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ABSTRACT

We investigate the label noise problem in supervised binary classification settings
and resurface the underutilized instance-only dependent noise model through loss
correction. On the one hand, based on risk equivalence, the instance-aware loss
correction scheme completes the bridge from empirical noisy risk minimization
to true clean risk minimization provided the base loss is classification calibrated
(e.g., cross-entropy). On the other hand, the instance-only dependent modeling of
the label noise at the core of the correction enables us to estimate a single value per
instance instead of a matrix. Furthermore, the estimation of the transition rates be-
comes a very flexible process, for which we offer several computationally efficient
ways. Empirical findings over different dataset domains (image, audio, tabular)
with different learners (neural networks, gradient-boosted machines) validate the
promised generalization ability of the method.

1 INTRODUCTION

Label noise is one of the culprits for low-quality data in supervised classification settings where some
of the labels deviate from their true values. While it is relatively easy to collect data, it is as laborious
to label them correctly in a time-efficient manner, which inevitably results in errors in annotations.
The machines are prone to overfitting these mislabels which results in poor generalization (Arpit
et al., 2017; Belkin et al., 2018). The need for tackling noisy labels has thereby arisen.

Surrogate loss functions are one prominent way of handling label noise in a machine-agnostic man-
ner: given a possibly noise intolerant (Manwani & Sastry, 2013) loss function, “correct” it by devis-
ing a new loss which is robust to label noise. For example, Ma et al. (2020) suggest a normalization
trick to symmetrize any loss function, which is a sufficient condition for noise tolerance (Ghosh
et al., 2015). A main advantage of these loss correction methods is their ease in implementation:
usually the correction of the base loss takes a few lines of code with very little computational over-
head, compared to, say, modifying an entire machinery.

To this end, we direct our attention to the ultimate aim in machine learning: generalization (Mohri
et al., 2012). In classification with label noise, one seeks a classifier trained on the noisy data that
generalizes well with respect to the clean data. True risk quantifies the generalization error of a
hypothesis under a loss function; the mathematical formulation of the desideratum is therefore the
following risk equivalence:

EX,Ỹ

[
ℓ̃(h(X), Ỹ )

]
= EX,Y

[
ℓ01(h(X), Y )

]
, (1)

where X ∈ X is the instance random variable, Y, Ỹ ∈ {±1} are the (unknown) clean and (observed)
noisy label random variables, respectively;H ∋ h : X → R is any scorer function from the hypoth-
esis spaceH; ℓ01(h(x), y) = (1− sgn(y · h(x)))/2 is the 0-1 loss function and ℓ̃ : R× {±1} → R
is our target loss function that is minimized during the training of h. Ideally, one wants ℓ̃ = ℓ01,
which is in fact a noise-tolerant loss function (Manwani & Sastry, 2013). Nonetheless, optimiza-
tion against it is intractable in general (Ben-David et al., 2003) and the proposed direct optimizers
constrain the hypothesis space to be linear functions (Sastry et al., 2010; Nguyen & Sanner, 2013).
Therefore, classification calibrated (Bartlett et al., 2006) convex surrogate loss functions, e.g., lo-
gistic and hinge losses, are used instead. These loss functions (here denoted by ℓ) are not necessarily
noise tolerant, however. In fact, Manwani & Sastry (2013) showed that neither the logistic loss nor
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the hinge loss is label-noise tolerant whether the noise is instance-dependent or not. This eliminates
the possibility ℓ̃ = ℓ, and devising a noise tolerant loss function is in order: noise tolerance, com-
bined with classification calibratedness, form a path from noisy empirical risk w.r.t. ℓ̃ to clean true
risk w.r.t. ℓ01.

Risk equivalence in equation 1 involves the transition probabilities to make a connection between
Y and Ỹ . This transition is an unknown process in general whose modeling roughly falls into four
categories (Menon et al., 2018): RCN (random classification noise), CCN (class conditional noise),
IDN (instance dependent noise) and ILDN (instance and label dependent noise). They are essentially
distinguished by what they put on the right side of the conditional probability IP(Ỹ ̸= Y | ·): RCN
leaves it empty; CCN puts Y ; IDN puts X; and ILDN puts X,Y . RCN is rather unrealistic as it
assumes a uniform rate of transition independent of X and Y . CCN is the most widely studied
noise model that assumes Ỹ ⊥⊥ X | Y , i.e., the label noise depends only on the class but not on
the specific instance. The more natural (Chen et al., 2021) and powerful yet challenging assumption
involves a conditioning on X by assuming IDN or ILDN, which continues to attract attention in
recent research (Bae et al., 2024; Li et al., 2025).

The distinction between IDN and ILDN is worth emphasizing. When “instance dependent noise” is
used, what is usually meant is instance and label dependent noise, i.e., ILDN and not IDN. IDN is
driven by the plausible assumption that Y , being an aggregate statistic of X , does not convey any
more information than X on the transition rate. That IDN involves less parameters might imply
underfitting in modeling the noise; however, as empirically shown, it is not less powerful than ILDN
while being much more computationally efficient. Interestingly, there are only a few works that
model the noise in this instance-only dependent form (Bylander, 1998; Du & Cai, 2015), which
both focused on linear machines. We generalize this underutilized noise model to be employable
with any learning machine and provide practical ways to estimate its value per instance. This model
complements the risk equivalence starting point to devise a noise tolerant surrogate loss function.

We summarize our main contributions as follows.

• We introduce an instance-aware loss correction mechanism based on risk equivalence to
fortify a given loss function to combat instance-dependent label noise effectively (theory-
wise) and efficiently (computation-wise).

• We resurface the underutilized instance-only dependent noise model to estimate the tran-
sition probability of each instance to complement the surrogate loss function design. We
also provide computationally efficient ways to model the transition rates.

• Empirically, we validate our approach with moderate and high noise rates over three
datasets of different domains with neural networks and tree-based models, showing com-
parable/better results against the current approaches while being dataset- and machine-
agnostic.

2 RELATED WORK

Noise models. Angluin & Laird (1988) formalized the label noise problem and showed learnability
under RCN where the transition rate is the same for all x, y pairs. The more realistic CCN model
appoints a distinct rate for each possible transition among classes, which is the most widely studied
noise model: Liu & Tao (2016) employed data reweighting; Zhang & Sabuncu (2018), Patrini et al.
(2017) and Wang et al. (2019) focused on loss correction; and Han et al. (2018), Yu et al. (2019)
and Li et al. (2020) introduced effective neural network machineries based on the difference of
loss suffered among samples. The more natural noise model where labeling errors depend on the
instance itself has also been heavily studied: Xia et al. (2020) and Yang et al. (2022) learn the
transition matrix for ILDN via three stage training where the former learns partial matrices to be
combined and the latter uses distillation to acquire Bayes-optimal labels; Zhang et al. (2021) and
Cheng et al. (2021) progressively correct suspicious data pairs; Bae et al. (2024) perform Dirichlet-
based resampling using the transition matrix; Du & Cai (2015) reinterpret linear classifiers from a
distance-to-boundary perspective under IDN, which Bylander (1998) also studied under monotonic
noise for perceptron learning; and Yao et al. (2021) and Li et al. (2025) took a causal graph viewpoint
in ILDN modeling.
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Loss correction. Many machine-agnostic loss correction methods have been proposed to deal with
label noise. Natarajan et al. (2013) proposed a CCN-based surrogate loss. Zhang & Sabuncu (2018)
and Wang et al. (2019) specifically modified the cross-entropy loss for robust learning based on
CCN; the former used a Box-Cox-like transformation and the latter introduced an additive term
based on the (reverse) KL divergence. Goldberger & Ben-Reuven (2017) introduced a noise-
adaptation layer to a given neural network to make cross entropy more tolerant to label noise. Ma
et al. (2020) proposed a normalization trick to symmetrize any loss function for noise tolerance and
further improved it by weighted combinations of losses, which was generalized by Zhou et al. (2021)
as asymmetric loss functions. Xu et al. (2019) introduced an information theory-centric loss involv-
ing the determinant of the transition matrix of a CCN noise model. Rooyen et al. (2015) proposed a
modified hinged loss that is provably noise tolerant to combat RCN. Patrini et al. (2017) introduced
two ways to correct a given loss function via CCN-based transition rates. Liu & Guo (2020) intro-
duced peer losses without transition rates directly involved, which achieves risk equivalence up to a
constant involving the transition rates.

Perhaps the closest studies to our work are Natarajan et al. (2013), Patrini et al. (2017); and Bylander
(1998), Du & Cai (2015). The critical difference from Natarajan et al. (2013) is their lack of ex-
pectation over the latent label variable Y , i.e., we would argue that it does not properly achieve risk
equivalence (in fact, the expectation is present in Patrini et al. (2017)). Furthermore, it is a CCN-
based model, i.e., the label noise is not instance-dependent, and the transition rates are assumed
known or otherwise estimated via validation which is not scalable to IDN. Patrini et al. (2017) is
also based on CCN and the estimation of the transition rates assumes the existence of anchor points,
i.e., points whose annotations are almost surely correct, and involves a separate training stage, which
incurs computational load and disconnection in learning. As for the latter IDN-based works of By-
lander (1998) and Du & Cai (2015), they are focused on linear machines (former perceptron; latter
logistic/probit regressors) with one way of estimating the noise (distance-based); we, however, not
only generalize the learning to nonlinear machines with a generic loss correction mechanism but
also formalize and propose several computationally efficient ways to estimate the noise rates.

3 METHODOLOGY

In this section, we first present the notation used, then introduce the instance-aware loss correction
and lastly propose estimation approaches for the instance-only dependent noise.

3.1 PRELIMINARIES

We consider the supervised binary classification problem. X denotes the feature space, Y = Ỹ =

{±1} the label space (clean and noisy, respectively). X,Y, Ỹ denote the random variables and
x, y, ỹ their specific samples associated with X , Y and Ỹ , respectively. H ∋ h : X → R is any
scorer function from the hypothesis space H; 0-1 loss is given by ℓ01(h(x), y) = (1 − sgn(y ·
h(x)))/2. Given a loss function ℓ : R × Y → R, Rℓ(h) = EX,Y

[
ℓ(h(X), Y )

]
is the true clean

risk; R̃ℓ(h) = EX,Ỹ

[
ℓ(h(X), Ỹ )

]
is the true noisy risk; and ̂̃

Rℓ(h) =
1
|S|

∑|S|
i=1 ℓ(h(xi), ỹi) is the

empirical noisy risk, where S = {(xi, ỹi)} is a realization of the noisy data pairs of cardinality |S|.
When the subscript ℓ on the risk is omitted, it implies ℓ01. ρx = IP(Y ̸= Ỹ | X = x) denotes the
label flip probability of a given instance x. We assume EX [ρx] < 0.5 for learning to take place 1.

3.2 LOSS CORRECTION VIA RISK EQUIVALENCE

We aim to form a path from the empirical noisy risk minimization w.r.t. a surrogate loss ℓ̃ to the
true clean risk minimization w.r.t. ℓ01. Since ℓ01 is hard to optimize, a classification calibrated loss
function is used instead, e.g., logistic loss: ℓlog(h(x), y) = log(1 + e−y·h(x)); it is well-known
that risk minimization w.r.t. the logistic loss parallels the minimization of the true risk w.r.t. ℓ01,
i.e., R(h) − R∗(h) ≤

√
2(Rℓlog(h)−R∗

ℓlog
(h)), where R∗ denotes the minimum possible risk, i.e.,

1The machine would be indifferent to this assumption being invalidated, which amounts to the semantic flip
of the positive and negative labels; its predictions on unseen data would simply need to be inverted.
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the Bayes-optimal one. As the true distribution of x’s are never known, empirical/structural risk
minimization is instead used as a proxy backed up by the law of large numbers. Once the label noise

comes into the picture, however, the connection between the ̂̃
Rℓlog(h) and R(h) is lost: logistic loss

is not noise tolerant even when the noise rate is uniform, i.e., ρx = ρ∀x (Ghosh et al., 2015). To this
end, we propose to devise an ℓ̃ based on ℓ, which can be any classification calibrated loss function
(e.g., logistic, hinge), such that the path is complete:

Rℓ01(h) ←
Classification
Calibratedness

Rℓ(h) ←
Our ℓ̃ design

R̃ℓ̃(h) ←
Law of

Large Numbers

̂̃
Rℓ̃(h). (2)

We now propose our loss correction scheme. (All proofs are in Appendix A.1.)
Proposition 1. Let ℓ be any loss function. Define

ℓ̃(h(x), ỹ) =
IP(Y = ỹ | x)(IP(Ỹ = −ỹ | x)− ρx)ℓ(h(x), ỹ)− IP(Y = −ỹ | x)ρxℓ(h(x),−ỹ)

IP(Ỹ = ỹ | x)IP(Ỹ = −ỹ | x)− ρx
.

(3)
Then we have R̃ℓ̃(h) = Rℓ(h), i.e., EX,Ỹ

[
ℓ̃(h(X), Ỹ )

]
= EX,Y

[
ℓ(h(X), Y )

]
.

(The proof of Proposition 1 in Appendix A.1 also explains the rationale behind this choice for a
modified loss function.)

In equation 3, there are three unknown probabilities: IP(Y | x), IP(Ỹ | x) and ρx. We now explain
how we estimate them in practice.

3.2.1 MODELING IP(Y | x) AND IP(Ỹ | x)

IP(Ỹ | x) can be estimated directly from the data using any learning machine as we have direct
access to (x, ỹ) pairs. This is not the case for IP(Y | x) as we have no access to the clean labels.
However, since the scorer h also models IP(Y | x), we can set IP(Y | x) in equation 3 to the standard
logistic over the scorer, i.e., IP(Y = z | x) ≈ σ(z · h(x)) = (1+ e−z·h(x))−1. The rationale is that,
ideally, when the training with ℓ̃ finishes, the machine has converged to learn IP(Y | x), i.e., the
clean label probability for generalization. Since clean data pairs (despite being unknown) dominate
the learning in the initial stage (Han et al., 2025), we spare a few epochs at the beginning (warm-
up) where we only use the (unmodified) base loss ℓ to form a strong baseline for IP(Y | x). As for
IP(Ỹ | x), one might train a normal model for Ỹ , and then use its predictions inside the modified loss
to train h (and hence implicitly also IP(Y | x)). This disjoint training for IP(Ỹ | x) and IP(Y | x) / h,
however, is not only time consuming but turns out to also lack in performance (as empirically shown
in Appendix A.4). Therefore, in practice, we use σ(z · h(x)) for IP(Ỹ | x) also; as the machine is
trained with the noisy labels to mimic the annotator’s brain, it is expected to model IP(Ỹ | x) in the
process (including and after warm-up). We provide a detailed argument for this modeling choice in
Appendix A.4.1, and an analysis on the effect of the warm-up period in Appendix A.5.

With these estimates in place, the loss in equation 3 becomes

ℓ̃(h(x), ỹ) =
σ(ỹ · h(x))(σ(−ỹ · h(x))− ρx)ℓ(h(x), ỹ)− σ(−ỹ · h(x))ρxℓ(h(x),−ỹ)

σ(ỹ · h(x))σ(−ỹ · h(x))− ρx
(4)

and we move to the modeling of the last unknown, ρx.

3.2.2 MODELING ρx

The transition rate ρx = IP(Y ̸= Ỹ | X = x) is only conditioned on X and not on Y . Therefore, per
instance, we do not estimate a transition matrix but instead a single value. Furthermore, as ρx does
not depend on the true label, there is nothing preventing the estimation of ρx’s in an unsupervised
manner, giving flexibility. Before providing ways to estimate ρx, we formalize it over the notion of
difficulty – the more difficult an instance x is, the higher the label flip probability ρx.
Definition 1 (ρx). Let z : X → R be a “difficulty” mapping such that the more difficult (to label)
x, the higher label flip probability ρx := IP(Y ̸= Ỹ | X = x), i.e.,

ρx = ϕ(z(x)),
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where ϕ : R→ [0, 1] is a monotonically increasing function (not necessarily differentiable), which,
together with z, also satisfies EX [ϕ(z(x))] < 0.5 so that there is more signal than noise for learning
to take place.

An obvious choice would be to use the model h itself within the difficulty map z(.), as the model has
some notion of which labels are harder to classify than others. As such, z(.) can be learned online
during training of h (see below). In this case, we impose that z(.) is

• increasing when h(x) < 0 and decreasing when h(x) ≥ 0, and
• differentiable and Lipschitz2 such that −∞ < infx∈X

∂ρx

∂h(x) < 0 < supx∈X
∂ρx

∂h(x) <∞.

The definition necessitates the design of two functions: z the difficulty metric and ϕ that turns that
difficulty into a probability. We now provide several ways to model them (a nonexhaustive list).

How to find the difficulty of an instance, i.e., z(x)?
1. Offline (unsupervised)

(a) Clustering, e.g., K-means (Lloyd, 1982): z(x) is the (inverted) distance of x to its
cluster center.

(b) Representation learning, e.g., sparse autoencoder (Lee et al., 2007): z(x) is the
reconstruction error. The learned representations are then used for the downstream
classification task.

2. Online (while training h)
(a) Distance to decision boundary: the further away the instance from the decision

boundary formed by h(x), the less error prone it is for label flips.
(b) Proximity to uniform distribution of number of votes in an ensemble: the closer the

vote distribution to 50/50, the higher the probability of label flip. KL divergence can
be used to compute the desired proximity (inverted), for example.

How to turn difficulties into probabilities, i.e., ϕ?
1. β-logistic function: (1 + e−βz)−1 with β > 0.

2. Distribution functions: exponential PDF: 1
β e

−z/β with β ≥ 1 (when the range of z(·) is
R+); Gaussian CDF: 1

2 + 1
2erf

(
z−µ

σ
√
2

)
with µ ∈ R, σ > 0.

We found empirically that distance to decision boundary for difficulty modeling and β-logistic func-
tion for turning them into probabilities work well (these are also used in the experiments in Section
4). Finding the distance to the decision boundary is straightforward if h is linear, i.e., h(x) = wTx
(it is |h(x)|/||w||2). For nonlinear models, however, this no longer applies. One can perform
clever random perturbations on the sample until the decision under h changes, e.g., with DeepFool
(Moosavi-Dezfooli et al., 2016) to approximate this distance. However, these approaches are time
consuming given the distance needs calculating every iteration. Instead, we observe that if the net-
work was a perfect classifier, then the embedded data in its last layer must be linearly separable.
In fact, Li et al. (2019) showed that the last layer is solving an SVM problem in such a network.
Building on this observation, we use |h(x)| as a proxy for the distance of x to the decision boundary
of h, whether h is linear or not (note that this choice satisfies the conditions imposed on ρx earlier).
As h(x) already gets computed while learning, this approach is computationally highly efficient (a
sample implementation in code is in Appendix A.10). We also observed that this proxy also works
well for nonlinear machines that are not neural networks, e.g., LightGBM (Ke et al., 2017), as shown
in Section 4.3.

On the theoretical side, we provide a mathematical ground for this design choice, due to Menon et al.
(2018). They show that a “boundary-consistent noise” model, of which our distance-to-decision-
boundary design is a special case, is not only consistent between noisy and clean domains for AU-
ROC maximization (Proposition 1 in Menon et al. (2018)) but also lends itself to an explicit excess
AUROC risk bound to quantify the said consistency (Theorem 2 in Menon et al. (2018)). Here, we
restate the theorem by adapting to our notation for convenience:
Theorem 1 (Menon et al. (2018), adapted). Given ρx = ϕ (dh(x)) where ϕ : R+

0 → [0, 1] is a
monotonically decreasing function and dh(x) is the distance of x to the decision boundary of h,

2The reason for this requirement will be clear in Section 3.2.4 (Lemma 1 in particular).
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suppose that ρmax := maxx∈X ρx < 1
2 . Then, for any scorer h,

Rrank(h)−R∗
rank ≤

π̃ · (1− π̃)

π · (1− π)
· 1

1− 2 · ρmax
· (R̃rank(h)− R̃∗

rank),

where π̃ = P (Ỹ = +1), π = P (Y = +1); Rrank(h) denotes the true clean ranking risk of h, i.e.,
EX|Y=+1,X′|Y=−1[ℓ01(h(X) − h(X ′), 1)] and R̃rank(h) the true noisy ranking risk of h, defined
similarly, and starred risks represent the Bayes optimal ones in the respective domains.

Theorem 1 lays down a theoretical ground for this particular choice of ρx along with its empirical
support. We note that the assumption ρmax < 1

2 is satisfiable trivially via, e.g., halving the output of
the sigmoid or using an exponential PDF with a rate < 1/2.

3.2.3 INSIGHTS INTO THE MODIFIED LOSS FUNCTION

With our models for the unknown probabilities in place, we can analyze several limit cases, which
give some insight in the behavior of the modified loss function:

• ρx → 0, i.e., label flip seems highly unlikely: ℓ̃(·, ỹ)→ ℓ(·, ỹ), i.e, it suffers what it would
normally suffer as the given label is (most likely) the true label.

• ρx ∈ [0.5, 1], i.e., high probability for label flip: ℓ̃(·, ỹ) is a (nontrivial) weighted combina-
tion of ℓ(·, ỹ) and ℓ(·,−ỹ), which is reasonable as it is these “gray” areas that the machine
should be careful about not leaning towards one side, which in turn is making it more robust
for generalization.

• ỹ · h(x) → ∞, i.e., the machine is strongly agreeing with the given annotation: ℓ̃(·, ỹ) →
ℓ(·, ỹ) = 0, i.e., it suffers no loss as it would not normally.

• ỹ · h(x) → −∞, i.e., the machine is strongly disagreeing with the given annotation:
ℓ̃(·, ỹ) → ℓ(·,−ỹ) = 0; this is a significantly different behavior from a label noise-
intolerant loss function, e.g., ℓlog, which would make the network suffer the maximal loss.
Here, though, we are facing an “obvious” mislabel. Instead of insisting on blindly agreeing
with the annotation, the modified loss trusts the machine and moves on.

3.2.4 STABILIZING ℓ̃

The division in the formulation of ℓ̃ in equation 3 poses a danger – we have no mathematical control
over the denominator and for some instances x, it can become arbitrarily close to 0 leading to
instability in practice. The same worry carries to the gradient, possibly exploding it. Therefore, we
employ a regularization trick to address this: we approximate the division with repeated subtraction,
and propose the regularized form of ℓ̃, called ℓ̃R, as follows:

ℓ̃R(h(x), ỹ) := ℓ̃numerator − λℓ̃denominator

= σ(ỹ · h(x))(σ(−ỹ · h(x))− ρx)ℓ(h(x), ỹ)− σ(−ỹ · h(x))ρxℓ(h(x),−ỹ)
− λ(σ(ỹ · h(x))σ(−ỹ · h(x))− ρx),

(5)

where λ > 0 is a hyperparameter. Even though the risk equivalence is hurt, the generalization ability
with ℓ̃R remains intact under sufficient conditions on λ, which we show next with a high probability
generalization bound. To this end, we first establish the Lipschitz continuity of ℓ̃R.
Lemma 1. Let ℓ(h(x), y) be an L-Lipschitz (w.r.t. h(x)) loss function with a finite upper and lower
bound, i.e., there exists an ℓ∞ such that |ℓ(·, ·)| ≤ ℓ∞ < ∞. Assume −∞ < infx∈X

∂ρx

∂h(x) =:

αmin ≤ 0 ≤ αmax := supx∈X
∂ρx

∂h(x) < ∞. Then, ℓ̃R(h(x), ỹ) is Lipschitz w.r.t. h(x) with the
constant

L̃R :=
(
1 +

3

2
(αmax − αmin)

)
ℓ∞ +

3

2
L+

(3
8
+ αmax − αmin

)
λ.

We note that the assumption αmin ≤ 0 ≤ αmax is reasonable as αminαmax > 0 would imply ρx as a
monotonic function of h(x), which is not realistic since the confidence (and the distance of x to the
decision boundary) of the machine is at its maximum when both h(x) → +∞ and h(x) → −∞.
We address the boundedness imposition on ℓ (and ℓ̃) after the next proposition.
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Proposition 2. Given a noisy training sample S = {(xi, ỹi)}, a base loss function ℓ, any hypothesis
H ∋ h : X → R, let the vectors ñS and d̃S denote the evaluations of the numerator and the
denominator of ℓ̃ over S, respectively. Now define ∆S := ⟨ñS , d̃S⟩2 − ||ñS ||22||d̃S ||22 and assume
|ℓ̃(·, ·)| ≤ ℓ̃∞ < ∞. For λ > 0, provided that λd̃S [i] ≤ ñS [i] · (1 − 1/d̃S [i]) ∀i ∈ [1, |S|],∣∣λ− ⟨ñS ,d̃S⟩

||d̃S ||22

∣∣ ≤ √∆S+4|S|||d̃S ||22
||d̃S ||22

and 2|S|ℓ̃∞ < −∆S

||d̃S ||22
< 4|S|, the following inequality holds with

probability at least 1− δ for any δ ∈ (0, 1):

Rℓ(h) ≤
̂̃
Rℓ̃R(h) + 2L̃RR̂S(H) + 3ℓ̃∞

√
log 2/δ

2|S|
, (6)

where L̃R is given by Lemma 1 and R̂S(H) is the empirical Rademacher complexity ofH over S.

Although the practical utility of this bound is limited, it serves as a theoretical sanity check for
replacing the numerically unstable modified loss in equation 4 with the more stable regularized loss
ℓ̃R. Indeed, Proposition 2 implies there exist settings for which there is a learning guarantee through
empirical noisy risk minimization w.r.t. the regularized loss ℓ̃R towards true clean risk minimization
w.r.t. ℓ, i.e., as if the training was performed using the clean labels. If the base loss ℓ is classification
calibrated (Bartlett et al., 2006), e.g., ℓlog, the path in 2 is completed to reach R(h). We note that
while no common loss function is bounded (e.g., logistic, hinge, squared), it is not uncommon to clip
the losses (see, e.g., Rooyen et al. (2015); Wang et al. (2019)), which does not necessarily hinder
the classification calibratedness (Rooyen et al., 2015). Then, if the base loss ℓ is upper-bounded (say
by ℓ∞ by thresholding and then possibly downscaling), then ℓ̃ can be upper-bounded as well; an
example is given in Appendix A.6.

4 EXPERIMENTS

Here, we first validate the proposed theory using synthetic noise over datasets from the image, audio
and tabular domains using neural networks and decision tree-based models. We then experiment
with a real-world dataset, i.e., a naturally noisy one. We note that we also perform a sanity check
study to show the effectiveness of the loss correction scheme in Appendix A.2.

4.1 SETTINGS

We use the following datasets: on the synthetic noise side, CIFAR-10 (Krizhevsky, 2009) for images;
Speakers (Rimi, 2023) for audio signals (to feature a time series dataset); and Adult (Becker &
Kohavi, 1996), Diabetes (Bennett et al., 1971), Heart (Janosi et al., 1989), Splice (Towell et al.,
1991) and Segmentation (Brodley, 1990) for tabular (to use a machine other than a neural network).
For a naturally noisy dataset, we use Clothing1M (Xiao et al., 2015). As our method is aimed at
binary classification, we split the multiclass-aimed datasets into arbitrary 2-class sub-datasets. The
ratio of the positive class in sub-datasets is provided in Appendix A.7; most of the datasets are
balanced. We use six-layer ReLU CNNs for CIFAR-10 and Clothing1M, and a three-layer ReLU
MLP for the other datasets. For CIFAR-10 and Clothing1M, the provided training-test splits are used
(no clean training data is used for the latter); for others, 80%-20% split is done, where only in the test
set are the clean labels used. In all datasets, 10% of the (noisy) training split is spared for validation.
In all the experiments, the base loss function to correct is the logistic loss ℓlog and the noise rates refer
to the fraction of labels that are actually flipped. Details of the datasets, networks, preprocessing,
optimization and hyperparameter tuning can be found in Appendix A.8; a hyperparameter sensitivity
study of our method is presented in Appendix A.3.

4.2 METHODS FROM THE LITERATURE

We compare our model with methods of different characteristics from the literature, on both syn-
thetic and real-world experiments. While the details of these methods are given in Appendix A.9,
we list their names here: BCN (Du & Cai, 2015); UB (Natarajan et al., 2013); DMI (Xu et al., 2019);
Peer (Liu & Guo, 2020); APL (Ma et al., 2020); PTD (Xia et al., 2020); BLTM (Yang et al., 2022);
Coteaching+ (Yu et al., 2019); Forward & Backward (Patrini et al., 2017); GCE (Zhang & Sabuncu,
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28% 44% 28% 44% 28% 44% 28% 44% 28% 44%
76.12 64.23 53.42 50.00 61.58 50.00 64.50 52.73 68.38 57.00
56.82 50.00 56.43 51.33 55.92 52.58 70.28 55.78 57.98 52.73
76.72 62.62 66.93 55.23 67.15 62.63 76.52 62.33 73.72 61.43
68.43 61.87 56.05 55.87 60.73 60.00 69.52 69.97 65.72 65.82
66.18 69.35 61.88 57.90 57.22 59.02 66.45 63.42 65.97 67.22
79.82 70.47 70.37 54.48 75.02 64.77 82.13 70.42 78.85 67.53
76.88 56.85 66.98 55.43 70.17 57.55 78.07 62.90 76.65 68.98
77.13 33.00 55.00 33.00 67.90 21.72 78.58 19.67 70.28 21.28
78.63 54.42 54.65 50.00 66.40 50.00 78.45 50.00 75.77 53.23
80.22 67.23 64.58 55.00 73.57 65.17 82.43 65.53 80.57 65.40
73.00 53.40 63.85 50.00 71.90 50.00 80.77 50.98 81.00 50.00
74.87 66.48 54.73 52.97 68.88 65.52 70.75 68.78 69.18 63.98
83.43 77.33 72.38 56.45 76.77 66.70 83.27 70.23 82.98 64.78

Method

CIFAR-10
0v1 2v3 4v5 6v7 8v9

Normal
BCN
UB

DMI
Peer
APL
PTD

BLTM
GCE

Coteaching+
Forward

PLC
NDX

Table 1: Mean test accuracy (%) comparisons on CIFAR-10’s five different binary sub-datasets
with varying noise levels over three trials. Scores within 2% of the maximum (relative) are
highlighted in bold.

28% 44% 28% 44% 28% 44% 28% 44% 28% 44%
69.29 56.68 62.94 55.13 69.49 54.17 58.47 51.85 60.55 52.83
81.40 62.30 62.70 44.41 45.22 45.22 67.90 58.25 52.25 52.25
69.54 60.80 64.92 56.64 57.48 57.35 67.34 56.79 60.32 55.71
50.31 61.55 58.39 53.26 51.59 51.59 61.50 63.08 53.75 52.71
74.16 72.16 63.52 69.70 58.33 62.38 71.16 69.25 58.02 67.01
82.65 62.55 78.09 56.99 69.98 60.05 79.69 58.92 69.78 57.55
83.65 67.42 79.14 51.63 60.91 50.00 76.99 60.72 73.01 59.63
79.78 63.67 77.04 55.94 69.85 51.35 72.73 53.42 56.63 57.21
77.40 59.05 75.06 53.38 70.34 55.51 78.23 53.87 68.97 56.40
79.03 67.04 72.14 49.65 68.26 60.78 77.55 56.12 65.97 62.86
77.15 60.67 71.10 52.10 66.54 55.02 71.16 52.30 66.67 54.90
75.03 64.29 75.29 58.16 68.50 61.52 73.85 54.10 61.48 56.52
83.77 72.16 80.30 64.10 74.51 66.91 79.35 69.70 72.32 65.40

Method

Speakers
0v1 2v3 4v5 6v7 8v9

Normal
BCN
UB

DMI
Peer
APL
PTD

BLTM
GCE

Coteaching+
Backward

PLC
NDX

Table 2: Mean test accuracy (%) comparisons on the Speakers dataset’s five different binary
sub-datasets with varying noise levels over three trials. Scores within 2% of the maximum
(relative) are highlighted in bold.

2018) and PLC (Zhang et al., 2021). We also compare against the Normal model trained with the
logistic loss, which does nothing special for label noise.

4.3 SYNTHETIC LABEL NOISE EXPERIMENTS

We artificially inject label noise to the training sets of CIFAR-10, Speakers and Tabular datasets to
simulate the problem. The injection is done by following the procedure in Xia et al. (2020) in an
instance-dependent manner (that is not matched with the distance-to-decision boundary model we
are using for ρx). We experiment with two noise rates: 28% and 44%, which are representatives
of moderate and high noise rates for binary classification, respectively. Three independent trials per
noise rate are made such that possibly different labels are flipped in each trial.

Image Results. We form 5 binary sub-datasets of CIFAR-10. Results in Table 1 suggest that not
only the test set accuracy of NDX is overall better or comparable to other methods, it is also more
“stable” – the performance does not sweep much across datasets as much as other models. It is also
featuring in high noise regime – while some models go astray under 44% noise, NDX manages to
learn from the signal present. The rationale for achieving these can be attributed to the promised
risk equivalence accompanying better generalization provided that the noise model is fine. While
knowing the exact flip rates is practically impossible, the flexibility in modeling it via the instance-
only dependent model opens doors for good approximations, combined with the risk equalizer loss
correction.

Audio Results. Over 5 binary sub-datasets of the Speakers dataset, Table 2 shows that NDX is
always a top-2 performing method regardless of the sub-dataset or the noise level, which speaks
for its robustness. Furthermore, since the method has no dataset-specific assumptions (e.g., image-
based), it is effectively applicable to a dataset of audio signals.
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28% 44% 28% 44% 28% 44% 28% 44% 28% 44%
82.72 66.06 64.94 65.58 51.37 49.18 57.94 65.01 52.02 46.19
83.86 80.05 38.96 38.83 63.39 58.47 81.89 68.18 81.84 67.45
84.20 80.89 71.10 65.97 73.77 60.66 88.53 74.39 82.41 69.03
76.38 75.64 65.58 68.40 59.02 49.73 66.88 71.50 70.24 67.72
78.91 79.89 68.18 68.83 59.56 59.02 85.50 76.26 73.28 72.07
83.64 80.20 66.88 68.61 81.42 51.91 90.04 74.82 84.04 67.14
78.00 76.39 66.45 67.75 59.56 54.10 78.07 47.11 82.31 55.33
84.05 69.57 64.94 64.94 49.18 49.18 65.01 59.60 55.85 45.83
84.38 76.38 64.94 64.94 50.82 50.82 57.79 57.58 54.17 54.17
83.65 78.22 71.00 67.75 68.85 46.99 87.81 66.23 78.79 62.36
83.17 78.39 65.37 54.98 52.46 52.46 74.39 57.79 83.62 55.22
76.38 77.85 64.94 66.23 74.86 50.82 72.87 70.35 78.79 68.66
84.59 80.33 73.16 69.48 81.97 61.20 91.20 71.28 82.73 67.30
82.63 82.23 73.34 68.83 77.05 73.77 85.06 72.73 88.35 78.90

Method

Tabular Datasets
Adult Diabetes Heart Segmentation Splice

Normal
BCN
UB

DMI
Peer
APL
PTD

BLTM
GCE

Coteaching+
Forward

PLC
NDX (NN)

NDX (GBM)

Table 3: Mean test accuracy (%) comparisons on five different tabular datasets with varying
noise levels over three trials. Scores within 2% of the maximum (relative) are highlighted in
bold.

6v8 6v7 6v9 1v6 2v6 0v2 2v9 2v11 1v7 0v11
62.79 74.85 69.03 73.53 67.10 65.67 68.42 71.97 72.88 71.46
63.24 73.10 61.56 69.60 60.46 61.59 55.42 69.50 70.20 67.21
65.65 70.29 64.90 65.33 58.06 63.56 57.74 57.71 71.06 62.77
64.63 67.95 64.44 66.33 58.06 61.59 57.89 59.27 68.70 62.31
65.21 71.11 67.39 70.94 63.69 64.87 65.39 69.91 72.88 68.52
76.06 78.95 76.73 79.73 80.37 69.97 77.35 79.23 79.42 77.34
66.35 78.95 68.40 77.39 71.89 58.82 62.60 77.49 75.35 72.24
64.57 73.80 59.14 67.50 53.27 67.06 58.13 56.55 72.78 65.97
70.54 75.20 71.13 71.78 72.63 67.64 72.49 72.46 75.78 75.31
75.17 78.36 66.54 82.83 78.25 67.78 75.12 77.82 79.53 77.20
69.59 80.70 77.43 83.08 80.83 65.96 74.80 76.83 78.56 76.88
66.22 74.50 64.75 70.69 61.29 65.89 67.07 75.52 73.95 68.13
78.10 79.88 78.37 81.57 80.92 72.96 78.71 79.80 78.78 78.25

Method
Clothing1M

Normal
BCN
UB

DMI
Peer
APL
PTD

BLTM
GCE

Coteaching+
Backward

PLC
NDX

Table 4: Test accuracy (%) comparisons on Clothing1M’s ten different binary sub-datasets.
Scores within 2% of the maximum (relative) are highlighted in bold.

Tabular Results. Since a loss correction approach is generally machine-agnostic by design, here
we experiment with several tabular datasets with LightGBM (Ke et al., 2017), a decision tree-
based gradient-boosting machine, being the underlying learner h for our method. Since ℓ̃Rlog with
ρx = σ(−β|h(x)|) is twice-differentiable w.r.t. h(x), the gradient and Hessian values are available
to customize the loss function used for LightGBM. We still use a neural network for the other meth-
ods since some of them are not compatible with machines other than neural networks (e.g., PTD,
Coteaching+), and others only exposed implementations with neural networks (e.g., GCE, PLC).

The results are shown in Table 3, where NDX (NN) and NDX (LGBM) are our models with the
learning machine being a neural network and a LightGBM model, respectively. We observe that
NDX models perform quite well compared to the other methods across datasets and noise levels.
GBM models are known for their effectiveness in tabular datasets (Shwartz-Ziv & Armon, 2022);
here we also see it in action: in the Heart dataset with 44% label noise, for example, LightGBM
performed more than 10% better than the runner-up in absolute terms. Overall, we were able to use
an entirely different learning machine, a decision tree-based one, instead of a neural network thanks
to the machine-agnostic nature of the loss correction.

4.4 REAL-WORLD LABEL NOISE EXPERIMENT

Here we experiment with a naturally noisy dataset, Clothing1M (Xiao et al., 2015). We use the
∼1,000,000 noisy training pairs for training, and ∼10,000 clean testing pairs for testing the models.
Note that the dataset also comes with clean training and validation splits but we discard them for all
models. We form 10 binary sub-datasets of Clothing1M, e.g., “6v8” in the header represents the task
“Wind-breaker versus Down coat”. Results in Table 4 suggest that our model has also competitive
performance in a real-world scenario by achieving comparable or mostly better testing accuracy
metrics in comparison to the baseline models.
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5 CONCLUSION

We introduced a risk-equivalence based instance-aware loss correction approach to address label
noise in supervised binary classification settings with the underutilized instance-only dependent
noise model. We showed that when the base loss ℓ is classification calibrated, the bridge from
empirical noisy risk minimization to true clean risk minimization is complete, i.e., training a ma-
chine with the new loss ℓ̃ on the noisy labels promises a generalization accuracy as if it was trained
on the clean labels. The instance-only dependent modeling of the transition rates is at the core of the
correction scheme, which is highly flexible in how it is approximated, for which we offered several
computationally efficient ways. The performance of the corrected loss is empirically validated over
a variety of datasets of different domains as well as different underlying machines. A natural step
forward is the multi-class/label generalization of the instance-only dependent noise model.
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A APPENDIX

A.1 PROOFS

Proof of Proposition 1. We start from the desired risk equivalence:

EX,Ỹ [ℓ̃(·, Ỹ )] = EX,Y [ℓ(·, Y )] (1)

EX [EỸ |X [ℓ̃(·, Ỹ ) | X]] = EX [EY |X [ℓ(·, Y ) | X]] (2)∫
X
EỸ |X [ℓ̃(·, Ỹ ) | X = x] dpX(x) =

∫
X
EY |X [ℓ(·, Y ) | X = x] dpX(x). (3)

We now expand the integrands and require them to be equal for all x ∈ X , which is a sufficient
condition for equation 3:

IP(Ỹ = +1 | X = x) ℓ̃(·,+1) + IP(Ỹ = −1 | X = x) ℓ̃(·,−1)
= IP(Y = +1 | X = x) ℓ(·,+1) + IP(Y = −1 | X = x) ℓ(·,−1). (4)

To make use of ρx := IP(Ỹ ̸= Y | X = x), we employ the following trick based on a (trivial)
equality: IP(Ỹ = +1 | x) = (IP(Ỹ = +1 | x) − ρx) + ρx, and similar for the Ỹ = −1 case.
Substituting these into equation 4, we get(

IP(Ỹ = +1 | X = x)− ρx
)
ℓ̃(·,+1) + ρxℓ̃(·,+1)

+
(
IP(Ỹ = −1 | X = x)− ρx

)
ℓ̃(·,−1) + ρxℓ̃(·,−1)

= IP(Y = +1 | X = x) ℓ(·,+1) + IP(Y = −1 | X = x) ℓ(·,−1). (5)

We now split equation 5 into two parts and form the following linear system, which is a sufficient
condition for equation 5:(

IP(Ỹ = +1 | X = x)− ρx
)
ℓ̃(·,+1) + ρxℓ̃(·,−1) = IP(Y = +1 | X = x) ℓ(·,+1)

ρxℓ̃(·,+1) +
(
IP(Ỹ = −1 | X = x)− ρx

)
ℓ̃(·,−1) = IP(Y = −1 | X = x) ℓ(·,−1). (6)

Assuming a unique solution, equation 6 yields

ℓ̃(·,+1) =
IP(Y = +1 | x) (IP(Ỹ = −1 | x)− ρx) ℓ(·,+1)− IP(Y = −1 | x)ρx ℓ(·,−1)

IP(Ỹ = +1 | x)IP(Ỹ = −1 | x)− ρx

ℓ̃(·,−1) = IP(Y = −1 | x) (IP(Ỹ = +1 | x)− ρx) ℓ(·,−1)− IP(Y = +1 | x)ρx ℓ(·,+1)

IP(Ỹ = +1 | x)IP(Ỹ = −1 | x)− ρx
. (7)

We unite the individual loss terms in equation 7 to arrive at

ℓ̃(·, ỹ) = IP(Y = ỹ | x)(IP(Ỹ = −ỹ | x)− ρx)ℓ(·, ỹ)− IP(Y = −ỹ | x)ρxℓ(·,−ỹ)
IP(Ỹ = ỹ | x)IP(Ỹ = −ỹ | x)− ρx

. (8)

We make the following remarks about the proof.
Why subtract ρx in the trick and not anything else? In a CCN label noise model for a binary
classification, we would have the two noise rates as ρ+ := IP(Ỹ = −1 | Y = +1) and ρ− :=

IP(Ỹ = +1 | Y = −1). In Natarajan et al. (2013), the following relationship was then proposed to
construct a modified loss for the CCN setting:(

1− ρ+
)
ℓ̃(·,+1) + ρ+ℓ̃(·,−1) = ℓ(·,+1)

ρ−ℓ̃(·,+1) +
(
1− ρ−

)
ℓ̃(·,−1) = ℓ(·,−1). (9)

We argue that equation 6 forms a natural extension of equation 9 to the IDN setting, including
some additional corrections to ensure risk equivalence in equation 1. First, on the RHS we add
probabilities on Y to take into account the expectation on Y in the RHS of equation 1. Similarly,
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on the LHS, the non-flip rates (set to 1 in equation 9) should take the uncertainty on Ỹ into account
according to the LHS of equation 1. Finally, the single probability of flip ρx is in lieu of two
different ones in the CCN. The resulting system hosts a weighted combination of ℓ̃ for a “robust”
loss correction in the label noise sense, i.e., the weights are the label flip and non-flip probabilities
in each of the ±1 cases.

What if there is no solution to the linear system? That happens if and only if IP(Ỹ = ỹ | x)IP(Ỹ =
−ỹ | x) = ρx for a given x, ỹ pair. Mathematically, there is nothing preventing this (though, certain
measures can be taken in generating ρx to satisfy, e.g., IP(Ỹ = ỹ | x)IP(Ỹ = −ỹ | x) > ρx for any
x, ỹ). However, since the existence of the division leads to numeric issues to begin with (e.g., being
close to 0 for some instances x), we go for the regularized version of the loss function and transfer
the worry to the regularization coefficient’s selection, which is an easier issue to handle.

Proof of Lemma 1. Since ℓ̃R is differentiable w.r.t. h(x), it suffices to seek an upper bound to (the
absolute value of) its derivative w.r.t. h(x). We consider four cases of {ỹ = ±1}×{h(x) ≶ 0} and
take the maximum of the bounds found therein.∣∣∣∣∂ℓ̃R(h(x), ỹ)∂h(x)

∣∣∣∣ = ∣∣∣∣σ(h(x))ỹσ(−h(x))(σ(−ỹh(x))− ρx)ℓ(h(x), ỹ)

+ σ(ỹh(x))

(
(σ(h(x))(−ỹσ(−h(x)))− ∂ρx

∂h(x)
)ℓ(h(x), ỹ) + (ỹσ(−h(x))− ρx)

∂ℓ(h(x), ỹ)

∂h(x)

)
−
(
σ(h(x))(−ỹσ(−h(x)))ρxℓ(h(x),−ỹ)

+ (1− σ(−ỹh(x)))
( ∂ρx
∂h(x)

ℓ(h(x),−ỹ) + ρx
∂ℓ(h(x),−ỹ)

∂h(x)

))
− λ

(
σ(h(x))(1− σ(h(x)))2 + σ(h(x))2(σ(h(x))− ρx)−

∂ρx
∂h(x)

)∣∣∣∣.
(1)

Case 1: ỹ = +1, h(x) > 0.∣∣∣∣∂ℓ̃R(h(x),+1)

∂h(x)

∣∣∣∣ ≤ max

{(
3

4
− αmin

)
ℓ∞ +

1

2
L+

(
3

8
+ αmax

)
λ,(

1

2
+

3

2
αmax

)
ℓ∞ +

3

2
L+

(
1

8
− αmin

)
λ

}
.

(2)

Case 2: ỹ = −1, h(x) > 0.∣∣∣∣∂ℓ̃R(h(x),−1)∂h(x)

∣∣∣∣ ≤ max

{(
1

4
− 3

2
αmin

)
ℓ∞ +

1

2
L+

(
3

8
+ αmax

)
λ,(

1 + αmax

)
ℓ∞ + L+

(
1

4
− αmin

)
λ

}
.

(3)

Case 3: ỹ = +1, h(x) < 0.∣∣∣∣∂ℓ̃R(h(x),+1)

∂h(x)

∣∣∣∣ ≤ max

{(
7

8
− 1

2
αmin + αmax

)
ℓ∞ +

3

2
L+

(
1

4
− αmin

)
λ,(

1

4
+

3

2
αmax

)
ℓ∞ +

3

2
L+

(
3

8
− αmin

)
λ

}
.

(4)

Case 4: ỹ = −1, h(x) < 0.∣∣∣∣∂ℓ̃R(h(x),+1)

∂h(x)

∣∣∣∣ ≤ max

{(
1

2
− αmin

)
ℓ∞ +

1

2
L+

(
1

4
+ αmax

)
λ,(

1

2
+

3

2
αmax

)
ℓ∞ +

3

2
L+

(
3

8
− αmin

)
λ

}
.

(5)

Combining the upper bounds in 2–5 with “element-wise” maximums yields the given L̃R.
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Proof of Proposition 2. The generic empirical Rademacher complexity-based generalization bound
is (Mohri et al., 2012)

R̃ℓ̃(h) ≤
̂̃
Rℓ̃(h) + 2R̂S(ℓ̃ ◦ H) + 3ℓ̃∞

√
log 2/δ

2|S|
. (1)

Since ℓ̃ is derived from the risk equivalence between noisy and clean domains, we have R̃ℓ̃(h) =

Rℓ(h). To replace the empirical risk w.r.t. ℓ̃ with that w.r.t. ℓ̃R, we need λ to satisfy ̂̃
Rℓ̃(h) ≤̂̃

Rℓ̃R(h) ∀h ∈ H, i.e., 1
|S|

∑|S|
i=1 ℓ̃(h(xi), ỹi) ≤ 1

|S|
∑|S|

i=1 ℓ̃
R(h(xi), ỹi). We note that element-

wise inequality is a sufficient condition for this to hold, i.e., ℓ̃(h(xi), ỹi) ≤ ℓ̃R(h(xi), ỹi) ∀i ∈
[1, |S|]. Writing the loss terms in terms of the numerator and denominator evaluations of ℓ̃, we
have ñS [i]/d̃S [i] ≤ ñS [i] − λd̃S [i] ∀i. Rearranging this gives the first condition on λ as λd̃S [i] ≤
ñS [i] · (1 − 1/d̃S [i]) ∀i ∈ [1, |S|]. To “denoise” R̂S(ℓ̃ ◦ H), i.e., be left with the complexity
of the function space H only, we first show that it is upper-bounded by R̂S(ℓ̃

R ◦ H) under some
sufficient conditions on λ, which is further upper-bounded by a constant multiple of R̂S(H) using
the Lipschitz composition property of the Rademacher complexity. To this end, recall the definition
of the empirical Rademacher complexity:

R̂S(ℓ̃ ◦ H) =
1

|S|
Eσ

[
sup
h∈H

|S|∑
i=1

σiℓ̃(h(xi), ỹi)

]
(2)

=
1

|S|
Eσ

[
sup
h∈H
⟨σ, ℓ̃h,S⟩

]
, (3)

where σi are i.i.d. Rademacher random variables, σ = [(σi)]
T
i and ℓ̃h,S = [(ℓ̃(h(xi), ỹi))]

T
i . Note

that σi and xi are mutually independent. We first lower-bound R̂S(ℓ̃
R ◦ H) as follows:

R̂S(ℓ̃
R ◦ H) = 1

|S|
Eσ

[
sup
h∈H
⟨σ, ℓ̃Rh,S⟩

]
≥ 1

|S|
Eσ

[
⟨σ, ℓ̃Rh,S⟩

]
(4)

=
1

2|S|
Eσ

[
||σ||22 + ||ℓ̃Rh,S ||22 − ||σ − ℓ̃Rh,S ||22

]
(5)

≥ 1

2|S|
||ℓ̃Rh,S ||22 (6)

for any given h ∈ H, where we used the definition of the supremum, polarization identity, in-
dependence of σ from ℓ̃Rh,S , monotonicity of expectation, the fact ||σ||22 = |S|, and imposed
||ℓ̃Rh,S ||22 ≤ 4|S|. We now upper-bound R̂S(ℓ̃ ◦ H) as follows:

R̂S(ℓ̃ ◦ H) =
1

|S|
Eσ

[
sup
h∈H
⟨σ, ℓ̃h,S⟩

]
≤ 1

|S|
Eσ

[
||σ||2 sup

h∈H
||ℓ̃h,S ||2

]
(7)

=
1√
|S|

sup
h∈H

||ℓ̃h,S ||2 ≤ ℓ̃∞, (8)

where we used the Cauchy-Schwarz inequality and the independence assumption. Now we further
impose λ such that the upper-bound in equation 8 is to bound the lower-bound in equation 6 from
below for any h ∈ H, i.e.,

ℓ̃∞ ≤
1

2|S|
||ñS − λd̃S ||22. (9)

Combining this with the imposed assumption for equation 6, we have 2|S|ℓ̃∞ ≤ ||ñS − λd̃S ||22 ≤
4|S|. This is a set of second degree polynomial inequalities over λ and the following are sufficient
for it to hold: ∣∣∣∣λ− ⟨ñS , d̃S⟩

||d̃S ||22

∣∣∣∣ ≤
√
∆S + 4|S|||d̃S ||22
||d̃S ||22

, 2|S|ℓ̃∞ <
−∆S

||d̃S ||22
< 4|S|. (10)
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Figure 1: Test accuracy comparisons between the proposed method (NDX; solid) and the Normal
model (dashed), i.e., ℓ̃Rlog versus ℓlog on 4 random sub-datasets of the CIFAR-10 dataset when the
noise process is favorable. The horizontal dashed line is the 50% level, i.e., the test accuracy of a
random guess model since the datasets are all balanced. The proposed method is quite stable and
performs better than the model with the noise intolerant loss even when the noise rate is close to
50%, where the Normal model performs worse than the random guess.

With the Lipschitz composition property of Rademacher complexity, we have R̂S(ℓ̃
R ◦ H) ≤

L̃RR̂S(H). The chain is then completed, i.e.,

R̂S(ℓ̃ ◦ H) ≤ ℓ̃∞ ≤
1

2|S|
||ñS − λd̃S ||22 ≤ R̂S(ℓ̃

R ◦ H) ≤ L̃RR̂S(H), (11)

and the proposition follows.

A.2 SANITY CHECK OF THE LOSS CORRECTION WITH MATCHED NOISE MODEL

To demonstrate the effectiveness of the loss correction when the flip rates are well-modeled, we
purposefully inject synthetic label noise to a given dataset the way we are estimating it, i.e., based
on distance-to-decision-boundary as proposed in the last paragraph of Section 3.2.2. To this end, we
first train a three-layer ReLU MLP over the dataset with ℓlog without any consideration of the label
noise and compute the transition rates based on the distances. We then flip the labels with these rates
and train MLPs with ℓlog (named Normal) and ℓ̃Rlog (named NDX for “noise depending only on X”)
for comparison.

We pick four binary classification sub-datasets of CIFAR-10 randomly. Means of the test set accu-
racy over three trials are plotted in Figure 1 against the noise rates ranging from 0% to 45%. Across
all four datasets, while the network trained with ℓlog experiences a dramatic decrease in performance
as the noise rate goes up (so much to go below 50% at times, i.e., worse than random guessing for
a balanced dataset such as the ones used here), the one with ℓ̃Rlog is much more stable, better at each
rate and manages to learn from the signal even when the flip rate is close to 50%, which underlines
the claimed generalization ability when the noise process is well-modeled.

Furthermore, the leftmost points of subfigures in Figure 1 correspond to 0% noise rate experiments
on CIFAR-10. We observe that our model’s performance is not unnecessarily degraded and practi-
cally the same as the Normal model’s on all four subdatasets.

A.3 HYPERPARAMETER SENSITIVITY

The proposed method has two hyperparameters to tune: λ > 0 the regularization coefficient that
helps approximate the original division in the loss function with repeated subtraction:

ℓ̃R = ℓ̃numerator − λℓ̃denominator,

and β > 0 the logistic function’s scale parameter, which function we use to turn distances-to-
decision-boundary into (pseudo-)probabilities ρx = σ(−β|h(x)|), where h : X → R is the learning
machine. To check the sensitivity of the method with respect to the hyperparameters, we present the
frequency table of the selected λ− β combinations over the 5 sub-datasets of the CIFAR-10 dataset
and the Speakers dataset (results of which were both presented in Section 4.2). Note that there
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λ β Frequency
0.01 20.0 10
0.50 20.0 3
0.50 7.0 3

Table 5: Frequency of selected hyperparam-
eters of NDX over sub-datasets of CIFAR-10
over 30 sub-experiments.

λ β Frequency
10.00 1.0 5
1.00 1.0 4
0.01 1.0 3
0.01 7.0 3

Table 6: Frequency of selected hyperparam-
eters of NDX over sub-datasets of the Speak-
ers dataset over 30 sub-experiments.

were 30 sub-experiments for each dataset: 5 binary sub-datasets × 2 noise levels × 3 trials, and
the validation set is 10% of the noisy training set as mentioned in Section 4. Tables 5 and 6 show
that 3 and 4 λ − β combinations, respectively, already account for 50% of the experiments done,
i.e., the distribution to the chosen λ− β values are far from uniform and instead cluster around 2-3
unique values of the parameters, showing the rather insensitive nature of the method with respect to
its hyperparameters. Note that the need for validation is not relinquished as the chosen values are
different across the image and audio datasets.

A.4 DISJOINT LEARNING OF IP(Y | x) AND IP(Ỹ | x)

Here, we compare two setups for estimating IP(Y | X) and IP(Ỹ | X):

1. The disjoint estimation where we first train a network with ℓlog (and no label noise specific
adjustment) to gather IP(Ỹ | X) values per instance, and then train a different network with
ℓ̃Rlog while using the frozen IP(Ỹ | X) values in the loss correction.

2. Joint training where both IP(Y | X) and IP(Ỹ | X) are approximated the way described in
Section 3.2.1.

Disjoint Joint
20% 79.08 92.34
40% 64.42 68.25
20% 68.38 79.90
40% 60.11 62.87
20% 67.11 73.09
40% 61.30 61.79

Subset Noise Level

0v4

2v7

5v6

Table 7: Test accuracy (%) comparisons
on three different sub-datasets of Speakers
dataset with varying noise levels.

We perform the experiment on three random sub-datasets of the Speakers dataset of Section 4.3; the
experimental setup is the same as described therein. As shown in Table 7, somewhat surprisingly, the
disjoint training performs considerably worse than the proposed approximation. It also takes more
time to train while being memory heavy as it requires saving N floating point numbers into memory.
We attribute the empirical success to the warm-up period we employ before the loss correction
kicks in, during which the “clean” Ỹ s dominate and later, the correction refrains the learner from
overfitting to the noisy ones such that two disjoint stages are blended into one in that sense. We
thereby have an empirical support for our way of modeling clean and noisy label probabilities.

A.4.1 ON USING THE SAME APPROXIMATION FOR BOTH IP(Y | x) AND IP(Ỹ | x)

We first note that IP(Y | x)’s estimation in statistically consistent (i.e., training as if with the clean
labels as the sample size grows) or probabilistic models in general requires design choices. We
exemplify from the literature as follows.

• ”Learning from Massive Noisy Labeled Data for Image Classification” (Xiao et al., 2015):
they concurrently fit two models to model Y and Z (the label noise kind latent variable)
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and maximize the likelihood of Ỹ with Expectation-Maximization. That is, they exploit
the factorization (of Ỹ over Y ) the class-only dependent label noise model allows, and
maximize the (incomplete) likelihood. However, the resulting framework has 3 models in
it (one for Y , one for Z and one for the transition probabilities) and the optimization via
EM gets complex (e.g., requires careful initialization) and requires an identified set of clean
labels.

• ”Learning with Noisy Labels” (Natarajan et al., 2013): when they develop their ”Method
of Unbiased Estimators”, they require E[ℓ(Ỹ , f(x))] = ℓ(Y, f(x)) for all Y , f(·) values.
Please note that there is no expectation on the right hand side. Therefore IP(Y | x) is
nonexistent in their formulation, making it not achieve risk equivalence (we also point to
this fact in the manuscript (end of related work)).

• ”Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach”
(Patrini et al., 2017): This is a multi-class generalization of the above work of Natarajan
et al. (2013); this time we see the expectation on the right hand side. Building on the
factorization IP(Y | x) = IP(Y | Ỹ ,x)IP(Ỹ | x) and their assumption of y-only dependent
label noise, they aim to estimate IP(Y | Ỹ ), i.e., a K ×K transition matrix (K: number of
classes). Their (one) design choice is to train a separate neural network to model this matrix
by assuming the existence of perfect samples (i.e., those having almost surely clean labels).
Therefore, they first learn a transition matrix, freeze it and then use it in the second phase of
learning a new machine on Ỹ s to uncover IP(Y | x). This modeling of the transition matrix
turned out to perform really well, as Forward & Backward loss correction methods from
this paper is still of high relevance in label noise research (theory- and performance-wise).

Our instance-dependent label noise model, while more natural/powerful (Chen et al., 2021), does
not lend itself to the factorization above because in ρx = IP(Ỹ ̸= Y | x), Y and Ỹ are on the left
side of the condition together. Nevertheless, we could still learn the ”annotator’s brain” in a separate
machine, i.e., model IP(Ỹ | x), then freeze its in-sample predictions. Then, in a second phase, while
training an h with ℓ̃ (on the same dataset still), use the frozen predictions of the former machine as a
proxy for IP(Ỹ | X), and the current output of h as a proxy for IP(Y | x) (since with ℓ̃, this phase’s
machine h is expected to uncover IP(Y | x) by Proposition 2). In the previous section (Appendix
A.4.1), we present a detailed empirical comparison of this disjoint approach with what we instead
do – the difference in performance (and naturally also the computation time) was significantly worse
in this disjoint way of modeling those probabilities, providing an empirical evidence for our design
choice.

While that empirical evidence suggests one can do better than disjoint modeling, we directly justify
our assumption as follows. As noted above, in Patrini et al.’s loss correction design (Patrini et al.,
2017), they assume the existence of perfectly clean examples, on/with which they first train a net-
work to model IP(Y | Ỹ ) (and similarly, also in Xiao et al. (2015)). In our setup (or in any noisy
label learning setup for that matter), while the identification of the clean labels is not assumed, their
existence is, e.g., our E[ρx] < 0.5 assumption. In fact, in a K-class scenario, one needs at least
1/K clean samples to exist so that learning is even possible (Menon et al., 2018). (Actually, training
is possible either way, e.g., as an extreme case of 100% label noise in binary classification, a (good
enough) model’s predictions on the unseen data will always be worse than random until they are
flipped, at which point the semantic labels are matched. So the assumption of high signal-to-noise
ratio is to preserve consistency of the semantic meaning of the labels between training and testing
sets.) What’s more, it has been demonstrated by Han et al. (2025) that the neural network first ”fo-
cuses” on these clean samples in the early stages of the training. But this means we can elevate the
disjoint modeling idea of Patrini et al. (2017) of IP(Y | x) and IP(Ỹ | x) with the dominance of clean
samples in early stages of training to make the modeling joint: a number of warm-up epochs at start
with the normal (uncorrected) loss. Once the ”groundwork” of establishing a decision boundary by
the machine in the warm-up period is done with the usual loss function through the dominant clean
samples, our loss correction mechanism kicks in to make the machine more aware of the pitfalls due
to label noise (this ”awareness” is examined mathematically on several edge cases in Section 3.2.3,
where we present similarities and differences between ℓ̃ and ℓ).
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Figure 2: Observing (approximately) U-shapes with rather flat maxima while sweeping the rate
of number of warm-up epochs from 0 to 1, against test accuracy. This supports the need for the
warm-up period as well as the (in)sensitivity against it. Note that the rightmost points represent full
warm-up without any loss correction, i.e., the Normal model.

A.5 EFFECT OF THE NUMBER OF WARM-UP PERIODS

Here, we perform an experiment on the effect of the number of warm-up epochs to model’s gener-
alization ability by sweeping it to see the need for it as well as the sensitivity against it. We sweep
the ratio ”#Warm-Up Epochs / #Total Epochs” from 0 to 1, both ends inclusive. Ideally, we expect
a reverse U-shape with a rather flat maxima w.r.t. test accuracy to represent:

1. The trade-off: when the ratio is 1, model reduces to the ”Normal” model, i.e., does nothing
special about the label noise and has an inferior performance than the other rates; when
the ratio is 0, dominance of the clean labels is not sufficiently utilized to form a reasonable
baseline to correct;

2. The insensitivity against the number of warm-up epochs in the middle region as a rather
flat maxima.

We use the Tabular Adult dataset (Becker & Kohavi, 1996) with 28% and 44% label noise as in
Section 4.3. We train and validate our model as done in the usual experiments while sweeping the
warm-up rate. We plot the warm-up rate versus test accuracy with two different noise rates in Figure
2. We roughly observe the mentioned trade-off and insensitivity over the number of warm-up epochs
(while not being perfect U-shapes), supporting the warm-up strategy. The insensitivity also allows
for not treating the number of warm-up epochs as a hyperparameter that needs heavy tuning (also
the case in, e.g., Li et al. (2020), Yang et al. (2022) and Zhang et al. (2021)).

A.6 BOUNDING ℓ̃

Even though there is nothing mathematically restraining ℓ̃ from going to infinity, it can still be
a bounded loss function provided that the base loss ℓ is also bounded and ρx satisfies a certain
condition. For example, if, for a given h ∈ H and a finite M ,

ρx ≤ σ(h(x))σ(−h(x)) ·min

{
1,

ℓ(h(x), ỹ)

σ(h(x))ℓ(h(x), ỹ) + σ(−h(x))ℓ(h(x),−ỹ)
,

ℓ(h(x), ỹ)−M

σ(h(x))ℓ(h(x), ỹ) + σ(−h(x))ℓ(h(x),−ỹ)−M

}
∀x, ỹ,

(1)

then |ℓ̃(·, ·)| ≤ max{M,A} =: ℓ̃∞. An exemplary ρx would be max(0, σ(h(x))σ(−h(x)) − ε)

for small ε > 0 with ℓ∞ = 50/40 and M = 1.5 = ℓ̃∞, i.e., there exists a ρx configuration that
preserves boundedness of ℓ.

Note that the threshold on the original unbounded loss function for a finite upper bound cannot
be chosen arbitrarily small, as the gradient will vanish for even small activation values close to 0,
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severely hindering learning. For example, while the raw input in absolute value to the logistic loss
barely crosses 10 in practice (making it a candidate upper bound), it would be too stringent to,
say, clamp the loss at 1.5 only to get a lower gap on the RHS of the bound. Furthermore, while
scaling down any loss function has no effect for the optimization problem (all other things being
equal), again, in practice, heavy downscaling to get a lower gap is a matter of trade-off since i)
numerical issues may arise (e.g., underflow) and ii) it requires extra care in tuning the optimization
related hyperparameters, e.g., the learning rate in case of gradient-based methods. More importantly,
though, the risk values themselves in the bound (equation 6) are scaled down since they involve
averaging the losses suffered, so the interpretation of the bound stays the same up to a constant
factor.

A.7 TEST SET DISTRIBUTION OF THE DATASETS

Since we report accuracy scores on the (clean) test sets, here we present the ratios of the positive
(latter) class in each (sub-)dataset used in the experiments:

Subset 0v1 2v3 4v5 6v7 8v9
CIFAR-10 50% 50% 50% 50% 50%
Speakers 43% 56% 55% 49% 48%

Adult Diabetes Heart Segmentation Splice
Tabular 24% 35% 49% 58% 46%

Subset 6v8 6v7 6v9 1v6 2v6 0v2 2v9 2v11 1v7 0v11
Clothing1M 48% 50% 52% 48% 48% 50% 51% 51% 48% 51%

Table 8: Ratios of the positive class in the testing sets of the datasets.

We observe that the test sets are mostly balanced with the exception of Adult and Diabetes tabular
datasets, for which a baseline (a model predicting 0 regardless of the instance) would achieve 76%
and 65% testing accuracy, respectively. We see from the results in Section 4.3 that the best perform-
ing models considerably pass these thresholds (e.g., 84.53% and 73.34%, respectively (under 28%
noise)).

A.8 DETAILS OF THE SETUP OF THE EXPERIMENTS

Datasets.

• CIFAR-10 (Krizhevsky, 2009): The well-known 10-class classification of 32x32x3 RGB
images; 50,000 training and 10,000 test samples.

• Speakers (Rimi, 2023): This is a times series-based dataset aimed for 11-class classification
of YouTube clips of famous motivational speakers. Each clip is a five second signal and the
corresponding label is the name of the speaker. 6,204 training and 1,551 test samples.

• Tabular datasets.
1. Adult (Becker & Kohavi, 1996): predict whether the income of an individual exceeds

a certain threshold; 48,842 instances (11,687 positive), 14 features.
2. Diabetes (Bennett et al., 1971): predict whether a given patient has diabetes; 768

instances (268 positive), 8 features.
3. Heart (Janosi et al., 1989): predict whether a given patient has a heart disease; 303

instances (165 positive), 13 features.
4. Splice (Towell et al., 1991): predict whether a given boundary at the splice junction of

a DNA is an acceptor or a donor; 3,175 instances (1,527 positive), 60 features.
5. Segmentation (Brodley, 1990): assign a group number to hand-segmented 3x3 areas

of various outdoor images; 2,310 instances (1,320 positive), 18 features.
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• Clothing1M (Xiao et al., 2015): This dataset is a large-scale real-world dataset of cloth
images that is naturally noisy. It provides ∼1,000,000 (noisy) training pairs and ∼10,000
(clean) testing pairs. There are 14 classes and the images are 64x64x3 RGB. We note that
we do not use the clean training and validation sets the dataset also provides.

Machines. We use neural networks and LightGBM as the underlying machines in the experiments.

• MLP: a three-layer feed-forward neural network with ReLU as the hidden activations.
Number of hidden neurons are 128, 64 and 32 towards the (single) output. Output acti-
vation is identity.

• CNN (for CIFAR-10): a two convolution-ReLU-maxpool layers (kernel sizes 6x6 and
16x16, respectively with a stride of 5 and no padding for both layers) followed by a 128-
64-32 fully connected layers towards the (single) output. Output activation is identity.

• CNN (for Clothing1M): a four convolution-ReLU-maxpool layers (kernel sizes 32x32,
32x32, 64x64 and 64x64 respectively with a stride of 1 and no padding for all layers) fol-
lowed by a 128-sized fully connected layer towards the (single) output. Output activation
is identity.

• LightGBM: default parameters are used except for the number of trees and the learning
rate, which are tuned.

Preprocessing. All datasets undergo standardization (subtract the mean, divide by the standard de-
viation; both statistics are obtained from the training split) after the following specific preprocessing
steps are applied:

• CIFAR-10: random crops and random horizontal flips.

• Speakers: Mel-frequency cepstrum with 128 mel bands such that inputs are akin to a 2D
image of shape 128 x 157.

• Tabular datasets: For the Adult dataset, categorical features are one-hot encoded yielding
100 features in effect.

Optimization. For all experiment runs, 20 epochs of SGD with a batch size of 128 (32 for Speakers)
is used (first 4 epochs are for warm-up in NDX). 10% of the training set is spared for the validation
of hyperparameters with grid search: learning rate, regularization coefficient (λ) and sigmoid scale
(β) for NDX; learning rate for other models. Noncritical hyperparameters, if any, are taken from the
respective papers/source code as is, against which most of the methods assert to be rather insensitive
anyway (e.g., “iteration nmf” of PTD (Xia et al., 2020) is taken to be 20; “forget rate” of Coteach-
ing+ (Yu et al., 2019) (which is actually not mentioned in the paper) is set to 0.2). Validation is done
for more prominent hyperparameters, e.g., ρ+ and ρ− of UB (Natarajan et al., 2013) are searched in
[0.1, 0.2, 0.3, 0.4]; α of Peer (Liu & Guo, 2020) in [0.1, 1., 5.] and α and β of APL (Ma et al., 2020)
in [0.1, 1., 10.]. The center learning rate (call η) is 0.01 for all experiments; η/100, η/10, 10η, 100η
is the learning rate search space. For NDX, λ ∈ (0.01, 0.10, 0.50, 1, 10) and β ∈ (1, 3, 7, 20, 50)
are searched. As an exception, Adam optimizer is used in Coteaching+’s training as advised in its
paper (Yu et al., 2019). For LightGBM, number of trees are searched in (10, 25, 50, 100, 150) and
the learning rate in (0.01, 0.05, 0.10, 0.50, 1).

A.9 DETAILS OF THE METHODS FROM THE LITERATURE USED IN THE EXPERIMENTS

Here we give brief details on the methods used in the Experiments in Section 4.2 for comparison
over the real-life datasets.

BCN (Du & Cai, 2015) is a modified logistic regression model with boundary-consistent instance-
only dependent noise model. UB is the “method of unbiased estimators” of Natarajan et al. (2013)
with a CCN-based noise model. DMI (Xu et al., 2019) is a CCN-based loss correction method from
an information theoretic view that involves the determinant of the transition matrix. Peer (Liu &
Guo, 2020) represents the peer loss that achieves risk equivalence up to a constant involving noise
rates. APL (Ma et al., 2020) introduced a normalization trick to make any loss function noise toler-
ant and uses combinations of un/normalized (active/passive) loss functions for better generalization.
PTD (Xia et al., 2020) is based on part-dependent ILDN modeling of the noise which, for each part
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of a given instance, first learns representations and then a transition matrix by utilizing almost surely
non-noisy samples. BLTM (Yang et al., 2022) is also an ILDN-based model which brings in the
Bayes-optimal labels through which a transition matrix is learned and a revision is lastly made as in
PTD. Coteaching+ (Yu et al., 2019) is an improvement over the Coteaching model (Han et al., 2018)
that uses two neural networks in parallel and proposes a small-loss and disagreement based cross
update rule to deal with the noise. Forward and Backward (Patrini et al., 2017) are CCN-based loss
correction mechanisms where first a normal network is trained to estimate the transition matrix and
it is then fed to another one to correct predictions or the loss itself, respectively. GCE is the general-
ized cross entropy loss function proposed by Zhang & Sabuncu (2018), which uses a Box-Cox-like
transformation to correct the logistic loss. PLC (Zhang et al., 2021) progressively corrects suspi-
cious data pairs with an ILDN-based noise model. Lastly, we note that we also experimented with
DivideMix (Li et al., 2020), a neural network machinery with distillation of small-loss examples via
a Gaussian mixture model; however, it did not attain a reasonable score with validation (consider-
ably above 50% test accuracy) for any of the binary classification tasks presented in Section 4, and
therefore is excluded from the results.

A.10 CODE FOR THE LOSS CORRECTION

As mentioned in Section 1, loss correction methods are generally very easy to implement. Our
method with probabilities calculated through distances to the decision boundary requires little extra
computation thanks to the observation mentioned at the end of Section 3.2.2, i.e., distances are
approximated with |h(x)| where h(x) is already calculated in the training loop as an input gets
feed-forwarded. Here, we share a sample implementation of this loss correction mechanism in code
using PyTorch (Paszke et al., 2019) where we correct ℓlog:

import torch
from torch import exp, log, sigmoid

def loss_fun(self, X, y):
"""
Given (batch) pairs X and y (noisy), return ˜lˆR
"""
## Feed-forward
h_x = self(X).squeeze(-1)
f_x = sigmoid(h_x)

## Calculate distance-based probabilities of label flips
# ‘self.sigmoid_scale‘ is \beta
distances = h_x.abs()
rho_x = 1 / (1 + exp(self.sigmoid_scale * distances))

## Compute the corrected loss
# Base loss (\ell; logistic) w.r.t. ˜y and -˜y
normal_loss = torch.where(y == +1, -log(f_x), -log(1 - f_x))
opposite_loss = torch.where(y == +1, -log(1 - f_x), -log(f_x))

# Approximate P(Y | X) and P(˜Y | X), form the modified loss
pyy_x = torch.where(y == +1, f_x, 1 - f_x)
numerator = ((1 - pyy_x - rho_x) * pyy_x * normal_loss

- rho_x * (1 - pyy_x) * opposite_loss)
denominator = pyy_x * (1 - pyy_x) - rho_x

# ‘self.regularization_scale‘ is \lambda
loss = numerator - self.regularization_scale * denominator

return loss.mean()
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