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ABSTRACT

This work introduces Robots Imitating Generated Videos (RIGVid), a system that
enables robots to perform complex manipulation tasks—such as pouring, wip-
ing, and mixing—purely by imitating Al-generated videos, without requiring any
physical demonstrations or robot-specific training. Given a language command
and an initial scene image, a video diffusion model generates potential demon-
stration videos, and a vision-language model (VLM) automatically filters out
results that do not follow the command. A 6D pose tracker then extracts ob-
ject trajectories from the video, and the trajectories are retargeted to the robot
in an embodiment-agnostic fashion. Through extensive real-world evaluations,
we show that filtered generated videos are as effective as real demonstrations,
and that performance improves with generation quality. We also show that re-
lying on generated videos outperforms more compact alternatives such as key-
point prediction using VLMs, and that strong 6D pose tracking outperforms other
ways to extract trajectories, such as dense feature point tracking. These find-
ings suggest that videos produced by a state-of-the-art off-the-shelf model can
offer an effective source of supervision for robotic manipulation. Project page:
https://rigvid-25.github.io/

1 INTRODUCTION

Videos offer a rich and expressive source of training data for robotic manipulation, and numer-
ous methods have successfully leveraged them for supervision. Such methods typically fall into
two categories: (1) Learning from publicly available large-scale datasets of real-world videos (Bahl
et al., 2023} |Ye et al.,[2024), and (2) Imitation of specific demonstrations captured under controlled
conditions that closely match the execution setting (Bahl et al., [2022} |[Kareer et al., |2024). Unfor-
tunately, both of these strategies come with challenges that limit broad deployment. Large-scale
video datasets often introduce domain gaps (Zhou et al.,|[2024;|Gao et al.,[2025)) and require adapta-
tion to specific robot embodiments and tasks (Bahl et al., [2023; |0’ Neill et al., |2023). On the other
hand, video-based imitation involves laborious data collection that must ensure close alignment in
viewpoints, morphologies, and interaction modalities (Bahl et al., [2022} |Dasar1 & Guptal 2021).

Motivated by recent advances in video generation, we explore a new paradigm: can a single gener-
ated video, generated to exactly match our input environment and task description, be used as the
sole source of supervision for robotic manipulation? Recently released models like SORA (Brooks
et al.l2024) and Kling (Kli, |2024) have demonstrated impressive capabilities in producing realistic
videos from language and image inputs. At the same time, it has been shown that such videos can
suffer from distorted object geometries (Liu et al., 2024} Zhang et al., |2024), physically implausi-
ble interactions (Motamed et al., 2025} |Yang et al., [2025)), and unrealistic scene dynamics (Bansal
et al., 2024} |Guo et al., 2025). Consequently, while the idea of synthesizing video demonstrations
is enticing, its usefulness in the robotics setting is yet to be convincingly established. Prior work
incorporating video generation into robotics typically relies on additional supervision, such as task-
specific training (Du et all 2024) or fine-tuning on offline robot trajectory datasets (Bharadhwaj
et al., [2024bza). By contrast, we ask whether a robot can perform real-world manipulation tasks
solely by imitating generated videos—without any additional supervision or task-specific training.

To this end, we introduce Robots Imitating Generated Videos (RIGVid), a framework that con-
nects video generation models to real-world robotic execution. Fig. |1| gives an oveview of the
method. Given an input RGB-D image of the scene and a free-form language command (e.g., “pour
water on the plant”), we use a state-of-the-art video diffusion model to generate a candidate video
of the task. The generated video is not guaranteed to accurately follow the language command — but
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Figure 1: RIGVid overview. Given an initial scene image and depth, we generate a video conditioned on a
language command. A VLM-based automatic filtering step (not shown) can be used to reject videos that fail
to follow the prompt. A monocular depth estimator recovers depth for each frame of the generated video, and
these depth maps are combined with the corresponding RGB frames to produce 6D Object Pose Trajectory.
After grasping, the trajectory is retargeted to the robot for execution.

we show that a VLM can be used to automatically filter out unsuccessful generations with high ac-
curacy. Next, we estimate per-frame depth on the video, segment the manipulated object, and track
its 6D object pose trajectory across the frames using the FoundationPose tracker (Wen et al.,2023b).
While this tracker relies on a pre-computed object mesh, preliminary experiments (App.|C) indicate
that our method is compatible with mesh-free approaches, though their inference speed is currently
infeasible for real-time deployment. Finally, the extracted 6D object pose trajectory is retargeted to
the robot for execution. The retargeting process only requires the transformation between the end-
effector and the object, so it can be easily applied across platforms. During deployment, RIGVid
performs real-time object tracking and dynamically adjusts the robot’s actions to handle disturbances
and execution-time variations, promoting robust and adaptive behavior.

We evaluate RIGVid on four real-world manipulation tasks: pouring water, lifting a lid, placing a
spatula on a pan, and sweeping trash. These tasks span diverse manipulation challenges, including
a range of depth variation (minimal in pouring vs. significant in lifting), thin and partially occluded
objects (spatula, sweeping brush), and diverse object geometries and actions. Our results show that,
when paired with our filtering mechanism, generated videos are as effective as human videos for vi-
sual imitation, enabling robots to act entirely from synthetic supervision. Moreover, the performance
of RIGVid improves with video quality, suggesting a favorable trend where advances in generative
models directly translate to stronger manipulation capabilities.

The main downside of video generation is its substantial computational cost. Also, on a represen-
tational level, one may wonder whether predicting video pixels is wasteful, and whether we should
instead predict a compact and minimal representation that can be efficiently translated to an ex-
ecutable trajectory. One example of this philosophy is the recent ReKep method (Huang et al.,
2024a), which uses a VLM to generate relational keypoint constraints from a task description and
then solves for a 6D trajectory. We compare our approach to ReKep and demonstrate that video
generation does, in fact, perform substantially better than the generation of a more sparse and high-
level representation. Next, given a generated video, one may ask whether 6D object-level tracking
is necessary, given its up-front requirement of an object mesh. To address this question, we compare
against a broad range of alternative tracking approaches — sparse point tracking (Bharadhwaj et al.,
2024b), dense optical flow (Ko et al.| 2023), 3D feature fields (Kerr et al.,[2024), and generated goal
supervision (Bharadhwaj et al.,|2024a) — and show consistently higher success rates.

In summary, our contributions are: (1) We propose a framework that enables robots to perform
open-world manipulation tasks without any real-world demonstrations, only generated videos. (2)
We show high-quality generated videos perform on par with real videos for robotic imitation, es-
tablishing that synthetic data can serve as an effective substitute for real data. (3) We demonstrate
that our combination of video generation and 6D trajectory extraction outperforms competing SOTA
methods based on VLMs, point tracking, optical flow, feature fields, and generated-goal supervision.

2 RELATED WORK

Direct Imitation from Videos. This seeks to match visual states in demonstration videos to those
of the learner, without requiring expert action labels or robot states (Dasari & Gupta, 2021} |Valas-
sakis et al.| [2022). While effective, this approach demands paired demonstrations in the same set-
ting. A common strategy is to leverage visual correspondences—tracks (Bharadhwaj et al.| 2024b)
or optical flow (Argus et al., 2020; Xu et al., 2024)—to infer object trajectories. Bharadhwaj et
al. (Bharadhwaj et al.| [2024b)) predicts object tracks and uses PnP to recover poses for closed-loop
task execution. Dense descriptor learning (Florence et al., 2018} Zhu et al., 2024)) has proven power-
ful for handling variations in object geometry and appearance. Kerr et al. (Kerr et al.,[2024) recover
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object part trajectories from monocular videos using feature fields. Crucially, these methods rely on
demonstrations collected under conditions closely matching the target task. In contrast, our method
removes this requirement by generating task and scene-conditioned videos.

Imitation from Offline Videos. This paradigm alleviates the need for paired demonstrations by
leveraging offline video data, and has consequently attracted significant attention (Smith et al.,
2019; Liu et al., 2018)). Many works focus on learning affordance models from internet-scale video
datasets (Bahl et al., 2023} |[Srirama et al., 2024). Here, affordances are defined as scene-centric
predictions of where and how an agent can interact, often captured as contact-point heatmaps and
short motion trajectories that can be translated into robot actions. For example, Bahl et al. (Bahl
et al.}2023)) learn from large-scale human videos to output dense contact maps and trajectory way-
points, which downstream imitation, exploration, or reinforcement modules can transform into ex-
ecutable robot motions. However, these methods suffer from domain gap between training videos
and task-specific environments, and require additional mechanisms to obtain task-conditioned af-
fordances. In contrast, our method does not explicitly predict affordances, but instead relies on
generated, task- and scene-specific generated videos for imitation.

Video Generation for Robotics. Video generation has emerged as a promising avenue for
robotics (Du et al., [2024;2023). A common limitation of these is their reliance on robot data, either
to train the video generation model (Liang et al.,|2024;|Sun et al.l[2024), or to train policies (Bharad-
hwaj et al.| [2024a)), or both (Du et al., [2024; 2023)). Bharadhwaj et al. (Bharadhwaj et al.| [2024al)
leverages tracks on generated videos to condition policy learning. Albaba et al. (Albaba et al.| [2025)
uses generated videos to compute rewards for RL training. The most closely related work is Liang
et al. (Liang et al.} [2024), which executes robotic tasks by tracking tools attached to the robot’s end
effector. While effective, their method relies on 1,822 human-collected robot demonstrations for
four tasks, and is confined to tasks executable only by tools. In contrast, our approach requires no
such data collection. Instead of tools, our method tracks objects, enabling a significantly broader
range of manipulation tasks without using any robot data.

Motion Retargeting for Object Manipulation. Early work in learning from demonstration es-
tablished the foundation for motion retargeting (Gleicher, |1998; [Calinon, [2016). More recently,
deep learning-based retargeting methods have emerged (Cheng et al.,|2024; (Choti et al., 2020), with
some incorporating object-centric representations to bridge the gap between the demonstrator and
the robot (Kerr et al.,[2024; |Li et al.} 2024). Many approaches have applied retargeting to humanoid
robots (Hu et al., 2014). Other works have extended these techniques to dexterous manipulation (Qin
et al., 2022} Lakshmipathy et al., [2024). Like most prior work, we assume a fixed transformation
between the end-effector and the object. While motion retargeting has traditionally relied on human
demonstrations, RIGVid eliminates this dependency by leveraging generated videos.

3 OUR METHOD: ROBOTS IMITATING GENERATED VIDEOS

An overview of our method is shown in Fig. [T} It takes as inputs the initial scene RGB image,
its corresponding depth map, and a free-form human command. Our goal is to predict the robot’s
6DoF end-effector trajectory. This section describes the key steps of RIGVid: (1) Generate a scene
and task-conditioned video and predict its corresponding depth using a monocular depth estimator
(Sec. 3.1); (2) Compute 6D pose rollout via an object pose tracker (Sec.[3.2); (3) Grasp the object
and retarget the pose trajectory to the robot, and execute the resulting trajectory (Sec.[3.3).

3.1 GENERATING VIDEOS AND CORRESPONDING DEPTH

Since the generated videos may not necessarily follow the language command or have other issues,
we need an automatic filtering mechanism to discard inaccurate generations. We found that we can
do the filtering reliably by prompting a VLM — specifically, GPT-40 (Achiam et al., |2023) — to assess
whether the generated video depicts a successful execution of the command. As image input to GPT-
40, we sample four evenly spaced frames in the video and concatenate them vertically to create a
video summary. The VLM determines whether the action described in the command is performed by
a visible hand. App.[B|provides the full prompt used for filtering and examples of video summaries
with their corresponding VLM responses. If the response is negative, we regenerate the video and
repeat the process for up to five attempts. If all attempts fail, we default to the final attempt.

As input to the downstream tracking step, we also need to predict the depth for the generated video,
using the predictor from Ke er al. (Ke et al.,[2024). One complication is that the estimated depth is
not grounded in real-world units, but subject to a scale-shift ambiguity (Hartley & Zisserman, [2003)).
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Consistent with prior works adopting depth estimators in vision-based robotics (Gervet et al.,|2023),
we compute an affine scale-and-shift transformation, aligning the predicted depth in the first frame
with the initial real depth map around the active object (discussed in Sec.[3.2)). This transformation
is then applied to the entire predicted video to resolve the ambiguity.

3.2 IDENTIFYING ACTIVE OBJECT MASK AND 6D OBJECT POSE TRAJECTORY

To extract 6D pose rollout, we first identify the active object—the one being manipulated in the
generated video. A binary mask for this object in the initial RGB image is essential for object
tracking and determining which object to grasp. Given the initial image and the task command, we
prompt GPT-4o to identify the object most likely to be manipulated. We then ground the predicted
object category into a bounding box using Grounding DINO (Liu et al., |2023), and further refine
this into a segmentation mask using SAM-2 (Ravi et al., 2024)).

Once the active object is localized by the mask, we track it across the generated video using the
scaled predicted depth. This yields the 6D pose rollout. Tracking objects in videos is a rich area
of research, and we experimented with several 6D pose trackers (Labbé et al., 2022 [Wen et al.,
2023aib). For real-world deployment, we found FoundationPose (Wen et al., 2023b)) to perform
the best. It requires an object mesh, which we pre-compute using BundleSDF (Wen et al.| 2023a).
For this, we record a short RGBD video where the object is held and rotated in front of the camera
to capture all sides. While straightforward, this process constrains our method to settings where
a mesh can be precomputed. Nonetheless, as shown in App. [C] our method is also compatible
with mesh-free approaches—BundleSDF can jointly reconstruct and track the object—but current
inference speeds make these alternatives infeasible for real-time use. To ensure stable and realistic
motion during execution, we apply an averaging filter to smooth abrupt pose changes, particularly
in rotation. Additional details on this smoothing step are provided in App.

3.3 OBIECT TO ROBOT MOTION RETARGETING

Once the object trajectory is obtained, we first grasp the object. We use an off-the-shelf grasper,
AnyGrasp (Fang et all 2023), to identify and execute the highest-scoring grasp within a defined
boundary around the active object mask. After grasping, we retarget its trajectory to the robot’s end-
effector. Since the object remains firmly grasped, we assume a fixed transformation between the
robot’s end-effector and the object. This transformation is obtained by composing two rigid-body
transforms: (1) the pose of the object relative to the gripper at the moment it is grasped and (2) the
offset between the gripper and the robot’s end-effector. By combining these two components, we
obtain a single transformation from the end-effector to the object.

The corresponding end-effector trajectory is obtained by applying the fixed end-effector-to-object
transformation to the object’s pose along the entire trajectory. This formulation ensures that the
retargeted 6D pose rollout follows the object’s motion while maintaining a stable grasp. These
are executed on the physical robot, enabling it to reproduce the object’s movement as observed in
the generated video. A key strength of this approach is that it is robot-agnostic. Specifically, to
accommodate a different robot or gripper, only the end-effector to the object transformation needs
to be updated to reflect the new end-effector configuration.

3.4 CLOSED LOOP EXECUTION

A core strength of our approach is its ability to operate in
a closed-loop manner, enabling robust execution despite
disturbances or unexpected changes during task execu-
tion. During deployment, the system continuously tracks
the object’s 6D pose in real time using FoundationPose
to update the robot’s end-effector trajectory as the task
progresses. This feedback allows the robot to dynami-
cally adjust its motions: if the object deviates from the
planned trajectory due to external perturbations, such as
a human pushing the robot or a slip after grasping, the
system detects the discrepancy by comparing the current
object pose to the precomputed trajectory. If the detected ;. " "0 planned trajectory. When
deviation exceeds a threshold of 3 cm in position or 20 . jeviation is detected (image 2), the robot
degrees in orientation, the robot backtracks to the last suc-  packtracks to the last successfully executed
cessfully executed trajectory point and resumes execution  trajectory point (image 3) and then resumes
from there (Fig. [2). This recovery mechanism enables the planned motion (image 4).

Robot backtracks Successful exec

Figure 2: RIGVid is robust to perturba-
tions. A human pushes the robot during
execution (image 1), causing the object to
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RIGVid to maintain stable task execution, realigning and successfully completing the manipulation
task despite perturbations. Additional examples of robustness are provided in App. [H]

4 EXPERIMENTS

This section presents our experimental evaluation. We describe the robot setup, manipulation tasks,
and evaluation protocol (Sec. .I). Then assess the impact of video generation models and filter-
ing strategies on downstream robotic performance (Sec. [#.2). Next, we compare RIGVid to SOTA
VLM-based trajectory prediction method that allows zero-shot execution (Sec. [£.3), and to alterna-
tive tracking approaches for trajectory extraction (Sec. [#.4). Finally, we test generalization across
embodiments, extensions to new tasks, and robustness to real-world disturbances (Sec. @

4.1 ROBOT SETUP, TASKS, AND EVALUATION

Pour water on the plant Lift lid of the pot Place spatula on the pan Sweep trash onto the dustpan

Figure 3: Evaluation tasks. We evaluate RIGVid on everyday manipulation tasks of varying difficulty.

We conduct experiments on an xArm?7 robot arm with a stationary Orbbec Femto Bolt camera, po-
sitioned next to the robot to capture RGBD observations. We evaluate our method on four everyday
manipulation tasks, which are illustrated in Fig.[3] These span a diverse range of robotic challenges,
and their descriptions are as follows:

1. Pouring water requires the robot to position and tilt a watering can above a plant. While
the depth of the can relative to the camera remains largely constant, successful execution
demands a smooth trajectory spanning the pick-up, transport, and pouring phases. A trial
is considered successful if the watering can’s spout is positioned above the plant at the end
of the execution.

2. Lifting a lid requires the robot to lift a pot lid. Unlike pouring, where the camera is viewing
the scene from the side, the camera here is looking down towards the pot. As a result, this
task involves significant variation in object depth, as the lid moves closer to the camera
during execution. Success is achieved if the lid is no longer in contact with the pot at the
end of the trial.

3. Placing a spatula on a pan requires the robot to place the head of a spatula into a pan. The
spatula has a thin, elongated geometry and is often partially occluded during manipulation,
which presents a challenge for object tracking, particularly for non-mesh-based approaches.
The task is considered successful if the spatula’s head is in the pan at the end of execution.

4. Sweeping trash requires the robot to sweep trash into a dustpan. This task is especially
challenging as it combines the need for precise positioning to align the head of the sweeping
brush with the trash, along with all the challenges encountered from the placing task. A
trial is successful if the trash is touching the base of the dustpan at the end of the execution.

Task success is determined via human judgment based on the above criteria, though the procedure
could be readily automated with a VLM. The initial setup configuration is fixed across trials of the
same task, and each trial has a different generated video. All baselines use the same videos for
consistent comparison and reporting.

4.2 QUALITY AND FILTERING OF GENERATED VIDEOS

As discussed in Sec. 3.1} we experimented with Sora, Kling v1.5, and Kling v1.6 for video gen-
eration. We also compared different video filtering strategies. Next, we present our key empirical
findings.

How do different video generation models compare for robotic imitation? Sora is known for creating
visually impressive and cinematic videos. Unfortunately, these videos often prioritize aesthetics over
following the human command. As seen in the top row of Fig.[d] Sora frequently alters the camera
viewpoint, changes object positions, or even swaps out objects mid-sequence. This lack of scene
and object consistency makes Sora poorly suited for imitation. Kling v1.5 places more emphasis
on following language instructions, generally preserves the original scene, and correctly depicts
the target object. Nonetheless, it is still prone to physically implausible behaviors and command
following failures. In the second row of Fig. ] the teapot is not positioned over the plant and the
water pours out from the top, not the spout (in other failure cases, nothing at all happens in the
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Figure 4: Qualitative comparison of video generation for three models. Sora (top) drastically alters the
scene layout and object size. Kling v1.5 (middle) does not fully follow the prompt (water not poured over
the plant) and exhibits physically implausible behaviors (water pouring out of the top of the kettle but not the
spout). Kling v1.6 (bottom) produces the most consistent and realistic result.

Filtering Metrics Pour Water Lift Lid Place Spatula Sweep Trash Average
Video-text Consistency 0.06 0.47 0.70 0.11 0.34
12V Subject Consistency 0.35 0.58 -0.09 0.63 0.37
Querying GPT ol 0.91 0.91 0.91 0.66 0.84

Table 1: Comparison of video filtering metrics. Pearson correlation coefficients measure each metric’s
effectiveness in assessing whether a generated video follows the language command. Querying GPT o1 proves
to be most effective.

video, and the command is not even attempted). By contrast, Kling v1.6 (bottom row of Fig. [)
has greatly improved command following and physical plausibility, proving to be the most reliable

video generator for us. More examples of generated videos are shown in App. Fig.[T9]
Pour Water Lift Lid Place Spatula Sweep Trash

=
8

What are the filtering statistics for different

video generation models? ~ Confirming the ;

trends described above, Fig. [5 reports the pass & ©

rates of each model across our four tasks for the 5 o I

GPT-4o filter described in Sec. 3.1l Sora fails = 22 .

all tasks 100% of the time. Kling v1.5 does bet- Y U, G Y G Y, ’r/é) G ’OQO %,
ter, successfully passing pouring 52.6% of the % Yy L’J s S EAC

time, lifting 27.7%, placing 4%, and sweeping Figure 5: Filtering statistics. Kling V1.6 videos have
2%. Kling V1.6 shows a substantial improve- the highest pass rate, demonstrating more accurate ad-
ment across tasks, passing pouring 83%, lifting herence to language commands.

66%, placing 55%, and sweeping 45% of the time. We noticed that, particularly for the placing
and sweeping tasks, even Kling V1.6 frequently generated videos in which the command was not
followed. In many cases, the video remained static, and no action was performed.

How accurate is VLM-based video filtering, and are there any simpler alternatives? In Tab.[I] we
report Pearson correlation coefficients between filtering metrics and human judgments of genera-
tion correctness. Our VLM-based filtering achieves strong agreement with human ratings across
all tasks, with high correlation values. Most errors made by the VLM-based filter are false nega-
tives—occasionally discarding usable videos, but almost never passing an incorrect one. We also
explore the most relevant metrics for our case from a recent benchmark suite for evaluating video
generation quality and instruction following, VBench++ (Huang et al., 2024b): (i) video-text consis-
tency measuring the alignment between the command and the generated video (Wang et al.| [2023),
and (ii) image-to-video (I2V) subject consistency which evaluates whether subjects present in the
input image persist throughout the video (Caron et al}, [2021)). These metrics correlate only weakly
or inconsistently with task success and are not reliable for filtering.

Does hlgher video quallty Pour Water Place Spatula Lift Lid Sweep Trash

100

lead to better robot perfor-

mance? To quantify this, ©

Fig.[6] plots RIGVid ’s task 5

success across five video ©, 4 o P’y %, P 5 G 4 G 4
%, "éa,/ '%',/ K4 ?@ %, "’0 % @L %',, ’ieL T %, ’&ob %,

sources: unfiltered Sora, 7 s 7 2 T 2 ENE
G Tt " G "G °* G "G G T

unfiltered Kling v1.5, un- .
filtered Kling v1.6, filtered Figure 6: RIGVid performance vs. video quality. The dashed lines separate

performance on generated videos from real videos. Kling V1.6 produces most
reliable videos and leads to highest RIGVid success. Filtered videos perform
on par with real ones. UF denotes unfiltered and F denotes filtered.

Kling v1.6, and real hu-
man demonstration videos.
For each source, we use 10
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videos per task. We observe a clear trend: as video quality improves, so does success rate. Sora’s
unfiltered videos lead to 0% success rate, Kling v1.5 performs better, and Kling v1.6 gives the high-
est results among all generated videos. Filtering dramatically improves reliability: after discarding
failed generations using our automatic approach, success rate with filtered Kling v1.6 videos im-
proves from 80% to 100% on pouring, from 60% to 80% on lifting, from 50% to 90% on placing,
and from 20% to 70% on sweeping.

Can generated videos replace real videos for imitation? The results in Fig. [6] indicate that, when
using filtered Kling v1.6 videos, RIGVid ’s performance is similar to that achieved with real human
demonstration videos. This finding suggests that, at current model quality, generated videos are
already sufficient for visual imitation, substantially reducing the need for manual data collection.

What causes failure of imitation given high-quality videos? Aside from one case where the object
slipped out of the gripper, all failures on filtered Kling v1.6 videos are attributed to errors in depth
estimation. These errors result in inaccurate 6D trajectories and lead to tracking failures. Notably,
similar depth estimation issues are also observed in real videos, suggesting that the limitation lies in
the depth model itself. App.[[|provides a detailed analysis of failure cases with qualitative examples.

4.3 RIGVID vS. VLM-BASED TRAJECTORY PREDICTION

Pour Water Lift Lid Place Spatula Sweep Trash

Video generation is computationally expensive, prompt- ~ '®
ing the question of whether more efficient alternatives
can enable robot manipulation without any demonstra- :Z I I
tions. VLMs offer one potential alternative by predicting  ,, I
simplified task abstractions—goal states (Huang et al.| . Il

2023)), constraints (Huang et al.| [2024a)), or reward func-
tions (Patel et al., |2025)—without generating full visual
sequences, making them cheaper in computation and in-
ference time. We take the state-of-the-art ReKep (Huang
et al., 2024a) method as a representative of this line of work, and compare against it in Fig. [/| In
our comparison, RIGVid achieves 85% vs. ReKep’s 50% success over four tasks. App. [E]illustrates
ReKep’s failures, which we attribute to inaccurate keypoint predictions. This comparison suggests
that, for our tasks and experimental setup, VLM-generated abstractions are compact and may lack
the rich, necessary details for successful robot execution. Thus, despite its higher cost, video gener-
ation provides crucial supervision rather than being a wasteful expense.

M ReKep (VLM-Based) Ours
Figure 7: RIGVid vs. ReKep Success

Rates. RIGVid outperforms SOTA VLM-
based trajectory prediction method ReKep.

While this result highlights, for our tasks and setup, the additional detail in generated videos supports
more reliable execution than the current VLM-based alternative, it does not rule out the possibility
that future or alternative VLM-based approaches could close this gap. Our findings suggest that, at
present, video generation can provide richer supervision for manipulation compared to this specific
VLM-based method, despite its higher computational cost.

4.4 COMPARISON TO ALTERNATIVE TRAJECTORY EXTRACTION METHODS

We investigate the best way to extract trajectory information from videos for the purpose of visual
imitation. To this end, we adapted several competitive methods that use different types of tracking
to imitate a video without demonstrations. For each method, we describe its inputs and outputs, core
approach, our modifications, and the motivation for its inclusion (additional details in App. [F).

Track2Act (Bharadhwaj et al., 2024b) (Tracks-Based). This method takes an RGBD image of
the initial scene, and a single goal image that specifies the desired final configuration. Since we have
no other way to get the goal image, we set it to the last frame of the generated video. Using only this
pair of images, Track2 Act uses a learned model to predict a dense grid of 2D point tracks, producing
pixel-level correspondences between the initial and goal image. These tracks are then lifted to 3D
using the depth map from the initial frame and converted into a sequence of 3D object poses via the
Perspective-n-Point (PnP) algorithm. We do not finetune their track prediction network, and do not
use their residual policy. Track2Act is an attractive alternative as it uses a dedicated track prediction
network that operates solely on the start and goal images, without requiring any intermediate frames.
However, its main drawback is that the learned track prediction network may not generalize to all
scenarios, as evidenced by our experiments and qualitative results.

AVDC (Ko et al.}2023) (Flow-Based). Given an initial RGBD image, task description, and active
object mask, AVDC predicts object motion by first generating a task-conditioned video and then
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computing optical flow between frames. This optical flow is used in an optimization process to
reconstruct the object trajectory. In our adaptation, we substitute AVDC’s original video generator
with our improved model, while preserving all downstream processing. Unlike Track2Act, AVDC
leverages optical flow across the entire video, giving it dense temporal correspondences at every
pixel and thus many more cues for tracking. It is attractive because it offers a denser input for object
tracking. Nevertheless, it is sensitive to cumulative errors in flow estimation, which can degrade the
accuracy of the resulting object trajectories.

4D-DPM (Kerr et al., 2024) (Feature Field-Based). This method takes a 3D Gaussian splatting
field of the object and a real video of the task, and outputs object trajectories over time. A feature
field, similar to NeRF representations, is a continuous mapping from 3D space to high-dimensional
feature vectors that capture both geometry and appearance. By aligning the feature field with indi-
vidual video frames, the method can estimate object trajectory across the video. To build the field,
4D-DPM requires a separate video where the object is captured from all sides. In our adaptation,
since 4D-DPM expects a real human demonstration video, we instead use a generated video as the
task input video. We modify this method from tracking object part poses to tracking single objects.
This approach is compelling because it applies semantic, feature-based reasoning to track objects,
capturing entire object structure from video, without relying on explicit correspondences. However,
it tends to produce unstable tracking in our experiments, limiting its practicality.

Gen2Act (Bharadhwaj et al., 2024a) (Generated Goal-Based). Gen2Act takes as input an RGBD
image of the scene and a task description, and outputs robot actions predicted by a learned pol-
icy. In the original formulation, the extracted tracks on the generated video were used to supervise
behaviour-cloning on a large offline robotics dataset. In our adaptation, we do not use any policy
learning. Instead, we extract object tracks from the generated video and directly estimate object
poses from these tracks using the initial depth image. This removes any dependence on expert
demonstration data or learned policies. Gen2Act is notable for leveraging sparse correspondences
extracted from the generated video, enabling task-relevant object motion to be tracked and retargeted
without requiring explicit actions. However, when large portions of the object become occluded or
undergo significant rotations, many of the tracking points are lost, resulting in too few correspon-
dences to estimate object pose accurately and ultimately causing the tracking to fail.

Fig. [§] shows that RIGVid
achieves a success rate

100 Pour Water Lift Lid Place Spatula Sweep Trash Average
of 85.0%, compared to %
67.5% for Gen2Act and 60
considerably lower rates ‘2‘8 I I I l
for all other baselines. This 0 |
i - Ty, % 1,50 % a0, % 70,8 % S 1,70, % 9,
margin grows with more e%’«/:)“ %, /;‘ilojm “, % %" %, 7{0{\ %, 4:‘175& “, % %" ‘?%7(00 %, 4:‘175&

complex tasks. Methods

such as Track2Act (7.5%), Fi 8 C i luati f traiect tracti thod
AVDC (32.5%), and 4D- Iigure 8: Comparative evaluation of trajectory extraction methods.

. RIGVid consistently achieves higher success across all four tasks; relative
DPM (35 ’0%? rely on point improvements are higher as tasks become harder (i.e., from left to right).
tracks or optical flow, but

their performance remains limited, especially as object rotations or occlusions are severe. Gen2Act,
which combines video generation with point-based tracking, closes part of the gap but consistently
struggles when large portions of the object become untrackable. In contrast, RIGVid’s use of 6D ob-
ject pose trajectory enables robust execution, accounting for the 17.5% improvement over Gen2Act.
This advantage persists when more powerful tracking models like CoTracker3 (Karaev et al., [2024)
are used, as shown in App.[G]

Looking at the task-wise breakdown in Fig. [§] RIGVid maintains high success rates even as object
depth varies significantly (such as in the lifting task) or when the objects are thin, small, or partially
occluded (such as in placing a spatula or sweeping trash). Other methods frequently struggle in these
settings, often failing to recover object trajectories when objects become partially hidden or change
distance rapidly. The advantage of RIGVid is most pronounced on the most challenging tasks: for
both spatula placement and sweeping, RIGVid achieves success rates 20-25% above the next best
baseline. These results suggest that the structured 6D pose trajectory not only enables robust tracking
under depth changes and occlusion but also scales to scenarios where correspondence methods fail.



Under review as a conference paper at ICLR 2026

Track2Act (Tracks) AVDC (Flow) Gen2Act (Generated Goal) ~ 4D-DPM (Feature Field)  RIGVid (6D Object Pose Traj)

Visualizing the outputs in Fig. [
for the same generated video, we
observe the intermediate predictions
and resulting robot executions. For
Track2Act, the predicted tracks di-
verge from the true object path, lead-
ing to failed execution. Often, the
track2act track prediction does not
follow the true motion paths, which is
the primary source of errors in our ex-
periments. AVDC generates reason-
able optical flow in individual frames,
but when summed across the entire
video, the resulting trajectory is often

ph}{swall.y implausible, and the €XC- Figure 9: Analyzing intermediate visual representations. Only
cution fails. We often found that this  Gen2Act and our 6D Object Pose Trajectory can correctly track the
summing up of object flow across the position and rotation of the watering can, leading to a successful
video leads to small errors that accu- execution. Check the description in the main paper for detailed
mulate over the entire video, result- discussions of the failure modes of the alternative methods.

ing in faulty object location across the video. Gen2Act yields plausible tracks and leads to success-
ful manipulation. We often found that tracks were accurate, and the resulting trajectory after PnP
was also accurate. 4D-DPM exhibits inconsistent tracking performance. While it accurately follows
the object in certain segments, the example shown reveals incorrect tracking during the first half of
the episode, which ultimately causes the rollout to fail. We often found that the tracking was unsta-
ble and very jerky. In contrast, the 6D object pose trajectories produced by RIGVid remain stable
throughout the episode and closely match the actual object motion, resulting in successful execution.

4.5 TESTING GENERALIZATION @ Mﬁ
Embodiment-Agnostic Transfer. We test [®/Y=<"% : e !

. . eqe . "~ _Aloha Pouring - Wipe Table Mix Pot Iron Shirt
RIGVid’s generalizability to another embodi-

Robot Execution

ment by deploying it on the ALOHA robot for , R j
the pouring task (Fig. [I0} top left). On this A8 -
Setup, lt aChieVeS 80% SuCCGSS, Compared tO | Bimanual Place Shoes Upright Ketchup. Unplug Charger Spill Beans

100% on our default xArm setupﬂ RIGVid also Figure 10: RIGVid’s embodiment-agnostic capa-

generalizes to a bimanual setup, simultaneously bilities and examples on solving complex, open-
placing a pair of shoes into a box using both Wworld tasks. RIGVid can readily work on ALOHA

arms (Fig.@ bottom left). setup (Zhao et al.| [2023) as shown on top left. On

the bottom left, RIGVid is retargeted to the bimanual
Extensions to Additional Tasks. Besides ALOHA setup. On the right, it generates trajectories
our four main focus tasks, we also obtained for diverse manipulation tasks—including wiping, mix-
promising preliminary results on a larger va- ing, and ironing—without using any physical demon-
riety of diverse and challenging manipulation ~Strations.
tasks shown in Fig.[T0](right). These tasks include wiping, mixing, and ironing, uprighting a ketchup
bottle, unplugging a charger, and rotating a spoon to spill beans. Notably, the latter three tasks in-
volve extreme rotations, which RIGVid can handle successfully.

5 CONCLUSIONS

We introduced RIGVid, the first method for robotic manipulation that works from just generated
videos. By leveraging recent advances in generative vision and pose estimation, RIGVid enables
robots to execute complex tasks entirely from generated video. We extract 6D Object Pose Trajec-
tory from the generated videos and retarget it to the robot, demonstrating a data-efficient approach
to robotic skill acquisition. Our analysis shows a correlation between video quality and task success.
Additionally, our comparisons with SOTA VLM-based manipulation methods confirm that leverag-
ing dense visual cues from generated videos yields more reliable performance. We also show that
RIGVid significantly outperforms competing trajectory extraction methods across a diverse set of
tasks, and demonstrate the robustness of our approach to disturbances. Our work represents a step
toward enabling robots to learn from the visual knowledge in generative models, reducing reliance
on time-consuming data collection.

!The performance drop stems from inaccurate camera calibration of ALOHA’s wrist cameras.



Under review as a conference paper at ICLR 2026

REFERENCES
Kling ai. https://www.klingai.com/, 2024. Accessed: 2024-02-10.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mert Albaba, Chenhao Li, Markos Diomataris, Omid Taheri, Andreas Krause, and Michael Black.
Nil: No-data imitation learning by leveraging pre-trained video diffusion models. arXiv preprint
arXiv:2503.10626, 2025.

Max Argus, Lukas Hermann, Jon Long, and Thomas Brox. Flowcontrol: Optical flow based visual
servoing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp- 7534-7541. IEEE, 2020.

Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Human-to-robot imitation in the wild. arXiv
preprint arXiv:2207.09450, 2022.

Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from hu-
man videos as a versatile representation for robotics. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13778-13790, 2023.

Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu
Jiang, Yizhou Sun, Kai-Wei Chang, and Aditya Grover. Videophy: Evaluating physical common-
sense for video generation. arXiv preprint arXiv:2406.03520, 2024.

Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted
Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, and Sean Kirmani. Gen2act: Human video generation
in novel scenarios enables generalizable robot manipulation. arXiv preprint arXiv:2409.16283,
2024a.

Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Pre-
dicting point tracks from internet videos enables diverse zero-shot robot manipulation, 2024b.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video—-generation-models—as-world-simulators.

Sylvain Calinon. A tutorial on task-parameterized movement learning and retrieval. [Intelligent
service robotics, 9:1-29, 2016.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, and Xiaolong Wang. Expressive
whole-body control for humanoid robots. arXiv preprint arXiv:2402.16796, 2024.

Sungjoon Choi, Matthew KXJ Pan, and Joohyung Kim. Nonparametric motion retargeting for hu-
manoid robots on shared latent space. In Robotics: science and systems, 2020.

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In Conference on
Robot Learning, pp. 2071-2084. PMLR, 2021.

Carl Doersch, Yi Yang, Dilara Gokay, Pauline Luc, Skanda Koppula, Ankush Gupta, Joseph Hey-
ward, Ross Goroshin, Jodo Carreira, and Andrew Zisserman. Bootstap: Bootstrapped training for
tracking-any-point. arXiv preprint arXiv:2402.00847, 2024.

Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. arXiv preprint
arXiv:2310.10625, 2023.

10


https://www.klingai.com/
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Under review as a conference paper at ICLR 2026

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in Neural
Information Processing Systems, 36, 2024.

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and tem-
poral domains. IEEE Transactions on Robotics, 2023.

Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning dense visual
object descriptors by and for robotic manipulation. arXiv preprint arXiv:1806.08756, 2018.

Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, and Chuang Gan. Adaworld: Learning adaptable
world models with latent actions. arXiv preprint arXiv:2503.18938, 2025.

Theophile Gervet, Soumith Chintala, Dhruv Batra, Jitendra Malik, and Devendra Singh Chaplot.
Navigating to objects in the real world. Science Robotics, 2023.

Michael Gleicher. Retargetting motion to new characters. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, pp. 33—42, 1998.

Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, and Jiale Zhao. T2vphysbench:
A first-principles benchmark for physical consistency in text-to-video generation. arXiv preprint
arXiv:2505.00337, 2025.

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

Kai Hu, Christian Ott, and Dongheui Lee. Online human walking imitation in task and joint space
based on quadratic programming. In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 3458-3464. IEEE, 2014.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-
temporal reasoning of relational keypoint constraints for robotic manipulation. arXiv preprint
arXiv:2409.01652, 2024a.

Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chan-
paisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin Wang,
Dahua Lin, Yu Qiao, and Ziwei Liu. Vbench++: Comprehensive and versatile benchmark suite
for video generative models. arXiv preprint arXiv:2411.13503, 2024b.

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. arXiv
preprint arXiv:2410.11831, 2024.

Simar Kareer, Dhruv Patel, Ryan Punamiya, Pranay Mathur, Shuo Cheng, Chen Wang, Judy Hoff-
man, and Danfei Xu. Egomimic: Scaling imitation learning via egocentric video. arXiv preprint
arXiv:2410.24221, 2024.

Bingxin Ke, Dominik Narnhofer, Shengyu Huang, Lei Ke, Torben Peters, Katerina Fragkiadaki,
Anton Obukhov, and Konrad Schindler. Video depth without video models, 2024. URL https:
//arxiv.org/abs/2411.19189.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, and Angjoo

Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular 4d
reconstruction. arXiv preprint arXiv:2409.18121, 2024.

11


https://arxiv.org/abs/2411.19189
https://arxiv.org/abs/2411.19189

Under review as a conference paper at ICLR 2026

Chung Min Kim, Mingxuan Wu, Justin Kerr, Ken Goldberg, Matthew Tancik, and Angjoo
Kanazawa. Garfield: Group anything with radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21530-21539, 2024.

Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act
from actionless videos through dense correspondences. arXiv preprint arXiv:2310.08576, 2023.

Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan Trem-
blay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. Megapose: 6d pose esti-
mation of novel objects via render & compare. In Proceedings of the 6th Conference on Robot
Learning (CoRL), 2022.

Arjun S Lakshmipathy, Jessica K Hodgins, and Nancy S Pollard. Kinematic motion retargeting for
contact-rich anthropomorphic manipulations. arXiv preprint arXiv:2402.04820, 2024.

Jinhan Li, Yifeng Zhu, Yuqi Xie, Zhenyu Jiang, Mingyo Seo, Georgios Pavlakos, and Yuke Zhu.
Okami: Teaching humanoid robots manipulation skills through single video imitation. In 8th
Annual Conference on Robot Learning, 2024.

Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-Le Guo, and Ming-Ming Cheng. Amt:
All-pairs multi-field transforms for efficient frame interpolation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023.

Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran
Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video genera-
tion. arXiv preprint arXiv:2406.16862, 2024.

Fangfu Liu, Wengiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang,
and Yueqi Duan. Reconx: Reconstruct any scene from sparse views with video diffusion model.
arXiv preprint arXiv:2408.16767, 2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learn-
ing to imitate behaviors from raw video via context translation. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1118-1125. 1EEE, 2018.

Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative
video models learn physical principles from watching videos? arXiv preprint arXiv:2501.09038,
2025.

Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Ab-
hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-
embodiment: Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Shivansh Patel, Xinchen Yin, Wenlong Huang, Shubham Garg, Hooshang Nayyeri, Li Fei-Fei, Svet-
lana Lazebnik, and Yunzhu Li. A real-to-sim-to-real approach to robotic manipulation with vim-
generated iterative keypoint rewards. arXiv preprint arXiv:2502.08643, 2025.

Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. In European
Conference on Computer Vision, pp. 570-587. Springer, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.
org/abs/2408.00714.

12


https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714

Under review as a conference paper at ICLR 2026

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid: Learning
multi-stage tasks via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443,
2019.

Mohan Kumar Srirama, Sudeep Dasari, Shikhar Bahl, and Abhinav Gupta. Hrp: Human affordances
for robotic pre-training. arXiv preprint arXiv:2407.18911, 2024.

Yihong Sun, Hao Zhou, Liangzhe Yuan, Jennifer J Sun, Yandong Li, Xuhui Jia, Hartwig Adam,
Bharath Hariharan, Long Zhao, and Ting Liu. Video creation by demonstration. arXiv preprint
arXiv:2412.09551, 2024.

Eugene Valassakis, Georgios Papagiannis, Norman Di Palo, and Edward Johns. Demonstrate once,
imitate immediately (dome): Learning visual servoing for one-shot imitation learning. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8614-8621.
IEEE, 2022.

Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal under-
standing and generation. In The Twelfth International Conference on Learning Representations,
2023.

Bowen Wen, Jonathan Tremblay, Valts Blukis, Stephen Tyree, Thomas Muller, Alex Evans, Dieter
Fox, Jan Kautz, and Stan Birchfield. Bundlesdf: Neural 6-dof tracking and 3d reconstruction of
unknown objects. CVPR, 2023a.

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. arXiv preprint arXiv:2312.08344, 2023b.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
optical flow via global matching. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8121-8130, 2022.

Mengda Xu, Zhenjia Xu, Yinghao Xu, Cheng Chi, Gordon Wetzstein, Manuela Veloso, and Shuran
Song. Flow as the cross-domain manipulation interface. arXiv preprint arXiv:2407.15208, 2024.

Xindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Ligian Ma, Zhiyong Wang, Jianfei Cai,
Tien-Tsin Wong, Huchuan Lu, et al. Vlipp: Towards physically plausible video generation with
vision and language informed physical prior. arXiv e-prints, pp. arXiv—2503, 2025.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos.
arXiv preprint arXiv:2410.11758, 2024.

Qihang Zhang, Shuangfei Zhai, Miguel Angel Bautista, Kevin Miao, Alexander Toshev, Joshua
Susskind, and Jiatao Gu. World-consistent video diffusion with explicit 3d modeling. arXiv
preprint arXiv:2412.01821, 2024.

Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern
analysis and machine intelligence, 22(11):1330-1334, 2000.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Jiaming Zhou, Teli Ma, Kun-Yu Lin, Zifan Wang, Ronghe Qiu, and Junwei Liang. Mitigating the
human-robot domain discrepancy in visual pre-training for robotic manipulation. arXiv preprint
arXiv:2406.14235, 2024.

Junzhe Zhu, Yuanchen Ju, Junyi Zhang, Muhan Wang, Zhecheng Yuan, Kaizhe Hu, and Huazhe
Xu. Densematcher: Learning 3d semantic correspondence for category-level manipulation from
a single demo. arXiv preprint arXiv:2412.05268, 2024.

13



Under review as a conference paper at ICLR 2026

Appendix

We structure the supplement into the following subsections:

[A] Details on best practices for video generation.
Overview of prompt and examples of video summaries with GPT responses used for video
filtering.
Results and discussion on our method’s mesh-free object tracking version.
Details on reducing noise in 6D pose rollouts for stable and realistic motion.
[B Adaptation and implementation details of baseline methods.
[El Comprehensive example of Rekep Predictions and Execution.
[Gl Discussion of limitations of Tracking using point tracks.
Elaboration on our method’s robustness.
Thorough analysis of errors caused by depth estimation.
[l Discussion regarding the choice between the use of MegaPose and FoundationPose, focus-
ing on trajectory stability.
[KI Additional analysis of generated videos and human demos using VBench++ metrics.

We are attaching the source code in the supplementary materials for reproducibility.

A BEST PRACTICES FOR VIDEO GENERATION

We found that the following practices lead to reliable video generation: (1) having a clean back-
ground without visual distractions, (2) minimizing the number of distractor objects in the scene, (3)
ensuring objects are reasonably large and viewed from a natural, human-like perspective, (4) ensur-
ing there is one clearly identifiable task that can be performed, (5) using simple and concise text
prompts, and (6) setting the relevance factor to 0.7 with the negative prompt “fast motion” led to the
most reliable video generations.

B PROMPTING FOR VIDEO FILTERING AND FILTERING STATISTICS

The prompt for GPT ol-based filtering is shown in Figure[T6] We provide GPT ol with the prompt,
a video summary—created by vertically concatenating evenly sampled frames from the video—and
the language command (e.g., “pour water”’). GPT ol then responds with ”Yes” or "No” to indicate
whether the task is successfully performed.

C MESH-FREE OBJECT TRACKING

We experiment with a mesh-free object tracking version of our method. Specifically, we use
BundleSDF (Wen et al.| [2023a), which jointly performs 6-DoF object tracking and reconstruc-
tion from RGBD observations. For the pouring task, we evaluate our method using trajectories
obtained via BundleSDF over 10 trials and observe a success rate of (90%), matching our default
tracking setup. While the BundleSDF paper reports real-time capabilities, we found that its official
implementation takes approximately 30 minutes to process each video in practice, which limits its
applicability for real-time deployment. In contrast, our default tracker operates in real-time, en-
abling closed-loop execution and recovery from disturbances as discussed in Sec. #.5] While the
BundleSDF paper reports real-time capabilities, we observed significantly higher runtimes in prac-
tice with the official implementation. We expect that future advances in model-free tracking will
address these efficiency bottlenecks, allowing for real-time mesh-free deployment.

D SMOOTHING OBJECT TRAJECTORIES

To reduce noise and jitter in the estimated object poses, we apply a moving average filter with a fixed
sliding window (centered on each point) to the position and orientation components. Translations are
smoothed independently along each axis, while orientation is processed similarly after converting
from quaternions to rotation vectors. This approach mitigates abrupt changes, resulting in a more
stable and realistic object trajectory with smoother transitions.
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E REKEP PREDICTIONS AND EXECUTIONS

A detailed example of ReKep’s keypoint and
VLM predictions for pouring task is shown in
Fig.[I7} The VLM first predicts grasping the
watering can at keypoint 1. For the transport
phase, it instructs moving keypoint 8 above
keypoint 15, while keeping its height above
keypoint 7. For the pouring action, keypoint
8 remains above 15 (to place the spout over the
plant) and above keypoint 4 (to induce tilting).
The resulting robot execution fails. We attribute
most ReKep failures to inaccurate keypoint pre-
dictions, as shown in Fig. ﬂ;ﬂ In the lid im-
age, no keypoint appears at the lid handle. In
the placing task, keypoints cluster around pan
corners. For the sweeping task, the keypoints
are generally well-placed, and executions suc-
ceeded. Suboptimal initial keypoints lead to in-
accurate downstream VLM predictions.

F DESCRIPTION OF BASELINES

Figure 11: Examples of ReKep’s Keypoint Loca-

. . tions. The keypoint placements are often suboptimal,
Track2Act (]Bha,radhwa.] et al} 2024b): We except for swe);r;))ing trz)isk, where the keypoints age rea-
adapt Track2Act’s procedure to our setup pre- sonable
serving its core idea of object-centric trajectory '
estimation from point tracks. Track2Act generates a future interaction plan by predicting 2D point
trajectories (using a DiT-based diffusion model) between an initial image and a goal image, then
recovers a sequence of 3D object transforms via Perspective-and-Point (PnP) 2000).

To integrate this into our pipeline, we use their published checkpoint but modify the input
formulation—while the initial image remains identical to our real camera’s view, the goal image
is taken from the last frame of a generated video rather than being physically captured. We then use
PnP on the predicted point tracks along with the initial depth image to estimate the object’s rigid
motion across frames, thereby defining the end-effector trajectory. We use interpolation between
consecutive poses because Track2 Act generates only a sparse set of frames, and denser sampling is
needed for smooth trajectory estimation and execution. However, we exclude Track2Act’s closed-
loop residual policy correction, focusing solely on open-loop 6D object-pose estimation and execu-
tion. This adaptation allows us to directly evaluate how well a vision-based, open-loop approach
generalizes to our setting without additional corrections.

AVDC 2023): The AVDC approach models action trajectories by synthesizing a task-
driven video (using a trained text-conditioned video generation model) and using optical flow from
GMFlow to estimate dense pixel correspondences. It then reconstructs 3D object
motion using an optimization step that refines pose estimates based on the tracked flow and depth
information. To improve robustness, AVDC also includes a replanning mechanism that re-executes
the pipeline when predicted motion stagnates.

Since the trained text-conditioned video generation model did not generalize well to our setup, we
use the same generated video as in other experiments to ensure a fair comparison. While we do not
employ AVDC'’s replanning strategy, we predict object poses using a similar optimization framework
based on flow and depth information.

4D-DPM 2024): 4D-DPM is designed to track 3D motion of articulated object parts
from a single video. It constructs a 3D Gaussian splatting (Kerbl et al., 2023)) representation of the
scene to capture object features, then applies GARField (Kim et al., 2024) to cluster the Gaussians
into discrete object components. In our adaptation, we modify this to operate on entire objects
rather than individual parts. Specifically, we set the clustering parameters to treat the object as a
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single entity, ensuring that motion estimation is performed at the object level rather than segmenting
it into multiple parts. This allows us to track and execute trajectories for the whole object.

Gen2Act (Bharadhwaj et al., [2024a): Gen2Act introduces a video-conditioned policy learning
framework that first generates a human video using a video generation model from a scene im-
age and a task description. It then extracts object tracks using BootsTAP (Doersch et all, [2024),
and trains a policy using behavior cloning with an auxiliary track prediction loss and offline robot
demonstrations. At inference, Gen2Act uses the generated video and the learned policy to predict
robot actions.

Our approach presents a simplified adaptation of this framework that removes the need for behavior
cloning, and offline demonstrations. Instead of using the extracted tracks as an auxiliary loss, we
directly process them for pose estimation. To recover 3D object positions, we leverage an initial
depth image corresponding to the scene image, allowing us to obtain depth values for the extracted
2D tracks. We apply RANSAC filtering to remove outlier track points and then use the Perspective-
n-Point (PnP) to estimate the object’s 6DoF pose. This adaptation preserves the core
idea of leveraging video and track-based signals while eliminating the need for supervised policy
learning.

G LIMITATION OF TRACKING WITH POINT TRACKS

All point tracks fail under extreme rotations, as initially visible points often become occluded. This
is a fundamental limitation of any correspondence-based tracking method relying solely on visible
surface features. We show this failure in Fig. As the object rotates, most initial points are lost,
resulting in insufficient 2D-3D correspondences to solve a stable PnP problem. This degrades pose
estimation quality, leading to large drift or abrupt jumps in estimated object motion. Such instability
cascades into execution errors, often causing the robot to fail the task altogether. As a result, both
variants of Gen2Act—despite stronger tracking backbones like CoTracker—still fail under large
out-of-plane rotations. In contrast, RIGVid’s model-based 6D tracking handles these situations more
robustly, as it uses full-object geometry and SE(3) filtering to maintain stable trajectories.

Gen2Act with BootsTAP

Gen2Act with Cotracker3 RIGVid

Figure 12: Gen2Act with BootsTAP, CoTracker, and RIGVid. Blue points denote the tracked points used
for PnP; red points represent the reprojected 3D points. For a good PnP solution, these should align, as seen
in the first frame. For Gen2Act, the blue points drift significantly from the red ones in later frames, indicating
failure in pose estimation due to tracking loss, which leads to failed robot execution.

H ADDITIONAL ROBUSTNESS EXAMPLES

Examples of RIGVid’s robustness are shown in Fig. [[3] In the first row, the robot grasps the object,
but due to a misaligned grasp, the object rotates unexpectedly. The robot compensates by rotating
it back to the correct orientation and then resumes the planned trajectory, completing the task suc-
cessfully. In the bottom row, a human perturbs the object during execution while it is held by the
robot. RIGVid detects the resulting change in the relative transformation and automatically re-aligns
the object before continuing. When the human intervenes a second time, RIGVid again corrects the
deviation, resulting in successful task completion.
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Robot approaches grasp Fault grasp rotates th(eibject Robot corrects the faulty grasp Successful Execution

Human pushes object Recovery Human pushes again Recovery & Successful Execution

t

Figure 13: Additional examples of RIGVid’s robustness. In the top row, RIGVid recovers from a faulty
initial grasp by reorienting the object before continuing execution. In the bottom row, it corrects for external
disturbances on the object when a human pushes it mid-execution, realigning and successfully completing the
task.

I ERRORS FROM DEPTH ESTIMATION

Pour Water Lift Lid Place Spatula Sweep Trash

80
60
40
20

0

B Generated Videos with Predicted Depth Real Videos with Predicted Depth Real Videos with Real Depth

Figure 14: Impact of Depth Estimation Errors on RIGVid performance. Errors in monocular depth
estimation result in worse performance of generated and real videos. RIGVid achieves perfect success across
all tasks with real videos and real depth.

In Fig. [T4] we isolate the impact of depth estimation errors. Robot executions on real videos with
real depth (captured using an RGBD camera) achieve a 100% success rate, whereas executions from
real videos with generated depth result in an 85% average success. Similarly, executions from Kling
V1.6-generated videos with generated depth also achieve 85% success, suggesting that the primary
source of error lies in monocular depth estimation. Upon inspection, we observe two common
undesirable behaviors in the predicted depth: inaccurate depth values and temporal flickering. An
example of inaccurate depth is shown in Fig.[T5a] In the generated video, when the spatula is brought
close to the camera, the depth changes by only 6.8 cm, which is visibly inconsistent with the video
and likely much smaller than the real-world change. Inaccuracies also occur in real videos, as shown
in the figure—the head of the spatula is estimated to be far from the camera, despite appearing close,
revealing another failure mode in monocular depth estimation. Flickering is shown in Fig. [I5b}
Although the position of the watering can relative to the camera remains nearly unchanged across
three consecutive frames, the estimated depth varies significantly. The zoomed-in region on the right
shows the can appearing much whiter than on the left, indicating a substantial change in predicted
depth. The average depth of the can changes from 40.1 cm to 38.2 cm—a 1.9 cm difference over just
0.066 seconds—which is physically implausible for the generated video. We find similar flickering
behavior in real videos as well, where the depth changes from 43.2cm to 40.9cm in the given
example—a 2.3 cm difference. Since errors in the generated depth are the main source of failure,
we also tested removing it entirely by estimating object pose directly from the RGB frames of the
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(a) Generated Video

lwi

PES—

)y 4

Avg Depth: 40.1 cm Avg Depth: 38.227 cm

Avg Depth: 43.275 cm Avg Depth: 40.969 cm

(b) Flickering in Depth Prediction. We show three

(a) Errors in Monocular Depth Estimation. In consecutive frames of the video and its correspond-

the generated video (top), the depth of the spatula
changes only slightly despite a large visual change.
In the real video (bottom), the spatula’s head is pre-
dicted to lie farther away, contradicting the visual ap-
pearance.

ing predicted depth. The depth of the watering can
change noticeably across frames—appearing signifi-
cantly whiter in the third frame despite minimal ac-
tual motion. We observe this behavior in both gener-
ated and real videos.

Figure 15: Combined Figure: Comparing depth estimation errors (left) and prediction flickering (right) in
generated and real videos.

generated video using MegaPose. However, this approach leads to even more unstable and noisy
trajectories, as detailed in App.[J}

J CHOICE BETWEEN MEGAPOSE AND FOUNDATIONPOSE

We compare trajectory stability from MegaPose (Labbé et all, [2022) and FoundationPose
2023b) by computing the translational and rotational RMS jitter. For each method, we apply
a Gaussian smoothing filter (o = 2 frames) to the raw SE(3) pose sequences, compute the residual
between original and smoothed trajectories, and then calculate:

1 N
N Z ||Att||2, jittermt =

t=1

Jitter, o =

where At; is the translational residual at frame ¢, and 6, is the angular magnitude (in radians)
of the relative rotation R} ' R, converted to degrees. Metrics are averaged over ten pouring
trajectories from generated videos.

MegaPose yields an average translational RMS jitter of 0.0045m and rotational RMS jitter of 37.47°,
whereas FoundationPose achieves 0.0029m translational and 14.31° rotational jitter. This demon-
strate that FoundationPose produces significantly smoother and more stable trajectories. Addition-
ally, it allows for real-time tracking during the execution, making RIGVid robust to external distur-
bances.
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K COMPARING VIDEO GENERATIVE MODELS

To further assess video quality, we report VBench++ (Huang et al.l [2024b) metrics in Table [2| and
explain them below. The numbers in the table are scaled 100x for easier interpretation. We collect
these metrics on 40 randomly selected and unfiltered videos per model, 10 for each of the four
tasks. Kling v1.6 outperformed the other models on most metrics but performed similarly or worse
in video-text consistency and dynamic degree. Human evaluations discussed in Sec. 4.2] suggest
that the video-text consistency and 12V subject consistency are not reliable indicators of whether a
generated video correctly follows a given command. Sora scored high on dynamic degree, likely
due to its tendency to drastically alter the scene, resulting in exceptionally large motions. Generated
videos from these models and their corresponding metrics are shown in Fig. [I§] and further details
on these metrics can be found the next section.

VBench++ Metric Definitions:

e Subject Consistency. Subject consistency describes whether subjects’ appearance remain consis-
tent, which is computed by DINOv1 (Caron et al.} 2021)) similarities across video frames.

e Background Consistency. Background temporal consistency by CLIP (Radford et al., 2021)
similarities across frames.

e Motion Smoothness. Evaluates smoothness of videos by utilizing video frame interpolation
model AMT (L1 et al., 2023)).

o Dynamic Degree. Describes whether the video contains large motions as a binary metric.

o Aesthetic Quality. Human perceived artistic and beauty value such as photo-realism, layout and
color harmony.

o Imaging Quality. Assesses the presence of distortion in a video, such as noisiness, blurriness, and
over-exposure.

e Video-Text Consistency. Text-to-video alignment score calculated by ViCLIP (Wang et al.| 2023)).

e 12V Subject Consistency. Similarity between subjects in input image and each video frame, as
well as similarity between consecutive frames. Features are extracted from DINOv1 (Caron et al.,
2021).

. Video Generation Models Human
Metrics D
Kling V1.6 Kling V1.5 Sora = cmos
Subject Consistency 96.34 91.66 83.09 9491
Background Consistency 96.64 93.97 89.34  95.00
Motion Smoothness 99.68 99.57 99.06  99.51
Dynamic Degree 52.5 57.5 70.0 80.0
Aesthetic Quality 51.75 49.77 46.22  49.30
Imaging Quality 72.80 71.48 68.68  72.52
Video-Text Consistency 22.01 22.61 2142 21.57
12V Subject Consistency 97.88 95.96 89.09  97.89

Table 2: Video generation quality metrics for real human demonstration videos and different models.
Higher values indicate better quality. Kling v1.6 performs comparably to or surpasses other models on most
metrics.
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Prompt
4 . N

## Instructions

You need to determine whether a specific action occurs in the

given image.

### Image Format

— The image has four rows.

— The action progresses from top to bottom.

### Task

— Examine the image and the provided query.

— Decide if the action described in the query is clearly

depicted.

— A hand should be performing the action. Without it, the
actions are likely implausible as the action needs to be
executed by an actor.

— The task has to be done with the specified object in the first
frame. The video cannot bring in a new object such that there
are two of the same objects.

### Output Format

Your response must be in the following format

Explain if we see a hand.

Explain if a new object has been brought in that is different

from any objects in the first frame

Explain your reasoning for the given image.

action_done: Yes or No

## Query

Query Task: Pour water from the watering can on the plant

\_Query Image: Y,

GPT o1 Response

P

We do see a hand holding and tilting the same watering can from the first frame. Water is

visibly flowing onto the plant in the final frame.

action_done: Yes

|

Prompt

## Instructions

Same as previous prompt. Instructions omitted for simplicity.
## Query

Query Task: Place the spatula on the pan

Query Image:

GPT o1 Response

1) Hand present? Yes, a hand is visible holding the spatula.

2) New object introduced? No, there is no new object introduced; it is still the original
spatula and the original pan.

3) Reasoning: Although we see a hand holding the spatula, there is no point at which the
spatula is placed on or in the pan. The spatula instead ends up resting on the table next
to the pan.

action_done: No

Figure 16: Examples of prompting GPT o1 to filter generated videos. We sample frames from the generated
video and prompt GPT ol to assess whether the specified task is performed successfully in the video. The top
example passes the filtering, while the bottom does not.
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('def stagel_subgoal_constraintl(end_effector, keypoints):

"""Align the end-effector with the watering can handle (keypoint 1)."""
handle_point = keypoints[1]

cost = np.linalg.norm(end_effector - handle_point)

return cost

N
AN

def stage2_path_constraintl(end_effector, keypoints):
"'""The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)

de

—

stage2_path_constraint2(end_effector, keypoints):

"'""The watering can must stay upright to avoid spilling (spout above base)."""
spout = keypoints[8]

base = keypoints[7]

# Ensure spout is not lower than base

cost = max(@, spout[2] - basel2])

\_ return cost

o

(’aef stage2_subgoal_constraintl(end_effector, keypoints): ‘\
"""The watering can spout (keypoint 8) needs to be 1@cm above the

center of the plant (keypoint 15)."""

spout = keypoints[8]

plant = keypoints[15]

offsetted_point = plant + np.array([0, @, 0.10]) # 10cm above the plant
cost = np.linalg.norm(spout — offsetted_point)

K‘ return cost

VAN

('def stage3_path_constraintl(end_effector, keypoints):
"""The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)

de

=

stage3_path_constraint2(end_effector, keypoints):

"""The watering can spout (keypoint 8) is directly above the plant (keypoint 15)

in x-y plane."""

spout = keypoints[8]

plant = keypoints[15]

cost = np.linalg.norm(spout[:2] - plant[:2])

\; return cost 4)

('def stage3_subgoal_constraintl(end_effector, keypoints): ‘\
"""The watering can spout (keypoint 8) needs to be 1@cm above the

center of the plant (keypoint 15)."""

spout = keypoints[8]

plant = keypoints[15]

offsetted_point = plant + np.array([@, @, 0.1]) # 1l@cm above the plant

cost = np.linalg.norm(spout - offsetted_point)

return cost

de

—

stage3_subgoal_constraint2(end_effector, keypoints):

"""The watering can spout (keypoint 8) must be tilted below the base (keypoint 4) to pour."""
spout = keypoints[8]

base = keypoints[4]

# Ensure spout is lower than base

cost = max(@, spout[2] - basel2])

K‘ return cost 4)

Figure 17: ReKep’s output for the pouring task and the resulting robot execution (top-right). The VLM
predicts to grasp at keypoint 1, move keypoint 8 above 15 and 7 during transport, and above 15 and 4 for
pouring—Ileading to failed execution.
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VT Const : 0.267
12V Subj. Const : 0.887
Subj. Const : 0.808

VT Const: 0.221
12V Subj. Const : 0.792
Subj. Const: 0.746

VT Const : 0.208
12V Subj. Const : 0.930
Subj. Const: 0.915

VT Const:0.218
12V Subj. Const : 0.977
Subj. Const : 0.839

VT Const: 0.244
12V Subj. Const : 0.989
Subj. Const : 0.936

VT Const:0.195
12V Subj. Const : 0.978
Subj. Const: 0.731

VT Const: 0.231
12V Subj. Const : 0.989
Subj. Const : 0.982

VT Const : 0.201
12V Subj. Const : 0.865
Subj. Const : 0.965

VT Const:0.217
12V Subj. Const : 0.995
Subj. Const : 0.975

VT Const : 0.208
12V Subj. Const : 0.964
Subj. Const : 0.969

VT Const: 0.245
12V Subj. Const: 0.9965
Subj. Const: 0.965

VT Const : 0.188
12V Subj. Const : 0.955
Subj. Const : 0.951

Figure 18: Qualitative Comparison of Different Video Generative Models. Videos from the three video
generation models are shown using evenly sampled frames, along with VBench++ (Huang et al.} [2024b)) met-
rics: video-text consistency, image-to-video subject consistency, and subject consistency. Kling v1.6 scores
highest on these metrics, followed by Kling v1.5 and then Sora.
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Kling V1.5

Kling V1.6

Kling V1.5

Kling V1.6
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Kling V1.6

Figure 19: Qualitative comparison of video generation. Sora-generated videos often alter the scene layout
and objects. Kling V1.5 produces more plausible results but includes physically implausible elements. Kling
V1.6 better preserves scene fidelity and closely follows the human command.
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