3\tilde{\ell}_\infty \sqrt{\frac{\log 2/\delta}{2|S|}}. \quad (1)$$

816 Since $\tilde{\ell}$ is derived from the risk equivalence between noisy and clean domains, we have $\tilde{\tilde{R}}_{\tilde{\ell}}(h) =$
 817 $R_\ell(h)$. To replace the empirical risk w.r.t. $\tilde{\ell}$ with that w.r.t. $\tilde{\ell}^R$, we need λ to satisfy $\tilde{\tilde{R}}_{\tilde{\ell}}(h) \leq$
 818 $\tilde{\tilde{R}}_{\tilde{\ell}^R}(h) \forall h \in \mathcal{H}$, i.e., $\frac{1}{|S|} \sum_{i=1}^{|S|} \tilde{\ell}(h(\mathbf{x}_i), \tilde{y}_i) \leq \frac{1}{|S|} \sum_{i=1}^{|S|} \tilde{\ell}^R(h(\mathbf{x}_i), \tilde{y}_i)$. We note that element-
 819 wise inequality is a sufficient condition for this to hold, i.e., $\tilde{\ell}(h(\mathbf{x}_i), \tilde{y}_i) \leq \tilde{\ell}^R(h(\mathbf{x}_i), \tilde{y}_i) \forall i \in$
 820 $[1, |S|]$. Writing the loss terms in terms of the numerator and denominator evaluations of $\tilde{\ell}$, we
 821 have $\tilde{\mathbf{n}}_S[i]/\tilde{\mathbf{d}}_S[i] \leq \tilde{\mathbf{n}}_S[i] - \lambda \tilde{\mathbf{d}}_S[i] \forall i$. Rearranging this gives the first condition on λ as $\lambda \tilde{\mathbf{d}}_S[i] \leq$
 822 $\tilde{\mathbf{n}}_S[i] \cdot (1 - 1/\tilde{\mathbf{d}}_S[i]) \forall i \in [1, |S|]$. To “denoise” $\hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H})$, i.e., be left with the complexity
 823 of the function space \mathcal{H} only, we first show that it is upper-bounded by $\hat{\mathcal{R}}_S(\tilde{\ell}^R \circ \mathcal{H})$ under some
 824 sufficient conditions on λ , which is further upper-bounded by a constant multiple of $\hat{\mathcal{R}}_S(\mathcal{H})$ using
 825 the Lipschitz composition property of the Rademacher complexity. To this end, recall the definition
 826 of the empirical Rademacher complexity:
 827

$$829 \quad \hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H}) = \frac{1}{|S|} \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^{|S|} \sigma_i \tilde{\ell}(h(\mathbf{x}_i), \tilde{y}_i) \right] \quad (2)$$

$$832 \quad = \frac{1}{|S|} \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \langle \sigma, \tilde{\ell}_{h,S} \rangle \right], \quad (3)$$

835 where σ_i are i.i.d. Rademacher random variables, $\sigma = [(\sigma_i)]_i^T$ and $\tilde{\ell}_{h,S} = [(\tilde{\ell}(h(\mathbf{x}_i), \tilde{y}_i))]_i^T$. Note
 836 that σ_i and \mathbf{x}_i are mutually independent. We first lower-bound $\hat{\mathcal{R}}_S(\tilde{\ell}^R \circ \mathcal{H})$ as follows:

$$838 \quad \hat{\mathcal{R}}_S(\tilde{\ell}^R \circ \mathcal{H}) = \frac{1}{|S|} \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \langle \sigma, \tilde{\ell}_{h,S}^R \rangle \right] \geq \frac{1}{|S|} \mathbb{E}_\sigma [\langle \sigma, \tilde{\ell}_{h,S}^R \rangle] \quad (4)$$

$$840 \quad = \frac{1}{2|S|} \mathbb{E}_\sigma \left[\|\sigma\|_2^2 + \|\tilde{\ell}_{h,S}^R\|_2^2 - \|\sigma - \tilde{\ell}_{h,S}^R\|_2^2 \right] \quad (5)$$

$$842 \quad \geq \frac{1}{2|S|} \|\tilde{\ell}_{h,S}^R\|_2^2 \quad (6)$$

844 for any given $h \in \mathcal{H}$, where we used the definition of the supremum, polarization identity, in-
 845 dependence of σ from $\tilde{\ell}_{h,S}^R$, monotonicity of expectation, the fact $\|\sigma\|_2^2 = |S|$, and imposed
 846 $\|\tilde{\ell}_{h,S}^R\|_2^2 \leq 4|S|$. We now upper-bound $\hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H})$ as follows:

$$849 \quad \hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H}) = \frac{1}{|S|} \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \langle \sigma, \tilde{\ell}_{h,S} \rangle \right] \leq \frac{1}{|S|} \mathbb{E}_\sigma \left[\|\sigma\|_2 \sup_{h \in \mathcal{H}} \|\tilde{\ell}_{h,S}\|_2 \right] \quad (7)$$

$$851 \quad = \frac{1}{\sqrt{|S|}} \sup_{h \in \mathcal{H}} \|\tilde{\ell}_{h,S}\|_2 \leq \tilde{\ell}_\infty, \quad (8)$$

854 where we used the Cauchy-Schwarz inequality and the independence assumption. Now we further
 855 impose λ such that the upper-bound in equation 8 is to bound the lower-bound in equation 6 from
 856 below for any $h \in \mathcal{H}$, i.e.,

$$857 \quad \tilde{\ell}_\infty \leq \frac{1}{2|S|} \|\tilde{\mathbf{n}}_S - \lambda \tilde{\mathbf{d}}_S\|_2^2. \quad (9)$$

859 Combining this with the imposed assumption for equation 6, we have $2|S|\tilde{\ell}_\infty \leq \|\tilde{\mathbf{n}}_S - \lambda \tilde{\mathbf{d}}_S\|_2^2 \leq$
 860 $4|S|$. This is a set of second degree polynomial inequalities over λ and the following are sufficient
 861 for it to hold:

$$862 \quad \left| \lambda - \frac{\langle \tilde{\mathbf{n}}_S, \tilde{\mathbf{d}}_S \rangle}{\|\tilde{\mathbf{d}}_S\|_2^2} \right| \leq \frac{\sqrt{\Delta_S + 4|S|\|\tilde{\mathbf{d}}_S\|_2^2}}{\|\tilde{\mathbf{d}}_S\|_2^2}, 2|S|\tilde{\ell}_\infty < \frac{-\Delta_S}{\|\tilde{\mathbf{d}}_S\|_2^2} < 4|S|. \quad (10)$$

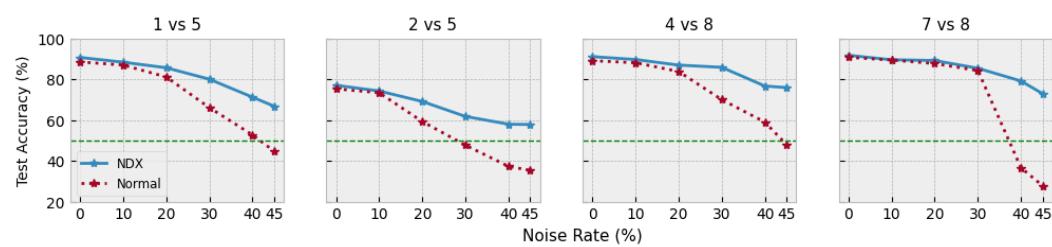


Figure 1: Test accuracy comparisons between the proposed method (NDX; solid) and the Normal model (dashed), i.e., $\tilde{\ell}_{\log}^R$ versus ℓ_{\log} on 4 random sub-datasets of the CIFAR-10 dataset when the noise process is favorable. The horizontal dashed line is the 50% level, i.e., the test accuracy of a random guess model since the datasets are all balanced. The proposed method is quite stable and performs better than the model with the noise intolerant loss even when the noise rate is close to 50%, where the Normal model performs worse than the random guess.

With the Lipschitz composition property of Rademacher complexity, we have $\hat{\mathcal{R}}_S(\tilde{\ell}^R \circ \mathcal{H}) \leq \tilde{L}_R \hat{\mathcal{R}}_S(\mathcal{H})$. The chain is then completed, i.e.,

$$\hat{\mathcal{R}}_S(\tilde{\ell} \circ \mathcal{H}) \leq \tilde{\ell}_{\infty} \leq \frac{1}{2|S|} \|\tilde{\mathbf{n}}_S - \lambda \tilde{\mathbf{d}}_S\|_2^2 \leq \hat{\mathcal{R}}_S(\tilde{\ell}^R \circ \mathcal{H}) \leq \tilde{L}_R \hat{\mathcal{R}}_S(\mathcal{H}), \quad (11)$$

and the proposition follows. \square

A.2 SANITY CHECK OF THE LOSS CORRECTION WITH MATCHED NOISE MODEL

To demonstrate the effectiveness of the loss correction when the flip rates are well-modeled, we purposefully inject synthetic label noise to a given dataset the way we are estimating it, i.e., based on distance-to-decision-boundary as proposed in the last paragraph of Section 3.2.2. To this end, we first train a three-layer ReLU MLP over the dataset with ℓ_{\log} without any consideration of the label noise and compute the transition rates based on the distances. We then flip the labels with these rates and train MLPs with ℓ_{\log} (named *Normal*) and $\tilde{\ell}_{\log}^R$ (named *NDX* for “noise depending only on X”) for comparison.

We pick four binary classification sub-datasets of CIFAR-10 randomly. Means of the test set accuracy over three trials are plotted in Figure 1 against the noise rates ranging from 0% to 45%. Across all four datasets, while the network trained with ℓ_{\log} experiences a dramatic decrease in performance as the noise rate goes up (so much to go below 50% at times, i.e., worse than random guessing for a balanced dataset such as the ones used here), the one with $\tilde{\ell}_{\log}^R$ is much more stable, better at each rate and manages to learn from the signal even when the flip rate is close to 50%, which underlines the claimed generalization ability when the noise process is well-modeled.

Furthermore, the leftmost points of subfigures in Figure 1 correspond to 0% noise rate experiments on CIFAR-10. We observe that our model’s performance is not unnecessarily degraded and practically the same as the Normal model’s on all four subdatasets.

A.3 HYPERPARAMETER SENSITIVITY

The proposed method has two hyperparameters to tune: $\lambda > 0$ the regularization coefficient that helps approximate the original division in the loss function with repeated subtraction:

$$\tilde{\ell}^R = \tilde{\ell}_{\text{numerator}} - \lambda \tilde{\ell}_{\text{denominator}},$$

and $\beta > 0$ the logistic function’s scale parameter, which function we use to turn distances-to-decision-boundary into (pseudo-)probabilities $\rho_{\mathbf{x}} = \sigma(-\beta|h(\mathbf{x})|)$, where $h : \mathcal{X} \rightarrow \mathbb{R}$ is the learning machine. To check the sensitivity of the method with respect to the hyperparameters, we present the frequency table of the selected $\lambda - \beta$ combinations over the 5 sub-datasets of the CIFAR-10 dataset and the Speakers dataset (results of which were both presented in Section 4.2). Note that there

	λ	β	Frequency
919	0.01	20.0	10
920	0.50	20.0	3
921	0.50	7.0	3
922			

Table 5: Frequency of selected hyperparameters of NDX over sub-datasets of CIFAR-10 over 30 sub-experiments.

	λ	β	Frequency
919	10.00	1.0	5
920	1.00	1.0	4
921	0.01	1.0	3
922	0.01	7.0	3

Table 6: Frequency of selected hyperparameters of NDX over sub-datasets of the Speakers dataset over 30 sub-experiments.

were 30 sub-experiments for each dataset: 5 binary sub-datasets \times 2 noise levels \times 3 trials, and the validation set is 10% of the noisy training set as mentioned in Section 4. Tables 5 and 6 show that 3 and 4 $\lambda - \beta$ combinations, respectively, already account for 50% of the experiments done, i.e., the distribution to the chosen $\lambda - \beta$ values are far from uniform and instead cluster around 2-3 unique values of the parameters, showing the rather insensitive nature of the method with respect to its hyperparameters. Note that the need for validation is not relinquished as the chosen values are different across the image and audio datasets.

A.4 DISJOINT LEARNING OF $\mathbb{P}(Y | x)$ AND $\mathbb{P}(\tilde{Y} | x)$

Here, we compare two setups for estimating $\mathbb{P}(Y | X)$ and $\mathbb{P}(\tilde{Y} | X)$:

1. The disjoint estimation where we first train a network with ℓ_{\log} (and no label noise specific adjustment) to gather $\mathbb{P}(\tilde{Y} | X)$ values per instance, and then train a different network with $\tilde{\ell}_{\log}^R$ while using the frozen $\mathbb{P}(\tilde{Y} | X)$ values in the loss correction.
2. Joint training where both $\mathbb{P}(Y | X)$ and $\mathbb{P}(\tilde{Y} | X)$ are approximated the way described in Section 3.2.1.

Subset	Noise Level	Disjoint	Joint
0v4	20%	79.08	92.34
	40%	64.42	68.25
2v7	20%	68.38	79.90
	40%	60.11	62.87
5v6	20%	67.11	73.09
	40%	61.30	61.79

Table 7: Test accuracy (%) comparisons on three different sub-datasets of Speakers dataset with varying noise levels.

We perform the experiment on three random sub-datasets of the Speakers dataset of Section 4.3; the experimental setup is the same as described therein. As shown in Table 7, somewhat surprisingly, the disjoint training performs considerably worse than the proposed approximation. It also takes more time to train while being memory heavy as it requires saving N floating point numbers into memory. We attribute the empirical success to the warm-up period we employ before the loss correction kicks in, during which the “clean” \tilde{Y} s dominate and later, the correction refrains the learner from overfitting to the noisy ones such that two disjoint stages are blended into one in that sense. We thereby have an empirical support for our way of modeling clean and noisy label probabilities.

A.4.1 ON USING THE SAME APPROXIMATION FOR BOTH $\mathbb{P}(Y | x)$ AND $\mathbb{P}(\tilde{Y} | x)$

We first note that $\mathbb{P}(Y | x)$ ’s estimation is statistically consistent (i.e., training as if with the clean labels as the sample size grows) or probabilistic models in general requires design choices. We exemplify from the literature as follows.

- “Learning from Massive Noisy Labeled Data for Image Classification” (Xiao et al., 2015): they concurrently fit two models to model Y and Z (the label noise *kind* latent variable)

972 and maximize the likelihood of \tilde{Y} with Expectation-Maximization. That is, they exploit
 973 the factorization (of \tilde{Y} over Y) the class-only dependent label noise model allows, and
 974 maximize the (incomplete) likelihood. However, the resulting framework has 3 models in
 975 it (one for Y , one for Z and one for the transition probabilities) and the optimization via
 976 EM gets complex (e.g., requires careful initialization) and requires an identified set of clean
 977 labels.

978

- 979 • "Learning with Noisy Labels" (Natarajan et al., 2013): when they develop their "Method
 980 of Unbiased Estimators", they require $\mathbb{E}[\ell(\tilde{Y}, f(\mathbf{x}))] = \ell(Y, f(\mathbf{x}))$ for all $Y, f(\cdot)$ values.
 981 Please note that there is no expectation on the right hand side. Therefore $\mathbb{P}(Y \mid \mathbf{x})$ is
 982 nonexistent in their formulation, making it not achieve risk equivalence (we also point to
 983 this fact in the manuscript (end of related work)).
- 984 • "Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach"
 985 (Patrini et al., 2017): This is a multi-class generalization of the above work of Natarajan
 986 et al. (2013); this time we see the expectation on the right hand side. Building on the
 987 factorization $\mathbb{P}(Y \mid \mathbf{x}) = \mathbb{P}(Y \mid \tilde{Y}, \mathbf{x})\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ and their assumption of y-only dependent
 988 label noise, they aim to estimate $\mathbb{P}(Y \mid \tilde{Y})$, i.e., a $K \times K$ transition matrix (K : number of
 989 classes). Their (one) design choice is to train a separate neural network to model this matrix
 990 by assuming the existence of perfect samples (i.e., those having almost surely clean labels).
 991 Therefore, they first learn a transition matrix, freeze it and then use it in the second phase of
 992 learning a new machine on \tilde{Y} s to uncover $\mathbb{P}(Y \mid \mathbf{x})$. This modeling of the transition matrix
 993 turned out to perform really well, as Forward & Backward loss correction methods from
 994 this paper is still of high relevance in label noise research (theory- and performance-wise).

995

996 Our instance-dependent label noise model, while more natural/powerful (Chen et al., 2021), does
 997 not lend itself to the factorization above because in $\rho_{\mathbf{x}} = \mathbb{P}(\tilde{Y} \neq Y \mid \mathbf{x})$, Y and \tilde{Y} are on the left
 998 side of the condition together. Nevertheless, we could still learn the "annotator's brain" in a separate
 999 machine, i.e., model $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$, then freeze its in-sample predictions. Then, in a second phase, while
 1000 training an h with $\tilde{\ell}$ (on the same dataset still), use the frozen predictions of the former machine as a
 1001 proxy for $\mathbb{P}(\tilde{Y} \mid X)$, and the current output of h as a proxy for $\mathbb{P}(Y \mid \mathbf{x})$ (since with $\tilde{\ell}$, this phase's
 1002 machine h is expected to uncover $\mathbb{P}(Y \mid \mathbf{x})$ by Proposition 2). In the previous section (Appendix
 1003 A.4.1), we present a detailed empirical comparison of this disjoint approach with what we instead
 1004 do – the difference in performance (and naturally also the computation time) was significantly worse
 1005 in this disjoint way of modeling those probabilities, providing an empirical evidence for our design
 1006 choice.

1007 While that empirical evidence suggests one can do better than disjoint modeling, we directly justify
 1008 our assumption as follows. As noted above, in Patrini et al.'s loss correction design (Patrini et al.,
 1009 2017), they assume the existence of perfectly clean examples, on/with which they first train a net-
 1010 work to model $\mathbb{P}(Y \mid \tilde{Y})$ (and similarly, also in Xiao et al. (2015)). In our setup (or in any noisy
 1011 label learning setup for that matter), while the *identification* of the clean labels is not assumed, their
 1012 existence is, e.g., our $\mathbb{E}[\rho_{\mathbf{x}}] < 0.5$ assumption. In fact, in a K -class scenario, one needs at least
 1013 $1/K$ clean samples to exist so that learning is even possible (Menon et al., 2018). (Actually, training
 1014 is possible either way, e.g., as an extreme case of 100% label noise in binary classification, a (good
 1015 enough) model's predictions on the unseen data will always be worse than random *until* they are
 1016 flipped, at which point the semantic labels are matched. So the assumption of high signal-to-noise
 1017 ratio is to preserve consistency of the semantic meaning of the labels between training and testing
 1018 sets.) What's more, it has been demonstrated by Han et al. (2025) that the neural network first "fo-
 1019 cuses" on these clean samples in the early stages of the training. But this means we can elevate the
 1020 disjoint modeling idea of Patrini et al. (2017) of $\mathbb{P}(Y \mid \mathbf{x})$ and $\mathbb{P}(\tilde{Y} \mid \mathbf{x})$ with the dominance of clean
 1021 samples in early stages of training to make the modeling joint: a number of warm-up epochs at start
 1022 with the normal (uncorrected) loss. Once the "groundwork" of establishing a decision boundary by
 1023 the machine in the warm-up period is done with the usual loss function through the dominant clean
 1024 samples, our loss correction mechanism kicks in to make the machine more aware of the pitfalls due
 1025 to label noise (this "awareness" is examined mathematically on several edge cases in Section 3.2.3,
 1026 where we present similarities and differences between $\tilde{\ell}$ and ℓ).

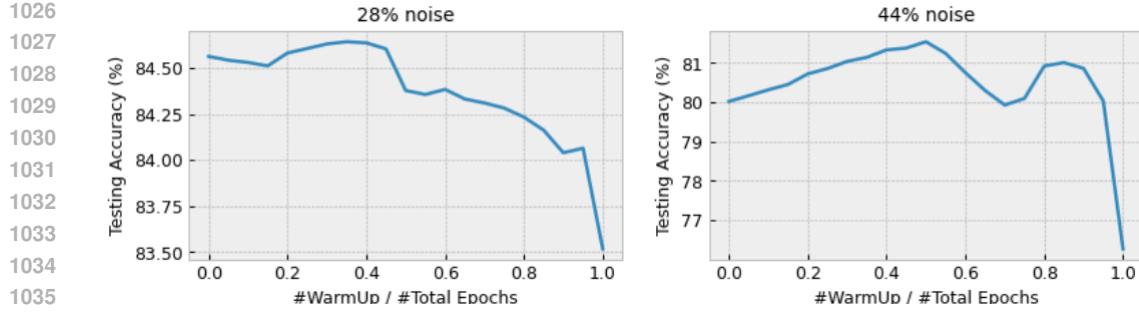


Figure 2: Observing (approximately) U-shapes with rather flat maxima while sweeping the rate of number of warm-up epochs from 0 to 1, against test accuracy. This supports the need for the warm-up period as well as the (in)sensitivity against it. Note that the rightmost points represent full warm-up without any loss correction, i.e., the Normal model.

A.5 EFFECT OF THE NUMBER OF WARM-UP PERIODS

Here, we perform an experiment on the effect of the number of warm-up epochs to model’s generalization ability by sweeping it to see the need for it as well as the sensitivity against it. We sweep the ratio ”#Warm-Up Epochs / #Total Epochs” from 0 to 1, both ends inclusive. Ideally, we expect a reverse U-shape with a rather flat maxima w.r.t. test accuracy to represent:

1. The trade-off: when the ratio is 1, model reduces to the ”Normal” model, i.e., does nothing special about the label noise and has an inferior performance than the other rates; when the ratio is 0, dominance of the clean labels is not sufficiently utilized to form a reasonable baseline to correct;
2. The insensitivity against the number of warm-up epochs in the middle region as a rather flat maxima.

We use the Tabular Adult dataset (Becker & Kohavi, 1996) with 28% and 44% label noise as in Section 4.3. We train and validate our model as done in the usual experiments while sweeping the warm-up rate. We plot the warm-up rate versus test accuracy with two different noise rates in Figure 2. We roughly observe the mentioned trade-off and insensitivity over the number of warm-up epochs (while not being perfect U-shapes), supporting the warm-up strategy. The insensitivity also allows for not treating the number of warm-up epochs as a hyperparameter that needs heavy tuning (also the case in, e.g., Li et al. (2020), Yang et al. (2022) and Zhang et al. (2021)).

A.6 BOUNDING $\tilde{\ell}$

Even though there is nothing mathematically restraining $\tilde{\ell}$ from going to infinity, it can still be a bounded loss function provided that the base loss ℓ is also bounded and $\rho_{\mathbf{x}}$ satisfies a certain condition. For example, if, for a given $h \in \mathcal{H}$ and a finite M ,

$$\begin{aligned} \rho_{\mathbf{x}} \leq \sigma(h(\mathbf{x}))\sigma(-h(\mathbf{x})) \cdot \min \left\{ 1, \frac{\ell(h(\mathbf{x}), \tilde{y})}{\sigma(h(\mathbf{x}))\ell(h(\mathbf{x}), \tilde{y}) + \sigma(-h(\mathbf{x}))\ell(h(\mathbf{x}), -\tilde{y})}, \right. \\ \left. \frac{\ell(h(\mathbf{x}), \tilde{y}) - M}{\sigma(h(\mathbf{x}))\ell(h(\mathbf{x}), \tilde{y}) + \sigma(-h(\mathbf{x}))\ell(h(\mathbf{x}), -\tilde{y}) - M} \right\} \forall \mathbf{x}, \tilde{y}, \end{aligned} \quad (1)$$

then $|\tilde{\ell}(\cdot, \cdot)| \leq \max\{M, A\} =: \tilde{\ell}_{\infty}$. An exemplary $\rho_{\mathbf{x}}$ would be $\max(0, \sigma(h(\mathbf{x}))\sigma(-h(\mathbf{x})) - \varepsilon)$ for small $\varepsilon > 0$ with $\ell_{\infty} = 50/40$ and $M = 1.5 = \tilde{\ell}_{\infty}$, i.e., there exists a $\rho_{\mathbf{x}}$ configuration that preserves boundedness of ℓ .

Note that the threshold on the original unbounded loss function for a finite upper bound cannot be chosen arbitrarily small, as the gradient will vanish for even small activation values close to 0,

1080 severely hindering learning. For example, while the raw input in absolute value to the logistic loss
 1081 barely crosses 10 in practice (making it a candidate upper bound), it would be too stringent to,
 1082 say, clamp the loss at 1.5 only to get a lower gap on the RHS of the bound. Furthermore, while
 1083 scaling down any loss function has no effect for the optimization problem (all other things being
 1084 equal), again, in practice, heavy downscaling to get a lower gap is a matter of trade-off since i)
 1085 numerical issues may arise (e.g., underflow) and ii) it requires extra care in tuning the optimization
 1086 related hyperparameters, e.g., the learning rate in case of gradient-based methods. More importantly,
 1087 though, the risk values themselves in the bound (equation 6) are scaled down since they involve
 1088 averaging the losses suffered, so the interpretation of the bound stays the same up to a constant
 1089 factor.

1090 A.7 TEST SET DISTRIBUTION OF THE DATASETS

1091 Since we report accuracy scores on the (clean) test sets, here we present the ratios of the positive
 1092 (latter) class in each (sub-)dataset used in the experiments:

Subset	0v1	2v3	4v5	6v7	8v9
CIFAR-10	50%	50%	50%	50%	50%
Speakers	43%	56%	55%	49%	48%

	Adult	Diabetes	Heart	Segmentation	Splice
Tabular	24%	35%	49%	58%	46%

Subset	6v8	6v7	6v9	1v6	2v6	0v2	2v9	2v11	1v7	0v11
Clothing1M	48%	50%	52%	48%	48%	50%	51%	51%	48%	51%

1107 Table 8: Ratios of the positive class in the testing sets of the datasets.

1109 We observe that the test sets are mostly balanced with the exception of *Adult* and *Diabetes* tabular
 1110 datasets, for which a baseline (a model predicting 0 regardless of the instance) would achieve 76%
 1111 and 65% testing accuracy, respectively. We see from the results in Section 4.3 that the best performing
 1112 models considerably pass these thresholds (e.g., 84.53% and 73.34%, respectively (under 28%
 1113 noise)).

1114 A.8 DETAILS OF THE SETUP OF THE EXPERIMENTS

1115 Datasets.

- 1118 • CIFAR-10 (Krizhevsky, 2009): The well-known 10-class classification of 32x32x3 RGB
 1119 images; 50,000 training and 10,000 test samples.
- 1120 • Speakers (Rimi, 2023): This is a times series-based dataset aimed for 11-class classification
 1121 of YouTube clips of famous motivational speakers. Each clip is a five second signal and the
 1122 corresponding label is the name of the speaker. 6,204 training and 1,551 test samples.
- 1123 • Tabular datasets.
 - 1125 1. *Adult* (Becker & Kohavi, 1996): predict whether the income of an individual exceeds
 a certain threshold; 48,842 instances (11,687 positive), 14 features.
 - 1127 2. *Diabetes* (Bennett et al., 1971): predict whether a given patient has diabetes; 768
 instances (268 positive), 8 features.
 - 1129 3. *Heart* (Janosi et al., 1989): predict whether a given patient has a heart disease; 303
 instances (165 positive), 13 features.
 - 1131 4. *Splice* (Towell et al., 1991): predict whether a given boundary at the splice junction of
 a DNA is an acceptor or a donor; 3,175 instances (1,527 positive), 60 features.
 - 1133 5. *Segmentation* (Brodley, 1990): assign a group number to hand-segmented 3x3 areas
 of various outdoor images; 2,310 instances (1,320 positive), 18 features.

1134 • Clothing1M (Xiao et al., 2015): This dataset is a large-scale real-world dataset of cloth
 1135 images that is naturally noisy. It provides $\sim 1,000,000$ (noisy) training pairs and $\sim 10,000$
 1136 (clean) testing pairs. There are 14 classes and the images are 64x64x3 RGB. We note that
 1137 we do not use the clean training and validation sets the dataset also provides.

1138 **Machines.** We use neural networks and LightGBM as the underlying machines in the experiments.

1139 • MLP: a three-layer feed-forward neural network with ReLU as the hidden activations.
 1140 Number of hidden neurons are 128, 64 and 32 towards the (single) output. Output activa-
 1141 tion is identity.
 1142 • CNN (for CIFAR-10): a two convolution-ReLU-maxpool layers (kernel sizes 6x6 and
 1143 16x16, respectively with a stride of 5 and no padding for both layers) followed by a 128-
 1144 64-32 fully connected layers towards the (single) output. Output activation is identity.
 1145 • CNN (for Clothing1M): a four convolution-ReLU-maxpool layers (kernel sizes 32x32,
 1146 32x32, 64x64 and 64x64 respectively with a stride of 1 and no padding for all layers) fol-
 1147 lowed by a 128-sized fully connected layer towards the (single) output. Output activation
 1148 is identity.
 1149 • LightGBM: default parameters are used except for the number of trees and the learning
 1150 rate, which are tuned.

1151 **Preprocessing.** All datasets undergo standardization (subtract the mean, divide by the standard de-
 1152 viation; both statistics are obtained from the training split) after the following specific preprocessing
 1153 steps are applied:

1154 • CIFAR-10: random crops and random horizontal flips.
 1155 • Speakers: Mel-frequency cepstrum with 128 mel bands such that inputs are akin to a 2D
 1156 image of shape 128 x 157.
 1157 • Tabular datasets: For the *Adult* dataset, categorical features are one-hot encoded yielding
 1158 100 features in effect.

1159 **Optimization.** For all experiment runs, 20 epochs of SGD with a batch size of 128 (32 for Speakers)
 1160 is used (first 4 epochs are for warm-up in NDX). 10% of the training set is spared for the validation
 1161 of hyperparameters with grid search: learning rate, regularization coefficient (λ) and sigmoid scale
 1162 (β) for NDX; learning rate for other models. Noncritical hyperparameters, if any, are taken from the
 1163 respective papers/source code as is, against which most of the methods assert to be rather insensitive
 1164 anyway (e.g., “iteration_nmf” of PTD (Xia et al., 2020) is taken to be 20; “forget_rate” of Coteach-
 1165 ing+ (Yu et al., 2019) (which is actually not mentioned in the paper) is set to 0.2). Validation is done
 1166 for more prominent hyperparameters, e.g., ρ_+ and ρ_- of UB (Natarajan et al., 2013) are searched in
 1167 $[0.1, 0.2, 0.3, 0.4]$; α of Peer (Liu & Guo, 2020) in $[0.1, 1., 5.]$ and α and β of APL (Ma et al., 2020)
 1168 in $[0.1, 1., 10.]$. The center learning rate (call η) is 0.01 for all experiments; $\eta/100, \eta/10, 10\eta, 100\eta$
 1169 is the learning rate search space. For NDX, $\lambda \in (0.01, 0.10, 0.50, 1, 10)$ and $\beta \in (1, 3, 7, 20, 50)$
 1170 are searched. As an exception, Adam optimizer is used in Coteaching+’s training as advised in its
 1171 paper (Yu et al., 2019). For LightGBM, number of trees are searched in $(10, 25, 50, 100, 150)$ and
 1172 the learning rate in $(0.01, 0.05, 0.10, 0.50, 1)$.

1173 A.9 DETAILS OF THE METHODS FROM THE LITERATURE USED IN THE EXPERIMENTS

1174 Here we give brief details on the methods used in the Experiments in Section 4.2 for comparison
 1175 over the real-life datasets.

1176 **BCN** (Du & Cai, 2015) is a modified logistic regression model with boundary-consistent instance-
 1177 only dependent noise model. **UB** is the “method of unbiased estimators” of Natarajan et al. (2013)
 1178 with a CCN-based noise model. **DMI** (Xu et al., 2019) is a CCN-based loss correction method from
 1179 an information theoretic view that involves the determinant of the transition matrix. **Peer** (Liu &
 1180 Guo, 2020) represents the peer loss that achieves risk equivalence up to a constant involving noise
 1181 rates. **APL** (Ma et al., 2020) introduced a normalization trick to make any loss function noise toler-
 1182 ant and uses combinations of un/normalized (active/passive) loss functions for better generalization.
 1183 **PTD** (Xia et al., 2020) is based on part-dependent ILDN modeling of the noise which, for each part

of a given instance, first learns representations and then a transition matrix by utilizing almost surely non-noisy samples. *BLTM* (Yang et al., 2022) is also an ILDN-based model which brings in the Bayes-optimal labels through which a transition matrix is learned and a revision is lastly made as in PTD. *Coteaching+* (Yu et al., 2019) is an improvement over the Coteaching model (Han et al., 2018) that uses two neural networks in parallel and proposes a small-loss and disagreement based cross update rule to deal with the noise. *Forward* and *Backward* (Patrini et al., 2017) are CCN-based loss correction mechanisms where first a normal network is trained to estimate the transition matrix and it is then fed to another one to correct predictions or the loss itself, respectively. *GCE* is the generalized cross entropy loss function proposed by Zhang & Sabuncu (2018), which uses a Box-Cox-like transformation to correct the logistic loss. *PLC* (Zhang et al., 2021) progressively corrects suspicious data pairs with an ILDN-based noise model. Lastly, we note that we also experimented with DivideMix (Li et al., 2020), a neural network machinery with distillation of small-loss examples via a Gaussian mixture model; however, it did not attain a reasonable score with validation (considerably above 50% test accuracy) for any of the binary classification tasks presented in Section 4, and therefore is excluded from the results.

A.10 CODE FOR THE LOSS CORRECTION

As mentioned in Section 1, loss correction methods are generally very easy to implement. Our method with probabilities calculated through distances to the decision boundary requires little extra computation thanks to the observation mentioned at the end of Section 3.2.2, i.e., distances are approximated with $|h(\mathbf{x})|$ where $h(\mathbf{x})$ is already calculated in the training loop as an input gets feed-forwarded. Here, we share a sample implementation of this loss correction mechanism in code using PyTorch (Paszke et al., 2019) where we correct ℓ_{\log} :

```

1211 import torch
1212 from torch import exp, log, sigmoid
1213
1214 def loss_fun(self, x, y):
1215     """
1216     Given (batch) pairs X and y (noisy), return ~l^R
1217     """
1218     ## Feed-forward
1219     h_x = self(X).squeeze(-1)
1220     f_x = sigmoid(h_x)
1221
1222     ## Calculate distance-based probabilities of label flips
1223     # 'self.sigmoid_scale' is \beta
1224     distances = h_x.abs()
1225     rho_x = 1 / (1 + exp(self.sigmoid_scale * distances))
1226
1227     ## Compute the corrected loss
1228     # Base loss (\ell; logistic) w.r.t. ~y and -~y
1229     normal_loss = torch.where(y == +1, -log(f_x), -log(1 - f_x))
1230     opposite_loss = torch.where(y == +1, -log(1 - f_x), -log(f_x))
1231
1232     # Approximate P(Y | X) and P(~Y | X), form the modified loss
1233     pyy_x = torch.where(y == +1, f_x, 1 - f_x)
1234     numerator = ((1 - pyy_x - rho_x) * pyy_x * normal_loss
1235                 - rho_x * (1 - pyy_x) * opposite_loss)
1236     denominator = pyy_x * (1 - pyy_x) - rho_x
1237
1238     # 'self.regularization_scale' is \lambda
1239     loss = numerator - self.regularization_scale * denominator
1240
1241     return loss.mean()

```