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ABSTRACT

Adversarial learning has emerged as one of the successful techniques to circumvent
the susceptibility of existing methods against adversarial perturbations. However,
the majority of existing defense methods are tailored to defend against a single
category of adversarial perturbation (e.g. `∞-attack). In safety-critical applications,
this makes these methods extraneous as the attacker can adopt diverse adversaries
to deceive the system. Moreover, training on multiple perturbations simultaneously
significantly increases the computational overhead during training. To address these
challenges, we propose a novel meta-learning framework that explicitly learns to
generate noise to improve the model’s robustness against multiple types of attacks.
Its key component is Meta Noise Generator (MNG) that outputs optimal noise to
stochastically perturb a given sample, such that it helps lower the error on diverse
adversarial perturbations. By utilizing samples generated by MNG, we train a
model by enforcing the label consistency across multiple perturbations. We validate
the robustness of models trained by our scheme on various datasets and against a
wide variety of perturbations, demonstrating that it significantly outperforms the
baselines across multiple perturbations with a marginal computational cost.

1 INTRODUCTION

Deep neural networks have demonstrated enormous success on multiple benchmark applica-
tions (Amodei et al., 2016; Devlin et al., 2018), by achieving super-human performance on certain
tasks. However, to deploy them to safety-critical applications (Shen et al., 2017; Chen et al., 2015;
Mao et al., 2019), we need to ensure that the model is robust as well as accurate, since incorrect
predictions may lead to severe consequences. Notably, it is well-known that the existing neural
networks are highly susceptible to carefully crafted image perturbations which are imperceptible to
humans but derail the predictions of these otherwise accurate networks.

The emergence of adversarial examples has received significant attention in the research community,
and several defense mechanisms have been proposed (Madry et al., 2017; Zhang et al., 2019; Carmon
et al., 2019). However, despite a large literature to improve upon the robustness of neural networks,
most of the existing defenses leverage the knowledge of the adversaries and are based on the
assumption of only a single type of perturbation. Consequently, many of the proposed defenses were
circumvented by stronger attacks (Athalye et al., 2018; Uesato et al., 2018; Tramer et al., 2020).

Meanwhile, several recent works have (Schott et al., 2018; Tramèr & Boneh, 2019) demonstrated the
vulnerability of existing defense methods against multiple perturbations. For the desired multi-attack
robustness, Tramèr & Boneh (2019); Maini et al. (2020) proposed various strategies to aggregate
multiple perturbations during training. However, training with multiple perturbations comes at an
additional cost; it increases the training cost by a factor of four over adversarial training, which is
already an order of magnitude more costly than standard training. This slowdown factor hinders
the research progress of robustness against multiple perturbations due to the large computation
overhead incurred during training. Some recent works reduce this cost by reducing the complexity of
generating adversarial examples (Shafahi et al., 2019; Wong et al., 2020), however, they are limited
to `∞ adversarial training.

To address the drawbacks of existing methods, we propose a novel training scheme, Meta Noise
Generator with Adversarial Consistency (MNG-AC), which learns instance-dependent noise to
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Figure 1: Overview of Meta-Noise Generator with Adversarial Consistency (MNG-AC). First,
we stochastically sample a perturbation to generate the adversarial examples Xadv. The generator gφ
takes stochastic noise and input Xclean to generate the noise-augmented sample Xaug. The classifier
fθ then minimizes the stochastic adversarial classification loss and the adversarial consistency loss.
MNG is learned via meta-learning to explicitly minimize the adversarial classification loss.

minimize the adversarial loss across multiple perturbations while enforcing label consistency between
them, as illustrated in Figure 1 and explained in details below.

First, we tackle the heavy computational overhead incurred by multi-perturbation training by propos-
ing Stochastic Adversarial Training (SAT), that samples from a distribution of perturbations during
training, which significantly accelerates training for multiple perturbations1. Then, based on the
assumption that the model should output the same predictions for different perturbations of the
same image, we introduce Adversarial Consistency (AC) loss that enforces label consistency across
multiple perturbations. Finally, motivated by the noise regularization techniques (Huang et al., 2016;
Srivastava et al., 2014; Noh et al., 2017; Lee et al., 2020) which target generalization, we formulate a
Meta Noise Generator (MNG) that learns to stochastically perturb a given sample in a meta-learning
framework to explicitly improve the generalization and label consistency across multiple attacks. In
particular, MNG-AC utilizes our generated samples to enforce label consistency across the generated
samples from our model, adversarial samples, and clean samples. Consequently, it pushes the decision
boundary (see Figure 4) and enforces a smooth and robust network across multiple perturbations.

We validate the efficacy and efficiency of our proposed method by comparing it against existing,
state-of-the-art methods on CIFAR-10, SVHN, and Tiny-ImageNet dataset. The experimental results
show that our method obtains significantly superior performance over all the baseline methods
trained with multiple perturbations, generalizes to diverse perturbations, and substantially reduces
the computational cost incurred by training with multiple perturbations. In summary, the major
contributions of this paper are as follows:

• We introduce Adversarial Consistency (AC) loss that enforces label consistency across multiple
perturbations to enforce smooth and robust networks.

• We formulate Meta-Noise Generator that explicitly meta-learns an input-dependent noise generator,
such that it outputs stochastic noise distribution to improve the model’s robustness and adversarial
consistency across multiple types of adversarial perturbations.

• We validate our proposed method on various datasets against diverse benchmark adversarial
attacks, on which it achieves state-of-the-art performance, highlighting its practical impact.

2 RELATED WORK

Robustness against single adversarial perturbation. In the past few years, multiple defenses have
been proposed to defend against a single type of attack (Madry et al., 2017; Xiao et al., 2020;
Zhang et al., 2019; Carmon et al., 2019) and have been consequently circumvented by subsequent
attacks (Athalye et al., 2018; Brendel et al., 2018; Tramer et al., 2020). Adversarial-training based

1By a factor of four on a single machine with four GeForce RTX 2080Ti on CIFAR-10 and SVHN dataset
using Wide ResNet 28-10 (Zagoruyko & Komodakis, 2016) architecture.
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defenses (Madry et al., 2017; Zhang et al., 2019; Carmon et al., 2019) have been the only exceptions
that have withstood the intense scrutiny and have provided empirical gains in adversarial robustness.

Generative models for adversarial robustness. There have been various attempts that leverage
the representative power of generative models to improve model robustness. Samangouei et al.
(2018); Jalal et al. (2017) project an image onto the generator manifold, which is then classified by
the discriminator. Song et al. (2018) uses the sensitivity of generative models to defend against a
single perturbation. Yin et al. (2020) proposed a detection method based on input space partitioning.
However, Samangouei et al. (2018); Jalal et al. (2017); Song et al. (2018) were shown to be ineffective
by stronger attacks (Carlini & Wagner, 2017; Athalye et al., 2018). In contrast to learning the
generative model to model the adversarial examples, we meta-learn the generator to explicitly learn
an input-dependent optimal noise distribution to lower adversarial error across multiple perturbations,
that does not necessarily correspond to any of the attack perturbations.

Robustness against multiple adversarial perturbations. Schott et al. (2018) demonstrated that `∞
adversarial training is highly susceptible to `0/`2-norm adversarial perturbations and used multiple
VAEs to defend against multiple perturbations on the MNIST dataset. However, it was not scalable
and limited to the MNIST dataset. Tramèr & Boneh (2019) investigated the theoretical/empirical
trade-offs between multiple perturbations and introduced adversarial training with worst/average
perturbations to defend against multiple perturbations. Maini et al. (2020) incorporated multiple
perturbations into a single adversary to maximize the adversarial loss. However, computing all the
perturbations is impractical for multiple perturbations and large scale datasets. On the other hand,
our proposed framework overcomes this limitation, with improved performance over these methods
and has a negligible increase in training cost over multi-perturbation adversarial training.

3 ROBUSTNESS AGAINST MULTIPLE PERTURBATIONS

We first briefly review single/multi-perturbation adversarial training and introduce Stochastic Ad-
versarial Training (SAT) to reduce the computational cost incurred by training with multiple per-
turbations. We consider a dataset D over observations x ∈ Rd and labels y ∈ RC with C classes.
Let fθ : Rd → RC be a L-layered classifier with parameters θ and classification loss Lcls. Given
an attack procedure A(x) with norm-ball BA(x, ε) around x with radius ε for each example, which
introduces a perturbation δ, we let xadv = x+ δ denote the corresponding adversarial examples. We
consider the `p norm distance under the additive threat model (Laidlaw & Feizi, 2019) and adopt the
projected-gradient descent (PGD) (Madry et al., 2017) for crafting the `p perturbations:

xadv(t+1) = proj
BA(x,ε)

(
xadv(t) + argmax

||v||A≤αA

vTAOxadv
(t)
Lcls

(
fθ

(
xadv(t)

)
, y
))

, (1)

where xadv0 is chosen at random within BA(x, ε), αA is the step size, proj is the projection operator
projecting the input onto the norm ball BA(x, ε), and xadv(t+1) denotes the adversarial example at the
t-th PGD step. We will refer the approximation of the maximum loss by an attack procedure A(x),
such that maxδ∈BA(x,ε) Lcls (fθ (x+ δ) , y) ≈ Lcls (fθ (A (x)) , y) for the rest of our paper.

Single-perturbation adversarial training. In the standard single-perturbation adversarial train-
ing (Kurakin et al., 2016; Madry et al., 2017), the model optimizes the network using a min-max
formulation. More formally, the inner maximization generates the adversarial perturbation by maxi-
mizing the loss, while the outer minimization minimizes the loss on the generated examples.

min
θ

E(x,y)∼D Lcls (fθ (A (x)) , y) . (2)

The majority of existing single-perturbation defenses are primarily able to defend against a single
category of adversarial perturbation. However, this limits the generalization of these methods to
perturbations that are unseen during training (Schott et al., 2018; Tramèr & Boneh, 2019), which has
been referred to as overfitting on the particular type of training perturbation.

Multi-perturbation adversarial training. Tramèr & Boneh (2019) extended the adversarial training
to multiple perturbations by optimizing the outer objective in Eq. (2) on the strongest/union of
adversarial perturbations for each input example. Their proposed strategies can more formally be
defined as follows:
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1. The maximum over all perturbations: It optimizes the outer objective in Eq. (2) on the strongest
adversarial perturbation from the whole set of additive adversarial perturbations

min
θ

E(x,y)∼D

[
argmaxk Lcls (fθ (Ak (x)) , y)

]
. (3)

2. The average over all perturbations: It optimizes the outer objective in Eq. (2) on the whole set
of n additive perturbations.

min
θ

E(x,y)∼D
1

n

k=n∑
k=1

Lcls (fθ (Ak (x) , y)) . (4)

Recently, Maini et al. (2020) proposed “Multi Steepest Descent” (MSD) by incorporating the different
perturbations into the direction of steepest descent. However, the practicality of all these methods is
limited due to an increased computational overhead for training.

Stochastic Adversarial Training (SAT). To overcome this limitation, we propose Stochastic Adver-
sarial Training to defend against multiple adversarial perturbations. Specifically, we conjecture that it
is essential to cover the threat model during training, not utilizing all the perturbations simultaneously.
We formulate the threat model as a random attack A(x) sampled uniformly from a perturbation set
S during each episode (or batch) of training which prevents overfitting on a particular adversarial
perturbation. In this work, we consider the `p-bounded perturbation set, and we sample the attack
procedure A(x) with its corresponding norm-ball BA(x, ε) from the perturbation set S as follows:

S = {A1(x), . . . ,An(x)},
k ∼ Cat ((1/n, . . . , 1/n)) ,

A(x) = Sk(x), (5)

where Cat is the categorical distribution and n is the number of attacks in the perturbation set S. Our
proposed SAT optimizes the outer objective in Eq. (2) using the sampled attack procedure A(x) and
is a drastic simplification of the average one in Eq. (4), which makes it highly efficient for multiple
perturbations. It is important to note that unlike the average and max strategy SAT can be applied to
any perturbation set with a constant cost and it promotes generalization and convergence (due to its
stochasticity) by preventing over-fitting on a single type of perturbation.

4 LEARNING TO GENERATE NOISE FOR MULTI-ATTACK ROBUSTNESS

In this section, we introduce our framework MNG-AC, which leverages an adversarial consistency
loss (AC) and a meta-noise generator (MNG) to help the model generalize to multiple perturbations.
Let gφ : Rd → Rd denote the generator with parameters φ and xadvθ be the adversarial examples
generated by SAT for a uniformly sampled attack A(x) from a perturbation set S with norm-ball
BA(x, ε). We sample z ∼ N (0, I) for input to our generator jointly with the clean examples x to
generate the noise-augmented samples xaugφ projected on the norm-ball BA(x, ε). Note that, as MNG
learns the noise to minimize the adversarial loss, it is essential to project the generated noise on the
norm-ball BA(x, ε), which is the corresponding norm-ball of the sampled attack procedure A(x).
The total loss function Ltotal for the classifier consists exclusively of two terms: SAT classification
loss and an adversarial consistency loss:

Ltotal =
1

B

B∑
i=1

Lcls

(
θ | xadvθ (i), y(i)

)︸ ︷︷ ︸
SAT classification loss

+β · Lac

(
pclean(i); padv(i); paug(i)

)︸ ︷︷ ︸
adversarial consistency loss

, (6)

whereB is the batch-size, β is the hyper-parameter determining the strength of the AC loss denoted by
Lac and pclean, padv, paug represent the posterior distributions p(y | xclean), p(y | xadvθ ), p(y | xaugφ )

computed using the softmax function on the logits for xclean, xadv, and xaug respectively. Specifically,
Lac represents the Jensen-Shannon Divergence (JSD) among the posterior distributions:

Lac =
1

3

(
DKL(p

clean ‖M) +DKL(p
adv ‖M) +DKL(p

aug ‖M)
)
, (7)

where M =
(
pclean + padv + paug

)
/3. Consequently, Lac enforces stability and insensitivity across

a diverse range of inputs based on the assumption that the classifier should output similar predictions
when fed perturbed versions of the same image.
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Algorithm 1 Learning to generate noise for multi-attack robustness

input Dataset D, T inner gradient steps, batch size B, perturbation set S.
output Final model paramaters θ

1: for n = {1, . . . , N} do
2: Sample mini-batch of size B.
3: Sample an attack procedure A(x) with its corresponding norm-ball BA(x, ε) using Eq. (5).
4: Generate the adversarial examples for A(x) using Eq. (1).
5: Sample z ∼ N (0, I) and generate xaugφ = proj

BA(x,ε)

(x+ gφ(z, x)) using MNG, where BA(x, ε)

is the norm-ball corresponding to the attack procedure sampled in Step 3.
6: Update θ to minimize Eq. (6).
7: Initialize θ(0) = θ
8: for t = {1, . . . , T} do
9: Update θ(t) using Eq. (8).

10: end for
11: Descent a single step to update θ(T ) to θ(T+1) by Eq. (9).
12: Update the parameters φ of the generator by Eq. (10).
13: end for

Recently, Rusak et al. (2020) formulated an adversarial noise generator to learn the adversarial noise
to improve the robustness on common corruptions. However, our goal is different; the robustness
against multiple adversarial attacks is a much more challenging task than that against common
corruptions. To generate the augmented samples for our purpose, we explicitly perturb the input
examples for generalization across multiple perturbations. In particular, MNG meta-learns (Thrun &
Pratt, 1998; Finn et al., 2017) the parameters φ of a noise generator gφ to generate an input-dependent
noise distribution to alleviate the issue of generalization across multiple adversaries. The standard
approach to train our adversarial classifier jointly with MNG is to use bi-level optimization (Finn et al.,
2017). However, bi-level optimization for adversarial training would be computationally expensive.

To tackle this challenge, we adopt an online approximation (Ren et al., 2018; Jang et al., 2019) to
update θ and φ using a single-optimization loop. We alternatively update the parameters θ of the
classifier with the parameters φ of MNG. In particular, we first update the parameters θ using Eq. (6)
(step 3 in Algorithm 1). Then, given current parameters θ of our adversarial classifier, we update
MNG parameters φ using the following training scheme:
1. Update model parameters for T steps. First, we update θ to minimize Lcls(θ | xaugφ , y) for T

steps which ensures the learning of the classifier using the knowledge from the generated samples
constructed by MNG. It explicitly increases the influence of the noise-augmented samples on the
classifier in the inner loop. More specifically, for a learning rate α, projection operator proj, θ(t)
moves along the following descent direction on a mini-batch of training data:

θ(t+1) = θ(t) − α · 1
B

B∑
i=1

∇θLcls

(
θ(t) | xaugφ (i), y(i)

)
,

where, xaugφ = proj
B(x,ε)

(x+ gφ(z, x)) .

(8)

2. Adapt model parameters on a single step. Second, perform one-step update to update θ(T )

to θ(T+1) to minimize SAT loss from Eq. (6). This step explicitly models the adaptation of
adversarial model parameters in the presence of the noise-augmented data using a single step of
update:

θ(T+1) = θ(T ) − α · 1
B

B∑
i=1

∇θLcls

(
θ(T ) | xadvθ (i), y(i)

)
. (9)

3. Update generator parameters. In the last step, after receiving feedback from the classifier, we
measure the SAT loss from Eq. (6) and adapt φ to minimize this loss. In particular, φ performs the
following update step to facilitate the classifier parameters θ in the next step:
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φ = φ− α · 1
B

B∑
i=1

∇φLcls

(
θ(T+1) | xadvθ (i), y(i)

)
. (10)

Overall, the generator minimizes the loss on the adversarial examples sampled from the perturbation
set S. Consequently, φ in Eq. (10) is dependent on θ(T+1) that depends on θ(T ) (see Eq. (9)), which
in turn depends on xaugφ (see Eq. (8)) and acts as a path for the flow of gradients. Similarly, the
gradients for θ(T+1) are chained through the T steps since θ(T+1) is dependent on θ(T ) that depends
on θ(0), and we use TorchMeta Deleu et al. (2019) for the double backpropagation. We list the
detailed algorithm in Algorithm 1. Formally, the overall objective can be summarized as:

min
φ

1

B

B∑
i=1

Lcls

(
θ(T+1) | xadvθ (i), y(i)

)
subject to θ(T+1) = θ(T ) − α · 1

B

B∑
i=1

∇θLcls

(
θ(T ) | xadvθ (i), y(i)

)
,

θ(t+1) = θ(t) − α · 1
B

B∑
i=1

∇θLcls

(
θ(t) | xaugφ (i), y(i)

)
,

t = 0, . . . , T − 1.

(11)

To summarize, MNG-AC consists of perturbation sampling to generate adversarial examples. Then, it
perturbs the clean examples in a meta-learning framework to explicitly lower the adversarial classifica-
tion loss on the sampled perturbation. Lastly, the adversarial classifier utilizes the generated samples,
adversarial samples and clean samples to optimize the classification and adversarial consistency loss.

Intuition behind our framework. Unlike existing adversarial defenses that aim for robustness
against single perturbation, our proposed approach targets for a realistic scenario of robustness
against multiple perturbations. Our motivation is that meta-learning the noise distribution to minimize
the stochastic adversarial classification loss allows to learn the optimal noise to improve multi-
perturbation generalization. Based on the assumption that the model should output similar predictions
for perturbed versions of the same image, we enforce the adversarial consistency loss, which enforces
the label consistency across multiple perturbations. We empirically illustrate that our proposed
training scheme increases the smoothness of the model (see Figure 3) and pushes the decision
boundary (see Figure 4), which confirms our hypothesis for multi-perturbation generalization.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines and our model. We compare our method MNG-AC with the standard network (Nat) and
state-of-the-art single-perturbation baselines including Madry et al. (2017) (Advp) for `∞, `1, and `2
norm, Zhang et al. (2019) (TRADES∞), and Carmon et al. (2019) (RST∞) for `∞ norm. We also
consider state-of-the-art multi-perturbation baselines: namely, we consider Adversarial training with
the maximum (see Eq. (3)) (Advmax), average (Advavg) (Tramèr & Boneh, 2019) (see Eq. (4)) over
all perturbations, and Multiple steepest descent (MSD) (Maini et al., 2020).

Datasets. We evaluate our method on multiple benchmark datasets including CIFAR-10 (Krizhevsky,
2012), SVHN (Netzer et al., 2011) on Wide ResNet 28-10 (Zagoruyko & Komodakis, 2016) and
Tiny-ImageNet 2 on ResNet-50 (He et al., 2016) architecture.

Evaluation setup. We have evaluated the proposed defense scheme and baselines against perturba-
tions generated by state-of-the-art attack methods. We use the same attack parameters as Tramèr
& Boneh (2019) for training and evaluation. We validate the clean accuracy (Accclean), the worst
(Accunionadv ) and average (Accavgadv) adversarial accuracy across all the perturbation sets for all the
models. For `∞ attacks, we use PGD (Madry et al., 2017), Brendel and Bethge (Brendel et al., 2019),

2https://tiny-imagenet.herokuapp.com/
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Table 1: Comparison of robustness against multiple types of perturbations. All the values are measured
by computing mean, and standard deviation across three trials upon randomly chosen seeds, the best
and second-best results are highlighted in bold and underline respectively. Time denotes the training
time in hours. For CIFAR-10 and SVHN, we use ε = { 8

255 ,
2000
255 ,

80
255} and α = {0.004, 1.0, 0.1}

for `∞, `1, and `2 attacks respectively. For Tiny-ImageNet, we use ε = { 4
255 ,

2000
255 ,

80
255} and

α = {0.004, 1.0, 0.1} for `∞, `1, and `2 attacks respectively. We report the worst-case accuracy for
all the attacks and defer the breakdown of all attacks to Appendix B.

Model Accclean `∞ `1 `2 Accunionadv Accavgadv Time (h)

C
IF

A
R

-1
0

Nat (Zagoruyko & Komodakis, 2016) 94.7± 0.1 0.0± 0.0 4.4± 0.8 19.4± 1.4 0.0± 0.0 7.9± 0.3 0.4
Adv∞ (Madry et al., 2017) 86.8± 0.1 44.9± 0.7 12.8± 0.6 69.3± 0.4 12.9± 0.5 42.6± 0.4 4.5
Adv1 93.3± 0.4 0.0± 0.0 78.1± 1.8 0.0± 0.0 0.0± 0.00 25.1± 1.6 8.1
Adv2 91.7± 0.2 20.7± 0.3 27.7± 0.7 76.8± 0.4 17.9± 0.8 47.6± 0.4 3.7
TRADES∞ (Zhang et al., 2019) 84.7± 0.3 48.9± 0.7 17.9± 0.6 69.4± 0.3 17.2± 0.6 45.4± 0.3 5.2
RST∞ (Carmon et al., 2019) 88.9± 0.2 54.9± 1.8 22.0± 0.5 73.6± 0.1 21.1± 1.0 50.2± 0.5 58.8

Advavg (Tramèr & Boneh, 2019) 87.1± 0.2 33.8± 0.7 49.0± 0.3 74.9± 0.4 31.0± 1.4 52.6± 0.5 16.9
Advmax (Tramèr & Boneh, 2019) 85.4± 0.3 39.9± 0.9 44.6± 0.2 73.2± 0.2 35.7± 0.3 52.5± 0.3 16.3
MSD (Maini et al., 2020) 82.6± 0.0 43.7± 0.2 41.6± 0.2 70.6± 1.1 35.8± 0.1 52.0± 0.4 16.7

MNG-AC (Ours) 81.5± 0.3 42.2± 0.9 55.0± 1.2 71.5± 0.1 41.6± 0.8 56.2± 0.2 11.2

SV
H

N

Nat (Zagoruyko & Komodakis, 2016) 96.8± 0.1 0.0± 0.0 4.4± 0.8 19.4± 1.4 0.0± 0.0 7.9± 0.3 0.6
Adv∞ (Madry et al., 2017) 92.8± 0.2 46.2± 0.6 3.0± 0.3 59.2± 0.7 3.0± 0.3 36.2± 0.3 6.2
Adv1 92.4± 0.9 0.0± 0.0 77.9± 6.3 0.0± 0.0 0.0± 0.0 23.9± 2.1 11.8
Adv2 94.9± 0.1 18.7± 0.6 30.3± 0.3 79.3± 0.1 16.4± 0.7 42.8± 0.2 6.1
TRADES∞ (Zhang et al., 2019) 93.9± 0.1 49.9± 1.7 1.6± 0.3 56.0± 1.4 1.6± 0.3 35.8± 0.6 7.9
RST∞ (Carmon et al., 2019) 95.6± 0.0 60.9± 2.0 0.7± 0.6 60.6± 0.6 0.7± 0.6 40.7± 0.8 112.5

Advavg (Tramèr & Boneh, 2019) 92.6± 0.3 17.4± 2.3 54.2± 2.9 74.7± 0.1 16.6± 1.3 43.0± 1.0 24.1
Advmax (Tramèr & Boneh, 2019) 88.2± 1.3 5.9± 1.2 48.3± 4.1 31.0± 5.0 5.8± 1.7 26.7± 2.5 22.7

MNG-AC (Ours) 93.7± 0.1 33.7± 1.9 47.4± 2.2 77.6 ± 1.0 30.3± 1.8 52.6± 0.5 11.9

Ti
ny

-I
m

ag
eN

et

Nat (He et al., 2016) 62.8± 0.4 0.0± 0.0 2.7± 0.3 12.6± 0.8 0.0± 0.0 5.1± 0.4 0.9
Adv∞ (Madry et al., 2017) 54.2± 0.4 29.6± 0.1 31.8± 1.0 42.5± 0.6 19.8± 1.1 33.8± 0.1 4.3
Adv1 57.8± 0.2 10.5± 0.7 39.3± 1.0 41.9± 0.0 10.1± 0.7 30.4± 0.1 12.9
Adv2 59.5± 0.1 5.2± 0.6 37.2± 0.4 44.9± 0.1 5.2± 0.6 29.1± 0.0 3.7
TRADES∞ (Zhang et al., 2019) 48.2± 0.2 28.7± 0.9 30.9± 0.2 35.8± 0.7 26.1± 0.9 32.8± 0.1 5.8

Advavg (Tramèr & Boneh, 2019) 56.0± 0.0 23.7± 0.2 38.0± 0.2 44.6± 1.8 23.6± 0.3 35.4± 0.7 26.8
Advmax (Tramèr & Boneh, 2019) 53.5± 0.0 29.8± 0.1 33.4± 0.3 42.4± 1.0 29.0± 0.3 35.3± 0.4 20.8

MNG-AC (Ours) 53.1± 0.3 27.4± 0.7 39.6± 0.7 44.8± 0.1 27.4± 0.8 37.2± 0.6 10.4

and AutoAttack (Croce & Hein, 2020). For `2 attacks, we use CarliniWagner (Carlini & Wagner,
2017), PGD (Madry et al., 2017), Brendel and Bethge (Brendel et al., 2019), and AutoAttack (Croce
& Hein, 2020). For `1 attacks, we use SLIDE (Tramèr & Boneh, 2019), Salt and pepper (Rauber et al.,
2017), and EAD attack (Chen et al., 2018). We provide a detailed description of the experimental
setup in Appendix A.

5.2 COMPARISON OF ROBUSTNESS AGAINST MULTIPLE PERTURBATIONS

Results with CIFAR-10 dataset. Table 1 shows the experimental results for the CIFAR-10 dataset.
It is evident from the results that MNG-AC achieves a relative improvement of ∼ 6% and ∼ 4% on
the Accunionadv and Accavgadv metric over the state-of-the-art methods trained on multiple perturbations.
Moreover, MNG-AC achieves ∼ 33% reduction in training time compared to the multi-perturbations
training baselines. It is also worth mentioning that, MNG-AC also shows an improvement over
Advmax, which is fundamentally designed to address the worst perturbation.

Results with SVHN dataset. The results for the SVHN dataset are shown in Table 1. We make
the following observations from the results: (1) Firstly, MNG-AC significantly outperforms Advavg,
Advmax by ∼ 14% and ∼ 25% on Accunion

adv metric. Furthermore, it achieves an improvement of
∼ 7.2% and ∼ 26% on Accavg

adv metric over Advavg, Advmax respectively. (2) Secondly, MNG-AC
leads to a ∼ 50% reduction in training time compared to the multi-perturbation training baselines.

7
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Table 2: Ablation study analyzing the significance of SAT, Adversarial Consistency loss (AC) and Meta Noise
Generator (MNG). The best results are highlighted in bold.

SAT AC MNG Accclean `∞ `1 `2 Accunionadv Accavgadv Time (h)
C

IF
A

R
-1

0 X - - 87.4± 0.0 34.6± 0.7 49.3± 1.0 75.5± 0.1 33.9± 0.6 53.1± 0.1 5.5
X X - 81.4± 0.0 40.4± 0.1 53.2± 0.9 70.2± 0.1 40.1± 0.2 54.6± 0.4 6.8
X X X 81.5± 0.3 42.2± 0.9 55.0± 1.2 71.5± 0.1 41.6± 0.8 56.2± 0.2 11.2

SV
H

N X - - 92.8± 0.5 23.4± 2.4 41.3± 4.3 71.0± 3.6 22.8± 1.5 44.9± 1.2 7.6
X X - 92.1± 0.2 32.9± 1.8 35.4± 1.5 77.1± 1.3 28.3± 0.1 49.6± 0.5 9.6
X X X 93.7± 0.1 35.1± 1.9 47.4± 2.2 77.6 ± 1.0 30.3± 1.8 52.6± 0.5 11.9

Interestingly, MNG-AC achieves significant better performance over `1 adversarial training with
comparable training time which illustrates the utility of our method over standard adversarial training.

Results with Tiny-ImageNet. We also evaluate our method on Tiny-ImageNet to verify that it
performs well on complex datasets. In Table 1 we observe that MNG-AC outperforms the multi-
perturbation training baselines and achieves comparable performance to the single-perturbation
baselines. Only against `∞ perturbations, we notice that Advmax achieves better performance. We
believe this is an artefact of the inherent trade-off across multiple perturbations (Tramèr & Boneh,
2019; Schott et al., 2018). Interestingly, MNG-AC even achieves comparable performance to the
single perturbation baselines trained on `1 and `2 norm. This demonstrates the effectiveness of MNG
in preventing overfitting over a single attack, and it’s generalization ability to diverse types of attacks.

5.3 ABLATION STUDIES

Component analysis. To further investigate our training scheme, we dissect the effectiveness of
various components in Table 2. First, we examine that SAT leads to a ∼ 68% and ∼ 30% reduction
in training time over multiple perturbations baselines and MNG-AC for both the datasets, however, it
does not improve the adversarial robustness. Then, we analyze the impact of our meta-noise generator
by injecting random noise z ∼ N (0, I) to the inputs for the generation of augmented samples. We
observe that it significantly improves the performance over the SAT with a marginal increase in the
training time. Furthermore, leveraging MNG our combined framework MNG-AC achieves consistent
improvements, outperforming all the baselines, demonstrating the efficacy of our meta-learning
scheme to defend against multiple perturbations.

Effect of hyperparameters. We further analyze the impact of β in our augmentation loss (see
Eq. (6)) in Figure 2. We evaluate the worst-attack performance across all `p norm adversarial attacks.
Our results show that as the value of β increases the performance on `∞ and `1 attacks improves
significantly. In particular, the performance with `∞ and `1 attack improve by 4% with an increase
in the weight of adversarial consistency loss. However, an increase in β also leads to a reduction
of ∼ 3% in the robustness against the `2 attacks, which is in line with the previous works that have
showcased an inherent trade-off between various attacks theoretically and empirically (Tramèr &
Boneh, 2019; Schott et al., 2018).

5.4 FURTHER ANALYSIS OF OUR DEFENSE

Results on unforseen adversaries. We further evaluate our model on various unforeseen perturba-
tions (Kang et al., 2019) namely we evaluate on the Elastic, `∞-JPEG, `1-JPEG and ` − 2-JPEG
attacks. Note that, even though adversarial training methods do not generalize beyond the threat
model, we observe that MNG-VS improves the performance on these adversaries. We compare
MNGSAT to the baselines trained with multiple perturbations on the SVHN dataset in Table 3. We
notice that even though, Advmax achieves better performance on `p-JPEG attacks, it obtains the
minimum robustness across the Accunion

adv metric. In contrast, MNG-AC generalizes better over both
the baselines for the worst-attack in the set of unforeseen perturbations.

Visualization of loss landscape. As further qualitative analysis of the effect of MNG-AC, we
compare the loss surface of various methods against `∞, `1, and `2 norm attack in Figure 3. We can
observe that in most of the instances when trained with a single adversary, the adversary can find a
direction orthogonal to that explored during training; for example, `1 attack results in a non-smooth
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Table 3: Performance of MNG-AC against unforseen
adversaries on SVHN dataset.

Model Elastic `∞-JPEG `1-JPEG `2-JPEG Accunionadv

Advavg 77.1± 1.1 86.1± 1.5 78.1± 1.8 79.0± 2.0 61.5± 1.5

Advmax 60.2± 2.3 89.9± 1.9 87.9± 2.1 87.0± 2.5 58.5± 1.5

MNG-AC 80.8± 1.0 87.7± 1.3 76.6± 2.6 81.4± 1.2 64.3± 0.5
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Figure 2: Ablation study on the impact of Laug on
average robustness against `p attacks on CIFAR-10.
With an increase in β, the robustness against `∞
and `1 attack increases. However, the robustness of
`2 decreases showing an inherent trade-off across
multiple perturbations.
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Figure 4: Visualization of decision boundary in the penultimate latent-feature space for Advavg in
the left, Advmax in the middle, MNG-AC in the right for SVHN dataset on Wide ResNet 28-10
architecture. The two shapes represent different classes in a binary classification task.

loss surface for both `∞ and `2 adversarial training. On the contrary, MNG-AC achieves smoother
loss surface across all types of attacks which suggests that the gradients modelled by our model are
closer to the optimum global landscape. See Appendix B for the loss landscape on CIFAR-10.

Visualization of decision boundary. Finally, we visualize the learned decision boundary on binary-
classification task across multiple attacks in Figure 4. We can observe that MNG-AC obtains the least
error against all the attacks compared to the baselines trained on multiple perturbations. Furthermore,
the consistency regularization embeds multiple perturbations onto the same latent space, which
pushes them away from the decision boundary that in turn improves the overall robustness. See
Appendix B for visualization of the examples generated by our proposed meta-noise generator.

6 CONCLUSION

We tackled the problem of robustness against multiple adversarial perturbations. Existing defense
methods are tailored to defend against single adversarial perturbation which is an artificial setting
to evaluate in real-life scenarios where the adversary will attack the system in any way possible.
To this end, we propose a novel Meta-Noise Generator (MNG) that learns to stochastically perturb
adversarial examples by generating output noise across diverse perturbations. Then we train the model
using Adversarial Consistency loss that accounts for label consistency across clean, adversarial, and
augmented samples. Additionally, to resolve the problem of computation overhead with conventional
adversarial training methods for multiple perturbations, we introduce a Stochastic Adversarial
Training (SAT) which samples a perturbation from the distribution of perturbations. We believe that
our method can be a strong guideline when other researchers pursue similar tasks in the future.
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A EXPERIMENTAL SETUP

A.1 DATASETS

1. CIFAR-10. This dataset (Krizhevsky, 2012) contains 60,000 images with 5,000 images for
training and 1,000 images for test for each class. Each image is sized 32× 32, we use the Wide
ResNet 28-10 architecture (Zagoruyko & Komodakis, 2016) as a base network for this dataset.

2. SVHN. This dataset (Netzer et al., 2011) contains 73257 training and 26032 testing images of
digits and numbers in natural scene images containing ten-digit classes. Each image is sized
32× 32, we use the Wide ResNet 28-10 architecture similar to the CIFAR-10 dataset as the base
network.

3. Tiny-ImageNet. This dataset 3 is a subset of ImageNet (Russakovsky et al., 2015) dataset,
consisting of 500, 50, and 50 images for training, validation, and test dataset, respectively. This
dataset contains 64 × 64 size images from 200 classes, we use ResNet50 (He et al., 2016) as a
base network for this dataset.

A.2 TRAINING SETUP

We use the SGD optimizer with momentum 0.9 and weight decay 5 ·10−4 to train all our models with
cyclic learning rate with a maximum learning rate λ that increases linearly from 0 to λ over first N/2
epochs and then decreases linearly fromN/2 to 0 in the remainder epochs, as recommended by Wong
et al. (2020) for fast convergence of adversarial training. We train all the models for 30 epochs on a
single machine with four GeForce RTX 2080Ti using WideResNet 28-10 architecture (Zagoruyko
& Komodakis, 2016). We use the maximum learning rate of λ = 0.21 for all our experiments. We
use β = 16 for all the experiments with our meta noise generator. The generator is formulated as
a convolutional network with four 3×3 convolutional layers with LeakyReLU activations and one
residual connection from input to output. We use T = 2 for all our experiments and all our algorithms
are implemented using Pytorch (Paszke et al., 2019) and TorchMeta (Deleu et al., 2019). We use the
weight for the KL divergence (β = 6.0) for TRADES and RST in all our experiments. We replicate
all the baselines on SVHN and TinyImageNet since most of the baseline methods have reported
their results on MNIST and CIFAR-10. Unfortunately, we found that MSD Maini et al. (2020) did
not converge for larger datasets even after our extensive hyperparameter-search. We believe that
this is due to the the change in formulation of the inner optimization which leads to a difficulty in
convergence for larger datasets. Since the authors also report their results on CIFAR-10, we do not
use it as a baseline for other datasets.

A.3 EVALUATION SETUP

For `∞ perturbations, we use PGD (Madry et al., 2017), Brendel and Bethge attack (Brendel
et al., 2019), and AutoAttack (Croce & Hein, 2020). For `2 perturbations, we use CarliniWagner
attack (Carlini & Wagner, 2017), PGD (Madry et al., 2017), Brendel and Bethge attack (Brendel
et al., 2019), and AutoAttack (Croce & Hein, 2020). For `1 perturbations, we use SLIDE (Tramèr
& Boneh, 2019), Salt and pepper (Rauber et al., 2017), and EAD attack (Chen et al., 2018). For
CIFAR-10 and SVHN, we use ε = { 8

255 ,
2000
255 ,

80
255} and α = {0.004, 1.0, 0.1} for `∞, `1, and `2

attacks respectively. For Tiny-ImageNet, we use ε = { 4
255 ,

2000
255 ,

80
255} and α = {0.004, 1.0, 0.1} for

`∞, `1, and `2 attacks respectively. We use 10 steps of PGD attack for `∞, `2 during training. For `1
adversarial training, we use 20 steps during training and 100 steps during evaluation. We use the code
provided by the authors for evaluation against AutoAttack Croce & Hein (2020) and Foolbox (Rauber
et al., 2017) library for all the other attacks.

B MORE EXPERIMENTAL RESULTS

Due to the length limit of our paper, we provide a breakdown of all the attacks on CIFAR-10 in
Table 4, SVHN on Wide ResNet 28-10 in Table 5, Tiny-ImageNet on ResNet50 in Table 6. Besides,
we analyze the noise learned by our meta-learning framework on multiple datasets and the loss
landscape on the CIFAR-10 dataset.

3https://tiny-imagenet.herokuapp.com/
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Table 4: Summary of adversarial accuracy results for CIFAR-10 on Wide ResNet 28-10 architecture.

Adv∞ Adv1 Adv2 Trades∞ RST∞ Advavg Advmax MSD MNG-AC

Clean Accuracy 86.8± 0.1 93.3± 0.6 91.7± 0.2 84.7± 0.3 88.9± 0.2 87.1± 0.2 85.4± 0.3 82.3± 0.2 84.9± 0.3

PGD-`∞ 46.9± 0.5 0.40± 0.7 23.6± 0.2 52.0± 0.6 56.9± 0.1 35.2± 0.8 42.2± 1.1 45.4± 0.4 44.5± 1.1

PGD-Foolbox 54.7± 0.4 0.33± 0.6 35.3± 0.4 57.8± 0.5 62.9± 0.3 45.0± 0.4 50.4± 0.4 51.7± 0.8 50.8± 0.8

AutoAttack 44.9± 0.7 0.0± 0.0 20.7± 0.4 48.8± 1.1 53.9± 0.3 33.8± 0.7 39.9± 0.9 42.7± 0.2 42.8± 0.8

Brendel & Bethge 49.9± 1.1 0.0± 0.0 26.8± 0.3 52.1± 0.7 56.5± 1.8 39.6± 0.7 45.8± 0.9 48.3± 0.4 46.8± 0.9

All `∞ attacks 44.9± 0.7 0.0± 0.0 20.7± 0.3 48.9± 0.7 54.9± 1.8 33.8± 0.7 39.9± 0.9 43.7± 0.2 42.2± 0.9

PGD-`1 12.8± 0.6 91.6± 1.4 27.7± 0.7 17.9± 0.6 22.0± 0.5 49.0± 0.3 44.6± 0.2 46.8± 1.4 55.0± 1.2

PGD-Foolbox 35.2± 0.7 92.3± 1.3 53.1± 0.5 40.3± 0.7 44.6± 0.3 64.5± 0.2 60.7± 0.5 60.3± 0.4 65.5± 0.1

EAD 72.9±1.0 87.1± 3.3 75.9± 1.9 80.2± 0.7 84.5± 0.2 85.7± 0.2 83.3± 0.5 80.8± 0.1 79.3± 0.6

SAPA 71.5± 0.2 80.2± 1.8 81.9± 0.5 71.4± 0.7 76.0± 0.5 82.7± 0.1 80.0± 0.1 76.9± 0.5 76.7± 0.4

All `1 attacks 12.8± 0.6 78.1± 1.8 27.7± 0.7 17.9± 0.6 22.0± 0.5 49.0± 0.3 44.6± 0.2 43.7± 0.2 55.0± 1.2

PGD-`2 78.7± 0.3 47.6± 1.6 84.6± 0.2 77.0± 0.9 82.2± 0.2 81.5± 0.2 79.1± 0.3 76.5± 0.1 75.6± 0.4

PGD-Foolbox 74.6± 0.2 5.1± 2.1 79.8± 0.2 73.3± 0.6 78.3± 0.2 77.6± 0.2 75.8± 0.3 73.6± 0.5 73.4± 0.1

Gaussian Noise 85.2± 0.4 88.5± 1.8 90.5± 1.1 83.2± 0.3 87.8± 0.2 86.2± 0.5 83.3± 0.3 70.9± 1.1 79.3± 0.1

AutoAttack 69.9± 0.4 0.0± 0.0 76.8± 0.4 69.4± 0.3 73.7± 0.1 74.9± 0.4 73.2± 0.2 71.9± 0.4 71.5± 0.1

Brendel & Bethge 71.8± 0.9 0.0± 0.0 78.1± 0.6 70.2± 0.1 75.0± 0.3 75.9± 0.3 74.1± 0.4 80.4± 0.4 72.3± 0.1

CWL2 70.5± 0.2 0.1± 0.0 77.2± 0.5 69.7± 0.3 74.2± 0.1 74.6± 1.2 73.5± 0.2 71.1± 1.1 71.0± 0.1

All `2 attacks 69.3± 0.4 0.0± 0.0 76.8± 0.4 69.4± 0.3 73.6± 0.1 74.9± 0.4 73.2± 0.2 70.6± 1.1 71.5± 0.1

Accunionadv 12.9± 0.5 0.0± 0.0 17.9± 0.8 17.2± 0.6 21.1± 1.0 31.0± 1.4 35.7± 0.3 35.8± 0.1 41.6± 0.8

Accavgadv 42.6± 0.4 25.1± 1.6 47.6± 0.4 45.4± 0.3 50.2± 0.5 52.6± 0.5 52.5± 0.3 52.0± 0.4 56.2± 0.2

Visualization of learned noise. To demonstrate the learning ability of our meta-noise generator,
we visualize the learned noise by our generator during training. We present representative samples
projected on various `p norms and datasets in Figure 5 where each sample is projected to their
respected norm-ball B(x, ε) around x with radius ε. From the figure, we can observe that our meta-
noise generator incorporates the features by different attacks and learns diverse input-dependent noise
distributions across multiple adversarial perturbations by explicitly minimizing the adversarial loss
across multiple perturbations during meta-training. Overall, it combines two approaches that are
complementary to each other and leads to a novel input-dependent learner for generalization across
diverse attacks.

Visuaization of loss landscape on CIFAR-10. Figure 6 shows the visualization of loss landscape
of various methods against `∞, `1, and `2 norm attack for CIFAR-10 dataset on Wide ResNet 28-10
architecture. We vary the input along a linear space defined by the norm of the gradient where x
and y-axes represent the perturbation added in each direction, and the z-axis represents the loss.
Similar to the SVHN dataset, we can observe that the loss is highly curved for multiple perturbations
in the vicinity of the data point x for the adversarial training trained with a single perturbation,
which reflects that the gradient poorly models the global landscape. In contrast, MNG-AC achieves
smoother loss surface across all types of `p norm attacks.
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Table 5: Summary of adversarial accuracy results for SVHN dataset on Wide ResNet 28-10 architec-
ture.

Adv∞ Adv1 Adv2 Trades∞ RST∞ Advavg Advmax MNG-AC

Clean Accuracy 92.8± 0.1 92.4± 1.6 94.9± 0.0 93.9± 0.0 95.6± 0.0 92.6± 0.1 88.2± 1.6 93.4± 0.0

PGD-`∞ 49.1± 0.1 3.2± 2.4 29.4± 0.1 55.5± 1.4 66.9± 0.8 22.4± 3.1 36.6± 2.0 40.5± 0.1

PGD-Foolbox 60.7± 0.4 2.5± 1.9 47.6± 0.6 66.4± 1.1 73.8± 0.3 32.5± 3.2 49.9± 0.0 57.5± 1.8

AutoAttack 46.2± 0.6 0.0± 0.0 18.9± 0.5 49.9± 1.8 61.0± 2.0 17.6± 2.6 17.5± 0.9 33.7± 1.8

Brendel & Bethge 51.6± 0.7 0.0± 0.0 22.9± 0.8 55.8± 1.5 65.6± 1.2 20.2± 2.9 6.3± 2.3 40.0± 0.3

All `∞ attacks 46.2± 0.6 0.0± 0.0 18.7± 0.6 49.9± 1.7 60.9± 2.0 17.4± 2.3 5.9± 1.2 33.7± 1.9

PGD-`1 3.1± 0.3 95.0± 1.8 30.5± 0.4 1.7± 0.3 0.7± 0.6 55.8± 2.1 48.4± 2.9 44.5± 3.2

PGD-Foolbox 19.9± 0.8 94.6± 0.4 57.5± 0.1 15.5± 0.2 11.3± 0.5 79.2± 3.4 85.4± 3.2 75.2± 2.8

EAD 65.7± 2.1 87.8± 1.9 82.3± 1.2 51.5± 2.9 60.4± 0.8 84.8± 2.4 84.5± 3.8 86.2± 2.2

SAPA 79.4± 0.8 77.3± 5.2 87.3± 0.1 73.5± 1.0 86.2± 0.5 88.5± 0.6 80.9± 4.0 89.9± 1.6

All `1 attacks 3.0± 0.3 77.9± 6.3 30.3± 0.3 1.6± 0.3 0.7± 0.6 54.2± 2.9 48.3± 4.1 47.4± 2.2

PGD-`2 81.6± 0.5 3.9± 1.4 87.8± 0.2 83.9± 0.8 85.3± 0.2 85.6± 0.6 84.3± 1.1 90.4± 0.6

PGD-Foolbox 73.2± 0.2 1.9± 1.8 82.8± 0.6 75.0± 0.7 76.0± 0.3 80.6± 0.1 60.1± 0.8 86.1± 0.1

Gaussian Noise 92.1± 0.2 16.5± 4.2 94.2± 0.2 93.3± 1.4 94.2± 0.6 92.2± 0.2 83.8± 0.6 93.2± 0.4

AutoAttack 59.0± 0.7 0.0± 0.0 79.3± 0.1 56.4± 1.3 60.7± 0.6 75.6± 0.1 40.0± 2.3 78.0± 0.8

Brendel & Bethge 68.2± 0.5 0.0± 0.0 81.0± 0.1 64.8± 0.9 68.1± 0.5 76.4± 0.4 32.7± 3.8 78.4± 0.4

CWL2 63.5± 0.8 0.1± 0.1 80.1± 1.4 61.4± 0.3 63.9± 0.2 76.8± 0.1 55.3± 5.2 80.9± 0.9

All `2 attacks 59.2± 0.7 0.0± 0.0 79.3± 0.1 56.0± 1.4 60.6± 0.6 74.7± 0.1 31.0± 5.0 77.6± 1.0

Accunionadv 3.0± 0.3 0.0± 0.0 16.4± 0.7 1.6± 0.3 0.7± 0.6 16.6± 1.3 5.8± 1.7 30.3± 1.8

Accavgadv 36.2± 0.3 23.9± 2.1 42.8± 0.2 35.8± 0.6 40.7± 0.8 43.0± 1.0 26.7± 2.5 52.6± 0.5
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Table 6: Summary of adversarial accuracy results for Tiny-ImageNet on ResNet50 architecture.

Adv∞ Adv1 Adv2 Trades∞ Advavg Advmax MNG-AC

Clean Accuracy 54.2± 0.1 57.8± 0.2 59.8± 0.1 48.2± 0.2 56.0± 0.2 53.5± 0.0 53.1± 0.1

PGD-`∞ 32.1± 0.0 11.5± 1.2 17.9± 1.1 32.2± 0.4 25.0± 0.6 32.0± 0.6 29.3± 0.3

PGD-Foolbox 34.6± 0.4 17.2± 0.1 5.2± 0.6 34.1± 0.2 34.0± 0.2 28.3± 0.1 32.3± 0.3

AutoAttack 29.6± 0.1 10.1± 0.7 16.3± 0.3 28.7± 0.9 23.7± 0.2 30.0± 0.1 27.7± 0.4

Brendel & Bethge 32.7± 0.1 14.6± 0.8 20.8± 0.6 31.0± 0.9 28.1± 0.2 33.2± 0.5 31.5± 0.6

All `∞ attacks 29.6± 0.1 10.5± 0.7 5.2± 0.6 28.7± 0.9 23.7± 0.2 29.8± 0.1 27.4± 0.7

PGD-`1 32.0± 1.1 39.3± 0.9 37.2± 0.2 31.1± 0.3 38.0± 0.1 33.6± 0.4 39.0± 0.9

PGD-Foolbox 40.0± 0.8 44.8± 0.2 45.2± 0.2 37.6± 0.9 44.7± 1.5 40.6± 0.1 45.0± 0.2

EAD 52.3± 1.5 56.3± 0.6 57.3± 0.0 46.7± 0.9 54.6± 0.9 51.2± 0.2 52.7± 0.3

SAPA 46.5± 0.9 52.9± 0.7 53.5± 1.2 40.8± 0.1 50.3± 1.1 46.6± 0.1 49.3± 0.4

All `1 attacks 31.8± 1.0 39.3± 1.0 37.2± 0.4 30.9± 0.2 38.0± 0.2 33.4± 0.3 39.6± 0.7

PGD-`2 48.5± 1.1 49.1± 0.1 51.8± 1.8 42.6± 0.7 49.9± 1.7 47.0± 0.3 49.1± 0.4

PGD-Foolbox 45.6± 0.4 45.2± 0.4 47.7± 0.7 41.0± 0.3 47.0± 1.3 44.9± 0.4 47.0± 0.2

Gaussian Noise 52.5± 1.3 56.1± 0.6 57.6± 0.3 46.4± 0.9 54.4± 0.8 51.1± 0.0 52.1± 0.5

AutoAttack 42.4± 0.8 41.9± 0.0 44.6± 0.6 38.9± 0.8 44.4± 1.3 42.4± 0.9 44.6± 0.4

Brendel & Bethge 43.7± 0.4 44.4± 0.1 46.6± 1.1 39.2± 0.7 45.1± 1.6 43.6± 0.4 45.4± 0.1

CWL2 43.5± 1.3 44.8± 1.1 47.5± 0.7 39.5± 0.4 46.8± 1.9 43.4± 0.1 46.0± 0.4

All `2 attacks 42.5± 0.6 41.9± 0.0 44.9± 0.1 35.8± 0.7 44.6± 0.1 42.4± 1.0 44.8± 0.1

Accunionadv 19.8± 1.1 10.1± 0.7 5.2± 0.6 26.1± 0.9 23.6± 0.3 29.0± 0.3 27.4± 0.8

Accavgadv 33.8± 0.1 30.4± 0.1 29.1± 0.0 32.8± 0.1 35.4± 0.7 35.3± 0.4 37.2± 0.6
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Figure 5: Visualization of the generated noise by MNG
along with the perturbed samples on `1, `2, and `∞-
norm attacks for CIFAR-10 and SVHN dataset.
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Figure 6: Visualization of the loss landscapes for the
`1, `2, and `∞-norm attacks on the CIFAR-10 dataset.
The rows represent the attacks and columns represent
different defenses. We can observe that that MNG-AC
obtains smooth loss surface across all `p-norm attacks.
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