
RUBICK: EXPLOITING JOB RECONFIGURABILITY FOR DEEP LEARNING
CLUSTER SCHEDULING

Xinyi Zhang † 1 Hanyu Zhao 2 Wencong Xiao 2 Xianyan Jia 2 Fei Xu * 1 Yong Li 2 Wei Lin 2 Fangming Liu 3

ABSTRACT
The era of large deep learning models has given rise to advanced training strategies such as 3D parallelism and the
ZeRO series. The combination of these strategies enables various (re-)configurable execution plans for a training
job, each exhibiting remarkably different requirements across multiple resource types. Existing cluster scheduling
systems, however, treat such reconfigurable training jobs as black boxes: they rely on users to choose execution
plans statically, and then allocate resources without considering the chosen plans and their resource requirements.
This approach results in mismatches between execution plans and resources, making both training performance
and cluster utilization far from optimal.

We introduce Rubick, a cluster scheduling system for deep learning training that exploits the reconfigurability
to improve job performance and cluster efficiency. Rubick incorporates the job execution planning as a new
dimension in cluster scheduling, by continuously reconfiguring jobs’ execution plans and tuning multi-resource
allocations across jobs jointly. Such a co-optimization is navigated by a performance model that understands
the diverse resource requirements and performance characteristics of different jobs and execution plans. Rubick
exploits such a model to make performance-aware scheduling decisions to maximize cluster throughput while
providing performance guarantees to individual jobs. Evaluations on a 64-GPU high-performance training cluster
show that Rubick reduces average job completion time and makespan by up to 3.2⇥ and 1.4⇥, respectively,
compared against state-of-the-art systems. The source code of Rubick is publicly available at https://github.
com/AlibabaPAI/reconfigurable-dl-scheduler.

1 INTRODUCTION

With the dominance of Transformer architectures (Vaswani
et al., 2017) in terms of model performance across a variety
of applications, deep learning (DL) has recently entered an
era characterized by exponentially increasing model sizes,
which further escalates training resource (e.g., GPU) re-
quirements (Radford et al., 2019; Liu et al., 2021; Devlin
et al., 2019). To facilitate efficient large-scale DL training,
organizations such as Microsoft (Jeon et al., 2019) and Al-
ibaba (Weng et al., 2022) have built multi-tenant shared
GPU clusters, thereby improving resource utilization.

Numerous research efforts have been devoted to optimizing
job execution plans for large model training. For instance,
several studies concentrate on scheduling and partitioning

†Work done during internship at Alibaba Group. 1School of
Computer Science and Technology, East China Normal University,
Shanghai, China 2Alibaba Group, Hangzhou, Zhejiang Province,
China 3Peng Cheng Laboratory, and Huazhong University of
Science and Technology, China. *Correspondence to: Fei Xu
<fxu@cs.ecnu.edu.cn>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

operators and tensors to attain better performance (Zheng
et al., 2022; Unger et al., 2022; Jia et al., 2022), while others
focus on optimizing GPU memory usage by eliminating
duplicate states (Rajbhandari et al., 2020), recomputing acti-
vation (Chen et al., 2016), and offloading (Ren et al., 2021;
Rajbhandari et al., 2021). These cutting-edge techniques
have proven to be effective in improving the performance
of DL jobs on dedicated resources. However, they fall
short in dynamic shared clusters, where resource availabil-
ity can vary significantly during job training (Weng et al.,
2022). This is mainly because the training paradigm follows
a compile-and-run approach. Specifically, an execution plan
is pre-compiled at job launch time and then runs iteratively
until completion on fixed allocated resources. Such an ap-
proach fundamentally impedes the possibility of exploiting
resource dynamics efficiently.

From a cluster management standpoint, DL training jobs
typically request a predetermined amount of resources and
must wait for the availability of all resources due to the
gang-scheduling requirement (Jeon et al., 2019; Weng et al.,
2022). To reduce the job queuing delay, several recent stud-
ies have proposed elastic resource scheduling for distributed
data-parallel jobs (Hwang et al., 2021; Qiao et al., 2021; Li

https://github.com/AlibabaPAI/reconfigurable-dl-scheduler
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler
mailto:fxu@cs.ecnu.edu.cn

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

*38

Conventional DL job allocation

Rubick: (1) White-box job plan

Rubick : (2) Exploit job reconfiguration

Job 2Job 1

M
em

or
y

GC+ZeRO
Offload

DP(2) + TP(3)

Rubick: (3) Opt. for cluster throughput

Job 2 (8 GPUs)Queue

Job 1

TP(2)
PP(2) M

em
or

y
GA

Job 4

Job 2
TP(3)+GA

Job 3
DP(2) +GC

*38

*38

*38

*38

*38

*38

*38

*38
Job 1

Queue Job 2: DP(8)

Job 3: DP(4)Queue Job 4: ZeRO-DP(8)

Queue

Job 1
GC+ZeRO

Offload

Figure 1. Overview of Rubick. Its fundamental capability lies in
leveraging white-box execution plans to enable job reconfiguration
and cluster-level throughput optimization. Job execution plans (i.e.,
data parallelism (DP), tensor parallelism (TP), pipeline parallelism
(PP), gradient checkpointing (GC), gradient accumulation (GA))
are elaborated in Sec. 2.1.

et al., 2023). However, the cluster scheduler only scales the
number of training workers without considering the execu-
tion plan, resulting in two constraints arising from the DL
resource characteristics implicit in job execution plans. First,
different execution plans come with diverse resource require-
ments. Despite the primary concern about the number of
GPUs, these plans also impact the multi-resource require-
ments (i.e., GPU, CPU, memory, network). For example,
switching from tensor parallelism (Shoeybi et al., 2019) to
ZeRO-Offload (Ren et al., 2021) effectively reduces the de-
mand for GPUs, but incurs higher memory consumption in
exchange. Second, there is no single execution plan that
can be considered as optimal under all GPU resource allo-
cations. As evidenced by Fig. 3b, TP+DP+GA (Wang et al.,
2019; Keskar et al., 2017) is the best plan given four servers
with 8 A800 GPUs each when training the T5 model (Raffel
et al., 2020), while TP+DP+GC (Chen et al., 2016) and
ZeRO-Offload+GA is the best on a single server with four
GPUs and one GPU, respectively. Such two observations
above imply an interesting interplay between a training job’s
execution plan and the resource allocation to it. Specifically,
given a limited amount of available resources, it is possible
to adapt the execution plan to the resource by choosing a
plan whose multi-resource demand matches the available
resources the best. On the other hand, when resources are
abundant, it is also possible to adapt the resource alloca-
tion to the plan by choosing a plan that exhibits the best
performance, and then allocating resources according to the
demand of that plan.

Unfortunately, such an opportunity above is largely over-
looked in current DL training clusters, where the decisions
for execution plans and resource allocations are made sep-
arately. The execution plans are chosen by users statically,
without knowledge of the dynamics of cluster resources,
prohibiting the reconfiguration of the plan from adapting to
the resources. Meanwhile, the resource allocations are either
following user-specified requirements or tuned by cluster

schedulers. Despite knowing the plans they choose, users
typically do not have the knowledge or profiling expertise
to understand the resource demands of the plans. Current
cluster schedulers, on the other hand, even have no informa-
tion about job’s execution plans. Either way, it is difficult to
optimize the resource allocations according to the execution
plans.

We introduce Rubick, a novel cluster scheduling system
that exploits the reconfigurability of DL training to bridge
the gap between intra-job execution planning and inter-job
resource scheduling. As illustrated in Fig. 1, unlike con-
ventional schedulers that treat DL jobs as pre-defined static
execution plans for scheduling, Rubick performs a white-
box approach to co-optimize cluster resources and training
strategies of jobs dynamically through execution plan re-
configuration. Such a design enables Rubick to continu-
ously reconfigure the execution plans for individual jobs
and reallocate multi-dimensional resources across jobs co-
adaptively.

To help Rubick understand the multi-resource demands
of various execution plans, we establish a resource-
performance model for a series of widely-used training
strategies to characterize their fine-grained behaviors care-
fully. With such a model, Rubick predicts the performance
of each job with any combinations of the execution plan and
resource allocation. Guided by such performance predic-
tions, Rubick further employs a performance-aware schedul-
ing policy to search for optimized execution plans efficiently
for each job while adjusting the multi-resource allocations
across jobs, with the aim of maximizing cluster through-
put while guaranteeing the service-level objective (SLO) to
individual jobs.

We evaluate Rubick on a 64-GPU cluster to show the advan-
tages of the reconfiguration and job-plan-aware scheduling
policy. Trace evaluations show that Rubick preserves the
SLO guarantees for jobs and reduces the average job com-
pletion time (JCT) by up to 3.2⇥ compared to state-of-the-
art DL cluster schedulers (Sia (Jayaram Subramanya et al.,
2023b), Synergy (Mohan et al., 2022), and AntMan (Xiao
et al., 2020)).

The contributions of this paper are summarized as follows.

• We reveal the diverse multi-resource requirements of var-
ious training strategies and identify the interplay between
execution plans and resource allocations for DL training.

• We propose a system architecture to embrace job plan
reconfiguration as a new dimension in cluster scheduling.

• We design a performance model and a scheduling policy
to maximize job performance and cluster throughput by
co-optimizing execution plans and resource allocations.

• We implement and evaluate Rubick to show its advantages
over reconfigurability-agnostic systems.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

2 BACKGROUND AND MOTIVATION

2.1 Large Model Training in GPU Clusters

DL training often involves millions of iterations, each called
a mini-batch. A mini-batch has three phases. Firstly, cur-
rent model scores are calculated using a DAG of operators,
known as a forward pass. Secondly, a loss error is back-
propagated to generate gradients, called a backward pass.
Finally, model parameters are updated using an optimizer.

In distributed GPU training, data parallelism (DP) uses mul-
tiple workers, each executing the full model on a subset
of a mini-batch, and synchronizes gradients across work-
ers after the backward pass (Li et al., 2020), which causes
significant network and GPU memory overhead for large
models. 3D parallelism can address this, which combines
tensor model parallelism (TP) (Shoeybi et al., 2019; Wang
et al., 2019) and pipeline parallelism (PP) (Narayanan et al.,
2019; Huang et al., 2019) with DP. TP partitions the compu-
tation of a specific operator in non-batch axes across GPUs.
PP groups model operators into stages and places them on
different GPUs. It then splits a mini-batch into a number
of micro-batches for forward-backward computation across
GPUs. The degrees of DP/TP/PP (i.e., the number of model
replicas/model partitions/pipeline stages) are either spec-
ified by users (Shoeybi et al., 2019; Rasley et al., 2020)
or automated (Zheng et al., 2022; Unger et al., 2022; Jia
et al., 2022) to efficiently scale the training on trillions of
parameters over hundreds or thousands of GPUs.

Other techniques focus on reducing GPU memory consump-
tion. Gradient accumulation (GA) (Keskar et al., 2017)
divides a mini-batch into micro-batches and aggregates
gradients locally before global synchronization. Gradient
checkpointing (GC) (Chen et al., 2016) saves a subset of
the intermediate results (i.e., activations) and recomputes
missing activations on-demand in backward passes to re-
duce GPU memory. ZeRO-DP (Rajbhandari et al., 2020)
eliminates redundant states (i.e., optimizer states, gradients,
and weight parameters) of DP by slicing them across all
GPUs1. ZeRO-Offload (Ren et al., 2021) keeps the forward-
backward pass on GPU, offloads the gradients and states to
host memory, and updates the parameters using CPUs.

To submit a job to a GPU cluster, users need to specify
the required multi-dimensional resources for a worker, and
the number of workers for distributed jobs (Weng et al.,
2022; Mohan et al., 2022). For instance, a training job may
request 2 workers, each with 8 GPUs, 16 CPUs, and 100 GB
memory. Cluster scheduler launches jobs once the resources
are available (Jeon et al., 2019). For DP jobs, GPU training
elasticity allows scaling the number of training workers
during job execution (Qiao et al., 2021; Li et al., 2023).

1There are several ZeRO-DP variants, and we refer to ZeRO-2
by default.

2.2 Opportunity and Challenge

Opportunity: diverse multi-resource demands of differ-
ent execution plans. The application of training strate-
gies above can produce diverse execution plans for model
training. A notable variance exists in the resource types and
quantities required for these plans. Fig. 2 shows the resource
consumption for training GPT-2 (Radford et al., 2019) with
the minimum A800 GPUs with a global batch size of 16.
With a similar number of GPUs, ZeRO-Offload uses the
most CPU and memory resources for parameter updates and
states offloading, while TP uses more bandwidth for heavier
communication, but only half of the CPUs and memory.

Despite the diverse resource demands of execution plans,
there exist significant gaps between the execution planning
of training jobs and resource allocation in shared GPU clus-
ters. Cluster schedulers perceive DL training jobs as black-
box tasks with fixed resource requirements, disregarding the
variability in resource demands of various execution plans.
On the other hand, job’s execution plans are often decided
manually or automatically before training. This approach
assumes that the cluster is dedicated and exclusive, which
does not hold in shared clusters where resource supply is
dynamic and unknown to users (Weng et al., 2022; 2023).
This mismatch leads to suboptimal job execution. When
resources are limited, jobs may be delayed due to excessive
resource requests or run with degraded performance due to
the mismatch between the resources and the requirement
of its execution plan. Conversely, when resources are over-
abundant, jobs may not fully utilize them due to the fixed
resource request or the inefficiency of the execution plan.

This presents great opportunities for cluster schedulers to
leverage the reconfiguration capabilities of DL jobs. Jobs
can adapt to dynamic multi-resource availability with effi-
cient training strategies properly, while cluster schedulers
could transparently view the job execution plans and re-
source demands to optimize scheduling decisions, thereby
improving cluster efficiency and expediting job completion.

Challenge: complex performance characteristics of
model-plan-resource combinations. We conduct two ex-
periments to better understand the performance characteris-
tics of different models and execution plans. We first train
a RoBERTa model (Liu et al., 2019) with multiple plans
and change the limit of a certain resource type in each stage.
Fig. 3a shows that the performance of the plans and their
relative rankings vary across stages. In the first three stages,
where GPUs and bandwidth are abundant, the best plans are
ZeRO-DP due to its reduction in the optimizer time, which
scales favorably with the increased number of GPUs for
the model state partitioning. With GPUs reduced to 1 in
the fourth stage, ZeRO-DP performs worse with increased
optimizer time, making DP+GA the new best.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

'3
73
33
'3�*$

=H52�2ƌRDG
=H52�'3

=H52�2ƌRDG�*$

G38

C38 %DQGZLGWK

0HPRU\

0.5

0.5

1

Figure 2. Consumption of each resource
type for GPT-2 using various training
execution plans, normalized to the high-
est value (8 GPUs, 10 CPUs, 3.2 GB
memory, and 30 GB/s bandwidth).

(a) RoBERTa (b) T5

Figure 3. Throughput variation using various execution plans with changing resource limits.
The first hour is using 4 servers with 8 A800 GPUs for each, and the second hour is using 4
servers with 4 A800 GPUs. The rest are using a 4-A800 server. TP+DP/PP means using TP
inside nodes and DP/PP across nodes. Megatron 3D adopts a feasible TP+PP configuration
such that each partition fits in a GPU, then scaling out using DP.

Fig. 3b shows the same process with a larger model, T5,
for comparison. In the initial two stages, where GPUs are
distributed, the best plans are 3D parallelism with differ-
ent DP/TP/PP sizes. This is because the performance is
constrained by the bandwidth across nodes, thus depend-
ing on communication volume under different 3D paral-
lelism configurations. With a single server in the third stage,
TP+DP+GC is optimal with its modest recomputation over-
head when GPU memory is limited. With 1 GPU in the
fourth stage, ZeRO-Offload is the only feasible plan by of-
floading to CPU memory. In the final stage, when memory
is further reduced to 10 GB, ZeRO-Offload also fails.

We also observe that the execution plans exhibit different
performance characteristics with a different model. For
example, ZeRO-Offload nearly always performs the worst
on RoBERTa, while this is not the case for T5. Moreover, the
two models show different sensitivity to switching execution
plans. The maximum performance gap between plans in the
same stage is up to 1.7⇥ for T5 and 2.7⇥ for RoBERTa,
showing different levels of benefits from reconfiguration.

Summary. The observations above show the complex per-
formance characteristics of different combinations of mod-
els, plans, and resources: a single job can have varying
best plans with changing resource availability; moreover,
different jobs also exhibit different sensitivities to chang-
ing resource and execution plans. Such complexity stems
from the heterogeneous model structures, diverse training
behaviors of the plans, and distinct resource usage patterns.
To derive high-quality resource allocations and execution
plans, the scheduler must understand such characteristics.
However, it is impractical to enumerate every possible com-
bination for real performance, considering the intractable
search space of models, plans, and resource types in a large
cluster. This motivates a performance-modeling approach to
predict the performance of various plans and resources for a
job with limited sampled configurations for measurement.

GPU 0

GPU 1

M
e

m
o

ry

GPT-2
4-GPU

Modeling

1

Reconfiguring

GPU 2

GPU 3

Job
2

Shrink

Scheduling

Rubick

Guaranteed

Best-effort

2

Job
1

3

NewPlan
Res.: 2-GPU
Exec: ZeRO-Offload

BERT
Res.:4-GPU

Exec: ZeRO-DP
4

4
NewPlan
Res.: 2-GPU
Exec: ZeRO-DP+GCRes.

Perf.

Plan

Figure 4. Rubick architecture and scheduling workflow.

3 SYSTEM OVERVIEW

Going beyond the traditional responsibility of allocating
resources to incoming jobs, Rubick also manages job exe-
cution planning. It continuously adjusts resource allocation
and reconfigures execution plans jointly for all running jobs.
As shown in Fig. 4, Rubick operates in three main phases:
First, profiling and modeling performance for new model
types (¿); second, allocating resources and choosing exe-
cution plans for each job based on a scheduling policy (¡);
and finally, launching new jobs (¬) or reconfiguring running
jobs (√) according to the scheduling decision.

Rubick supports a range of widely-used execution plans,
including (1) Megatron-style 3D parallelism (DP-TP-
PP) (Shoeybi et al., 2019; Narayanan et al., 2021), (2) ZeRO-
DP (Rajbhandari et al., 2020) and ZeRO-Offload (Ren et al.,
2021) based on DP, (3) gradient accumulation (Keskar et al.,
2017) or checkpointing (Chen et al., 2016) (GA/GC). Rubick
can reconfigure jobs by switching among different types of
execution plans; for 3D parallelism in particular, Rubick also
supports changing the DP/TP/PP sizes. Rubick keeps the
global batch size of a job unchanged during reconfiguration,
thus not affecting the training convergence.

Rubick establishes a performance model for reconfigurable
DL training (Sec. 4) to enable performance-aware schedul-

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

ing. The model captures the fine-grained behaviors of vari-
ous training strategies and the impact of resource variations
on their performance. It is fitted for each DL model using
a few sampled performance points under different configu-
rations (i.e., execution plans and resources). Once fitted,
the model can predict the performance for previously un-
seen configurations. In particular, the model can be reused
throughout the lifetime of a job for continuous reconfigu-
rations. It can also be reused across multiple jobs of the
same model type, i.e., jobs with exactly the same model
architecture but possibly different hyper-parameters, such
as learning rate. Rubick allows users to associate such jobs
with a model-type flag to facilitate such reuse.

Leveraging the performance model, the Rubick scheduler
allocates resources and reconfigures the execution plans for
jobs (Sec. 5). Rubick is designed for shared clusters, where
resources are shared among multiple tenants (e.g., teams,
departments), each with a certain resource quota. Similar to
existing systems(Wu et al., 2023; Zhao et al., 2020), Rubick
classifies jobs into two categories. First is guaranteed jobs,
which consume certain amounts of resource quotas. These
jobs are provided with an SLO guarantee to ensure they re-
ceive the requested resources, as long as the quota is enough.
Second is best-effort jobs, which do not occupy quotas and
instead use free cluster resources opportunistically. These
jobs can be preempted to prevent SLO violations.

Rubick follows the high-level principle of ensuring SLOs
for guaranteed jobs while improving resource utilization
with best-effort jobs. Taking a step further, Rubick redefines
conventional scheduling goals by incorporating execution
planning as a new scheduling dimension. The first goal of
Rubick is to provide performance guarantees by ensuring
that guaranteed jobs achieve at least the performance they
would have with the user-specified resources and execution
plan. Instead of strictly guaranteeing resource amounts, the
new definition of SLO creates the opportunity for Rubick
to deliver the same or better performance with fewer re-
sources by identifying better execution plans; such saved
resources can further benefit other jobs. Based on perfor-
mance guarantees, the second goal is to maximize cluster
throughput, i.e., the aggregated performance of all jobs
(for both guaranteed and best-effort jobs). Using the per-
formance predictions from the performance model, Rubick
continuously tunes the resource allocation and execution
plan for each job to achieve global optimization.

4 MODELING RECONFIGURABLE DL
TRAINING

We provide a performance model to predict training through-
put using different combinations of strategies and resource
allocations. The model estimates the time per training itera-
tion and calculates the throughput as THROUGHPUT =

Tcc
Tfwd Tbwd

Tcomm
Toff Toff

Titer
Too
Topt

Figure 5. Simplified illustration of the performance model. Note
that the overlapping of the parts only means the overlapping of
their time spans; the real execution is not necessarily overlapped,
which depends on the specific strategy.

b/Titer, where b is the global batch size. Titer generally
consists of several parts: Tfwd, the time for forward pass
computation; Tbwd, backward pass computation; Tcomm,
network communication; Topt, optimizer; and Toff , offload-
ing of model states. As shown in Fig. 5, Titer is typically not
a simple sum of these parts, because they may overlap each
other. The performance model uses fittable parameters to
quantify the degree of overlapping and also organize these
parts into Titer, thereby capturing the impact of different
execution plans and multi-resources. The predictions of the
performance model are computationally lightweight, involv-
ing only simple mathematical calculations. Further details
on mathematical modeling are deferred to Appendix A.

4.1 Modeling Multi-Dimensional Resources

The performance model accounts for multi-resources, in-
cluding GPUs, CPUs, and environment-related constants
such as inter-node (i.e., RDMA) and intra-node bandwidth
(i.e., NVLink and PCIe). The number of GPUs is consid-
ered when modeling each part in Fig. 5. The computation
tasks are partitioned across multiple GPUs to enable parallel
processing. Specifically, it splits the global batch size/tensor
shard size/model layers for DP/TP/PP respectively – impact-
ing both Tfwd and Tbwd. This partitioning also affects the
volume and frequency of communication between GPUs,
thereby influencing Tcomm. Furthermore, GPUs partition
model parameters for TP/PP/ZeRO-series, which affects
Topt and Toff .

Regarding the CPU, it updates the model partition in parallel
for ZeRO-Offload, impacting the Topt. For PCIe bandwidth,
it is crucial for Toff since the partitioned gradients/param-
eters are transferred between CPU memory and GPUs in
ZeRO-Offload. When modeling Tcomm, we consider both
inter-node bandwidth and NVLink. Specifically, we use
the lowest bandwidth among all pairs of GPUs involved in
the communication, i.e., NVLink for co-located GPUs and
inter-node bandwidth for GPUs across multiple nodes.

4.2 Modeling Different Training Strategies

Each training strategy has distinct fine-grained behaviors.
For example, GC recomputes activations during the back-
ward pass, which needs an additional computation time

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

typically equal to Tfwd. The performance model also uses
three ways to capture these strategy-specific behaviors: 1.
Specialized Training Part: Toff denotes the time for ZeRO-
Offload, which is taken by the communication between CPU
and GPU. 2. Strategy-Specific Parameters: Configurable
parameters such as a for the accumulation steps in GA,
and m for the number of micro-batches in PP. 3. Fittable
Parameters: Parameters such as ksync, which models the
overlapping between Tbwd and Tcomm in DP, and kopt off ,
which represents CPU efficiency in ZeRO-Offload.

Remark. Appendix A provides instructions for modeling
the execution plan mentioned in Sec. 3. In practice, Rubick
offers elasticity for incorporating complex training strate-
gies (e.g., sequence parallelism). The plug-in modules in Ru-
bick, i.e., the performance model and the scheduler, enable
the flexible substitution of the performance model for new
strategies, while keeping the scheduling policy unchanged.
Modifications are only required to the performance model
to accommodate new strategies, as they impact the training
flow. Rubick ensures that the performance model can be
seamlessly upgraded while maintaining the system’s ability
to dynamically co-optimize cluster resources and strategies.

4.3 Continuous Model Fitting

The performance model contains seven fittable parameters,
which are fitted using at least seven throughput values col-
lected from several sampled test runs with different resource
allocations and execution plans. This 7-tuple is specific to
each model type before scheduling. The model can also be
updated online using metrics from real training runs when
prediction error exceeds a threshold. By continuously up-
dating the model, Rubick can correct potential prediction
errors and mitigate their impact on scheduling decisions.

5 THE Rubick SCHEDULER

This section describes how Rubick leverages the perfor-
mance model and the reconfigurability of training jobs to
maximize cluster throughput while ensuring performance
guarantees, as detailed in Sec. 3. Rubick scheduler allocates
GPU, CPU, and memory resources to jobs. The problem
of multi-resource scheduling can be formulated as a multi-
dimensional bin-packing problem, which is NP-hard. Our
problem is more complex when incorporating execution
planning. Therefore, we design a heuristic policy.

Resource sensitivity curves. To maximize cluster
throughput, Rubick prioritizes jobs that benefit the most
from the available resources. It achieves this by construct-
ing resource sensitivity curves. Based on the predictions
of the performance model, the curves show how job perfor-
mance varies when scaling a specific type of resource, while

Figure 6. Resource (GPU) sensitivity curve of the GPT-2 model.
Each point represents the throughput using the given GPU(s) with a
certain execution plan. Only a few GPU numbers are valid (i.e., the
data points with non-zero job throughput), due to the partitioning
constraints of DP/TP/PP.

keeping other types fixed. The curves also take execution
planning into account, only choosing the best execution plan
for each resource amount by enumerating the feasible plans.
As shown in Fig. 6, the curve only connects the highest
points along the x-axis that represent the best plans, and
remains flat for invalid GPUs or degraded performance.

Resource sensitivity curves benefit Rubick’s scheduling pol-
icy in two ways. First, the curves enable Rubick to quickly
identify the most resource-sensitive jobs for (re)allocation to
maximize total throughput. The resource sensitivity of a job
refers to the potential gains from (re)allocation, which can
be evaluated by slope of its resource sensitivity curve. We
define the slope, which is specific to each resource type of
different jobs, as the throughput change per unit variation in
the number of (pre-)allocated resources. Second, the curves
simplify the scheduling algorithm to focus on the resource
allocation with reduced complexity, while using curves to
provide the best execution plans and performance predic-
tions. Such a separation is beneficial because the curves can
be computed in parallel or even prior to the scheduling, and
then cached for reuse, improving the policy efficiency.

Scheduling algorithm design. To enforce performance
guarantee, Rubick in Algorithm 1 first searches for a mini-
mum resource demand for each guaranteed job (denoted as
minRes). The minimum demand is the fewest resources
(possibly with a better execution plan) needed to achieve
the performance of the original resource and plan. It also
ensures that at least one plan can be trained without failures
like out-of-GPU-memory. The minimum demand should
not exceed the original resources in each dimension; if no
such demand is found, the original resource and plan will
be used. For best-effort jobs, the minimum is ~0.

Our policy (function Schedule) is triggered whenever
jobs are submitted or completed. First, it will schedule the
privileged jobs in the queue immediately once their resource
demands are within the tenant’s remaining quota (lines 2-3).
We consider the quota usage of each job as its minimum
demand to ensure a feasible allocation. The policy then
allocates resources, if any, to either schedule more best-

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Algorithm 1: Rubick Scheduling Policy
1 Function Schedule(jobs, cluster):
2 for j 2 jobs.privileged do
3 j.res, j.placement, j.plan = ScheduleJob(j, cluster)

4 for j 2 SortBySlope(jobs.bestEffort [jobs.running) do
5 j.res, j.placement, j.plan = ScheduleJob(j, cluster)

6 Function ScheduleJob(j, cluster):
7 for n 2 cluster.nodes do
8 j.res + = n.freeRes, nodeRes = n.freeRes

9 for resType 2 {GPU,CPU} do
10 ĵ = GetLowestSlopeOverMinJob(n, resType)
11 if ĵ == null then
12 break

13 if ĵ.slope(resType) < j.slope(resType) ||
14 j.res[resType] < j.minRes[resType] then
15 ĵ.res� = �r, j.res+ = �r, nodeRes+ = �r

16 else
17 break

18 if nodeRes > ~0 then
19 j.placement.append({n, nodeRes})

20 if j.res >= j.minRes then
21 plan =GetBestPlan(j, j.placement)

22 success =AllocMem(j.res, plan)

23 if success then
24 return j.res, j.placement, plan

25 return null, null, null

effort jobs or increase the allocation of running jobs (lines
4-5). Rubick iterates over the nodes in the cluster to find a
placement for each job (ScheduleJob). On each node,
it searches for GPUs and CPUs to satisfy (possibly part of)
the job’s demand. If the minimum demand is met, Rubick
uses the resource sensitivity curve to select the best execu-
tion plan based on the found placement (GetBestPlan).
Finally, Rubick allocates memory (AllocMem) per the as-
signed plan’s estimate provided by the training framework
(lines 20-24). Note that memory is excluded from the search
for GPUs/CPUs, as allocating extra memory does not im-
prove performance.

On each node, besides the free resources, Rubick is allowed
to “shrink” other jobs to reclaim and reallocate resources
(lines 8-17). This approach aligns with Rubick’s principle
of prioritizing jobs that benefit the most from the resources.
Specifically, Rubick evaluates the gains for each job ac-
cording to the slopes of their resource sensitivity curves.
Rubick always shrinks the least sensitive job, i.e., the one
with the lowest slope (GetLowestSlopeOverMinJob,
where “OverMin” means that the allocated resources of the
job must be over its own minimum demand minRes). Such
a reallocation is permitted in two cases (line 14): (1) the job
to shrink has a slope lower than the job to schedule, thus the
reallocation will increase total throughput; or (2) the job to

schedule has yet to reach its minimum demand, then a real-
location that decreases total throughput is also acceptable to
meet the performance guarantee. Rubick reallocates a unit
of the resource (�r) repeatedly until further reallocation is
not allowed. Shrinking a job to ~0 results in a preemption,
which will return to the queue. After that, Rubick records
the resource allocation results for the current scheduled job
on each node (lines 18-19).

Similarly, when choosing best-effort or running jobs for al-
location, Rubick also prefers those with the highest resource
sensitivity curve slopes for the most throughput improve-
ment (SortBySlope at line 4). Considering multiple re-
source dimensions, here we do a greedy sort that compares
the slopes of GPUs and then CPUs. Unscheduled guaran-
teed jobs do not need such a sort as they are chosen with
respect to the quotas.

In particular, Rubick supports distributed training by placing
a job on multiple nodes during the search. As our perfor-
mance model explicitly considers the inter-node bandwidth,
the resource sensitivity curves can capture the performance
variation when jobs become distributed.

6 IMPLEMENTATION

We implement a prototype of the Rubick scheduler on Ku-
bernetes (Burns et al., 2016) in Python. The scheduler
uses Kubernetes APIs to monitor pod creation, completion,
and cluster resource status. The lifecycle of training jobs
and pods is managed by Kubeflow (kub, 2023). In each
scheduling round, the scheduler runs its scheduling policy
and applies the resultant allocations by (re-)launching jobs.

We use two popular PyTorch-based large-model training
frameworks, DeepSpeed (Rasley et al., 2020) and Mega-
tron (Shoeybi et al., 2019) (PyTorch 1.12, DeepSpeed 0.9.2,
and Megatron-DeepSpeed v2.4) to support dense trans-
former models. Both of frameworks provide well-defined
interfaces for configuring training strategies through con-
figuration files or CLI flags. With the official launching
API in PyTorch, Rubick can (re-)configure training jobs
with different execution plans by modifying the launching
command slightly (without changing the model or the frame-
work codes). When relaunching a job, Rubick instructs the
job to save a checkpoint before exiting, and then the job
resumes from the checkpoint after the restart. Rubick relies
on the built-in capability of DeepSpeed and Megatron to
get parameter size and estimate memory consumption. The
online model fitting module for inaccurate predictions is
implemented as a Python library imported into the training
code. For CPU resources, each training process is bound to
the allocated CPU cores, enhancing training performance
under ZeRO-Offload. As for profiling, Rubick measures the
bandwidths of different link types, e.g., NVLink and PCIe.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Table 1. Transformer-based models used in our evaluation.
Model Size Dataset

ViT (Dosovitskiy et al., 2021) 86M ImageNet-1K (Deng et al., 2009)
RoBERTa (Liu et al., 2019) 355M WikiText-2 (Merity et al., 2016)
BERT (Devlin et al., 2019) 336M

Wikipedia (Foundation, 2023)T5 (Raffel et al., 2020) 1.2B
GPT-2 (Radford et al., 2019) 1.5B

LLaMA-2-7B (Touvron et al., 2023b) 7B
WuDaoCorpora (Yuan et al., 2021)

LLaMA-30B (Touvron et al., 2023a) 30B

Table 2. Models performance prediction errors(%). # GPUs rep-
resents the range of GPUs used for prediction.TP+PP: adjusting
TP/PP sizes with DP= 1; DP+TP+PP: adjusting DP with fixed
TP/PP sizes. “/” denotes the infeasible plan due to OOM.

Model # GPUs avg. max. avg. max. avg. max. avg. max.

DP GC ZeRO-DP+GA ZeRO-Offload

ViT 1�8 3.63 6.83 2.59 6.19 4.23 6.67 3.00 8.32
RoBERTa 1�8 2.21 4.37 3.36 4.29 3.59 6.71 7.42 10.44

BERT 1�8 5.27 8.32 4.90 7.27 3.7 6.90 6.37 8.62

TP+PP DP+TP+PP ZeRO-DP
+GA

ZeRO-Offload
+GC

T5 1�32 3.18 8.24 2.41 9.55 6.71 9.55 4.37 6.34
GPT-2 1�30 2.39 3.08 2.80 4.15 2.52 3.86 5.52 8.90

LLaMA-2-7B 1�64 1.90 2.90 4.70 9.45 / / 4.09 6.38
LLaMA-30B 12�64 4.29 8.52 6.15 9.69 / / / /

7 EVALUATION

We evaluate Rubick using experiments on a 64-GPU cluster
and trace-driven simulations. The cluster is comprised of
8 servers, each with 8 NVIDIA A800 GPUs (80 GB), 96
vCPUs, 1, 600 GB memory, 400 GB/s NVLink bandwidth,
and 100 GB/s RDMA network bandwidth. We use seven
representative Transformer-based models of various scales
as listed in Table 1. Overall, our key findings include:

• Rubick significantly improves job and cluster efficiency in
the 64-GPU cluster, reducing the average job completion
time (JCT) by up to 3.2⇥ compared to state-of-the-art
reconfigurability-agnostic systems.

• Rubick enforces the performance guarantees via job re-
configuration, reducing JCT by 1.7⇥ for guaranteed jobs
compared to using exact resource guarantees.

• Rubick shows greater JCT reductions (from 2.6⇥ to 3.4⇥)
with larger proportions of large models, which shows the
potential of Rubick in the large-model era.

7.1 Performance Model Validation

We validate our performance model on seven deep learning
models in Table 1 using up to 64 A800 GPUs. For each
model, we fit the performance model with the minimum set
of 7 profiled data points. We then predict the performance
for 20 unseen configurations. Specifically, we select 4 exe-
cution plans from those feasible for each model, and predict
performance for 5 multi-resource allocations or placements

Figure 7. Reconfiguration for a LLaMA-2-7B job by Rubick. See
the caption of Fig. 3 for the definitions of the plans.

Figure 8. Throughput improvement across two jobs.

per plan. For models with fewer than 1B parameters, we pre-
dict DP, GC, ZeRO-DP+GA, and ZeRO-Offload using 1 to 8
GPUs, as more GPUs are unnecessary for small model size.
For larger models, we additionally predict 3D parallelism
with changing DP/TP/PP sizes using more GPUs. Table 2
shows the throughput prediction errors for each execution
plan of each model. The average and maximum errors are
up to 7.4% and 10.4%, respectively, showing good predic-
tion quality. Rubick continuously fits the model after a job
is launched, further mitigating the errors.

7.2 Micro-benchmarks

Adapting to changing resource limits. In this experi-
ment, we train a LLaMA-2-7B model while continuously
decreasing the limits of available resources. As shown in
Fig. 7, although the best plans vary over time, Rubick al-
ways chooses the best. Firstly, the model is trained across 4
servers each with 8 A800 GPUs. Rubick chooses an optimal
3D-parallel configuration (DP=4, PP=2, TP=4), which is
even better than those found by other simple 3D parallelism
tuning strategies shown by the other lines in Fig. 7. We
then decrease the GPUs to 16 (4 ⇤ 4) and 4, and Rubick
still uses the best 3D-parallel configurations. When the
number of GPUs is reduced to 1, the GPU memory estima-
tor in Rubick instructs to choose ZeRO-Offload, the only
feasible plan with only one GPU available. Upon shifting to
ZeRO-Offload, Rubick also increases the memory allocation
to satisfy its demand. Finally, we double the available CPU
resources, and Rubick acquires 1.7⇥ speedup by allocating
more CPUs to accelerate the parameter updates.

Maximizing throughput across jobs. To highlight Ru-
bick’s ability to maximize throughput considering jobs’ re-
source sensitivity, we compare it with a simple scheduler
that allocates resources equally across jobs. Both schedulers
can reconfigure execution plans; therefore, we focus on the
difference between scheduling policies. To compare the

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Figure 9. Relative loss difference during reconfiguration.

Table 3. Maximum loss differences from reconfiguration (“Rcfg.”)
and changing random seeds (“Seed”).

Model Train Validation Test
Rcfg. Seed Rcfg. Seed Rcfg. Seed

GPT-2 0.05 0.11 0.08 0.09 0.10 0.21
BERT 0.10 0.19 0.10 0.10 0.38 0.40

LLaMA-2-7B 0.08 0.37 0.07 0.41 0.10 0.11

throughput across different jobs, we normalize the through-
put of each job as a factor of speedup improvement relative
to a baseline (Qiao et al., 2021). The baseline refers to the
performance of the same job with a rigid execution plan on
4 GPUs. The total throughput of the jobs can be quantified
by directly summing the speedup values across all jobs.

We submit a RoBERTa job and a T5 job to a cluster of 4
A800 GPUs. The simple scheduler allocates 2 GPUs to
each job, and reconfigures T5 and RoBERTa to use ZeRO-
Offload and ZeRO-DP, respectively. As shown in Fig. 8, it
results in a total speedup of 0.78. In comparison, Rubick
identifies that T5 benefits more from increasing GPUs than
RoBERTa. Rubick therefore allocates 3 GPUs to T5 and 1 to
RoBERTa, and reconfigures them with TP+GA and DP+GA,
respectively. This yields a total speedup of 1.44, with 85%
performance improvement over the simple scheduler.

Accuracy during reconfiguration. Rubick keeps the
global batch size unchanged during reconfiguration, ensur-
ing training accuracy is not affected by design. To validate
this, we compare the training losses of different resource
allocations and execution plans with those without recon-
figuration but with a different random seed. The latter rep-
resents an acceptable range of accuracy variance due to
randomness. We train GPT-2 and BERT using 2/4/8 GPUs
and LLaMA-2-7B using 8 GPUs with different execution
plans. Each experiment trains for 3, 000 mini-batches. We
choose one of the resource-plan combinations as the accu-
racy baseline and plot the relative difference curves of the
others (i.e., GA on 8 GPUs for GPT-2 and BERT, TP= 8
and PP= 1 for LLaMA-2-7B). Curves denoted with “seed”
use a different random seed for a certain execution plan. As
shown in Fig. 9, the train losses of different resources/plans

fluctuate mostly within the range of changing random seeds.
Table 3 shows that the maximum loss differences from re-
configuration after 3, 000 mini-batches on train, validation,
and test datasets are always smaller than those from altering
seeds, showing the negligible impact on training accuracy.

7.3 Cluster Experiments

Methodology. We compare Rubick with three state-of-the-
art schedulers: (1) Sia (Jayaram Subramanya et al., 2023b),
which tunes GPU numbers by adjusting the DP size2 and
hyper-parameters to improve the “goodput”, i.e., to reduce
the “time-to-accuracy”. (2) Synergy (Mohan et al., 2022),
which tunes CPU-memory allocation for jobs with fixed
GPU numbers. (3) AntMan (Xiao et al., 2020), a multi-
tenant scheduler that provides the concepts of guaranteed
and best-effort jobs similar to Rubick. We also establish
three variants of Rubick for a break-down comparison: (1)
Rubick-E only reconfigures execution plans with fixed re-
sources. (2) Rubick-R only reallocates resources with fixed
execution plans. For 3D-parallel jobs, Rubick-R uses the
same approach of Sia that changes the DP size when scaling
GPUs. (3) Rubick-N does neither of them, and only applies
Rubick’s scheduling policy.

We construct synthetic traces by down-sampling the busiest
12 hours from the Microsoft (Jeon et al., 2019) GPU cluster
trace, proportionally to the cluster sizes. The sampled trace
contains 406 jobs, each with a submission time, number
of GPUs, and duration. For each job, we select a model
from Table 1 randomly. In case the original GPU number is
infeasible for the model, we use a feasible one and adjust the
duration to maintain the same GPU hours. For all schedulers
except Sia, we translate the job duration to targeted mini-
batches using the measured throughput of model with the
GPU number. For Sia, to meet its goal of reducing time-to-
accuracy, we assign a target evaluation accuracy to each job,
measured by running the model for the specified duration.

We build three variants of the sampled trace for different
scenarios. (1) Base trace, which randomly assigns an ini-
tial execution plan to each job from all feasible plans given
the GPU number. For ViT, RoBERTa, BERT, and T5, we
disable TP and PP as they are mostly unnecessary for these
relatively small models. For the other models, we include
all the feasible 3D-parallel configurations in the candidate
plans. (2) Multi-tenant trace (MT), a multi-tenant version

2Despite the claim in their paper of supporting 3D parallelism,
Sia’s open-source artifact (Jayaram Subramanya et al., 2023a) only
supports pure DP jobs. Their evaluation tested 3D-parallel jobs
only with a small-scale simulation. Adding 3D-parallelism support
in Sia’s artifact is non-trivial; we implemented the claimed scaling
approach of Sia, i.e., scaling DP for 3D-parallel jobs, in another
baseline Rubick-R. In our experiments for Sia, if a model cannot
run using DP (even when ZeRO/GA/GC), the job fallbacks to a
feasible 3D-parallel plan with the resource scaling disabled.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Table 4. 64-GPU cluster experiments. “All”, “Guar.”, and “BE”
stand for all, guaranteed, and best-effort jobs, respectively.

Trace Scheduler
JCT (h) Makespan

(h)Avg. P99

Base

Rubick 0.96 (1⇥) 7.1(1⇥) 15.3 (1⇥)
Sia 2.5 (2.6⇥) 12.2 (1.7⇥) 18.8 (1.23⇥)

Synergy 3.1(3.23⇥) 13.5 (1.9⇥) 21.5 (1.4⇥)
Rubick-E 2.4 (2.5⇥) 10.9 (1.5⇥) 20.2 (1.32⇥)
Rubick-R 1.6 (1.67⇥) 9.9 (1.39⇥) 19.8 (1.29⇥)
Rubick-N 3.1 (3.23⇥) 12.8 (1.8⇥) 22 (1.44⇥)

BP
Rubick 0.96 (1⇥) 7.1(1⇥) 15.3 (1⇥)

Sia 1.8 (1.88⇥) 9 (1.27⇥) 16.5 (1.08⇥)
Synergy 2.3 (2.37⇥) 10.8 (1.5⇥) 20.5 (1.34⇥)

MT

Rubick
All 1.1 (1⇥) 11.4 (1⇥)

17.9 (1⇥)Guar. 0.85 (1⇥) 10.9 (1⇥)
BE 1.34 (1⇥) 11.8 (1⇥)

AntMan
All 1.75 (1.6⇥) 13.4 (1.2⇥)

19.6 (1.28⇥)Guar. 1.41 (1.65⇥) 11.7 (1.1⇥)
BE 2.1 (1.56⇥) 14.1 (1.2⇥)

of the base trace. This trace sets up two tenants, Tenant-A
with a quota of 64 GPUs, and Tenant-B with no quota. Jobs
are randomly dispatched to both tenants, where jobs from
Tenant-A/B are all guaranteed/best-effort, respectively. (3)
Best-plan trace (BP), which replaces the random execution
plans in the base trace with the best plans of the correspond-
ing jobs given the initial resource amounts.

End-to-end comparison. As shown in Table 4, Rubick
consistently achieves the shortest average and P99 JCTs and
makespan using different traces. With the base trace, Rubick
achieves up to 3.2⇥, 1.9⇥, and 1.4⇥ reduction compared
to Sia and Synergy on average JCT, P99 JCT, and makespan,
respectively. Sia, despite GPU scaling along the DP dimen-
sion, has limited support for advanced training strategies
beyond DP. It cannot scale 3D-parallel jobs with TP/PP;
also, its performance model cannot capture behaviors of
ZeRO/GC, and ignores multi-resource allocations beyond
GPUs. Rubick outperforms Sia by 2.6⇥ in average JCT,
highlighting the advantage of Rubick’s full reconfigurability
on a wide range of execution plans and multiple resources.
Rubick also outperforms Synergy by 3.2⇥ in average JCT
because Synergy does not consider execution planning dur-
ing its multi-resource allocation. With the best-plan (BP)
trace, Sia and Synergy perform better. Rubick still shows
1.9⇥ and 2.4⇥ reductions in average JCT over Sia and Syn-
ergy, because the assigned plan is the best only for the initial
resource allocation; Rubick can further reconfigure the plan
together with the resource scaling, showing the necessity of
adapting the execution plans to the resource variations.

We compare Rubick with AntMan using the multi-tenant
(MT) trace to evaluate SLO guarantees. Overall, Rubick
outperforms AntMan by 1.6⇥ in average JCT and 1.3⇥
in makespan. The key difference is that AntMan guaran-
tees the requested resources, whereas Rubick guarantees

Figure 10. Performance vs. cluster load.

Figure 11. Performance vs. proportion of large models.

the corresponding performance during reconfiguration. For
guaranteed jobs, Rubick brings down average JCT by 1.7⇥,
showing that Rubick not only guarantees, but also improves
their efficiency with better execution plans. Similarly, Ru-
bick shows 1.6⇥ JCT reduction for best-effort jobs.

Break-down study. We use the base trace to compare
Rubick with its three variants, Rubick-E/R/N, to understand
the sources of performance improvements. As shown in
Table 4, by reconfiguring execution plans or reallocating
resources solely, Rubick-E and Rubick-R reduce the average
JCT compared to Rubick-N by 1.3⇥ and 1.9⇥, respectively.
This demonstrates that these two approaches are already
powerful weapons even used separately; however, the com-
plete Rubick shows 2.5⇥ and 1.7⇥ extra reductions, further
highlighting the necessity of combining them.

System overheads. For each job, the average time spent
on reconfiguration is 78 seconds, and the total reconfigu-
ration time accounts for 1% in total GPU hours across all
experiments. For each model in Table 1, workload profiling
only takes an average of 210 seconds to collect performance
values from 7 sampled tests on an 8-A800 server.

7.4 Simulations

We use simulations to evaluate Rubick with various settings
to identify factors affecting its behavior and performance.
We build a discrete-time cluster simulator, and use real
performance measurement to estimate the jobs execution
time. We replayed cluster experiments in Sec. 7.3 with the
simulator and the max error of average JCT was 6.9%.

Performance with varying cluster load. We vary the
load of the traces with different down-sampling rates.
Fig. 10 shows the performance of Rubick and Synergy with
increasing load (1⇥ representing the original sampling rate).
Rubick consistently outperforms Synergy under all loads,
with up to 3.5⇥ and 1.4⇥ reductions for JCT and makespan.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

In general, higher loads lead to more gains of Rubick be-
cause the benefits are accumulated across all queuing jobs.

Performance with varying model size distribution. The
job reconfigurability in Rubick enables even larger ranges
of resource availability feasible for training a model. This
property is especially beneficial for large models because
they have the opportunity to start training earlier with fewer
GPUs. We compare the performance of Rubick and Synergy
with an increasing proportion of large models (LLaMA-
2-7B and LLaMA-30B) in the trace. Fig. 11 shows that
Rubick’s advantage keeps increasing with the number of
large models, achieving a JCT reduction ranging from 2.6⇥
to 3.4⇥. We view such increasing benefits with an increased
number of large models as a appreciated property of Rubick,
as this is exactly the developing trend today.

8 RELATED WORK

Parallelization strategies and optimizations. To facil-
itate large model training, tensor parallelism (Lepikhin
et al., 2021) and pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019) partition model across GPUs. Deep-
Speed (Rasley et al., 2020) and ZeRO series (Rajbhandari
et al., 2020; Ren et al., 2021; Rajbhandari et al., 2021) opti-
mize GPU memory usage by offloading weights, gradients
and optimizer states to main memory. Gradient checkpoint-
ing (Chen et al., 2016; Jain et al., 2020) trades recomputation
for GPU memory. These techniques provide multiple exe-
cution plan options for Rubick. Alpa (Zheng et al., 2022)
automates inter- and intra-operator parallelism for a unified
job execution plan. Unity (Unger et al., 2022) optimizes
the execution plan with parallel strategies and graph sub-
stitutions. Whale (Jia et al., 2022) automatically decides
parallel strategies based on heterogeneous GPU capacities.
In these studies, an optimal job plan is initially searched for
and executed statically. In contrast, Rubick unifies training
techniques for dynamic reconfiguration. Rubick builds a
model to evaluate job performance under varying resource
allocations (i.e., GPUs, CPUs, bandwidth), which helps
Rubick automatically choose the optimal execution plan.

Cluster scheduling. Cluster optimization has been ex-
tensively studied to improve cluster utilization (e.g., Gan-
diva (Xiao et al., 2018), AntMan (Xiao et al., 2020), Lu-
cid (Hu et al., 2023)), reduce job completion time (e.g.,
Tiresias (Gu et al., 2019), Optimus (Peng et al., 2018)), and
guarantee SLOs or fairness (e.g., HiveD (Zhao et al., 2020),
Themis (Mahajan et al., 2020)). Recent works (tor, 2023;
Li et al., 2023; Gu et al., 2023) have further explored elas-
ticity in cluster scheduling. Sia (Jayaram Subramanya et al.,
2023b) supports resource-adaptive and hybrid parallel job
configurations on heterogeneous GPUs. However, these
studies focus on data-parallel with static plans and scaling

with fixed data-parallel degrees. This fails to align with
recent LLM trends, which use advanced parallel strategies.

To enhance DL job performance and cluster efficiency,
multi-dimensional resources like host memory (Zhao et al.,
2023a), CPUs (Mohan et al., 2021; Zhao et al., 2023b),
and bandwidth (Xiao et al., 2018) are jointly considered
for scheduling. Allox (Le et al., 2020) leverages the re-
source sensitivity to schedule jobs between CPUs and
GPUs. Synergy (Mohan et al., 2022) performs resource-
sensitive scheduling instead of proportional GPU alloca-
tion. Muri (Zhao et al., 2022) optimizes DL job scheduling
through multi-resource interleaving. However, these works
treat DL jobs as black boxes when scheduling, overlook-
ing the opportunity to leverage multi-resource demands of
different execution plans. This is where Rubick excels.

Performance modeling and prediction. Habitat (Yu
et al., 2021) uses runtime data from one GPU to predict
performance on another. Pollux (Qiao et al., 2021) models
system throughput and statistical efficiency to predict scal-
ing performance. DNNPerf (Gao et al., 2023) uses graph
neural networks to predict GPU memory usage and iteration
time. Previous works focus on predicting performance for
single-GPU or data-parallel training, while Rubick models
for complex strategies across multiple resources.

9 CONCLUSION

Looking back at the evolution of training strategies, we find
that they have always been created for the essential purpose
of adapting to different levels of resource availability, from a
single GPU to thousands, with the aid of auxiliary resources.
Such execution adaptivity and resource interchangeability
are even more beneficial, yet unexplored, in shared clusters
where the resources are highly dynamic. Rubick, the first
system to unify the execution planning in cluster scheduling,
demonstrates the great potential via: comprehensive perfor-
mance modeling for strategies; a multi-resource scheduling
policy co-designed with execution planning; and extensive
evaluations showing the vastly improved job and cluster
efficiency. We hope that Rubick can inspire future advance-
ments in both training strategies and scheduling systems, to
uncover more benefits from their connection.

ACKNOWLEDGMENT
This work was supported in part by the NSFC under Grant
62372184, Alibaba Research Intern Program, the Science
and Technology Commission of Shanghai Municipality un-
der Grant 22DZ2229004, the Major Key Project of PCL
under Grants PCL2024A06 and PCL2022A05, and the
Shenzhen Science and Technology Program under Grant
RCJC20231211085918010.

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

REFERENCES

2023. Kubeflow. https://github.com/kubeflow/
kubeflow.

2023. TorchElastic. https://pytorch.org/docs/
stable/distributed.elastic.html.

Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. 2016. Borg, Omega, and Ku-
bernetes. ACM Queue 14 (2016), 70–93.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
2016. Training Deep Nets with Sublinear Memory Cost.
arXiv preprint arXiv:1604.06174 (2016).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on. IEEE,
Miami, FL, USA, 248–255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Min-
neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). Association for Computational Linguistics,
Minneapolis, Minnesota, USA, 4171–4186.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv:2010.11929 [cs.CV]

Wikimedia Foundation. 2023. Wikimedia Downloads.
https://dumps.wikimedia.org.

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and
Mao Yang. 2023. Runtime Performance Prediction for
Deep Learning Models with Graph Neural Network. In
ICSE ’23. IEEE/ACM. The 45th International Confer-
ence on Software Engineering, Software Engineering in
Practice (SEIP) Track.

Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong,
Zhenhua Han, Peng Cheng, Fan Yang, Gang Huang, Xin
Jin, and Xuanzhe Liu. 2023. ElasticFlow: An Elastic
Serverless Training Platform for Distributed Deep Learn-
ing. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Comput-
ing Machinery, New York, NY, USA, 266–280. https:
//doi.org/10.1145/3575693.3575721

Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. 2019. Tiresias: A GPU cluster manager
for distributed deep learning. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
19). 485–500.

Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and
Tianwei Zhang. 2023. Lucid: A Non-Intrusive, Scalable
and Interpretable Scheduler for Deep Learning Train-
ing Jobs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Comput-
ing Machinery, New York, NY, USA, 457–472. https:
//doi.org/10.1145/3575693.3575705

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,
Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu, et al. 2019. GPipe: Efficient
Training of Giant Neural Networks using Pipeline Par-
allelism. Advances in Neural Information Processing
Systems 32 (2019).

Changho Hwang, Taehyun Kim, Sunghyun Kim, Jin-
woo Shin, and KyoungSoo Park. 2021. Elastic Re-
source Sharing for Distributed Deep Learning. In
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21). USENIX Asso-
ciation, 721–739. https://www.usenix.org/
conference/nsdi21/presentation/hwang

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer,
and Ion Stoica. 2020. Checkmate: Breaking the
Memory Wall with Optimal Tensor Rematerialization.
In Proceedings of Machine Learning and Systems,
I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2.
497–511. https://proceedings.mlsys.
org/paper_files/paper/2020/file/
0b816ae8f06f8dd3543dc3d9ef196cab-Paper.
pdf

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin,
Aurick Qiao, Zhihao Jia, and Gregory R. Ganger. 2023a.
Sia Artifact. https://github.com/siasosp23/
artifacts.

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu
Lin, Aurick Qiao, Zhihao Jia, and Gregory R. Ganger.
2023b. Sia: Heterogeneity-aware, goodput-optimized
ML-cluster scheduling. In Proceedings of the 29th
Symposium on Operating Systems Principles (¡conf-
loc¿, ¡city¿Koblenz¡/city¿, ¡country¿Germany¡/country¿,
¡/conf-loc¿) (SOSP ’23). Association for Computing
Machinery, New York, NY, USA, 642–657. https:
//doi.org/10.1145/3600006.3613175

https://github.com/kubeflow/kubeflow
https://github.com/kubeflow/kubeflow
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://dumps.wikimedia.org
https://doi.org/10.1145/3575693.3575721
https://doi.org/10.1145/3575693.3575721
https://doi.org/10.1145/3575693.3575705
https://doi.org/10.1145/3575693.3575705
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://proceedings.mlsys.org/paper_files/paper/2020/file/0b816ae8f06f8dd3543dc3d9ef196cab-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/0b816ae8f06f8dd3543dc3d9ef196cab-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/0b816ae8f06f8dd3543dc3d9ef196cab-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/0b816ae8f06f8dd3543dc3d9ef196cab-Paper.pdf
https://github.com/siasosp23/artifacts
https://github.com/siasosp23/artifacts
https://doi.org/10.1145/3600006.3613175
https://doi.org/10.1145/3600006.3613175

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang. 2019.
Analysis of Large-Scale Multi-Tenant GPU Clusters for
DNN Training Workloads. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19). 947–960.

Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi,
Jie Zhang, Xinyuan Li, Langshi Chen, Yong Li, Zhen
Zheng, Xiaoyong Liu, and Wei Lin. 2022. Whale: Effi-
cient Giant Model Training over Heterogeneous GPUs.
In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 673–688.
https://www.usenix.org/conference/
atc22/presentation/jia-xianyan

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. 2017. On
Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima. arXiv:1609.04836 [cs.LG]

Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua
Liu. 2020. AlloX: Compute Allocation in Hybrid Clusters.
In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY,
USA, Article 31, 16 pages. https://doi.org/10.
1145/3342195.3387547

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. 2021. {GS}hard: Scal-
ing Giant Models with Conditional Computation and Au-
tomatic Sharding. In International Conference on Learn-
ing Representations. https://openreview.net/
forum?id=qrwe7XHTmYb

Mingzhen Li, Wencong Xiao, Hailong Yang, Biao Sun,
Hanyu Zhao, Shiru Ren, Zhongzhi Luan, Xianyan Jia, Yi
Liu, Yong Li, Wei Lin, and Depei Qian. 2023. EasyScale:
Elastic Training with Consistent Accuracy and Improved
Utilization on GPUs. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (Denver, CO, USA) (SC ’23).
Association for Computing Machinery, New York, NY,
USA, Article 55, 14 pages. https://doi.org/10.
1145/3581784.3607054

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter
Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, et al. 2020. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704 (2020).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:

A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692 [cs.CL]

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
2021. Swin Transformer: Hierarchical Vision Trans-
former using Shifted Windows. CoRR abs/2103.14030
(2021). arXiv:2103.14030 https://arxiv.org/
abs/2103.14030

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi,
Shivaram Venkataraman, Aditya Akella, Amar Phan-
ishayee, and Shuchi Chawla. 2020. Themis: Fair and
Efficient GPU Cluster Scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 20). 289–304.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture Mod-
els. arXiv:1609.07843 [cs.CL]

Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni,
and Vijay Chidambaram. 2022. Looking Beyond GPUs
for DNN Scheduling on Multi-Tenant Clusters. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carls-
bad, CA, 579–596. https://www.usenix.org/
conference/osdi22/presentation/mohan

Jayashree Mohan, Amar Phanishayee, Ashish Rani-
wala, and Vijay Chidambaram. 2021. Analyzing and
Mitigating Data Stalls in DNN Training. In VLDB
2021. https://dl.acm.org/doi/10.14778/
3446095.3446100

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. 2019. PipeDream:
Generalized Pipeline Parallelism for DNN Training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York,
NY, USA, 1–15. https://doi.org/10.1145/
3341301.3359646

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
2021. Efficient large-scale language model training on
GPU clusters using megatron-LM. In Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC ’21). Associa-
tion for Computing Machinery, New York, NY, USA.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and
Chuanxiong Guo. 2018. Optimus: An Efficient Dynamic

https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://doi.org/10.1145/3342195.3387547
https://doi.org/10.1145/3342195.3387547
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.1145/3581784.3607054
https://doi.org/10.1145/3581784.3607054
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://www.usenix.org/conference/osdi22/presentation/mohan
https://www.usenix.org/conference/osdi22/presentation/mohan
https://dl.acm.org/doi/10.14778/3446095.3446100
https://dl.acm.org/doi/10.14778/3446095.3446100
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Resource Scheduler for Deep Learning Clusters. In Pro-
ceedings of the Thirteenth European Conference on Com-
puter Systems. ACM, New York, NY, USA.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya,
Willie Neiswanger, Qirong Ho, Hao Zhang, Gregory R.
Ganger, and Eric P. Xing. 2021. Pollux: Co-adaptive Clus-
ter Scheduling for Goodput-Optimized Deep Learning. In
15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association,
1–18.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language Models are
Unsupervised Multitask Learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. 2020. Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. 2020. Zero: Memory optimizations toward
training trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, Atlanta, GA, USA, 1–
16.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden
Smith, and Yuxiong He. 2021. ZeRO-Infinity: Breaking
the GPU Memory Wall for Extreme Scale Deep Learning.
In Proc. of ACM/IEEE SC. 1–14.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. DeepSpeed: System Optimizations
Enable Training Deep Learning Models with Over 100
Billion Parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining (Virtual Event, CA, USA) (KDD ’20).
Association for Computing Machinery, New York, NY,
USA, 3505–3506. https://doi.org/10.1145/
3394486.3406703

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong
Li, and Yuxiong He. 2021. ZeRO-Offload: Democratizing
Billion-Scale Model Training. In Proc. of USENIX ATC.
551–564.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. 2019.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv preprint
arXiv:1909.08053 (2019).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Au-
relien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. 2023a. LLaMA: Open and Efficient
Foundation Language Models. arXiv:2302.13971 [cs.CL]

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Ko-
renev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023b.
Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv:2307.09288 [cs.CL]

Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-
ishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin
Mohd-Yusof, Xi Luo, Dheevatsa Mudigere, Jongsoo Park,
Misha Smelyanskiy, and Alex Aiken. 2022. Unity: Ac-
celerating DNN Training Through Joint Optimization of
Algebraic Transformations and Parallelization. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carls-
bad, CA, 267–284. https://www.usenix.org/
conference/osdi22/presentation/unger

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems. 6000–6010.

Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019.
Supporting Very Large Models using Automatic Dataflow
Graph Partitioning. In Proc. of ACM Eurosys. 1–17.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. 2022. MLaaS in the Wild: Workload Anal-
ysis and Scheduling in Large-Scale Heterogeneous GPU

https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/osdi22/presentation/unger

Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

Clusters. In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 945–960.

Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang,
Xiaochuan Tang, Guodong Yang, and Liping Zhang.
2023. Beware of Fragmentation: Scheduling GPU-
Sharing Workloads with Fragmentation Gradient De-
scent. In 2023 USENIX Annual Technical Confer-
ence (USENIX ATC 23). USENIX Association, Boston,
MA, 995–1008. https://www.usenix.org/
conference/atc23/presentation/weng

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and
Xin Jin. 2023. Transparent {GPU} Sharing in Container
Clouds for Deep Learning Workloads. In 20th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). 69–85.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. 2018. Gandiva: In-
trospective Cluster Scheduling for Deep Learning. In
13th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018. USENIX Association, 595–
610. https://www.usenix.org/conference/
osdi18/presentation/xiao

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang
Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020.
AntMan: Dynamic Scaling on GPU Clusters for Deep
Learning. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20). USENIX
Association, 533–548.

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gen-
nady Pekhimenko. 2021. Habitat: A Runtime-Based
Computational Performance Predictor for Deep Neu-
ral Network Training. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21). USENIX Asso-
ciation, 503–521. https://www.usenix.org/
conference/atc21/presentation/yu

Sha Yuan, Hanyu Zhao, Zhengxiao Du, Ming Ding, Xiao
Liu, Yukuo Cen, Xu Zou, Zhilin Yang, and Jie Tang. 2021.
Wudaocorpora: A super large-scale chinese corpora for
pre-training language models. AI Open 2 (2021), 65–68.

Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang,
Mingxia Li, Fan Yang, Qianxi Zhang, Binyang Li, Yuqing
Yang, Lili Qiu, Lintao Zhang, and Lidong Zhou. 2023a.
SiloD: A Co-Design of Caching and Scheduling for Deep
Learning Clusters. In Proceedings of the Eighteenth Eu-
ropean Conference on Computer Systems (Rome, Italy)
(EuroSys ’23). Association for Computing Machinery,

New York, NY, USA, 883–898. https://doi.org/
10.1145/3552326.3567499

Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan
Yang, Lidong Zhou, Mao Yang, Francis C.M. Lau, Yuqi
Wang, Yifan Xiong, and Bin Wang. 2020. HiveD: Sharing
a GPU Cluster for Deep Learning with Guarantees. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association,
515–532.

Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren,
Wencong Xiao, Man Yuan, Langshi Chen, Kaibo Liu,
Yang Zhang, Yong Li, and Wei Lin. 2023b. GoldMiner:
Elastic Scaling of Training Data Pre-Processing Pipelines
for Deep Learning. Proc. ACM Manag. Data 1, 2, Article
193 (jun 2023), 25 pages. https://doi.org/10.
1145/3589773

Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu,
Xuanzhe Liu, and Xin Jin. 2022. Multi-Resource In-
terleaving for Deep Learning Training. In Proceedings
of the ACM SIGCOMM 2022 Conference (Amsterdam,
Netherlands) (SIGCOMM ’22). Association for Comput-
ing Machinery, New York, NY, USA, 428–440. https:
//doi.org/10.1145/3544216.3544224

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating
Inter- and Intra-Operator Parallelism for Distributed
Deep Learning. In 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
22). USENIX Association, Carlsbad, CA, 559–578.
https://www.usenix.org/conference/
osdi22/presentation/zheng-lianmin

https://www.usenix.org/conference/atc23/presentation/weng
https://www.usenix.org/conference/atc23/presentation/weng
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/atc21/presentation/yu
https://www.usenix.org/conference/atc21/presentation/yu
https://doi.org/10.1145/3552326.3567499
https://doi.org/10.1145/3552326.3567499
https://doi.org/10.1145/3589773
https://doi.org/10.1145/3589773
https://doi.org/10.1145/3544216.3544224
https://doi.org/10.1145/3544216.3544224
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

