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ABSTRACT

Despite the increasing prevalence of large language models (LLMs), we still have
a limited understanding of how their representational spaces are structured. This
limits our ability to interpret how and what they learn or relate them to learning in
humans. We argue LLMs are best seen as an instance of lossy compression, where
over training they learn by retaining only information in their training data relevant
to their objective(s). We show pre-training results in models that are optimally
compressed for next-sequence prediction, approaching the Information Bottleneck
bound on compression. Across an array of open weights models, each compresses
differently, likely due to differences in the data and training recipes used. However
even across different families of LLMs the optimality of a model’s compression,
and the information present in it, can predict downstream performance on MMLU-
Pro, letting us directly link representational structure to actionable insights about
model performance. In the general case the work presented here offers a unified
Information-Theoretic framing for how these models learn that is deployable at
scale.

1 INTRODUCTION

We still have a limited understanding of how Large Language Models (LLMs) achieve impressive
results across a wide array of tasks (Devlin et al., 2019; Grattafiori et al., 2024). While a growing
body of work interprets LLMs using behavioural experiments, probing, or causal interventions, the
scale of these models makes understanding how their representation spaces are distributed a contin-
ued challenge. Here we look at an LLM as an instance of lossy compression, offering an account of
how models represent information during training and what information matters for performance.

Lossy compression represents data efficiently by preserving only the information from a source
relevant to a goal. While audio recordings intended for human listeners can be gigabytes in size,
MP3 files save space by discarding frequencies typically outside the range of human hearing (Jayant
et al., 1993); similarly, a JPEG file omits subtle colour variations that are difficult for the human
eye to perceive. We draw a parallel with LLMs, which are expected to generate responses humans
prefer, after being trained on trillions of tokens – more language data than a human hears in 200
lifetimes. More generally, compression is thought to underpin learning in humans and models (see
Feldman, 2016), giving a formal account of LLM training in terms of compression allows us to
work towards a unified theory of representation learning. We present results showing that over the
course of pre-training LLMs optimally compress the information present in their training data for
next sequence prediction.

Compression is inherently opinionated – some information from the source is preserved, some is
forgotten to save space. Information Theory (Shannon, 1948) provides a formal language to de-
scribe this process, letting us both quantify the information present in a representation and compute
a bound where it is optimally compressed with respect to the data it represents. Our results build
on the Information Bottleneck (IB) theory of deep learning (Tishby & Zaslavsky, 2015), showing
pre-training follows a two phase trajectory: first increasing mutual information with the training
objective, before compressing input information. Across a wide array of LLMs we find each model
compresses differently, with the optimality of a model’s compression and the information it pre-
serves predicting performance on downstream benchmarks.
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Figure 1: LLMs Learn an Optimal Compression of the Internet (Left) An illustration of the
information plane, with mutual information of hidden representation z with input x as complexity,
and with output y as expressivity. Shown is the training trajectory hypothesised by the Information
Bottleneck theory of deep learning (Tishby & Zaslavsky, 2015): phase 1 increases I(y; z) then phase
2 compresses irrelevant I(x; z) approaching the bound on compression. Previously this had only
been documented in relatively small neural networks. (Right) The information plane for pre-training
of the OLMo2 7B model. The horizontal axis shows mutual information between representations
and the input, the vertical axis shows mutual information with the predicted output. Hue indicates
timepoint in training in terms of log tokens in billions. Estimates are based on 10,000 examples
from the C4 dataset.

A hallmark of large-scale distributed systems, like neural networks, is that they are difficult to un-
derstand as a function of their parts alone (Anderson, 1972; Mitchell, 2009). Our approach to inter-
pretability allows us to consider learning and generalisation at the scale of an entire model, rather
than studying individual circuits or neurons within it. Additionally it allows us to frame how models
do so well at so much in terms of existing theories of learning and compression, while providing
actionable insights at LLM scale.

In what follows we focus on offering concrete answers to three questions: Do LLMs optimally com-
press their representations? What information survives that compression? What representational
structures drive performance? In summary, the core findings are:

• Pre-training dynamics for LLMs closely follow theoretical predictions from the Informa-
tion Bottleneck, with models first expanding representations before slowly approaching
optimal compression.

• Scale conditions these dynamics, with smaller models (below 7 billion parameters) strug-
gling to achieve meaningful compression later in training.

• How optimally compressed a model is correlates significantly with performance on MMLU
Pro across three families of large language models, letting us directly relate representation
structure to behaviour.

• Post-training increases human preference information in a model, with the proportion of
preference information also predicting performance on MMLU Pro

• Finally, we compare a wide array of open-weight models across 5 model families, showing
they all converge near optimal compression.
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2 BACKGROUND & RELATED WORK

2.1 LEARNING, INFERENCE, AND COMPRESSION

Compression has been argued to underpin learning and inference in humans (Chater, 1997; Chater
& Vitányi, 2003; Feldman, 2000; Pothos & Chater, 2001) and models (MacKay, 2003; Poggio
et al., 2004). Increasingly, probabilistic inference and complexity minimisation are seen as deeply
intertwined (Feldman, 2016) – a point perhaps made clearest by Bayesian inference, which implic-
itly prefers the simplest hypotheses consistent with observed data (Edwards, 1972; Jeffreys, 1939;
Vitányi & Li, 2000). Bayesian approaches to human cognition offer accounts of how a broad array
of human behaviour can be productively thought of as this kind of inference (see Griffiths et al.,
2024, for a review). In machine learning Occam’s Razor has long been used as a model selection
criterion – where the best model is the simplest one consistent with the data (Burnham & Anderson,
2002; Rissanen, 1978; Wallace & Boulton, 1968). The bias variance trade-off (Geman et al., 1992)
makes this explicit in the context of neural networks, showing more complex models may achieve
better fit to the training data, but they also generalise worse than their simpler counterparts. While
some work has studied whether or not LLMs can match lossless compression algorithms in-context
(e.g. Delétang et al., 2023), this is distinct from giving an account of LLM training itself as a pro-
cess of lossy compression – the object of study here. It is worth noting that there is not universal
agreement about how to assess compression (see MacKay, 2003, for discussion), but here we follow
in the information-theoretic tradition (Shannon, 1948).

2.2 RATE DISTORTION THEORY

Consider a function E that encodes an input X in a representation Z, Z = E(X). This represen-
tation is then decoded by a function D to produce predictions Ŷ for an output with true label Y ,
Ŷ = D(Z). Assuming that X and Y are not independent, if E were to losslessly preserve all the
information from the input, we would expect D to be able to precisely recover the corresponding
output, with Ŷ = Y . Rate Distortion Theory (RDT) (Shannon, 1948) instead considers the lossy
case Ŷ ̸= Y , where some amount of error in the prediction – distortion – is acceptable. It then
becomes a question of how much information about the input – termed the rate – the encoder needs
to preserve to achieve a given level of distortion.

The Information Bottleneck (IB) Tishby et al. (2000) looks at a particular case, where the rate is
given as the mutual information between inputs and their representation I(X;Z), and distortion as
the mutual information between a representation and the corresponding target prediction I(Y ;Z) –
the 2D space this creates is called the information plane (shown in Figure 1). Since I(X;Z) reflects
how much information about the input space is preserved it can be referred to as complexity (e.g.
Zaslavsky et al., 2018). Likewise I(Y ;Z) is referred to as accuracy given it quantifies how much
information a representation has about the target output it will be used to predict. To distinguish
this quantity from behavioural accuracy (e.g., exact match on a task) we refer to it as expressivity
– how uniquely a representation can refer to its target (in line with Kirby et al., 2015). Optimal
compression within the IB occurs when an encoding Z|X preserves only the information about X
relevant to predicting Y , or when Z|X minimises

Fβ [p(Z|X)] = I(X;Z)− βI(Y ;Z) (1)

where β is a trade-off parameter controlling the allowable level of distortion. When β approaches 0
all inputs are compressed to a single point, as β → ∞ we approach the lossless case, where using X
or its encoding Z tells us the same information about Y ; I(Y ;Z) = I(Y ;X). The curve traced by
varying β draws a bound, where the encoding p(Z|X) is optimally compressed – everything above
the curve is unachievable and everything below it is suboptimal. This bound starts off with a linear
relationship where I(X;Z) = I(Z;Y ), until Z captures all information shared between X and Y .
Intuitively, in an optimal encoding each additional bit of complexity gets you an additional bit of
accuracy, until all information shared by X and Y are represented; I(Y ;Z) = I(Y ;X) – in the cases
studied here all models stay well below this saturation point, so for clarity we refer to the bound as
the line I(X;Z) = I(Z;Y ) (for further discussion of the bound and computing it numerically see
Appendix E.6).
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Applying the Information Bottleneck to Deep Learning Tishby and Zaslavsky (2015) offered a
theoretical characterisation of training a multi-layered neural network as optimising an Information
Bottleneck. They theorise two phases of training: first a fitting phase during which representations
increase mutual information with the target labels I(Y ;Z); and second a compression phase, during
which models compress irrelevant information about the input I(X;Z) and in the process begin to
approach the optimal bound. It is this latter phase that is hypothesised to result in representations that
generalise robustly. Figure 1 shows the theoretically hypothesised trajectory a model takes through
the information plane over the course of training.

Shwartz-Ziv and Tishby (2017) confirmed the two-phase predictions from the IB theory of deep-
learning empirically in feed forward networks trained on MNIST. Subsequent work has questioned
the generality of these findings, showing how – at least in linear networks – the compression phase
can be driven by the type of non-linearity used (Saxe, Bansal, et al., 2019), or that compression
is not necessarily required for generalisation (Goldfeld et al., 2019). It remains unclear whether
deep-learning models in the general case can be expected to follow the phases of expansion and
compression predicted by the IB, in particular when it comes to sequence models (e.g. Transformers)
trained on complex tasks.

2.3 INTERPRETING NEURAL NETWORKS

A broad literature on the theory of deep learning tries to give an accounting of learning dynamics
in small multi-layer networks (e.g. Frankle & Carbin, 2018; Saxe, McClelland, & Ganguli, 2019).
While there has been some extension of these kinds of representational analyses to larger models –
like applying information theoretic methods to transformers (Voita et al., 2019) – much of the work
on interpretability in LLMs leverages behavioural or probing evidence. Behavioural approaches
treat models as akin to psycholinguistic subjects (Futrell et al., 2018, 2019), taking model outputs as
behaviours (Hu et al., 2020; Marvin & Linzen, 2018; Warstadt et al., 2019). Probing (Pimentel et al.,
2020; Veldhoen et al., 2016; Voita & Titov, 2020) trains a smaller model – like a linear classifier –
to predict labels from a model’s latent representations, as evidence that information relevant to those
labels is present. While valuable, these approaches are removed from the models’ representations
themselves – characterising downstream behaviours rather than characterising the representational
structures that drive them.

Mechanistic interpretability follows in a similar vein but aims to describe how circuits within a
model implement the functions that solve a task. These analyses have given accounts of how two
layer linear and non-linear models represent features from synthetic data (Elhage et al., 2021) or
how single-layer attention only transformers solve modular addition (Nanda et al., 2023). When
deployed at scale, to LLMs, this work often relies on training unsupervised probes termed sparse
auto-encoders (Elhage et al., 2022) to identify correspondences between parameters and different
words or concepts from the training data (Bricken et al., 2023). In the general case this work often
focuses on ‘mono-semanticity’ – looking for lossless, one-to-one correspondences between input
features and parts of a model. More recently studies of when features emerge during pre-training
have aligned with the expansion/compression pattern described by the IB theory (Ge et al., 2025).

To be sure, there is an abundance of methods for analysing deep-learning models. Here, however,
we highlight a disconnect between work on the theory of learning in humans and neural networks,
and work on interpretability. Interpretability methods can be deployed at scale on complex models
and tasks, but lack clear relationship to existing theoretical work. In the sections that follow we
operationalise Rate Distortion Theory, and related work on learning as compression, at LLM scale.
This allows us to analyse training dynamics while contextualising our conclusions in existent and
well-studied theoretical frameworks. Our approach represents one that is theoretically motivated but
can be applied to any model at any scale.

3 METHODS

3.1 ENTROPY ESTIMATION

Let T ∈ ZB×S be a batch of B tokenized samples with sequence length S, drawn from a corpus of
text data T , and let E be a model with L layers and representation dimension h; the corresponding
encoded representations are Z ∈ RL×B×S×h. Let X ∈ ZB×S be feature labels for the text in T .
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For example, when we look at optimal compression with respect to the IB bound, these labels X
are the token ids for the model inputs; however, when analysing representation information more
generally, these can be other input features, such as preference label or language id. It is desirable to
compute the mutual information I(X;Z) using Shannon entropy as opposed to differential entropy
to accomplish this, previous work quantises Z into n bins, to get a discrete encoding Ẑ (Shwartz-Ziv
& Tishby, 2017; Voita et al., 2019)1. Unfortunately the approaches from this previous work have
memory and resource requirements that make them difficult to apply at LLM scale. As a result we
use the soft-entropy estimator from Conklin (2025) – this is an efficient differentiable relaxation of
a binning-based estimate that has been shown to converge to the true entropy of a distribution.

To obtain a soft quantisation Ẑ, this approach first computes Z̄, which is the normalization of Z to
lie on the surface of the unit sphere Sh in Rh. It then samples n points {wi}ni=1 uniformly at random
from Sh.2 Then, for each normalized representation z̄ ∈ Rh, we compute a vector whose ith entry
is the cosine between z̄ and wi, then apply softmax to that vector – softly assigning each embedding
z̄ to the points in W . More formally, for each (l, b, s) ∈ [L] × [B] × [S], tensor Z̄ (whose shape
coincides with Z) is defined so that Z̄l,b,s,: = Zl,b,s,:/∥Zl,b,s,:∥, and we stack the uniform samples
{wi}ni=1 into a matrix W ∈ Rh×n:

{wi}ni=1 ∼ Unif(Sh), W:,i = wi. (2)

Tensor Ž ∈ RL×B×S×n is then defined so that for (l, b, s) ∈ [L]× [B]× [S],

Žl,b,s,: = softmax
( h∑

j=1

Z̄l,b,s,jWj,:

)
. (3)

Each vector Žl,b,s,: defined this way is a probability vector. Let Ẑ ∈ RL×n be the matrix obtained
from tensor Ž by averaging over the batch and sequence dimensions, and let ẑl be the l-th row of
this matrix, a probability vector of length n by construction:

Ẑ =
1

BS

B∑
b=1

S∑
s=1

Ž:,b,s,:, ẑl = Ẑl,:, H(ẑl) = −
n∑

j=1

ẑl,j log ẑl,j . (4)

Vectors ẑℓ are probability vectors for each layer l ∈ [L] describing a categorical distribution over n
categories. Therefore we can compute the Shannon entropy H(ẑl) as above. Due to the normalisa-
tion step during quantisation, this distribution approximates the probability that a representation in
a layer l lies along a particular angle with respect to the origin. To estimate the entropy in an entire
model, denoted H(Z) we average entropy across layers. Efficiency (Wilcox, 1967) normalises H by
the entropy of a uniform distribution log(n), thereby bounding the entropic quantity between 0 and
1 – to aid interpretability here we convert H(Z) to an efficiency H(Z) by additionally normalising
by the entropy of a uniform distribution at each layer. These definitions can also be conditioned on
the feature labels X .

H(Z) :=
1

L log(n)

L∑
l=1

H(ẑl), H(Z|X = x) :=
1

L logn

L∑
l=1

H(ẑl|X = x) (5)

This now allows us to efficiently compute the mutual information3 between input features X and
encodings across an entire model, regardless of model size.

I(X;Z) :=
1

|X|
∑
x∈X

H(Z)−H(Z|X = x) (6)

1For discussion of Shannon entropy and why previous approaches are not scalable see Appendices E.4,E.5.
2This is equivalent to sampling from an isometric h-dimensional multivariate normal, w̃i ∼ N (0, Idh),

and scaling to unit length, wi =
w̃i

||w̃i||
.

3This quantity is not strictly the mutual information I(X;Z) because we are weighting each label equally,
rather than weighting by P (X = x). Since our main interest is in token ids as labels, this choice avoids
weighting highly frequent tokens like "the" and "a" more heavily than less frequent ones.
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3.2 MUTUAL INFORMATIONS

To look at whether or not a model is optimally compressed with respect to some data we need to
compute mutual informations with respect to input and output labels. LLMs are trained with in-
puts as preceding context and outputs as trailing context (for discussion of this, and examples of
the labelling procedure see Appendix E.3). Maintaining conditional estimates of a token embedding
given a preceding context P (Z|X) for every possible context window proves intractable, and many
contexts occur only once in the training data. Accordingly, like many other works on language
modelling we approximate the distribution over possible sequences using n-grams with a kind of
back-off (Katz, 1987). By conditioning on finite widths of preceding context we can tractably ap-
proximate P (Z|X); the maximum width we consider here are quad-grams by which point I(X;Z)
begins to converge and past which point computation becomes intractable in an LLM setting (see
Appendices E.1, E.2 for discussion). By backing off further (e.g. to trigrams, bigrams, and tokens)
we can also estimate how much different context widths contribute to information in a model - in
practice the majority of results presented here use trigram backoff which takes into account context
while being considerably less sparse than quad-grams.

In addition to mutual information with input and output labels, we also consider human preference
data. A growing body of work stresses the importance of post-training approaches for aligning
models with human preference (Bai et al., 2022; Ouyang et al., 2022; Rafailov et al., 2023). We can
quantify this information in a model using preference data, where a prompt has two continuations,
one of which is labelled preferred by human raters. Conditioning on this label lets us compute
P (Z|preferred) and I(Z; preferred).

Data and Sampling Getting a true estimate of the entropy of a vector space remains a major
challenge, with most approaches underestimating the true entropy (Paninski, 2003). As a result we
do not claim our experiments estimate the entropy of a model’s true latent distribution, but rather
an estimate of the entropy with respect to a particular sample of data. By holding the data constant
across models and experiments we can compute an estimate that is useful for comparisons, even if it
does not exactly match the true entropy. Unless otherwise noted, token bigram, trigram, and quad-
gram estimates are with respect to 10,000 samples from C4 (Raffel et al., 2020), and preference
estimates are based on 10,000 samples from Tulu (Lambert et al., 2024); in both cases we consider
a maximum context length of 512.

4 EXPERIMENTS

In order to study training time-courses our pre-training analyses look at the OLMo2 family of models
(OLMo et al., 2025), which makes available intermediate checkpoints 4. We focus analysis on the
7B model unless otherwise noted, while including results for the 32B and 1B variants to show where
conclusions hold or differ across model scales. In addition, to show our conclusions hold outside
of this particular family of models we compare a wide array of open-weights LLMs (which do not
make intermediate training checkpoints available), showing where they lie on the information plane
at the end of training.

4.1 PRE-TRAINING APPROACHES OPTIMAL COMPRESSION

The majority of pre-training appears to be a slow compression of a model’s training data. The
Information Bottleneck theory of deep learning predicts two phases: a fitting phase during which
output information I(Y ;Z) increases, followed by a compression phase during which I(Y ;Z) re-
mains constant and input information I(X;Z) decreases. The theoretically predicted trajectory of
training is visualised in Figure 1. Shown beside it (and reproduced in Figure 2) is the training tra-
jectory for the OLMo2 7B model with respect to data from English C4. Strikingly, the 7B model
closely follows the two-phase prediction from the Information Bottleneck, first increasing mutual
information with outputs, before compressing input information and progressing towards the bound
on optimal compression. This shows how, even at scale, deep-learning models appear to thread a

4Appendix D includes additional pre-training analyses of the Smol LM2 (Allal et al., 2025) and Pythia
(Biderman et al., 2023) models which also make intermediate checkpoints available. These follow a similar
pattern to the results presented here.
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Figure 2: Pre-Training Trajectories Match Theoretical Predictions. (Top Left and Bottom Row)
The information plane over pre-training for different levels of backoff. By changing how many to-
kens we condition the mutual information on in the context window, we see how the OLMo2 7B
model compresses not just token but also local context information. Across all context windows
we see the same two phase pattern predicted by the Information Bottleneck – with more contextual
representations approaching greater optimality. (Top Right) The Information Plane with token back-
off for a wide array of open-weights models. Models approach the bound for optimal compression,
which is shown as a dotted line. Model names are shown at right with two points labelled. A full
legend identifying each dot, with additional levels of backoff, is given in Appendix Figures 5 and 6.

needle between representational complexity and expressivity. It also demonstrates how LLMs can
be effectively studied from the perspective of Rate Distortion Theory, as they try to converge to an
optimal lossy compression of their training data. By varying the degree of backoff in the conditional
distribution used to compute mutual information, we can see how contextual information evolves
over pre-training at the token, bigram, trigram, and quad-gram levels (Figure 2 bottom). All cases
result in a similar two-phase pattern of expansion and compression, with larger conditioning context
converging closer to the bound. There is also a pattern of convergence such that quad-grams account
for only marginally more information than trigrams – suggesting representations largely encode lo-
cal context, likely reflecting the information locality of the natural language on which they’re trained
(Gibson, 1998; Gibson et al., 2000; Hahn et al., 2022). This high degree of optimality in contextual
encodings also likely reflects an inherent pressure in the pre-training objective for models to not only
develop token representations, but representations of a token in context.

The Effect of Scale: Smaller Models Struggle to Compress Parameter count shows a marked
effect on the degree of compression achievable by a model. Figure 3, shows pre-training trajectories
for the 1B, 7B, and 32B parameter models. The larger models both closely follow the hypothesized
Information Bottleneck trajectory, exhibiting phases of expansion and compression, ultimately ap-
proaching optimal compression. The 1B parameter model exhibits markedly different behaviour.
While it successfully completes the initial expansion phase – increasing output information I(Y ;Z)
– it fails to approach optimal compression. Instead, in the second phase the smaller model oscillates
while moving slowly away from the theoretical frontier (Figure 3 bottom-left). Correlations (Figure

7
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Figure 3: Smaller Models Struggle to Compress. (Top Left) Pre-training trajectory for three
different model sizes with the 7B and 32B models converging to lower complexity solutions than
1B. (Bottom) Zooming in on later pretraining for each model size the 1B model matches Phase 1
but struggles to achieve meaningful compression later on, oscillating for much of pre-training off
the frontier. (Top Right) Spearman correlations between training step and complexity show larger
models compress over the course of training with the 32B compressing most. Correlations between
step and the expressivity/complexity ratio show only larger models consistently approach the optimal
bound (this ratio increases closer to the bound). All results use backoff to the trigram level.

3 top right) between training step and complexity show larger models compress representations, with
the 1B model significantly expanding. Correlations between step and the ratio of expressivity over
complexity – which increases as models approach the bound – show only larger models consistently
approach the bound (as indicated by positive correlation coefficients). This suggests that for a given
level of data complexity, a certain parameter threshold may be necessary for models to achieve an
optimal compression – an observation in line with work on scaling laws (Kaplan et al., 2020).

Convergence Patterns Across Open-Weight Models In addition to looking at the OLMo2 family
of models, we compute complexity and expressivity estimates across a diverse array of open-weight
models (for tractability here we backoff to the token and bigram levels). A striking convergence pat-
tern emerges: across different model families, hyperparameters, and training methodologies, repre-
sentations ultimately converge to token and bigram informations clustered near the optimal bound on
compression (Figure 2, Right; with full model names in Appendix, Figures 5 and 6). This suggests
that training as a process of compression is not an artifact of a single LLM’s training trajectory, but
more fundamentally applies to to deep-learning models as a class, and to the data and the objectives
used to train them.

4.2 RELATING REPRESENTATION STRUCTURE TO PERFORMANCE

So far we have studied how information in an LLM is structured; we now consider how that structure
relates to downstream performance. Figure 4 shows correlations between representational measures

8
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Figure 4: Optimality of Compression and Preference Information Correlate with Performance
While complexity does not directly correlate with downstream performance as measured by accu-
racy on MMLU Pro (Left), the ratio of expressivity to complexity, which indicates distance from op-
timal compression, does (Middle). The ratio between preference information and model complexity
also correlates with downstream performance (Right). Expressivity and complexity are calculated
using token backoff in all three plots.

and performance on the MMLU Pro benchmark (Wang et al., 2024) for open weights models from
3 different families. Complexity alone proves not to be predictive of performance (r = −0.15, p =
0.649), however the ratio between expressivity and complexity is a significant predictor (r = 0.64,
p = 0.024). This ratio indicates how close a model is to optimal compression, since it approaches
1.0 as the model approaches the IB bound. Together, these results indicate that compression alone
is not a significant predictor of performance, but the optimality of that compression is.

While LLMs approach optimal compression for next sequence prediction over pre-training, a large
body of work also tries to improve their ability to follow instructions, and generate responses humans
prefer (e.g. Ouyang et al., 2022). We use preference data (Lambert et al., 2024) to compute mutual
information with preference. As shown in Figure 4, the ratio between a model’s complexity and
the amount of preference information it contains also proves a significant predictor of downstream
performance (r = 0.8, p = 0.002). This suggests that not only does the optimality of a model’s
compression matter, but exactly what information survives that compression does too. In Appendix
C we include results showing that post-training increases the amount of preference information
across different open weights models while minimally changing their complexity. This suggests
that pre-training is responsible for the broad compression learned by a model, while post-training
edits the information it contains; we leave a more complete assessment of how different phases of
training affect representational compression to future work.

5 CONCLUSION

The work presented here bridges the gap between theoretical accounts of learning and the practical
complexities of LLMs. We show that LLMs learn an optimal compression of the data on which
they are trained, with a wide array of open-weights models converging near the IB bound – with
the optimality of a model’s compression predicting downstream performance. Each compression is
different; we can account for the information that survives the compressive process, showing how
representations encode information about different levels of local context and human preferences.

The approach to interpretability we introduce here interprets a model as a whole – rather than fo-
cussing on a particular circuit, or attention head – because complex distributed systems are not best
understood in terms of their parts alone. Giving a holistic account of what it means to train an entire
model on the entire internet is a challenge, but we argue that LLMs are best understood as lossy
compression. In doing so, we place them in the context of a long history of work on representation
learning across the sciences.
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A OPEN-WEIGHTS MODELS, DETAILED VISUALS

Figure 5: The Token Information Plane for Open Weights Models Shown here is the full, labelled
token information plane for 23 different open-weights models. Overall while model lie at different
levels of complexity and expressivity they broadly approach the IB Bound on optimal compression.
The labels which are superimposed and so difficult to read are for the base and post-trained variants
of Qwen2.5 (7B &14B). The bigram information plane is shown on the following page.
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Figure 6: The Bigram Information Plane for Open Weights Models Shown here is the full,
labelled bigram information plane for 23 different open-weights models. Compared with the token
case above, here models lie even closer to the frontier. In part because many of the models are
essentially superimposed a legend is provided at right, rather than labels adjacent to each point.

B DATASETS, MODELS, AND COMPUTE

B.1 LICENSES FOR MODELS AND DATASETS

As noted in section 3, we use two datasets for estimation - Tulu (Lambert et al., 2024) and C4
(Raffel et al., 2020) both of which fall under the Open Data Commons Attribution License (ODC-
By) v1.0. Later we use MMLU Pro for behavioural evaluation (Wang et al., 2024) which falls under
the Apache License (Version 2.0).

We study a wide array of models, below is license information grouped by model family:

• OLMo: The code and model are released under Apache 2.0.

• Gemma: Released under the gemma license stated here:
https://ai.google.dev/gemma/terms

• Llama: Released under the llama license found here:
https://www.llama.com/llama3/license/

• Qwen: The code and model are released under Apache 2.0.
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Figure 7: Post-Training Increases Preference Information and Preference Information Corre-
lates with MMLU Pro. The vertical axis shows mutual information with human preference, before
and after post-training (indicated by shape). The horizontal axis shows mutual information with
input token.

• Aya/Command: Released under the Creative Commons Attribution Non Commercial 4.0

• Pythia: The code and model are released under Apache 2.0.

B.2 COMPUTE RESOURCE AND COMPLEXITY

The estimation procedure used here has low complexity for an entropy estimator, requiring only a
dot-product and softmax. The majority of compute expense comes from the model’s forward pass
required to compute the estimate. The complexity of this depends on the size of the model. In
experiments here estimates required encoding 10,000 samples from C4 and Tulu. This process takes
approximately 10, 40, or 70 minutes on either 2, 4, or 8 H100 GPUs respectively (number required
depending on model size). Given this we estimate the total number of GPU hours required for the
results in this paper at approximately 3,600 H100 hours.

C POST-TRAINING INCREASES PREFERENCE INFORMATION

While LLMs become optimally compressed for next sequence prediction over pre-training, the final
phase of the training pipeline often introduces other kinds of information. In the general case, post-
training is designed to improve a model’s ability to follow instructions and better align it with human
preferences; we look at how this changes the information content of a model, and how it affects the
representations from pre-training. Figure 7 (Left) shows preference information across two different
families of open weights models, Llama 3 and Gemma 2, which release a checkpoint at the end
of pre-training and one at the end of post-training. Post-trained models show higher degrees of
preference information than their pre- and mid-trained counterparts, with minimal change to token
information. This supports a framing of pre-training as imbuing the model with core semantic
information, which is later augmented with task-specific and preference information.

D ADDITIONAL MODEL TIMECOURSES

A major challenge in studying pre-training is the limited availability of checkpoints. While there
are a huge number of checkpoints available for final trained models, intermediate checkpoints over
the course of pre-training are relatively rare. We focus analysis in the main paper on the OLMo2
models as they offer comprehensive check pointing – and comparatively strong performance. Here
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Figure 8: Smol LM2 Timecourses

we look at two other families of models which make available some pre-training checkpoints. The
Smol LM2 models (Allal et al., 2025) released this year are models with 1.7B parameters or smaller
that achieve competitive performance. The 1.7B Smol model was trained on 11 Trillion tokens and
performs comparably to the 1B OLMo2 model which was trained on 4 Trillion Tokens. Broadly the
1.7B Smol model follows a similar training trajectory to the OLMo2 1B model having phases of
expansion and compression but failing to approach the bound like the OLMo2 7B and 32B models.
Pretraining timecourses for the Smol 1.7B model are shown in Figure 8 with token, bigram, and
trigram backoff.

The other family of models we analyse are the Pythia models (Biderman et al., 2023). Timecourses
for two Pythia models are shown in Figure 9. Included are analyses of the 1.4B and 6.9B models. In
terms of parametrisation these are roughly comparable to the 1B and 7B OLMo2 models analysed
in the main paper. However it’s worth noting that the methodology for training these models is
substantially different, and that their performance is substantially lower than the OLMo2 models,
and other more recent open-weights models analysed above. In terms of training, Pythia models
are intended for scientific analysis, as a result they use the same amount of data, batch size, and
number of training steps across model sizes. Perhaps most importantly these models are trained on
the Pile dataset (L. Gao et al., 2020). This contains roughly 299,892,736,000, by contrast the 1B
OLMo2 model is trained on 4,000,000,000,000 tokens - meaning the Pythia models see 7.5% of
that data. Accordingly the 1.4B Pythia model appears to achieve better compression later in training
than its OLMo counterpart. As discussed in the main paper there may be a relationship between data
complexity and the model complexity needed in order to achieve substantive compression of it. By
contrast the 6.9B Pythia model is still compressing representations late into pretraining; this would
appear to indicate it is under-trained.

E ENTROPY ESTIMATION

E.1 APPROXIMATING THE INPUT DISTRIBUTION

We estimate the mutual information between model inputs and outputs. In an auto-regressive
decoder-only LLM the input to a model is the preceding context up to the current token. We view
the input as n-grams of tokens where the input at timestep xt is an ngram of width t containing all
tokens x0...xt. Maintaining probability distributions for every possible context proves intractable
due to the combinatorial complexity of natural language. Additionally, ngrams greater than 3 tokens
become sparsely distributed in the data making reliable estimation of their probabilities a challenge.
As a result we condition estimates on ngrams of fixed-widths 1, 2, 3, 4 - referred to in the paper as
token, bigram, trigram, quadgram. This is related to Backoff (Katz, 1987) which reduces n-gram
size until the n-gram has non-zero probability in a corpus. Here though we do not interpolate dif-
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Figure 9: Pythia Model Timecourses

ferent n-gram widths, instead maintaining separate aggregate estimates for each width – in part to
be able to study how different levels of contextual information are represented in the model. Where
a given n-gram, like a quadgram, does not have non-zero probability in the data it is omitted from
overall quadgram mutual information estimate.

In practice this means estimates for smaller n-gram widths are more reliable - a classical issue in lan-
guage modelling (see Jurafsky & Martin, 2000, p.32). Token, bigram, and trigram estimates can be
estimated reliably from a relatively small sample of data. We judge this by looking at how estimates
change as a function of the number of samples during the estimation procedure, by 5,000 samples
these estimates relaibly begin to converge. Quadgrams, due to their sparsity, tend to have less robust
estimates - additionally the number of labels grows quadratically with each additional ngram width
making quadgrams challenging to estimate for larger models with larger vocabularies. As a result
our broad comparison of open-weights models uses token and bigram estimates. Additionally the
pre-training model size analysis here focusses on trigram estimates (figure 3) as this widest context
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Figure 10: Illustration of conditional probability estimates. An example sentence is provided,
assuming word-level tokenization for simplicity. At left are the indices for the input and output
tokens when the current input word is wherefore. At right is shown the sub-setting procedure for
estimating conditional probabilities. This illustrates how bigram estimates do not compute entropy
of two token embeddings, rather the embedding for the current token embedding conditioned on
preceding context.

that still reflects a reliable estimate. The analysis of how context is represented over pretraining
(figure 2) includes quadgram estimates for reference.

E.2 APPROXIMATING THE OUTPUT DISTRIBUTION

While during inference models predict the next token given preceding context, this is distinct from
how they are trained. During training of an auto-regressive decoder-only LLM causal masking
means a token can only attend to preceding context, not trailing context. However transformer
decoders are trained using teacher forcing, where predictions are generated for the entire sequence
in parallel by assuming predictions are made correctly. This is instead of having training operate on
one token at a time with a separate forward pass for each - which is how predictions are generated
during inference. The result of this is that for an embedding et at timestep t, following embeddings
et+1 can attend to et. This means embeddings get gradient information from the trailing context.
Put another way, the prediction for output yt+1 is written in terms of et. As a result the gradient
information from the next token(s) in a sequence ∇Lθ(yt+1) affect the embedding at the current
timestep.

Given that our analysis computes embedding mutual informations over training with respect to a
model’s input and outputs this fact has implications for us. It means that the output for et is not
just yt+1 but all following output tokens yt+1...yn where n is the sequence length. This is because
et receives gradient information from the loss with respect to predicting all following tokens in a
sequence. As a result we consider X to be the entire preceding context in the input (as mentioned
above), and Y to be the entire trailing context after the current point in the sequence. This means
when we compute mutual informations for different n-gram widths we match the width for X and
Y - conditioning the estimates on the same width of preceding and trailing context respectively.

E.3 ESTIMATING MUTUAL INFORMATIONS

To compute mutual informations between the input X and representations Z, we need two quanti-
ties: the entropy of representations H(Z) and the conditional entropy given the input H(Z|X). To
compute H(Z) we use the quantisation procure described in section 3.1 applied to all token embed-
dings which gives Ẑ - by summing over the each embedding and renormalising we get a categorical
distribution P (Z) that describes the embedding space. To get a conditional estimate P (Z|X) we
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simply take Ẑ and compute a subset, containing the embeddings corresponding to the input X , Ẑ|X .
Summing and renormalising gives us the distribution P (Ẑ|X).

This brings us to an important distinction, our analysis discusses mutual informations with respect
to tokens, bigrams, trigrams, and quadgrams. These are not computed over different widths of
embeddings, but rather over single token embeddings conditioned on the preceding context. In the
same way P (Ẑ|X) is computed as a subset of P (Z), as we condition on further context we can
subset the embeddings further. Figure 10 gives a high-level illustration of this process. It means that
Z|token is a subset of Z, and Z|bigram is a subset of Z|token, Z|trigram is a subset of Z|bigram etc.
This means the terms token, or bigram mutual informations refer to the width of the conditioning
context, not the width of the embeddings over which entropy is computed.

E.4 ON THE USE OF SHANNON ENTROPY

In this paper we compute the entropy of continuous latent variables. As a result it is natural to ask
why we - in line with previous work (Sajjadi et al., 2018; Shwartz-Ziv & Tishby, 2017; Voita et
al., 2019) - opt instead to discretise representations and compute their Shannon entropy (Shannon,
1948). There are two major reasons for this; first, differential entropy is not the true continuous
analogue of Shannon Entropy (Jaynes, 1957). This is shown by the fact that differential entropy
D(X)is unbounded −∞ ≤ D(X) ≤ ∞, and variant under linear transformations. This is the main
motivator for an information theoretic analysis to discretise and use Shannon entropy directly. A
secondary consideration is that we don’t know how embeddings are distributed, so in order to get a
differential entropy estimate we would first need to fit a distribution to the data. At scale this fitting
step can be expensive, and introduce topographic assumptions. While discretisation is imperfect it
enables the use of Shannon entropy, and makes minimal topographic assumptions.

E.5 SCALABILITY OF PRIOR WORK

Notably Shwartz-Ziv and Tishby (2017) perform an empirical information theoretic analysis of
neural-networks trained on MNIST. To do so they perform dimension-wise discretisation of model
embeddings. This turns a 16-dimensional vector into a 16 character string. They then convert this to
a categorical distribution over all possible strings. This gives a single categorical distribution that can
describe representations at a particular layer in a network. This approach to discretisation works well
on small problems - they study feed-forward networks trained on MNIST. However the dimension-
wise discretisation requires taking a hidden representation with dimensions batch × hidden and
transforming it to batch × hidden × n bins. If using 50 bins, in practice this means using 50 times
the memory of not discretising. For the OLMo2 32B model used in this paper which has a hidden
dimension of 5120 and 64 layers, and where we have a context window of 512 tokens, this would
require holding in memory a tensor of dimensions batch × 512× 5120× 44× n bins. The memory
use of this approach makes it intractable to apply to contemporary models and the problems studied
here.

Voita et al. (2019) studied the transformer base model which has only 6 layers with a hidden di-
mension of 512. Despite this they note the approach from Shwartz-Ziv and Tishby (2017) was not
tractable to apply to the model. They opt instead for quantising representations via clustering, based
on related work from (Sajjadi et al., 2018). This method runs a clustering algorithm (Voita et al.
(2019) use mini-batch k-means), then treats each cluster as an event in a categorical distribution -
where density is assigned proportional to cluster membership. While this method provides robust
entropy estimates, and dramatically less memory usage than the approach from Shwartz-Ziv and
Tishby (2017) it still has relatively high computational complexity. It requires running a clustering
algorithm to convergence, before performing quantisation prohibiting its use in an online setting -
you need the cluster centroids before you can assign embeddings to them. Again thinking of the
OLMo2 32B model used here, this would require running a clustering algorithm on 5120 dimen-
sional spaces, at all 44 layers separately, for each of the 150 pre-training checkpoints. This would
provide the ‘bins’ for the quantisation, then embeddings would need to be assigned to bins, requiring
a second forward pass.

In practice an information-theoretic analysis of an LLM requires an entropy estimation method that
is memory efficient, fast to compute, and can be applied in an online setting - requiring a single
forward pass and no caching of the embeddings. The only estimator we’re aware of that meets these
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criteria is the soft-entropy estimator (Conklin, 2025). Here the quantisation requires only a cosine-
similarity and a softmax making it fast and memory efficient. Additionally the normalisation step
means ‘bins’ can be computed once at the start of the analysis, rather than needing a pass through
the data to fit clusters or fit the support of the model’s distribution. Conklin (2025) notes that the use
of cosine similarities means this method considers only angular information in the representation
space. While euclidean distances can be used instead, this would require first estimating the support
of the distribution to fit the ‘bins’ making online estimation challenging. However use of cosine-
based methods is standard practice in NLP (T. Gao et al., 2021; Reimers & Gurevych, 2019; Zhang
et al., 2020), with some work suggesting vector norms in LLMs predominantly encode frequency
information (e.g. Oyama et al., 2023).

E.6 THE INFORMATION BOTTLENECK BOUND

The Information Bottleneck bound is the curve traced by varying the trade-off parameter β in:

Fβ [p(Z|X)] = I(X;Z)− βI(Y ;Z) (7)

The curve this traces is where representations are optimally compressed. Along this bound p(Z|X)
is an optimal encoder, from inputs to representations, preserving only the information in X relevant
to Y . For a given dataset this optimal encoder can be found numerically via a version of the Blaut-
Arimoto (Arimoto, 1972; Blahut, 1972) method for computing channel capacity. Introduced in
Tishby et al. (2000), the information bottleneck method for determining channel capacity relies on
three equations:

pβ(z|x) =
pβ(z)

Zβ(x)
exp

(
−βD[p(y|x)||pβ(y|Z)]

)
(8)

pβ(z) =
∑
x∈X

p(x)pβ(z|x) (9)

pβ(y|z) =
∑
x∈X

pβ(x|z)p(y|x) (10)

These equations are satisfied self-consistently at the bound. As these three equations rely on each
other one can learn an optimal encoder by starting with a randomly initialised one. Then iteratively
computing each of these equations in turn.

In the general case the shape of this bound follows a linear relationship, until all mutual information
between x and y is captured. At this point the curve saturates — additional complexity doesn’t
result in additional accuracy, as there’s no more predictive information in x. This means numerical
computational bound is largely important for computing where it saturates.

However numerical computation of the bound in our setting proves intractable. Here the optimal
encoder p(z|x) needs to map all of natural language to representations that optimally predict the
next token. This is an exceedingly challenging problem for an iterative numerical optimizer – it’s a
problem that ordinarily requires a large language model. In experiments we are able to compute a
bound for tokenizers up to 50,000 tokens, however past this point convergence begins to fail. In our
setting this process takes a tokenizer and 300,000 sentences from c4 to get a maximum likelihood
estimate of P (x), P (y), P (y|x) on data representative of a model’s training data. We can then
iteratively compute P (z|x) until convergence. In our experiments this iterative procedure converges
to the expected saturation point - where I(Z;Y ) = I(X;Y ).

Given that we would like to have a bound for problems where numerical computation of it proves
intractable, we leverage this pattern by assuming the bound follows a linear relationship until the sat-
uration point where I(Z;Y ) = I(X;Y ). The largest tokenizer for which we can tractably compute
this quantity has a normalised I(X;Y ) of 0.7 (where 1.0 is the maximum possible value). Across all
open weights models the highest token complexity converged to is 0.15, well below the saturation
point. This is in line with results from (Shwartz-Ziv & Tishby, 2017), which shows FFNs on MNIST
only converge near the saturation point when over-fitting.
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