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Abstract

Masked Graph Autoencoders (MGAEs) have gained significant attention recently.
Their proxy tasks typically involve random corruption of input graphs followed
by reconstruction. However, in the molecular domain, two main issues arise: the
predetermined mask ratio and reconstruction objectives can lead to suboptimal
performance or negative transfer due to overly simplified or complex tasks, and
these tasks may deviate from chemical priors. To tackle these challenges, we
propose Dynamic and Chemical Constraints (DyCC) for MGAEs. This includes a
masking strategy called GIBMS, which preserves essential semantic information
during graph masking while adaptively adjusting the mask ratio and content for
each molecule. Additionally, we introduce a Soft Label Generator (SLG) that
reconstructs masked tokens as learnable prototypes (soft labels) rather than hard
labels. These components adhere to chemical constraints and allow dynamic
variation of proxy tasks during training. We integrate the model-agnostic DyCC
into various MGAEs and conduct comprehensive experiments, demonstrating
significant performance improvements. Our code is available at https://github.
com/forever-ly/DyCC.

1 Introduction

Molecular Representation Learning (MRL) plays a pivotal role in many related applications such as
drug discovery, material design, and reaction prediction [8, 11, 44]. By representing molecules as
graphs, where atoms are treated as nodes and bonds as edges, Graph Neural Networks (GNNs) [43,
20, 14] have exhibited remarkable performance across a wide range of tasks. However, a significant
challenge is the scarcity of labeled data, which limits the effectiveness of supervised learning. Inspired
by the remarkable progress in self-supervised pretraining in natural language processing [12], Masked
Graph Autoencoders (MGAEs) [17, 41, 25, 16] have arisen as a promising approach to addressing
these challenges. The pioneering work [17] on this topic introduced the pretraining of GNNs using a
mask-then-recontruction task called AttrMask. Specifically, they randomly mask some proportions
of atoms and then pretrain the models to predict them. AttrMask has emerged as a fundamental
pretraining task and many subsequent works [16, 54] adopt it as a subtask for pretraining. Despite
their success, we have identified two limitations that still lack exploration.

The first limitation is that proxy tasks are predetermined and lack dynamic adaptability. The
effectiveness of MGAEs is largely governed by their proxy tasks, which are defined by the graph-
masking strategy and the reconstruction objective. Prior approaches rely on fixed mask strategies and
tokenizers, which result in suboptimal performance. From the perspective of input corruption, the
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Figure 1: (a) The difficulty of proxy tasks for the AttrMask, MoleBert, and GraphMAE models was
increased by raising the mask ratio. The average ROC-AUC scores were computed across the eight
classification datasets in MoleculeNet [39]. (b) The average ROC-AUC scores of AttrMask with
K-hop subgraph token as the reconstruction target. The larger the value of K, the more challenging
the proxy task becomes. (c) Reconstructing the masked atom as either bromine or chlorine can
generate valid molecules.

masking strategy significantly impacts pretraining performance. As shown in Fig. 1(a), involving
GraphMAE[16], AttrMask [17], and MoleBert [41], we progressively increased the mask ratio to
make the proxy task harder. Initially, as the mask ratio increased, pretraining performance improved;
however, beyond a certain threshold, performance deteriorated. From the perspective of the
reconstruction target, the choice of reconstruction tokens greatly affects pretraining performance.
AttrMask treats atoms as tokens, but the simplicity of its reconstruction objective can cause suboptimal
performance or even negative transfer. Consequently, several studies have proposed more challenging
tokenizers [54, 41, 25]. For example, SimSGT [25] uses K-hop subgraphs as reconstruction targets
and employs a simple GNN-based tokenizer to generate subgraph-level tokens. By adjusting the
value of K, the complexity of the reconstruction task can be controlled—the larger the K, the more
difficult the task. However, we observe that more challenging tokenizers do not necessarily lead
to better pretraining performance. As shown in Fig. 1(b), we used K-hop subgraph tokens as the
reconstruction target (with K = 0 corresponding to node-level tokens). While increasing K indicates
a higher tokenizer complexity (i.e., a harder proxy task), the performance did not consistently
improve. In summary, employing fixed masking and reconstruction strategies (i.e., a predetermined
tokenizer) necessitates a cumbersome search for optimal hyperparameters—and even then yields only
suboptimal results. A more effective solution is to introduce dynamic adaptability into proxy tasks.

The second limitation is that proxy tasks may not adhere to the constraints imposed by chemical
priors, potentially leading to nonsensical or even harmful self-supervised learning signals. We outline
three aspects that deviate from chemical constraints (CC), labeled as CC1, CC2, and CC3. CC1:
Each molecule has its specific mask ratio. Currently, most approaches adopt a globally fixed mask
ratio. However, different molecules exhibit varying degrees of structural redundancy, rendering a
uniform mask ratio suboptimal—too high for certain molecules. CC2: The importance of atoms
within a molecule varies, as certain key atoms play pivotal roles in determining molecular functional
properties, reactivity, and biological interactions. Consequently, prioritizing the masking of these
important atoms can encourage the model to engage in more challenging contextual reasoning,
thereby fostering a deeper understanding of critical structural features. CC3: The reconstruction
target should not be unique. Given the vast chemical compound space, many compounds exhibit
significant structural similarity. As illustrated in Fig. 1(c), the masked atom could be reconstructed
as either Cl or Br. However, current methods often constrain the reconstruction by favoring specific
atom types (or substructures), producing conflicting self-supervised signals.

To address these issues, we propose Dynamic and Chemical Constraints (DyCC) MGAEs, a model-
agnostic approach dynamically adjusts the proxy task while adhering to chemical constraints. Specifi-
cally, we leverage the Graph Information Bottleneck (GIB) theory [52, 51] to redefine graph masking
as a graph compression problem, introducing the GIB-based Mask Strategy (GIBMS). The core con-
cept is to identify a compressed core substructure within the molecular graph that encapsulates its key
properties, and to place greater emphasis on reconstructing these core substructures during the graph
masking stage. This design explicitly addresses CC1 and CC2 by encouraging the model to focus on
essential structural information while learning robust molecular representations. However, traditional
GIB relies on supervisory signals, which are unavailable during pretraining when downstream task
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labels are not accessible. Our contribution lies in extending GIB theory to the unsupervised
setting. We adopt the common multi-view assumption [30, 42], enabling us to demonstrate that the
mutual information between the molecular graph and self-supervised signals acts as a lower bound for
the mutual information between the graph and downstream task labels. As a result, we reformulate
the problem as maximizing the mutual information between the molecular graph and self-supervised
signals, which can be achieved through a contrastive learning paradigm.

Additionally, we introduce the Soft Label Generator (SLG) module, which transforms the recon-
struction objective from a specific token (hard label) to a soft cluster assignment (soft label),
thereby fulfilling CC3[7, 4, 2]. We define potential clusters as prototypes represented by learnable
vectors and subsequently map the hard labels to probability distributions of these prototypes using
the Sinkhorn-Knopp algorithm[10]. Specifically, we randomly initialize a set of prototypes (learnable
vectors), and both the token labels and the reconstruction predictions are evaluated for similarity
against these prototypes, yielding two probability assignment matrices (soft labels). Minimizing the
discrepancy between these two matrices is equivalent to minimizing the difference between the labels
and the reconstruction predictions. During the training process, as the prototypes are updated, the
mapped soft labels dynamically change, thereby enabling the proxy task to be adjusted throughout the
training phase (fulfilling dynamic). In extreme cases, when the assignment probability distributions
converge to the one-hot distribution, the soft labels degenerate into hard labels, resulting in high
inter-class distinctiveness and simplifying the reconstruction task. Conversely, as the assignment prob-
ability distributions approach a uniform distribution, inter-class separability diminishes, rendering the
reconstruction task exceptionally challenging.

In summary, our core contributions are as follows: First, we identified the lack of dynamism and the
failure to adhere to chemical constraints in the proxy tasks of MGAEs. To address these challenges,
we extend the supervised GIB theory to the unsupervised setting and design the GIBMS module,
generating the optimal mask ratio and mask content for each molecule. Additionally, we introduce the
concept of soft assignment into the graph reconstruction stages, avoiding conflicting self-supervised
signals and dynamically adjusting the tokenizer. Lastly, we integrate these two model-agnostic
modules into multiple MGAEs. Extensive experimentation shows consistent improvements across
the integrated models, validating the effectiveness and generality of our approach.

2 Related Work

Graph Contrastive Self-supervised Learning Contrastive self-supervised learning, follows the
principle of mutual information maximization [1], which typically works to maximize the correspon-
dence between the representations of an instance (e.g., node, subgraph, or graph) in its different
augmentation views. GraphCL [49] performs graph-level contrastive learning with combinations
of four graph augmentations, namely node dropping, edge perturbation, subgraph cropping, and
feature masking. InfoGraph [32] conducts graph representation learning by maximizing the mutual
information between graph-level representations and local substructures. GraphLOG [33] leverages
clustering to construct hierarchical prototypes of graph samples. They further contrast each local
instance with its corresponding higher prototype for contrastive learning. JOAO [48] proposes a
framework to automatically search proper data augmentations for GCL. GraphMVP [24] uses a
contrastive loss and a generative loss to connect the 2-dimensional view and 3-dimensional view
of the same molecule, in order to inject the 3-dimensional knowledge into the 2-dimensional graph
encoder. RGCL [22] trains a rationale generator to identify the causal subgraph in graph augmentation.
Although the contrastive learning paradigm is very successful, it relies on data augmentation, which
depends on domain knowledge.

Graph Generative self-supervised learning Generative self-supervised learning focuses on re-
covering missing parts of input data. It can be further divided into two families: autoregressive
and autoencoding models. Autoregressive models break down joint probability distributions into a
product of conditionals. In supervised graph generation, earlier methods like GraphRNN [47] and
GCPN [46] have been proposed. More recently, GPT-GNN [18] represents an attempt to incorporate
graph generation as a training objective. On the other hand, graph autoencoders are designed to
reconstruct input data without enforcing a decoding order. Early work in this field includes GAE
and VGAE [21], which use 2-layer GNN as encoders and dot-product decoding for link prediction.
AttrMask [17] adopts a random masking strategy, where a portion of the nodes are randomly masked,
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Figure 2: Overall architecture of DyCC. (a): The GIBMS module identifies the sampling probabil-
ities of nodes in the molecular graph, based on graph information bottleneck theory. (b): During
reconstruction, both the hard labels of the tokens Hy and the predictions Hp are mapped into soft
labels sy and soft predictions sp through the SLG module, forming probability distributions. The
training objective Lsoft is to minimize the distance between these two distributions.

and the goal is to reconstruct them. GraphMAE [16] propose to focus on feature reconstruction
with both a masking strategy and scaled cosine error that benefit the robust training of GraphMAE.
Mole-BERT [41] observes that mask atom prediction is an overly easy pretraining task. Therefore,
they employ a GNN tokenizer pretrained by VQ-VAE to generate more complex reconstruction
targets for masked atom modeling. SimSGT [25] utilizes a simple GNN-based tokenizer, which
removes the nonlinear update function in each GNN layer to derive subgraph level tokens. These
works all adopt a fixed proxy task setup and do not take into account the three chemical constraints
we proposed.

3 Method

To meet the constraints of chemical priors and enable dynamic adaptability in proxy tasks, we have
designed the GIBMS and SLG, as depicted in Fig. 2. Next, we will provide detailed explanations of
these two modules.

3.1 GIBMS: Graph Information Bottleneck for Mask Strategy

Subgraph recognition [52, 51, 53] aims to identify a condensed core substructure within a graph that
maximizes its informativeness regarding the graph property while discarding redundant information.
Inspired by this, we propose to dynamically generate a core subgraph for each molecule (CC1)
and place greater emphasis on masking the important atoms within this core substructure (CC2).
Subgraph recognition can be formulated by optimizing GIB [52] with a mutual information estimator.
For a graph G and its label information Y, the optimal IB-graph GIB which keeps minimal sufficient
information:

GIB = argmin
GIB

− I (Y;GIB) + βI (G;GIB) (1)

where β serves as a Lagrangian multiplier to balance the two mutual information terms.

Obtaining node representations of molecular graph To begin, it is essential to convert the
molecular graph G into a vector representation. GNNs have emerged as the predominant approach for
handling molecular graphs due to their effectiveness in capturing graph-structured data. Let Φ denote
a GNN encoder, which is used to generate the node-level representations of the graph. Formally, this
process can be expressed as:

H = Φ(G) (2)
where H represents the node representations of the graph.
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Injecting Noise to Obtain the IB-Graph The discrete nature of graphs renders direct acquisition
of the GIB impractical due to the exponential proliferation of candidates (2N ) for a given graph G
with N nodes. Therefore, we propose a relaxation by assuming a gilbert random graph [13], where
node selection from the input graph G is conditionally independent. This assumption enables us to
factorize the probability of the GIB as:

P(GIB|G) =
∏
i∈V

P (Vi|G) (3)

Here, V denotes the nodes of G, and P (Vi|G) signifies the probability distribution for node Vi. A
straightforward instantiation of P (Vi|G) is the Bernoulli distribution Vi ∼ Bernoulli(pi) param-
eterized by pi. We compute the probability p for each node based on its embedding H using a
Multi-Layer Perceptron network M, expressed as:

p = Sigmoid(M(H)) (4)

Here, the Sigmoid function ensures the probabilities are normalized. The graph GIB is then derived
by performing Bernoulli sampling on all nodes:

GIB = {Vi | Vi ∼ Bernoulli(pi), i = 1, 2, . . . , N} (5)

Here GIB is a sampled combination of nodes. Furthermore, we adopt noise injection following
VGIB [51] to optimize the subgraph, as it has been proven to mitigate inefficiency and instability in
GIB optimization caused by mutual information estimation. The key idea is to introduce more noise
into less informative subgraphs while injecting less noise into more informative ones. Specifically,
with the calculated probability p, we perturb the representation H by adding noise ϵ:

Ĥ = λH+ (1− λ) ϵ (6)

where λ ∼ Bernoulli (p) and ϵ ∼ N
(
µH, σ2

H

)
. Here, µH and σ2

H are the mean and variance of
H, respectively, and Bernoulli represents the Bernoulli distribution. Thus, the information of G is
compressed into GIB with the probability of λ by replacing non-important nodes with noise. Moreover,
to make the sampling process differentiable, we adopt a gumbel-sigmoid [26, 19] for discrete random
variable λ, i.e.,

λ = Sigmoid(
1

t
log

[
p

(1− p)

]
+ log

[
u

(1− u)

]
) (7)

where u ∼ Uniform (0, 1), and t is the temperature hyperparameter.To ensure that the obtained GIB is
meaningful, we need to solve Eq. (1). Next, we will discuss the optimization of the first prediction
term −I (Y;GIB) and the second compression term I (G;GIB) separately.

Minimizing the Prediction Term The first term, −I (Y;GIB), encourages GIB to be informative
about the label Y. Since the goal of pre-training is to enhance the performance of downstream tasks,
Y here refers to the labels of the downstream task dataset. To avoid confusion in notation moving
forward, we will denote the labels of the downstream tasks as Ysup. Given the input GIB and the
downstream task labels Ysup, our objective is to learn a vector representation of GIB, denoted as
Zsup

GIB
= Pool(Ĥ), which can effectively predict the labels Ysup. Here, Pool represents the pooling

function.
Zsup

GIB
= argmax

ZGIB

I (ZGIB ;Y
sup) (8)

However, since GIBMS is applied during the pretraining stage, obtaining downstream task labels
Ysup is not feasible. Here we approach it from a self-supervised learning perspective. Considering the
input GIB and self-supervised signals S (e.g., augmentations of GIB) as two different views of the data,
we aim to derive sufficient self-supervised representations Zssl

GIB
that can maximize the preservation of

shared information between the views.

Zssl
GIB

= argmax
ZGIB

I (ZGIB ;S) (9)

where ZGIB is the representation of the graph, obtained by pooling the node representations Ĥ,
i.e., ZGIB = Pool(Ĥ), where Pool is the pooling function. By adopting the common multi-view
assumption [30, 42], we have (Appendix E.1):

I(GIB;Y
sup) = I

(
Zsup

GIB
;Ysup) ≥ I

(
Zssl

GIB
;Ysup) ≥ I(GIB;Y

sup)− ϵinfo; ϵinfo > 0 (10)
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In this paper, we assume that with appropriate self-supervised signals S, ϵinfo is negligible. Conse-
quently, the above formula suggests that the self-supervised learned representations Zssl

GIB
can capture

almost as much task-relevant information about Ysup as the supervised representations Zsup
GIB

. In
this case, minimizing −I(GIB;Y

sup) is approximately equivalent to maximizing I(Zsup
GIB

;S). Since
recently proposed contrastive learning methods [35, 15, 50], which aim to pull positive samples
closer and push negative samples apart in the representation space, have been theoretically proven to
maximize the mutual information between positive pairs, we leverage this approach. Given GIB,i, we
can repeatedly sample from Eq. (5) to obtain its positive sample G′

IB,i as the self-supervised signal S.
Then, we can maximize I(Zsup

GIB
;S) using a contrastive learning loss, such as InfoNCE [37]:

I (Ysup;GIB) = Lpred (Y
sup,GIB) = − 1

K

K∑
i=1

log
exp

(
sim

(
ZGIB,i ,ZG′

IB,i

)
/τ

)
∑K

j=1,j ̸=i exp
(
sim

(
ZGIB,i ,ZGIB,j

)
/τ

) (11)

Here, the representations ZGIB,i and ZG′
IB,i

of two IB-graphs GIB,i and G′
IB,i are considered as positive

samples, while representations ZGIB,j of GIB,j from other graphs in the same batch are treated as
negative samples. K and τ indicate the number of paired graphs in a batch and the temperature
hyperparameter, respectively.

Optimizing the Compression Term The second term minimizes the mutual information of G and
GIB so that GIB only receives limited information from the input graph G. We can derive its variational
upper bound (see Appendix E.2):

I (G;GIB) ≤ EG

(
−1

2
logA+

1

2N
A+

1

2N
B2

)
= Lcomp (G,GIB) (12)

where N represents the number of nodes in G, A =
∑N

j=1 (1− λj)
2 and B =

∑N
j=1 λj(Hj−µH)

σH
.

The Final Training Objective Based on the aforementioned analysis, the training objective of
GIBMS is as follows:

Ltotal = Lpred (Y
m,GIB) + Lpred (GIB,Y

sup) + βLcomp (G,GIB) (13)

Dynamic Masking Strategy The trained GIBMS is able to generate an importance score pi for
each atom node vi in the molecular graph G according to Eq.(7), where pi represents the probability
of retaining the node under the information bottleneck framework. Subsequently, we adopt the
Gumbel-Sigmoid approximation to sample a dynamic masking factor λi for each node, as shown in
Eq.(7). Here, λi is a continuous variable in the range [0, 1], which is further converted into a binary
masking decision by applying a threshold r, where λi > r indicates that the corresponding atom
will be masked. This strategy allows the masking ratio to be adaptively adjusted at the molecule
level according to the specific structural characteristics of each graph, without the need to predefine a
fixed global masking ratio (CC1). Moreover, the mechanism tends to preferentially mask nodes with
higher importance scores (CC2), thereby encouraging the pretraining model to focus on capturing the
key structures within molecular graphs and enhancing the discriminability and generalization of the
learned representations.

3.2 Soft Label Generator

The output of the tokenizer can be either discrete values (e.g., atomic numbers) or continuous vectors
(e.g., representations of subgraphs). For the sake of convenience in subsequent discussions, we map
the categorical variable y of tokens through embedding into a vector, unifying the reconstruction
label as a d-dimensional vector Hy ∈ Rd.

Regardless of the tokenizer used, existing methods reconstruct masked atoms into specific types. In
the preceding discussion, we emphasized the importance of soft labels. The question now arises: how
do we obtain soft label sy? Since we cannot access all molecules in the world, it is not feasible to
directly acquire the probability of reconstructing a masked atom into different tokens. To address
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this limitation, we introduce soft label assignment [7, 4, 2]. We assume the existence of n learnable
latent prototypes Q ∈ Rn×d, where each masked atom has a probability of being reconstructed into
all these prototypes. Firstly, we map hard labels Hy to soft labels sy:

sy = softmax

(
Hy ·Q

τy

)
(14)

where τy ∈ (0, 1) is a temperature. Similarly, for the node representations Hp outputted by the
encoder Φ′, we generate their predictions sp by measuring the cosine similarity to the same prototype
matrix Q with temperature τp ∈ (0, 1).

sp = softmax

(
Hp ·Q

τp

)
(15)

Note, we always choose τy < τp to encourage sharper target predictions, which implicitly guides
the model to produce confident low entropy anchor predictions. We penalize when the prediction
sp is different from the soft label sy. We enforce this criterion using a standard cross-entropy loss
H (sy, sp). We also incorporate the mean entropy maximization (ME-MAX) regularizer [3, 5] to
encourage the model to utilize the full set of prototypes. Denote the average prediction of a batch of
M samples as s̄p :

s̄p =
1

M

K∑
i=1

spi (16)

The ME-MAX regularizer simply seeks to maximize the entropy of s̄p, denoted H(s̄p), or equivalently,
minimize the negative entropy of s̄p. Thus, the overall objective is:

Lsoft(s
y, sp) =

1

K

K∑
i=1

H (syi , s
p
i )− αH(s̄p) (17)

where α > 0 controls the weight of the ME-MAX regularization.

4 Experiments

4.1 Experiments setup

Pretraining setup For the pretraining stage, we utilized 2 million molecules sourced from the
ZINC15 database [31], following the precedent of prior studies [17]. The GIBMS module was trained
using the loss function defined in Eq. (13), where the temperature factor τ = 0.1 for the InfoNCE
loss, and β = 0.01 controls the trade-off between prediction and compression. After training the
GIBMS module, we utilized it to generate corresponding mask probabilities for each atom of the
2 million molecules in ZINC15 and sampled masked atoms based on these probabilities. In the
reconstruction phase, we mapped the hard labels outputted by the tokenizer to soft labels using the
SLG module. By default, we set temptures τp = 0.25, τy = 0.1, and the number of prototypes
n = 128. After pretraining, we employed the widely-adopted 8 binary classification datasets within
MoleculeNet [39] to evaluate performance on downstream molecular property prediction tasks (see
Appendix B). These downstream datasets are divided into train/valid/test sets using scaffold split
by 8:1:1 to facilitate an out-of-distribution evaluation setting. We report the mean performances
(ROC-AUC) and standard deviations on the downstream datasets across ten random seeds.

Baselines We integrated our method into three MGAEs: AttrMask [17], MoleBert [41], and
SimSGT [25]. All our settings remain consistent with the configurations of these models. It is
noteworthy that, for a fairer evaluation of DyCC on the masked atom modeling proxy task, we
have excluded irrelevant enhancements of MoleBert and SimSGT. Specifically, we removed the
GraphTrans variant from SimSGT to ensure consistency in using the GIN architecture. Additionally,
we eliminated the triplet masked contrastive learning (TMCL) from MoleBert as it is unrelated
to MGAEs (see Appendix C.5). Furthermore, we selected several other self-supervised graph
pretraining models for further comparison, including InfoGraph [32], GPT-GNN [18], EdgePred [17],
ContextPred [17], GraphLOG [33], G-Contextual [29], G-Motif [29], AD-GCL [34], JOAO [48],
SimGRACE [40], GraphCL [49], GraphMAE [16], GraphMVP [24] and MGSSL [54]. The results
are collect from MoleBert [41].
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Table 1: Transfer learning ROC-AUC (%) scores on eight MoleculeNet datasets. The suffix “DyCC”
implies the introduction of both the GIBMS and SLG modules.

Dataset Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Avg.(↑)

No Pretrain 74.6±0.4 61.7±0.5 58.2±1.7 58.4±6.4 70.7 ±1.8 75.5±0.8 65.7±3.3 72.4±3.8 67.0
InfoGraph 73.3±0.6 61.8±0.4 58.7±0.6 75.4±4.3 74.4±1.8 74.2±0.9 68.7±0.6 74.3±2.6 70.1
GPT-GNN 74.9±0.3 62.5±0.4 58.1±0.3 58.3±5.2 75.9±2.3 65.2±2.1 64.5±1.4 77.9±3.2 68.5
EdgePred 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 75.1±1.2 76.3±1.0 67.3±2.4 77.3±3.5 70.1
ContextPred 73.6±0.3 62.6±0.6 59.7±1.8 74.0±3.4 72.5±1.5 75.6±1.0 70.6±1.5 78.8±1.2 70.1
GraphLoG 75.0±0.6 63.4±0.6 59.6±1.9 75.7±2.4 75.5±1.6 76.1±0.8 68.7±1.6 78.6±1.0 71.6
G-Contextual 75.0±0.6 62.8±0.7 58.7±1.0 60.6±5.2 72.1±0.7 76.3±1.5 69.9±2.1 79.3±1.1 69.3
G-Motif 73.6±0.7 62.3±0.6 61.0±1.5 77.7±2.7 73.0±1.8 73.8±1.1 66.9±3.1 73.0±3.3 70.2
AD-GCL 74.9±0.4 63.4±0.7 61.5±0.9 77.2±2.7 76.3±1.4 76.7±1.2 70.7±0.3 76.6±1.5 72.2
JOAO 74.8±0.6 62.8±0.7 60.4±1.5 66.6±3.1 76.6±1.7 76.9±0.7 66.4±1.0 73.2±1.6 69.7
SimGRACE 74.4±0.3 62.6±0.7 60.2±0.9 75.5±2.0 75.4±1.3 75.0±0.6 71.2±1.1 74.9±2.0 71.2
GraphCL 75.1±0.7 63.0±0.4 59.8±1.3 77.5±3.8 76.4±0.4 75.1±0.7 67.8±2.4 74.6±2.1 71.2
GraphMAE 75.2±0.9 63.6±0.3 60.5±1.2 76.5±3.0 76.4±2.0 76.8±0.6 71.2±1.0 78.2±1.5 72.3
GraphMVP 74.9±0.8 63.1±0.2 60.2±1.1 79.1±2.8 77.7±0.6 76.0±0.1 70.8±0.5 79.3±1.5 72.6
MGSSL 75.2±0.6 63.3±0.5 61.6±1.0 77.1±4.5 77.6±0.4 75.8±0.4 68.8±0.6 78.8±0.9 72.3
AttrMask 75.1±0.9 63.3±0.6 60.5±0.9 73.5±4.3 75.8±1.0 75.3±1.5 65.2±1.4 77.8±1.8 70.8
AttrMask-DyCC 76.6±0.5 64.6±0.4 61.3±0.6 79.8±3.5 76.7±0.9 77.6±1.2 70.5±1.0 82.1±2.0 73.7
Mole-BERT 76.2±0.5 63.9±0.3 61.4±1.9 75.1±3.0 77.4±2.1 77.5±1.0 66.8±1.5 78.9±0.9 72.2
Mole-BERT-DyCC 76.3±0.5 64.4±0.5 61.4±0.9 78.9±2.4 78.6±1.9 77.7±0.9 70.8±0.6 82.2±0.9 73.8
SimSGT 75.1±0.5 63.5±0.4 61.0±0.4 79.1±2.6 76.0±0.5 76.3±0.5 70.9±0.6 82.5±0.9 73.0
SimSGT-DyCC 76.0±0.5 64.6±0.4 61.6±0.6 80.5±2.2 77.7±0.9 77.3±0.8 71.4±0.7 83.4±1.0 74.1
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Figure 3: (a): The variation of perplexity of prototypes during the training process. (b): The atoms
ratios of various chemical elements in the ZINC datasets. (c): The distribution of 128 prototypes in
the ZINC datasets after training.

4.2 Model performance

As depicted in Table 1, the incorporation of DyCC into AttrMask, MoleBert, and SimSGT significantly
boosts the performance of pretraining. Particularly noteworthy is its integration into SimSGT, where it
surpasses the “No pretrain" model by 10.4%, achieving a new state-of-the-art result. Moreover, DyCC
demonstrates effective mitigation of the impact of tokenizers on pretraining. Previously, substantial
performance variations were observed among the original AttrMask, MoleBert, and SimSGT models
due to differences in tokenizers. However, following the integration of DyCC, these performance
gaps narrow considerably, indicating reduced reliance on tokenizers. This can be attributed to DyCC’s
adaptive adjustment of the reconstruction targets, consequently diminishing dependency on tokenizers.
In Appendix C.4, we verified the efficacy of DyCC across a broader spectrum of downstream tasks
and datasets, including four molecular property prediction regression tasks and two Drug-Target
Affinity (DTA) regression tasks [27, 28].

4.3 Detailed Analysis of GIBMS and SLG

Here, we primarily analyze the role of GIBMS and SLG, while experiments on other hyperparameters
can be found in Appendix C.6.

The role of GIBMS module. To further evaluate GIBMS, we employed the MUTAG dataset, which
includes 4,337 molecular graphs, each classified into one of two categories based on its mutagenic
effect. As noted in GNNExplainer [45], carbon rings with chemical groups NH2 or NO2 are known
to be mutagenic. We labeled the top 30% most important atoms identified by GIBMS, and if these
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Figure 4: (Left) Core substructures (highlighted) extracted by GIBMS for four molecules. (Right)
Component ablation of GIBMS and SLG.

atoms included NH2 or NO2, it was deemed a success. The success rate of GIBMS was 74%,
demonstrating the effectiveness of the GIBMS module. In addition, we conducted a qualitative
analysis of substructures based on our prior chemical knowledge. As depicted in Fig. 4, we randomly
selected four molecules and utilized GIBMS to extract core substructures. The results indicate that the
model tends not to focus on aromatic rings but rather tends to discover the substructures around them.
This finding aligns with chemical knowledge, as aromatic rings, which contribute to the stability of
molecules, are not directly related to chemical properties, whereas substructures in the side chains
are more likely to contain chemical information.

The role of SLG module. SLG is proposed for dynamically adjusting task difficulty. To investigate
its effectiveness, we utilize perplexity as an evaluation metric to assess the probability of different
prototypes being utilized. A higher perplexity suggests a more uniform utilization of prototypes,
implying increased difficulty in the reconstruction task. As depicted in Fig. 3(a), perplexity initially
increases during training, then gradually decreases and converges to a stable value. This indicates that
SLG enables our model to dynamically adjust the difficulty of the reconstruction task. Moreover, SLG
effectively mitigates issues such as small vocabulary size and token imbalance. For instance, in the
widely used ZINC15 dataset, which comprises 12 types of atoms, with 95% of the atoms distributed
among the top three atom types (Fig. 3(b)), SLG allows flexible specification of the number of
prototypes (determined by n), and yields a more uniform distribution of tokens, as illustrated in
Fig. 3(c).

Are both GIBMS and SLG necessary. To investigate this, we separately added only one module,
either GIBMS or SLG, into AttrMask, MoleBert, and SimSGT. As depicted in Fig. 4, we observed that
while introducing either module alone improves the effectiveness of pretraining across all MGAEs,
combining both strategies leads to better results.

5 Conclusion

We identified two significant issues when applying existing MGAEs methods to the molecular domain.
On one hand, the proxy tasks are predetermined and lack the capability for dynamic adjustment
during training. On the other hand, there are designs that do not align with chemical priors. To
address these challenges, we propose the DyCC framework, which consists of two modules: GIBMS
and SLG. The GIBMS module employs graph information bottleneck theory to identify nodes that
preserve semantics during masking, enabling adaptive masking. The SLG module utilizes a set of
learnable prototypes to map the hard labels of tokens to soft labels, dynamically updating these soft
labels throughout the training process. This allows the reconstruction objectives to adaptively adjust
as well. We integrated DyCC into various existing MGAEs, significantly enhancing pre-training
performance while reducing reliance on tokenizers.
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code and data are provided.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The code and data are open.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the data splits, hyperparameters, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided the statistical significance of the experiments result.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide provide sufficient information on the computer resources in
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is within the Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: : All of them are properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Limitations

When training the GIBMS module, we adopt the common multi-view assumption [30, 42], assuming
that our self-supervised proxy task is sufficiently effective to yield a small ϵinfo. However, this
assumption may not always hold. Despite this, we empirically observe that leveraging this assumption
indeed benefits the training of GIBMS. Therefore, we proceed with this assumption.

B Details of molecular datasets

We provide detailed information of the datasets for molecular property prediction (classification and
regression) and drug target affinity prediction in Table 2.

Table 2: Summary for the molecule datasets for downstream tasks.
Dataset Task # Tasks # Molecules # Proteins # Molecule-Protein
BBBP Classification 1 2,039 – –
Tox21 Classification 12 7,831 – –
ToxCast Classification 617 8,576 – –
Sider Classification 27 1,427 – –
ClinTox Classification 2 1,478 – –
MUV Classification 17 93,087 – –
HIV Classification 1 41,127 – –
Bace Classification 1 1,513 – –

Delaney Regression 1 1,128 – –
Lipo Regression 1 4,200 – –
Malaria Regression 1 9,999 – –
CEP Regression 1 29,978 – –

Davis Regression 1 68 379 30056
KIBA Regression 1 2,068 229 118,254

Molecule representations. For simplicity, we use a minimal set of node and bond features that
unambiguously describe the two-dimensional structure of molecules following previous works. We
use RDKit o obtain these features, as show in Table 3 and Table 4.

Table 3: Atom features.
features size description
atom type 100 type of atom (e.g., C, N, O), by atomic number
formal charge 5 integer electronic charge assigned to atom
number of bonds 6 number of bonds the atom is involved in
chirality 5 number of bonded hydrogen atoms
number of H 5 number of bonded hydrogen atoms
atomic mass 1 mass of the atom, divided by 100
aromaticity 1 whether this atom is part of an aromatic system
hybridization 5 sp, sp2, sp3, sp3d, or sp3d2

Table 4: Bond features.
features size description
bond type 4 single, double, triple, or aromatic
stereo 6 none, any, E/Z or cis/trans
in ring 1 whether the bond is part of a ring
conjugated 1 whether the bond is conjugated
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Dataset Splitting. We apply the scaffold splitting for all tasks on all datasets. It splits the molecules
with distinct two-dimensional structural frameworks into different subsets. It is a more challenging
but practical setting since the test molecular can be structurally different from training set. Here we
apply the scaffold splitting to construct the train/validation/test sets.

C Experimental Details

C.1 Computational resources

Our experiments are conducted using an NVIDIA DGX A100 server. Each experiment can be
executed on a single GPU while staying within the limit of 30 GB of GPU memory consumption.

C.2 Implementation and pretraining Details

We used the official source code provided by AttrMask, MoleBert, and SimSGT, retaining the exact
same settings. Building upon this foundation, we introduced the GIBMS and SLG modules. The
three additional hyperparameters for GIBMS were set to t = 1, β = 0.01, and τ = 0.1, respectively.
The four additional hyperparameters for SLG were set to τy = 0.1, τp = 0.25, α = 1, and n = 128.

C.3 Baselines

We now describe the details of our reported baseline methods:

• InfoGraph [32] conducts graph representation learning by maximizing the mutual informa-
tion between graph-level representations and local substructures of various scales.

• GPT-GNN introduces a self-supervised attributed graph generation task to pre-train a GNN
so that it can capture the structural and semantic properties of the graph. They factorize
the likelihood of the graph generation into two components: 1) Attribute Generation and 2)
Edge Generation.

• ContextPred [17] uses the embeddings of subgraphs to predict their context graph structures.

• GraphLOG [33] leverages clustering to construct hierarchical prototypes of graph sam-
ples. They further contrast each local instance with its corresponding higher prototype for
contrastive learning.

• Infomax [38] learns node representations by maximizing the mutual information between
the local summaries of node patches and the patches’ graph-level global summaries.

• G-Contextual [29] views the prediction problem as a multi-class prediction task, where
each class corresponds to one contextual property.

• G-Motif [29] formulates the prediction task as a multi-label classification problem, where
each motif corresponds to one label.

• AD-GCL [34] applies adversarial learning for adaptive graph augmentation to remove the
redundant information in graph samples.

• JOAO [48] proposes a framework to automatically search proper data augmentations for
GCL.

• SimGRACE [40] take original graph as input and GNN model with its perturbed version
as two encoders to obtain two correlated views for contrast. SimGRACE is inspired by
the observation that graph data can preserve their semantics well during encoder perturba-
tions while not requiring manual trial-and-errors, cumbersome search or expensive domain
knowledge for augmentations selection.

• GraphCL [49] performs graph-level contrastive learning with combinations of four graph
augmentations, namely node dropping, edge perturbation, subgraph cropping, and feature
masking.

• GraphMAE [16] shows that a linear classifier is insufficient for decoding node types. It
applies a GNN for decoding and proposes remask to decouple the functions of the encoder
and decoder in the autoencoder.
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Table 5: Transfer learning performance for molecular property prediction (regression) and drug target
affinity (regression). Bold indicates the best performance.

Molecular Property Prediction (RMSE ↓) Drug-Target Affinity (MSE ↓)

ESOL Lipo Malaria CEP Avg. Davis KIBA Avg.

No Pre-train 1.178±0.044 0.744±0.007 1.127±0.003 1.254±0.030 1.076 0.286±0.006 0.206±0.004 0.246
ContextPred 1.196±0.037 0.702±0.020 1.101±0.015 1.243±0.025 1.061 0.279±0.002 0.198±0.004 0.238
AttrMask 1.112±0.048 0.730±0.004 1.119±0.014 1.256±0.000 1.054 0.291±0.007 0.203±0.003 0.248
JOAO 1.120±0.019 0.708±0.007 1.145±0.010 1.293±0.003 1.066 0.281±0.004 0.196±0.005 0.239
GraphMVP 1.064±0.045 0.691±0.013 1.106±0.013 1.228±0.001 1.022 0.274±0.002 0.175±0.001 0.225
Mole-BERT 1.192±0.028 0.706±0.008 1.117±0.008 1.078±0.002 1.024 0.277±0.004 0.210±0.003 0.243
SimSGT-G 1.039±0.012 0.670±0.015 1.090±0.013 1.060±0.011 0.965 0.263±0.006 0.144±0.001 0.204
SimSGT-G-DyCC 0.988±0.023 0.672±0.016 1.082±0.012 1.035±0.012 0.944 0.256±0.003 0.140±0.001 0.198
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Figure 5: The impact of three hyperparameters β, n, and τp.

• GraphMVP [24] uses a contrastive loss and a generative loss to connect the 2-dimensional
view and 3-dimensional view of the same molecule, in order to inject the 3-dimensional
knowledge into the 2-dimensional graph encoder.

• MGSSL [54] introdue a novel self-supervised motif generation framework for GNNs. First,
for motif extraction from molecular graphs, they design a molecule fragmentation method
that leverages a retrosynthesis-based algorithm BRICS and additional rules for control-
ling the size of motif vocabulary. Second, they design a general motif-based generative
pretraining framework in which GNNs are asked to make topological and label predictions.

• RGCL [22] trains a rationale generator to identify the causal subgraph in graph augmentation.
Each graph’s causal subgraph and its complement are leveraged in contrastive learning.

• Mole-BERT [41] combines a contrastive learning objective and a masked atom modeling
objective for MRL. Specifically, they observe that mask atom prediction is an overly easy
pretraining task. Therefore, they employ a GNN tokenizer pretrained by VQ-VAEto generate
more complex reconstruction targets for masked atom modeling.

C.4 Broader Range of Downstream Tasks

We verified the efficacy of DyCC across a broader spectrum of downstream tasks and datasets,
including four molecular property prediction regression tasks and two Drug-Target Affinity (DTA)
regression tasks [27, 28]. DTA aims to predict the affinity scores between molecular drugs and target
proteins. Following prior work [23], we pretrain SimSGT-DyCC on 50 thousand molecule samples
from the GEOM dataset [6] and report the mean performances and standard deviations across three
random seeds. We report the RMSE for the molecular property prediction datasets with scaffold
splitting and report the MSE for the DTA datasets with random splitting. The results are summarized
in Table 5. It is evident that SimSGT-DyCC surpasses the original version of SimSGT, achieving
significant improvement over other baseline models. This suggests that DyCC can effectively enhance
performance across a wider spectrum of downstream tasks.

C.5 Additional experimental results

Regression tasks We verified the efficacy of DyCC across a broader spectrum of downstream tasks
and datasets, including four molecular property prediction regression tasks and two Drug-Target
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Table 6: Transfer learning ROC-AUC (%) scores on eight MoleculeNet datasets.The suffix "DyCC"
implies the introduction of both the GIBMS and SLG modules.

Dataset Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Avg.

No Pretrain 74.6±0.4 61.7±0.5 58.2±1.7 58.4±6.4 70.7 ±1.8 75.5±0.8 65.7±3.3 72.4±3.8 67.0
Mole-BERT 76.2±0.5 63.9±0.3 61.4±1.9 75.1±3.0 77.4±2.1 77.5±1.0 66.8±1.5 78.9±0.9 72.2
Mole-BERT DyCC 76.3±0.5 64.4±0.5 61.4±0.9 78.9±2.4 78.6±1.9 77.7±0.9 70.8±0.6 82.2±0.9 73.8
Mole-BERT DyCC + TMCL 76.6±0.4 64.8±0.5 61.8±0.8 78.6±2.2 78.8 ±1.8 77.9±0.8 71.3±0.7 82.8±0.9 74.1
SimSGT 75.1±0.5 63.5±0.4 61.0±0.4 79.1±2.6 76.0±0.5 76.3±0.5 82.5±0.9 70.9±0.6 73.0
SimSGT DyCC 76.0±0.5 64.6±0.4 61.6±0.6 80.5±2.2 77.7±0.9 77.3±0.8 71.4±0.7 83.4±1.0 74.1
SimSGT DyCC GraphTrans 76.6 ±0.6 66.3±0.8 62.0±1.2 83.6 ±2.1 80.3±2.2 77.8±1.7 84.9 ±1.0 72.2±0.8 75.5

Table 7: Mean Average Error (MAE) performanceon the QM datasets.

QM7 QM8 QM9
#Tasks 1 12 12

GraphCL 80.4±3.3 0.0200±0.0004 5.76±0.37

GraphMAE 78.4±2.3 0.0190±0.0003 5.84±0.16

Mole-BERT 79.8±2.6 0.0190±0.0003 5.75±0.16

Mole-BERT DyCC 78.7±2.2 0.0188±0.0003 5.70 ±0.16

SimSGT 78.8±2.2 0.0189±0.0004 5.73±0.18

SimSGT DyCC 77.6±1.8 0.0180±0.0003 5.60±0.21

Affinity (DTA) regression tasks [27, 28]. DTA aims to predict the affinity scores between molecular
drugs and target proteins. Following prior work [23], we pretrain SimSGT-DyCC on 50 thousand
molecule samples from the GEOM dataset [6] and report the mean performances and standard
deviations across three random seeds. We report the RMSE for the molecular property prediction
datasets with scaffold splitting and report the MSE for the DTA datasets with random splitting. The
results are summarized in Table 5. It is evident that SimSGT-DyCC surpasses the original version of
SimSGT, achieving significant improvement over other baseline models. This suggests that DyCC
can effectively enhance performance across a wider spectrum of downstream tasks.

Additional Modules of SimSGT and MoleBert In the main paper, for fair comparison, we
excluded the GraphTrans variant of SimSGT and the TMCL proxy task of MoleBert. We provide the
complete version in Table 6, and the results indicate that restoring these strategies further improves
the model’s performance. This suggests that DyCC can work in conjunction with other enhancements
to MGAEs.

Quantum chemistry property prediction. We report performances of predicting the quantum
chemistry properties of molecules. We divide the downstream datasets by scaffold split. Specifically,
we attach a two-layer MLP after the pretrained molecule encoders and fine-tune the models for
property prediction. We report average performances and standard deviations across 10 random seeds.
The performances are reported in Table 7. We observe a consistent enhancement of pre-trained model
performance by DyCC.

C.6 Hyperparameter experiments

Here, we explore several crucial hyperparameters of DyCC. The first one is β, which controls
the trade-off between prediction and compression in our final objectives. As shown in Fig 5(a),
there exists an optimal point at β = 0.01 in terms of model performance, indicating the trade-off
between prediction and information compression. Setting a larger β = 1 encourages aggressive
information compression, leading to difficulties in capturing the core subgraph related to the target
task. Conversely, decreasing β encourages the model to retain the original information of the given
graph structure. In an extreme case, i.e., when β = 0, the model focuses solely on the prediction
term, potentially leading to a lack of generalization ability. The second parameter is the number of
prototypes n. We find that as n increases from 16 to 128, the pretraining performance gradually
improves, while using more prototypes has little effect. Therefore, n = 128 is a suitable choice.
Lastly, τy and τp control the soft label sharpening level. We always choose τy < τp to encourage
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sharper target predictions, implicitly guiding the model to produce confident low-entropy predictions.
We fix τy = 0.1 and set τp to {0.15, 0.2, 0.25, 0.3}. Experimental results show that different models
have different optimal values of τp, which may be due to the different tokenizer types.

D Algorithm for GIBMS and SLT

Algorithm 1 and Algorithm 2 provide a comprehensive description of the GIBMS algorithm and the
SLG process, respectively.

Algorithm 1 The training process of GIBMS
1: Input: Unlabeled molecular pre-trained graph dataset D1 = {G1,G2, · · · }, GNN encoder Φ, and node

importance evaluation MLP M.
2: Initialize parameters of Φ and M.
3: for each graph G in D1 do
4: Encode G into node representations: H = Φ(G).
5: Generate a sampling probability for each node: p = M(H).
6: Apply the Gumbel-Sigmoid function to sample λ from p based on Eq. (7).
7: Inject noise into H to obtain Ĥ based on Eq. (6),
8: Compute the unsupervised prediction loss based on Eq. (11).
9: Compute the loss for the compression term based on Eq. (12).

10: Calculate the total loss for the first stage based on Eq. (13).
11: Perform backpropagation to optimize the training objective.
12: end for
13: Return: The well trained Φ and M jointly constitute the GIBMS module M(Φ(G)).

Algorithm 2 Soft Label Generator
1: Input: Unlabeled molecular pre-trained graph dataset D1 = {G1,G2, · · · }, the pre-trained GIBMS model

P (Φ(G)), GNN encoder Φ′ for MGAEs, and learnable prototypes matrix Q.
2: Initialize the parameters of Φ′ and Q.
3: for each graph G in D1 do
4: Compute the sampling probability for each node as p = Sigmoid(M(H)).
5: Sample a set of important nodes Vmask = {Vi | Vi ∼ Bernoulli(1− pi), i = 1, 2, . . . , N}.
6: Replace the nodes in Vmask within graph G with a MASK token to obtain Gmask.
7: Obtain the node representations H = Φ2(Gmask).
8: Compute the soft label assignments sp for all nodes by applying Eq. (15) to H and Q.
9: Compute the soft label assignments sy for all nodes by applying Eq. (14) to the node labels y and Q.

10: Minimize the distance between sy and sp according to Eq. (17).
11: Perform backpropagation to optimize the training objective.
12: end for
13: Return: The pre-trained GNN encoder Φ2 for various downstream tasks.

E Proof

E.1 Proof of Eq. (10)

By adopting the common multi-view assumption [30, 42], we have:

I(GIB;Y
sup) = I

(
Zsup

GIB
;Ysup)

≥ I
(
Zssl

GIB
;Ysup)

≥ I(GIB;Y
sup)− ϵinfo; ϵinfo > 0

The proofs contain two parts [36]. The first one is showing the results for the supervised learned
representations and the second one is for the self-supervised learned representations.

Lemma 1 (Determinism) If P (ZGIB
| GIB) is Dirac, then the following conditional independence

holds: Ysup ⊥ ZGIB
| GIB and S ⊥ ZGIB

| GIB, inducing a Markov chain S ↔ Ysup ↔ GIB →
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ZGIB . When ZGIB is a deterministic function of GIB, for any A in the sigma-algebra induced by ZGIB

we have E
[
1[ZGIB

∈A] | GIB, {Ysup,S}
]
= E

[
1[ZGIB

∈A] | GIB,S
]
= E

[
1[ZGIB

∈A] | GIB

]
, which

implies Ysup ⊥ ZGIB
| GIB and S ⊥ ZGIB

| GIB.

Supervised Learned Representations Adopting Data Processing Inequality [9] in the Markov
chain S ↔ Ysup ↔ GIB → ZGIB , I (ZGIB ;Y

sup) is maximized at I(GIB;Y
sup). Since the supervised

learned representations Zsup
GIB

maximizeI (ZGIB ;Y
sup) , we conclude I

(
Zsup

GIB
;Ysup

)
= I(GIB;Y

sup).

Self-supervised Learned Representations First, we have

I (ZGIB ;S) = I (ZGIB ;Y
sup)

− I (ZGIB ;Y
sup | S) + I (ZGIB ;S | T )

= I (ZGIB ;Y
sup;S) + I (ZGIB ;S | Ysup)

and
I(GIB;S) = I(GIB;Y

sup)

− I(GIB;Y
sup | S) + I(GIB;S | Ysup)

= I(GIB;Y
sup;S) + I(GIB;S | Ysup)

By DPI in the Markov chain S ↔ Ysup ↔ GIB → ZGIB , we know

• I (ZGIB ;S) is maximized at I(GIB;S)

• I (ZGIB ;S;Y
sup) is maximized at I(GIB;S;Y

sup)

• I (ZGIB
;S | Ysup) is maximized at I(GIB;S | Ysup)

Since the self-supervised learned representations Zssl
GIB

maximize I (ZGIB ;S), we have I
(
Zssl

GIB
;S

)
=

I(GIB;S). Hence I
(
Zssl

GIB
;S | Ysup

)
= I(GIB;S | Ysup). Using the result I

(
Zssl

GIB
;S;Ysup

)
=

I(GIB;S;Y
sup), we get

I
(
Zssl

GIB
;Ysup

)
= I(GIB;Y

sup)

− I(GIB;Y
sup | S)

+ I
(
Zssl

GIB
;Ysup | S

)
Now, we are ready to present the inequalities:

I(GIB;Y
sup) ≥ I

(
Zssl

GIB
;Ysup

)
due to I(GIB;Y

sup | S) ≥ I
(
Zssl

GIB
;Ysup | S

)
by DPI and

I
(
Zssl

GIB
;Ysup

)
≥ I(GIB;Y

sup)− ϵinfo due to

I(GIB;Y
sup)− I(GIB;Y

sup | S) + I
(
Zssl

GIB
;Ysup | S

)
≥ I(GIB;Y

sup)

≥ I(GIB;Y
sup)− ϵinfo (18)

where I(GIB;Y
sup | S) ≤ ϵinfo by the redundancy assumption.

E.2 Proof of Eq. (12)

We derive the upper bound of I (G;GIB) by introducing the variation approximation q (GIB) of
distribution p (GIB) :

I (G;GIB) = EG,GIB

[
log

pϕ (GIB | G)
p(G)

]
= EG,GIB

[
log

pϕ (GIB | G)
q(GIB)

]
− EGIB,G [KL (p (G)) ∥q (GIB))]

According to the non-negativity of KL divergence, we have:

I (GIB,G) ≤ EG [KL (pϕ ((GIB | G) ∥q (GIB))]
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We assume that q (GIB) is obtained by aggregating the node representations in a fully perturbed graph.
The noise ϵ ∼ N

(
µH, σ2

H

)
is sampled from a Gaussian distribution where µH and σ2

H are mean and
variance of H. Choosing sum pooling as the aggregatiion function, since the summation of Gaussian
distributions is a Gaussian, we have the following form:

q (GIB) = N
(
NµH, Nσ2

H

)
Then for pϕ (GIB | G), we have the following equation:

N

NµH +

N∑
j=1

λjHj −
N∑
j=1

λjµH,

N∑
j=1

(1− λj)
2
σ2
H


Finally, we have following inequality:

I (GIB,G) ≤ EG

[
−1

2
logA+

1

2N
A+

1

2N
B2

]
+ C

where A =
∑N

j=1 (1− λj)
2 and B =

∑N
j=1 λj(Hj−µH)

σH
.
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