
Inverse Q-Learning Done Right:
Offline Imitation Learning in Qπ-Realizable MDPs

Antoine Moulin
Universitat Pompeu Fabra

antoine.moulin@upf.edu

Gergely Neu
Universitat Pompeu Fabra
gergely.neu@gmail.com

Luca Viano
EPFL

luca.viano@epfl.ch

Abstract

We study the problem of offline imitation learning in Markov decision processes
(MDPs), where the goal is to learn a well-performing policy given a dataset of
state-action pairs generated by an expert policy. Complementing a recent line of
work on this topic that assumes the expert belongs to a tractable class of known
policies, we approach this problem from a new angle and leverage a different type
of structural assumption about the environment. Specifically, for the class of linear
Qπ-realizable MDPs, we introduce a new algorithm called saddle-point offline
imitation learning (SPOIL), which is guaranteed to match the performance of any
expert up to an additive error ε with access to O(ε−2) samples. Moreover, we
extend this result to possibly nonlinear Qπ-realizable MDPs at the cost of a worse
sample complexity of order O(ε−4). Finally, our analysis suggests a new loss
function for training critic networks from expert data in deep imitation learning.
Empirical evaluations on standard benchmarks demonstrate that the neural net
implementation of SPOIL is superior to behavior cloning and competitive with
state-of-the-art algorithms.

1 Introduction

In imitation learning (IL), a learner observes a finite dataset of state-action pairs generated by
an expert policy interacting with an environment modeled as a Markov Decision Process (MDP;
Puterman, 2014). The learner’s objective is to find a policy that performs nearly as well as the
expert policy with respect to an unknown ground-truth reward function. This work focuses on offline
imitation learning, where the learner cannot collect new state-action sequences from the MDP used
for generating the expert’s data. In this context, we propose new algorithms that operate under a
previously under-explored set of structural assumptions on the learning environment.

Recent years have seen a quite significant surge of interest in the problem of imitation learning, not
unlikely due to its relevance to next-token prediction in generative language models (Rajaraman et al.,
2020; Foster et al., 2024; Rohatgi et al., 2025). A common feature of these recent works is that they
all make the assumption that the expert data has been generated by a fixed policy that belongs to a
known, finite class of policies and they return policies within the same class. Such an assumption is
often referred to as expert realizability and can be formally stated as follows.
Assumption (Expert realizability). The learner has access to a function class ΠE that contains the
unknown expert policy πE, that is, such that πE ∈ ΠE.

Several clean and elegant results were proved under this assumption, in particular showing the
existence of conceptually simple algorithms achieving tight upper bounds on the sample complexity
of finding good solutions, and lower bounds demonstrating the near-optimality of these algorithms
under said assumptions. These bounds typically depend on a measure of complexity of the policy class
(as measured by, say, its covering number). However, further scrutiny reveals that these assumptions

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

may not always be verified or even reasonable: in many cases of significant practical interest, there
is no reason to believe that the expert policy may be easily modeled within a simple and tractable
policy class. For instance, in the popular use case of learning from human feedback, it is arguably
quite unlikely that data would be generated in a consistent, systematically predictable way that can be
modeled as a simple policy mapping states to actions. Indeed, human behavior can be nonstationary,
irrational, or even be influenced by unobserved confounders not captured by the state representation.
We address these limitations by exploring an alternative framework for imitation learning, which
reasons about the structure of the value functions of the policies used by the learning algorithm itself,
as opposed to making assumptions about the structure of the policy followed by the expert.

Furthermore, the sample complexity guarantees in Rajaraman et al. (2020); Foster et al. (2024);
Rohatgi et al. (2025) scale with log |ΠE| (assuming ΠE is finite), meaning large policy classes,
potentially necessary to realize the expert, lead to deteriorated guarantees. Additionally, the con-
sequences of misspecification, i.e., πE /∈ ΠE, are often severe. For instance, Rohatgi et al. (2025)
demonstrated that if the policy class ΠE is misspecified, then it is computationally intractable to
learn arg minπ∈ΠE D2

H(Pπ,PπE), the best in-class policy under the Hellinger distance, in an offline
manner. However, this theoretical intractability under misspecification seems at odds with practical
scenarios, such as training large language models via next-token prediction (a form of offline IL),
which perform well despite the expert policy (derived from human-written text) likely not belonging
to any reasonable policy class ΠE.

To address this apparent discrepancy, we initiate the study of offline IL by leveraging structural
assumptions about the MDP rather than relying on expert realizability. For example, in language
tasks, structural assumptions might involve deterministic, tree-shaped MDPs. In robotics, one might
assume that next states are determined by compact feature representations of current state-action
pairs. More generally, we consider MDPs where the action-value functions of a subset of policies can
be written as a linear combination of features known to the learner. Such MDPs are referred to as
linear Qπ-realizable MDPs, a class that has been central to recent works in reinforcement learning
theory (Weisz et al., 2023; Mhammedi, 2025; Tkachuk et al., 2024). Our primary contribution is
to show that, for this class of MDPs, it is possible to develop algorithms that guarantee to output a
policy performing arbitrarily close to the expert policy without imposing expert realizability.

The algorithm is based on a simple primal-dual formulation of the problem of imitation learning,
which characterizes the solution as the saddle-point of a convex-concave objective function. The
primal variables correspond to policies in the MDP and the dual variables to Q-functions, which
motivates a very simple saddle-point optimization algorithm for imitation learning: in a sequence
of rounds, the primal player (the actor) picks a policy and the dual player (the critic) picks a Q-
function, respectively trying to minimize and maximize the objective. We accordingly call the
method SPOIL, standing for Saddle-Point Offline Imitation Learning. In the case of linear function
approximation, both update steps of SPOIL can be performed very efficiently (in time linear in the
feature dimension). For general function approximation, the Q-function updates can be performed by
solving a simple linear optimization problem, which is straightforward to solve in practical scenarios.
When instantiated with neural networks, empirical experiments show its performance is competitive
with (and in some cases superior to, e.g., behavior cloning) state-of-the-art offline imitation learning
algorithms. Interestingly, our algorithm shares a good degree of similarity with the state-of-the-art
method of Garg et al. (2021) called IQ-Learn, which is also derived from a primal-dual perspective.
We discuss these similarities in depth and argue that SPOIL provides a superior solution to the
IQ-Learn objective (at least inasmuch as it is more amenable to theoretical analysis).

To the best of our knowledge, this is the first result showing that leveraging structural assumptions
of the underlying MDP can guarantee matching the expert performance as the number of expert
transitions goes to infinity without imposing any form of expert realizability assumption. For clarity,
we compare our contribution with existing results in Table 1. We denoted Nϵ(Q, ∥·∥∞) the ϵ-covering
number of the function class Q (see Theorem 2), and τE the number of trajectories needed to make
the difference in total expected return between the expert and the output policy smaller than ε.

Notation. We use ∆(Z) to denote the simplex over the countable set Z . Given two proba-
bility distributions p, q ∈ ∆(Z), we denote the Kullback-Leibler divergence as DKL(p, q) =∑

z∈Z p(z) log
p(z)
q(z) . We denote ⟨·, ·⟩ the inner product between two finite-dimensional vectors, and

∥·∥ the Euclidean norm. We denote U([K]) the uniform distribution over the set [K] = {1, . . . ,K}.
The Euclidean ball of radius R > 0 centered at the origin is denoted as B(R).

2

Table 1: Comparison with related algorithms. We denoted the class of deterministic linear experts as
ΠE

det, lin =
{
π : ∃θ ∈ B(Bθ), π(·) = arg maxa∈A ⟨θ, φ(·, a)⟩

}
, and an arbitrary policy class as ΠE.

We also define W = maxπ∈ΠE,h∈[H]

∥∥∥πE,h
πh

∥∥∥
∞

, εmiss = minπ∈ΠE D2
H(Pπ,PπE), and ε′ = Õ

(
ε3
)
.

Algorithm Structural assumptions Avoids expert realizability Infinite horizon Expert class Expert Traj. (τE)

BC with log loss − ✗ ✗ ΠE O
(

H2 log|ΠE|
ε2

)
(Foster et al., 2024)

BC with 0 -1 loss − ✗ ✗ ΠE
det, lin Õ

(
H2d
ε

)
(Rajaraman et al., 2021)

BoostedLogLossBC − ✓ with a misspecification ✗ ΠE O
(

H2 log|ΠE|
ε2

)
(Rohatgi et al., 2025) error of Õ(H log(W)εmiss)

Projection Linear reward ✓ ✓ − Õ
(

d
(1−γ)2ε2

)
(Abbeel and Ng, 2004) Known transitions

MWAL Linear reward ✓ ✓ − Õ
(

log(d)

(1−γ)2ε2

)
(Syed and Schapire, 2007) Known transitions

SPOIL Linear Qπ-realizability ✓ ✓ − Õ
(

d
(1−γ)4ε2

)
(Theorem 1)

SPOIL Qπ-realizability ✓ ✓ − Õ
(

logNε′(Q,∥·∥∞)
(1−γ)8ε4

)
(Theorem 2)

2 Preliminaries

We begin by introducing the problem of offline imitation learning in discounted MDPs together with
the assumptions we will consider throughout the paper.

Markov decision processes. We formalize the learning problem in a discounted MDP M =
(X ,A, r, P, γ, ν0), where X is the state space which we assume finite but too large to be enumerated,
A is a finite action space with A actions, r : X × A → [0, 1] is the unknown reward function,
P : X×A → ∆(X) is the unknown transition kernel, γ ∈ [0, 1) is the discount factor, and ν0 ∈ ∆(X)
is the initial state distribution. For any state-action-state triplet (x, a, x′), P (x′ |x, a) denotes the
probability of landing in state x′ after taking action a in state x. A stationary policy (or simply policy)
π : X → ∆(A) is a mapping from states to distributions over actions. The interaction of a policy π
with the environment M unfolds as follows: an initial stateX0 ∼ ν0 is drawn, and for each subsequent
time step h ≥ 0, an action Ah ∼ π(· |Xh) is taken, a reward r(Xh, Ah) is received, and the agent
transitions to a new state Xh+1 ∼ P (· |Xh, Ah). We denote Pπ the resulting probability distribution
over trajectories, and Eπ the corresponding expectation operator. For any state x ∈ X , we define the
state value function of the policy π as V π(x) = Eπ

[∑∞
h=0 γ

hr(Xh, Ah)
∣∣X0 = x

]
. Analogously,

we define the state-action value function as Qπ(x, a) = Eπ
[∑∞

h=0 γ
hr(Xh, Ah)

∣∣X0 = x,A0 = a
]
.

The value functions are tied together via the Bellman equations

V π(x) =
∑
a∈A

π(a |x)Qπ(x, a) , and Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ |x, a)V π(x′) .

Additionally, we will sometimes use the notationQ(x, π) to denote
∑

a π(a |x)Q(x, a) for any policy
π and any function Q : X ×A → R. Note that this notation allows us to write V π(x) = Qπ(x, π).
Any policy π induces an occupancy measure µπ ∈ ∆(X ×A) over state-action pairs, defined as the
discounted total expected times that each state-action pair is visited by policy π. The same quantity
defined for states is called the state-occupancy measure and is denoted as νπ ∈ ∆(X). For any
state-action pair (x, a) ∈ X ×A, they are respectively defined as

νπ(x) = (1− γ)

∞∑
h=0

γhPπ[Xh = x] , and µπ(x, a) = (1− γ)

∞∑
h=0

γhPπ[Xh = x,Ah = a] ,

and they are related to each other by the flow conditions (sometimes called “Bellman flow conditions”)

νπ(x) = γ
∑
x′,a′

P (x |x′, a′)µπ(x′, a′) + (1− γ)ν0(x) . (1)

3

Notably, these definitions and the flow conditions remain valid for general history-dependent policies
π that may take the entire history of state-action pairs (X1, A1, . . . , Xh) into account when selecting
each action Ah. Finally, we let ρπ = (1 − γ)Eπ

[∑∞
h=0 γ

hr(Xh, Ah)
]

stand for the normalized
expected return of a (potentially nonstationary) policy π. The following useful result, commonly
called the performance-difference lemma (Kakade and Langford 2002, see also Eq. 7.14 in Howard
1960), gives a useful expression for the performance gap between two policies.

Lemma 1. Let π be a stationary policy and π′ be any policy. Then,

ρπ
′ − ρπ = E(X,A)∼µπ′ [Qπ(X,A)− V π(X)] .

Note that this lemma is generally stated for stationary policies, but we will find it useful later to use it
with general history-dependent policies. We provide the straightforward proof in Appendix B.1.

Imitation Learning. We consider the problem of offline imitation learning. Given a dataset
DπE =

{
Xi

E , A
i
E

}τE

i=1
of state-action pairs sampled from an expert policy’s occupancy measure µπE ,

our objective is to design an algorithm, Alg, that produces a policy πout satisfying

E
[
ρπE − ρπ

out
]
≤ ε . (2)

The algorithm is not allowed any further interaction with the expert policy or the MDP M and only
has to work with the record of state-action pairs contained in the data set. As stated in the introduction,
we aim to achieve this without imposing expert realizability. Instead, we consider the following
structural assumption on the environment.

Assumption 1 (LinearQπ-realizability). LetBθ, Bφ > 0. Given a known mapping φ : X ×A → Rd,
consider the policy class Πlin defined as follows

Πlin =

π ∈ ∆(A)
X

: ∃(θk)k∈[K] ⊂ B(Bθ), π(a |x) =
exp
(
η
∑K

k=1 ⟨φ(x, a), θk⟩
)

∑
b∈A exp

(
η
∑K

k=1 ⟨φ(x, b), θk⟩
)
 .

For any policy π ∈ Πlin, there exists a vector θπ ∈ B(Bθ) such that for any state-
action pair (x, a), Qπ(x, a) = ⟨φ(x, a), θπ⟩. Besides, assume supx,a ∥φ(x, a)∥ ≤ Bφ, and
supx,a supθ∈B(Bθ)

⟨φ(x, a), θ⟩ ≤ 1
1−γ .

Notice that we need to assume only linearity of the state action value function for the class of softmax
linear policies Πlin. In contrast, prior works on linear Qπ-realizable MDPs (Weisz et al., 2023;
Mhammedi, 2025) require the above assumption to hold for all Markov policies. Moreover, we
highlight that we potentially have that πE /∈ Πlin, therefore we do not require realizability of the
expert state action value function.

We will also consider the general function approximation setting, where the action value function of
any policy π can be represented by some function class Q ⊂ RX×A.

Assumption 2 (Qπ-realizability). An MDP is said Qπ-realizable if there exists a function class
Q ⊂ RX×A such that for any policy π ∈ ΠQ defined as

ΠQ =

π ∈ ∆(A)
X

: ∃(Qk)k∈[K] ⊂ Q, π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
)
 ,

it holds that Qπ ∈ Q, and for any Q ∈ Q, ∥Q∥∞ ≤ 1
1−γ .

For this assumption to make sense, we typically require the function class Q to have bounded capacity.
We quantify this via covering numbers, defined as follows.

Definition 1 (Covering number). Let (M,d) be a metric space, K be a subset of M , and ϵ > 0. A
set Cϵ(K, d) is an ϵ-covering of K if for any x ∈ K, there exists y ∈ Cϵ(K, d) such that d(x, y) ≤ ϵ.
The covering number of K, Nϵ(K, d), is the minimum cardinality of any such covering of K.

4

3 Primal-dual offline imitation learning

In order to introduce our main algorithmic idea, we define the following objective function:

L(π;Q) = E(X,A)∼µπE [Q(X,A)−Q(X,π)] ,

where we denotedQ(X,π) = EA′∼π(·|X)[Q(X,A′)]. Our main observation is that the main objective
function we consider can be rewritten in terms of this function as follows:

ρπE − ρπ = L(π;Qπ) ≤ supQ∈Q L(π;Q).

This suggests a good policy πout may be found by solving the saddle-point optimization
problem minπ supQ∈Q L(π;Q). Indeed, if one is able to produce a policy πout satisfying
supQ∈Q L(πout;Q) ≤ ε, then the above inequality implies that the suboptimality of πout as com-
pared to πE will also be at most ε.

Inspired by this observation, we set out to design an incremental primal-dual optimization algorithm
to approximate the saddle point of the function L. In each iteration k = 1, 2, . . . ,K, the algorithm
performs two updates: a primal update that corresponds to policy updates aiming to minimize L, and
a dual update that computes action-value function estimates and aims to maximize L. Following a
common terminology in reinforcement learning, we will sometimes refer to the primal updates as
actor updates and the dual updates as critic updates.

In order to turn these insights into a practical algorithm, we define the following empirical estimate
of the objective function L:

L̂(π;Q) =
1

τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−Q

(
Xi

E , π
))
.

For a fixed Q and π, this is clearly an unbiased estimator of L. In line with the derivations above, we
choose our critic and actor updates respectively as

Qk ∈ arg max
Q∈Q

L̂(πk;Q), and πk+1(a |x) =
πk(a |x)eηQk(x,a)∑

a′∈A πk(a
′ |x)eηQk(x,a′)

,

where η > 0 is a learning-rate (or stepsize) parameter that modulates the strength of the policy
updates. After performing K updates, the algorithm chooses a random index I uniformly on the
integers in [[1,K]], and returns πout = πI . We refer to this algorithm as Saddle-Point Offline Imitation
Learning (SPOIL). This algorithm design is justified by the following simple error decomposition
that lies at the heart of our main results.

Proposition 1. Let ∆(π) = supQ∈Q

∣∣∣L(π;Q)− L̂(π;Q)
∣∣∣. The output of SPOIL satisfies

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] .

Proof. The proof simply follows by noticing

E
[
ρπE − ρπ

out
]
=

1

K

K∑
k=1

E[L(πk;Qπk)] ≤ 1

K

K∑
k=1

E
[
L̂(πk;Qπk)

]
+

1

K

K∑
k=1

E[∆(πk)]

≤ 1

K

K∑
k=1

E
[
L̂(πk;Qk)

]
+

1

K

K∑
k=1

E[∆(πk)] ≤
1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] ,

where we have used the definitions of ∆ and Qk in the first and second lines, respectively.

The first term in this decomposition corresponds to the regret of the policy player π against the
comparator strategy πE and can be controlled with probability 1 via standard tools of online learning
(as found in the excellent books of Cesa-Bianchi and Lugosi 2006 and Orabona 2023). The second
term measures the estimation error of the objective function L uniformly over the space of action-
value functions Q and along the policies played by the algorithm, and can be controlled with high

5

probability via standard concentration arguments. Altogether, the proposition suggests that SPOIL
will return a good policy if these estimation errors can be bounded reasonably—a fact we will
formally show in the next section.

Before stating our performance guarantees for the concrete settings we consider in this paper, we
pause to point out a peculiar connection between the algorithm described above and the inverse
Q-learning (IQ-Learn) algorithm of Garg et al. (2021). While motivated using completely different
arguments, the saddle-point objective function optimized by IQ-Learn is nearly identical to our
function L: after removing entropy-regularization and setting their reward regularizer ψ to zero, one
can verify using the flow constraint (Eq. 1) that their function J is identical to our L. Ultimately,
Garg et al. (2021) draw different conclusions from this saddle-point formulation, and propose to solve
it by computing πQ = arg minπ J (Q) and optimize the dual function g(Q) = minπ L(π;Q). This
function, however, can be highly nonsmooth and difficult to optimize, which is why IQ-Learn needs
to heavily rely on regularization both in π and Q. In contrast, our algorithm can be seen as trying to
optimize the primal function f(π) = maxQ L(π;Q) in terms of the policy π, which can be done in a
stable way by incremental policy updates. Additionally, as Proposition 1 clearly reveals, optimizing
the primal objective allows us to directly reason about the performance of the output policy. In
contrast, we do not see a clear way to do this for the dual objective optimized by IQ-Learn.

Furthermore, we also note that SPOIL shares similarities with the algorithm AdVIL proposed by
Swamy et al. (2021). Specifically, both SPOIL and AdVIL consider the same objective L but the two
methods differ in their proposed algorithmic solutions and analytical approaches. Notably, Swamy
et al. (2021) employed simultaneous gradient descent-ascent updates that made little use of the
specific problem structure, whereas we consider an asymmetric scheme where the policy player uses
mirror descent and the Q-player plays the best response. Therefore, our approach is more akin to
minimizing the function π 7→ maxQ∈Q L(π,Q) rather than using a primal-dual scheme. This is an
important difference since Proposition 1 makes evident that the best response update of the Q player
is crucial for our analysis.

In what follows, we instantiate SPOIL in two settings of particular interest, depending on the Q-
function class being used. We first provide a set of results for linear function approximation (where the
algorithm is easy to implement and analyze) and for general function classes (where implementation
and analysis are both less straightforward). We also discuss the convex case in Appendix B.8.

3.1 SPOIL for linear function approximation

We first provide a set of guarantees under the assumption that the function class is linear in some
known features that realize the action-value functions of all softmax linear policies π as linear
combinations (see Assumption 1). In this setting, the actor and critic updates both simplify. For
the actor, notice that the policy update can be rewritten as πk(a |x) ∝ eη

∑k−1
i=1 Qi(x,a), which only

requires storing
∑k−1

i=1 Qi in memory. For linear function approximation, this means that it suffices
to maintain a single d-dimensional vector θ̄k−1 =

∑k−1
i=1 θi in memory and update it incrementally

after each critic update. As for the critic update itself, notice that the objective function L and its
empirical counterpart L̂ can be rewritten in terms of the gap between the feature-expectation vectors

gk = E(X,A)∼µπE [φ(X,A)− φ(X,πk)], and ĝk =
1

τE

τE∑
i=1

(
φ
(
Xi

E , A
i
E

)
− φ

(
Xi

E , πk
))
.

When considering linear functions Qθ : (x, a) 7→ ⟨φ(x, a), θ⟩, the objective can be written as

L(πk;Qθ) = ⟨θ, gk⟩ , and L̂(πk;Qθ) = ⟨θ, ĝk⟩ ,
and the critic update can be simply written as θk = arg maxθ∈B(Bθ)

⟨θ, ĝk⟩, which is trivial to
compute. All in all, both actor and critic updates can be performed efficiently while only working in
a d-dimensional Euclidean space. The following theorem provides our main result for SPOIL.

Theorem 1. Let Assumption 1 hold. Run Algorithm 1 for K = 2 logA
(1−γ)2ε2

iterations, with a learning

rate η = (1− γ)
√

2 logA/K, and τE = O
(

d
(1−γ)2ε2

log
(

BθBφA
(1−γ)ε

))
samples collected by any

expert policy πE. Then, the output satisfies E
[
ρπE − ρπ

out]
= O(ε).

6

Algorithm 1 SPOIL with linear FA
Input: Number of expert trajectories τE, learning
rate η, number of iterations K.
Initialize: θ0 = 0, uniform policy π0.
For k = 1, 2, . . . ,K:
1. πk(a |x) ∝ πk−1(a |x)eη⟨φ(x,a),θk−1⟩.

2. ĝk = τ−1
E

∑τE
i=1

(
φ
(
Xi

E , A
i
E

)
− φ

(
Xi

E , πk
))

.

3. θk = arg max
θ:∥θ∥≤Bθ

⟨θ, ĝk⟩ =
Bθ

∥ĝk∥
ĝk.

Output: πout = πI , where I ∼ U([K]).

Algorithm 2 SPOIL with general FA
Input: Number of expert trajectories τE, learning
rate η, number of iterations K.
Initialize: Q0 = 0, uniform policy π0.
For k = 1, 2, . . . ,K:
1. πk(a |x) ∝ πk−1(a |x)eηQk−1(x,a).

2. Qk ∈ arg max
Q∈Q

L̂(πk, Q).

Output: πout = πI , where I ∼ U([K]).

The proof is in Appendix B.5. It is important to highlight that no assumptions are made concerning
the expert policy. In particular, we do not require knowledge of a class ΠE realizing the expert
policy and as a consequence the bound on τE does not scale at all with a complexity measure of
ΠE. This is in stark contrast with the theoretical guarantees for behavioural cloning (e.g., Agarwal
et al., 2022, Chapter 15, and Foster et al., 2024) which show bounds on the expert samples scaling
with log |ΠE| (or the log covering number for continuous classes). It follows that no matter how
complex the expert policy is, SPOIL suffers only the complexity of the environment (i.e., the feature
dimensionality d). Before moving to the next section, we emphasize that for consistency with the
literature, Table 1 reports the number of expert trajectories required to guarantee that the difference
between unnormalized returns, (1− γ)

−1E
[
ρπE − ρπ

out]
, is bounded by O(ε).

3.2 SPOIL for general function approximation

For more complex Qπ-realizable MDPs, we analyze the version of SPOIL given in Algorithm 2.
Notice that the updates can no longer use the linear structure of the value functions, and thus the
critic update cannot be computed in closed form. Nevertheless, the algorithm remains well-defined,
and satisfies the following performance guarantee.

Theorem 2. Let Assumption 2 hold. Run Algorithm 2 for K = 2 logA
(1−γ)2ε2

iterations, with a learning

rate η = (1− γ)
√
2 logA/K and τE = O

(
logA

(1−γ)4ε4
log
(Nε′(Q,∥·∥∞)

ε(1−γ)

))
samples collected by any

expert πE, where ε′ =
(
8
√
2K3/2A logA

)−1
. Then, the output satisfies E

[
ρπE − ρπ

out]
= O(ε).

There are two important remarks for the nonlinear extension. First, the maximization of L̂(πk;Q)
with respect toQ is no longer available in closed form and it might not even be a concave optimization
problem depending on the choice of the function class Q. Therefore, computational efficiency cannot
be ensured. Nevertheless, the form of the objective function remains very simple in terms of Q, and
is arguably easier to optimize than other popular objective functions that are routinely optimized
within deep RL with good empirical success (e.g., the objective functions appearing in Mnih et al.,
2015) and deep IL (Garg et al., 2021). Secondly, the expert sample complexity bound degrades from
O
(
ε−2
)

achieved in the linear case to O
(
ε−4
)

in the nonlinear case due to the higher complexity of
the policies produced by the algorithm (which results in a larger covering number of the policy class
as highlighted in the proof sketch included in the next section).

4 Analysis

In this section we outline the proof of our two main results. Both proofs are based on two key steps
which are self-evident from Proposition 1. The first one consists of a regret analysis to show that∑K

k=1 L(πk;Qk) is bounded sublinearly in K. At a high level, the proof makes use of a classic
technique of decomposing the “global” regret into the average of “local” regrets in each MDP state,
first proposed by Even-Dar et al. (2004, 2009) and used in numerous other works (e.g., Abbasi-
Yadkori et al., 2019; Geist et al., 2019; Lan, 2023; Moulin and Neu, 2023). In proving this result,

7

a little care is needed in handling the potentially nonstationary nature of the expert policy. We
circumvent the issue by using the performance difference lemma and controlling the regret at each
state against the stationary comparator which induces the same state-action occupancy measure of
the expert. Formally, we have the following bound, which we prove in Appendix B.2.
Lemma 2. For any k and any state-action pair (x, a), consider the sequence of policies starting
with π1 as the uniform policy and updated as πk+1(a |x) ∝ πk(a |x)eηQk(x,a) for some function
Qk : X ×A → R such that ∥Qk∥∞ ≤ 1

1−γ . Then,
∑K

k=1 L(πk;Qk) ≤ logA
η + ηK

2(1−γ)2
.

This lemma applies to both the linear and nonlinear settings. The next and final step of the analysis
is to establish concentration of the empirical objective and bound ∆(πk) for each k. The main
challenge in this step is the correlation between the iterates {πk}Kk=1 and the expert dataset. This can
be handled via a uniform bound over the policy class to which all the algorithm iterates belong to.
Importantly, this class is much smaller than the class of all policies, and allows us to make massive
sample-complexity savings as compared to methods that need to control estimation errors associated
with arbitrary policies. We provide the technical details separately for the linear and nonlinear cases.

4.1 Linear function approximation

In order to bound the estimation errors ∆(πk), we apply a covering argument over the class of linear
softmax policies. We have the following result.
Lemma 3. Let {πk}k∈[K] be the sequence of policies generated by Algorithm 1 and let ∆(πk) be
defined as in Proposition 1. Then, with probability at least 1− δ, it holds that for all k ∈ [K]

∆(πk) ≤
1

K
+ 4

√
d

(1− γ)
2
τE

log

(
2 + 32K2ηBθBφA

(1− γ)δ

)
.

We defer the proof to Appendix B.4. We can use the above result to sketch the proof of Theorem 1.

Proof sketch of Theorem 1. Using Lemma 2 with η = (1− γ)
√

2 logA
K and dividing by K, we

obtain that 1
K

∑K
k=1 L(πk;Qk) ≤

√
2 logA

(1−γ)2K
. Therefore, setting K = 2 logA

(1−γ)2ε2
guarantees

1
K

∑K
k=1 L(πk;Qk) ≤ ε. Then, using the high-probability bound in Lemma 3 and the fact that

K−1
∑K

k=1 ∆(πk) is a random variable bounded by 2(1− γ)
−1 almost surely, we obtain the follow-

ing expectation bound which holds for all δ > 0

1

K

K∑
k=1

E[∆(πk)] ≤
1

K
+ C

√√√√ d

(1− γ)
2
τE

log

(
BθBφA

(1− γ)
3
ε2δ

)
+

2δ

1− γ
,

for some C ∈ R. Noticing that the choice of parameters ensures 1
K ≤ ε

2 and setting δ = ε(1−γ)
4

and τE ≥ C2d
(1−γ)2ε2

log
(

BθBφA

(1−γ)3ε2δ

)
, this bound implies that 2

K

∑K
k=1 E[∆k] ≤ 4ε. Invoking Proposi-

tion 1, we conclude that E
[
ρπE − ρπ

out] ≤ 5ϵ. The full proof is in Appendix B.5.

4.2 General function approximation

The proof for the nonlinear setup follows the same conceptual steps but requires a more general
concentration result for the objective function. Namely, the following lemma is the general counterpart
of Lemma 3. The feature dimension d appearing in the linear case is replaced by the complexity (as
measured by the covering number) of the policy and value function classes containing the iterates.

Lemma 4. Let Q ⊂ RX×A denote an arbitrary class, {πk}Kk=1 denote the iterates produced by
Algorithm 2, and let ∆(πk) be defined as in Proposition 1. Then, with probability at least 1− δ, it
holds that for all k ∈ [K]

∆(πk) ≤
1

K
+

√√√√√8(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

8

The proof is in Appendix B.6. Note that in the general case, the complexity of the policy class can
increase linearly with the number of iterations K (see Lemma 7). On the contrary, in the linear case,
the policies generated by Algorithm 1 are parameterized by d parameters and only the magnitude of
these parameters increases with K. With this lemma, we present the proof sketch of Theorem 2.

Proof sketch of Theorem 2. Applying the decomposition in Proposition 1, the regret bound in

Lemma 2, the concentration in Lemma 4, we obtain E
[
ρπE − ρπ

out]
= Õ

(
1√
K

+
√

K
τE

)
. Setting

K = Õ
(
ε−2
)
, and τE = Õ

(
ε−4
)
, we get E

[
ρπE −ρπout]

= ε. The full proof is in Appendix B.7.

5 Numerical experiments

We conduct experiments to verify that we can efficiently imitate complex experts in linear Qπ

environments, and can achieve massive improvements over behavioral cloning with large policy
classes.1

0 250 500 750 1000
Epochs

55
60
65
70

R
et

u
rn

πE ∈ ΠE
lin

SPOIL

BC

Expert

0 250 500 750 1000
Epochs

52
56
60
64
68

R
et

u
rn

πE ∈ ΠE
NN

Figure 1: Experiments with simple and
complex experts. Curves are averaged
across 10 seeds.

To investigate this, we consider a randomly generated large
linear MDP (a special case of linear Qπ-realizable MDP)
with |X | = 500 and A = 1000 but with a small feature
dimension d = 7. We instantiate two experts. The first
expert is trained to be the optimal softmax linear policy
in this environment. This policy is parametrized by only
d parameters and can be realized by the class of softmax
linear policies defined in Assumption 1, denoted ΠE

lin here.
In addition, we consider the second expert, which belongs
to the class of three-layer neural networks denoted by ΠE

NN.
This expert was trained to minimize the KL divergence
with respect to the linear expert. As evident from Figure 1,
our algorithm SPOIL performs well for both experts. This
is in perfect agreement with the theory which provides a
sample complexity bound that is independent of the expert
policy class. On the other hand, behavioural cloning (BC)
struggles with the complexity of the neural network expert
policy class, and performs much worse. This is despite
the fact that the dataset perfectly satisfies the realizability
condition required by BC. This clearly demonstrates that
complex behavior policies may indeed be problematic for
BC to deal with, and we expect that such issues may also
cause real performance drops in practical applications as
well. Notice that in this experiment, SPOIL outperforms
BC because the environment complexity is much lower
than the policy class complexity. For fairness, we point out that the opposite situation is not unusual
in RL and IL. In that case, it is reasonable to expect BC to be superior to SPOIL.

5.1 Continuous states experiments

We run the general function approximation version of our algorithm in continuous-states environments
from the gym library (Towers et al., 2025). In particular, we consider the environments CartPole-v1,
Acrobot-v1 and LunarLander-v2 where the expert is trained via Soft DQN. We use the expert
data provided in the code base of Garg et al. (2021). The learner aims at imitating the expert
performance given as input a variable number of expert trajectories. In order to make the task
more challenging the trajectories are subsampled each 20 steps in CartPole-v1, Acrobot-v1 and
each 5 in LunarLander-v2.2 We compare the performance of the best policy found by each of
these algorithms as a function of the number of expert trajectories given as input. In practice the
maximization arg maxQ∈Q L̂(πk, Q) is approximated by performing a gradient ascent step. On the
other hand, the actor update is approximated via Soft DQN (Haarnoja et al., 2017). In Figure 2, we

1Code is available at: https://github.com/antoine-moulin/spoil.
2This is common practice in IL experiments (see, e.g., Garg et al., 2021).

9

https://github.com/antoine-moulin/spoil

2 4 6 8 10
Expert Trajectories

100

200

300

400

500

T
ot

al
R

et
u

rn

CartPole-v1

2 4 6 8 10
Expert Trajectories

−500

−400

−300

−200

−100

0

T
ot

al
R

et
u

rn

Acrobot-v1

IQLearn

P2IL

BC

SPOIL (Ours)

2 4 6 8 10
Expert Trajectories

−200
−100

0
100
200
300

T
ot

al
R

et
u

rn

LunarLander-v2

Figure 2: Experiments in continuous-state domains. Curves are averaged across 10 seeds.

can see that SPOIL performs comparably to the state-of-the-art algorithm IQ-Learn (Garg et al.,
2021) and improves upon BC (Pomerleau, 1991; Foster et al., 2024) and P2IL (Viano et al., 2022).

6 Conclusions

In this work, we proposed analyses that leverage structural assumptions on the MDP without requiring
trajectory access. This is made possible thanks to a novel regret decomposition that shifts the focus
from updating a reward sequence based on expert data to updating a sequence of state-action value
functions. To the best of our knowledge, these are the first rigorous theoretical guarantees for IL
methods that learn state-action value functions from expert data, a technique popularized in practice
by Garg et al. (2021). Among the many potential ways to extend and improve our work, we highlight
two possible future directions below.

Better rates in the general case. The most interesting immediate question that one can ask about
our result is if the O

(
ε−4
)

scaling featured in our general bound is improvable under the conditions
we assume. As a first step, we show an improvement for the case of convex class Q in Appendix B.8.
However, we believe that substantially different algorithmic and analytic ideas would be necessary
to answer this question for non convex classes, but we also think that our primal-dual framework
provides a good starting point towards making such improvements. Furthermore, we would be curious
to investigate appropriate notions of misspecification that our algorithm can deal with. It can be easily
shown that requiring Qπ-realizability only up to a worst-case additive error of order εapprox would
incur the same additional term in the error bounds, but we believe that this assumption is too strong
to warrant interest and we did not include an explicit statement. A much more interesting question is
if this approximation guarantee would only be required to hold locally in the state-action pairs visited
by the expert.

Learning from features only. In the case of linear function approximation, the current approach
critically relies on observing the expert state-action pairs to compute the vectors {ĝk}Kk=1. It would
be interesting to check if an alternative algorithm can achieve the same guarantees by only observing
the expert feature vectors instead. Another related direction is to efficiently imitate an expert from
state-only trajectory given trajectory access to a linear-Qπ realizable MDP.

Finally, let us remark that all previous theory work has focused either on imitation learning with
additional trajectory access to the environment, both in tabular MDPs (Shani et al., 2022; Xu et al.,
2023) and with additional structural assumptions (Liu et al., 2022; Viano et al., 2022, 2024; Moulin
et al., 2025), or learning based on offline data only but under structural assumptions about the policy
class used by the expert (Rajaraman et al., 2021; Swamy et al., 2022; Foster et al., 2024; Rohatgi
et al., 2025). The first of these assumptions is clearly more restrictive than what we have considered
in this work, and we have pointed out potential issues with the second set of methods when the policy
class is exceedingly complex. This is not to say though that we consider our approach strictly superior
to policy-based IL methods: as is often the case in RL, there is no single approach that dominates
all others in all problems, and sometimes policy-based methods are more suitable for the job than
value-based ones. Thus, even if our approach is not the ultimate answer to all questions in imitation
learning, our results show that it is one potential alternative to consider in situations where other
methods fail.

10

Acknowledgments and Disclosure of Funding

The authors wish to thank Emmanuel Esposito for suggesting to look at the convex case and Akshay
Krishnamurthy for an insightful discussion about our work. Luca Viano is funded through a PhD
fellowship of the Swiss Data Science Center, a joint venture between EPFL and ETH Zurich. Gergely
Neu and Antoine Moulin are funded via a European Research Council (ERC) project, under the
European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 950180).

References
Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért

Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning (ICML), 2019. URL https://proceedings.mlr.press/
v97/lazic19a.html.

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2004. URL https://icml.cc/Conferences/2004/
proceedings/papers/335.pdf.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. 2022. URL https://rltheorybook.github.io/.

Adam Block, Ali Jadbabaie, Daniel Pfrommer, Max Simchowitz, and Russ Tedrake.
Provable guarantees for generative behavior cloning: Bridging low-level stability
and high-level behavior. In Advances in Neural Information Processing Systems
(NeurIPS), 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/97c903fbf21a7d863af2015d8803ca8f-Abstract-Conference.html.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolas Espinosa Dice, Sanjiban Choudhury, Wen Sun, and Gokul Swamy. Efficient imitation under
misspecification. In International Conference on Representation Learning (ICLR), 2025. URL
https://openreview.net/forum?id=fn36V5qsCw.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Experts in a markov de-
cision process. In Advances in Neural Information Processing Systems (NIPS).
MIT Press, 2004. URL https://papers.nips.cc/paper_files/paper/2004/hash/
421b3ac5c24ee992edd6087611c60dbb-Abstract.html.

Eyal Even-Dar, Sham. M. Kakade, and Yishay Mansour. Online Markov decision processes. Mathe-
matics of Operations Research, 2009. URL https://www.jstor.org/stable/40538442.

Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
horizon in imitation learning. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2024. URL https://openreview.net/forum?id=8KPyJm4gt5.

Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning, 2018. URL https://arxiv.org/abs/1704.00805.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, Matthieu Geist, and Stefano
Ermon. IQ-learn: Inverse soft-Q learning for imitation. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. URL https://arxiv.org/abs/2106.12142. Note:
Read arXiv version for correct version and complete author list.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A Theory of Regularized Markov Decision
Processes. In International Conference on Machine Learning (ICML), 2019. URL https:
//proceedings.mlr.press/v97/geist19a.html.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning (ICML), 2017.
URL https://proceedings.mlr.press/v70/haarnoja17a.html.

11

https://proceedings.mlr.press/v97/lazic19a.html
https://proceedings.mlr.press/v97/lazic19a.html
https://icml.cc/Conferences/2004/proceedings/papers/335.pdf
https://icml.cc/Conferences/2004/proceedings/papers/335.pdf
https://rltheorybook.github.io/
https://proceedings.neurips.cc/paper_files/paper/2023/hash/97c903fbf21a7d863af2015d8803ca8f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/97c903fbf21a7d863af2015d8803ca8f-Abstract-Conference.html
https://openreview.net/forum?id=fn36V5qsCw
https://papers.nips.cc/paper_files/paper/2004/hash/421b3ac5c24ee992edd6087611c60dbb-Abstract.html
https://papers.nips.cc/paper_files/paper/2004/hash/421b3ac5c24ee992edd6087611c60dbb-Abstract.html
https://www.jstor.org/stable/40538442
https://openreview.net/forum?id=8KPyJm4gt5
https://arxiv.org/abs/1704.00805
https://arxiv.org/abs/2106.12142
https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.mlr.press/v70/haarnoja17a.html

Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning (ICML), 2002. URL https://homes.cs.
washington.edu/~sham/papers/rl/aoarl.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2014. URL https://arxiv.org/abs/1412.
6980. Note: Read the up-to-date arXiv version.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 2023. URL https:
//link.springer.com/article/10.1007/s10107-022-01816-5.

Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Learning from demon-
stration: Provably efficient adversarial policy imitation with linear function approximation. In
International Conference on Machine Learning (ICML), 2022. URL https://proceedings.
mlr.press/v162/liu22u.html.

Zakaria Mhammedi. Sample and oracle efficient reinforcement learning for mdps with linearly-
realizable value functions. In Conference on Learning Theory (COLT), 2025. URL https:
//proceedings.mlr.press/v291/mhammedi25b.html.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Antoine Moulin and Gergely Neu. Optimistic planning by regularized dynamic programming. In
International Conference on Machine Learning (ICML), 2023. URL https://proceedings.
mlr.press/v202/moulin23a.html.

Antoine Moulin, Gergely Neu, and Luca Viano. Optimistically optimistic exploration for provably
efficient infinite-horizon reinforcement and imitation learning. In Conference on Learning Theory
(COLT), 2025. URL https://proceedings.mlr.press/v291/moulin25a.html.

Francesco Orabona. A modern introduction to online learning, 2023. URL https://arxiv.org/
abs/1912.13213.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991. URL https://www.ri.cmu.edu/pub_files/pub3/
pomerleau_dean_1991_1/pomerleau_dean_1991_1.pdf.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2nd edition, 2014.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamen-
tal limits of imitation learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
hash/1e7875cf32d306989d80c14308f3a099-Abstract.html.

Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan
Ramchandran. On the value of interaction and function approximation in imita-
tion learning. In Advances in Neural Information Processing Systems (NeurIPS),
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/
09dbc1177211571ef3e1ca961cc39363-Abstract.html.

12

https://homes.cs.washington.edu/~sham/papers/rl/aoarl.pdf
https://homes.cs.washington.edu/~sham/papers/rl/aoarl.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://link.springer.com/article/10.1007/s10107-022-01816-5
https://link.springer.com/article/10.1007/s10107-022-01816-5
https://proceedings.mlr.press/v162/liu22u.html
https://proceedings.mlr.press/v162/liu22u.html
https://proceedings.mlr.press/v291/mhammedi25b.html
https://proceedings.mlr.press/v291/mhammedi25b.html
https://proceedings.mlr.press/v202/moulin23a.html
https://proceedings.mlr.press/v202/moulin23a.html
https://proceedings.mlr.press/v291/moulin25a.html
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/1912.01703
https://www.ri.cmu.edu/pub_files/pub3/pomerleau_dean_1991_1/pomerleau_dean_1991_1.pdf
https://www.ri.cmu.edu/pub_files/pub3/pomerleau_dean_1991_1/pomerleau_dean_1991_1.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1e7875cf32d306989d80c14308f3a099-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1e7875cf32d306989d80c14308f3a099-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/09dbc1177211571ef3e1ca961cc39363-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/09dbc1177211571ef3e1ca961cc39363-Abstract.html

Dhruv Rohatgi, Adam Block, Audrey Huang, Akshay Krishnamurthy, and Dylan J. Foster.
Computational-statistical tradeoffs at the next-token prediction barrier: Autoregressive and im-
itation learning under misspecification (extended abstract). In Conference on Learning Theory
(COLT), 2025. URL https://proceedings.mlr.press/v291/rohatgi25a.html.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2011. URL https://proceedings.mlr.press/v15/ross11a.html.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2010. URL https://proceedings.
mlr.press/v9/ross10a.html.

Lior Shani, Tom Zahavy, and Shie Mannor. Online apprenticeship learning. In AAAI Conference,
2022. URL https://ojs.aaai.org/index.php/AAAI/article/view/20798.

Max Simchowitz, Daniel Pfrommer, and Ali Jadbabaie. The title of the paper. In Proceedings of
Thirty Eighth Conference on Learning Theory, 2025. URL https://proceedings.mlr.press/
v291/simchowitz25a.html.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and matching:
A game-theoretic framework for closing the imitation gap. In International Conference on Machine
Learning (ICML), 2021. URL https://proceedings.mlr.press/v139/swamy21a.html.

Gokul Swamy, Nived Rajaraman, Matt Peng, Sanjiban Choudhury, J Bagnell, Steven Z
Wu, Jiantao Jiao, and Kannan Ramchandran. Minimax optimal online imitation learn-
ing via replay estimation. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/2e809adc337594e0fee330a64acbb982-Abstract-Conference.html.

Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in Neural Information Processing Systems, 2007. URL https://papers.nips.
cc/paper_files/paper/2007/hash/ca3ec598002d2e7662e2ef4bdd58278b-Abstract.
html.

Volodymyr Tkachuk, Gellért Weisz, and Csaba Szepesvari. Trajectory data suffices for statistically
efficient learning in offline RL with linear qπ-realizability and concentrability. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=TusuJSbRxm.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard
interface for rl environments, 2025. URL https://arxiv.org/abs/2407.17032.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science.
Cambridge university press, 2018.

Luca Viano, Angeliki Kamoutsi, Gergely Neu, Igor Krawczuk, and Volkan Cevher. Prox-
imal point imitation learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9988f2c8e07c1f98af7ba9ca31ccae0b-Abstract-Conference.html.

Luca Viano, Stratis Skoulakis, and Volkan Cevher. Imitation learning in discounted linear MDPs
without exploration assumptions. In International Conference on Machine Learning (ICML), 2024.
URL https://openreview.net/forum?id=DChQpB4AJy.

Gellért Weisz, András György, and Csaba Szepesvári. Online rl in linearly qπ-realizable mdps
is as easy as in linear mdps if you learn what to ignore. In Advances in Neural Information
Processing Systems, 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/b973a107336177a274069cefb011244c-Abstract-Conference.html.

Tian Xu, Ziniu Li, Yang Yu, and Zhi-Quan Luo. Provably efficient adversarial imitation learning with
unknown transitions. In Conference on Uncertainty in Artificial Intelligence (UAI), 2023. URL
https://proceedings.mlr.press/v216/xu23c.html.

13

https://proceedings.mlr.press/v291/rohatgi25a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html
https://ojs.aaai.org/index.php/AAAI/article/view/20798
https://proceedings.mlr.press/v291/simchowitz25a.html
https://proceedings.mlr.press/v291/simchowitz25a.html
https://proceedings.mlr.press/v139/swamy21a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2e809adc337594e0fee330a64acbb982-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2e809adc337594e0fee330a64acbb982-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2007/hash/ca3ec598002d2e7662e2ef4bdd58278b-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/ca3ec598002d2e7662e2ef4bdd58278b-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/ca3ec598002d2e7662e2ef4bdd58278b-Abstract.html
https://openreview.net/forum?id=TusuJSbRxm
https://openreview.net/forum?id=TusuJSbRxm
https://arxiv.org/abs/2407.17032
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9988f2c8e07c1f98af7ba9ca31ccae0b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9988f2c8e07c1f98af7ba9ca31ccae0b-Abstract-Conference.html
https://openreview.net/forum?id=DChQpB4AJy
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b973a107336177a274069cefb011244c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b973a107336177a274069cefb011244c-Abstract-Conference.html
https://proceedings.mlr.press/v216/xu23c.html

Contents of Appendix
A Additional related works 15

B Omitted proofs 17
B.1 Proof of Lemma 1 (performance difference lemma) 17

B.2 Proof of Lemma 2 (regret of the policy player) . 17

B.3 General concentration argument . 18

B.4 Proof of Lemma 3 (concentration linear case) . 20

B.5 Proof of Theorem 1 (sample complexity guarantee for linear Qπ-realizable MDPs) 22

B.6 Proof of Lemma 4 (concentration general case) 22

B.7 Proof of Theorem 2 (sample complexity guarantee for Qπ-realizable MDPs) 24

B.8 Improvement for convex Q classes . 25

B.9 Different sample complexity guarantee for finite Q classes 28

C Technical tools 32

D On the guarantees of misspecified BC in linear Qπ-realizable MDPs 33

E Additional experiments 34
E.1 BC with a simple expert class can outperform SPOIL 34

E.2 Comparison with IQ-Learn in the linear case . 34

E.3 Omitted experimental details . 34

14

A Additional related works

Classical analyses by Ross and Bagnell (2010); Ross et al. (2011) on behavioural cloning (BC)
established an error propagation framework relating the suboptimality of the learned policy to
the worst-case generalization error incurred in predicting the expert policy. They proved that this
suboptimality gap is upper-bounded by the generalization error up to a multiplicative factor H2

(where H is the horizon), a factor that is unavoidable when using the 0-1 loss for supervised learning.
However, these results do not quantify the expert sample complexity, or the number of samples
required to make the generalization error small.

A recent line of work has begun to investigate the expert sample complexity assuming knowledge of
a policy class ΠE that realizes (or nearly realizes) the expert policy. For instance, Rajaraman et al.
(2021) assume that the expert is deterministic and belongs to the class of deterministic linear policies
Πdet,lin (defined in the caption of Table 1). They prove a bound on the required number of expert
samples of order Õ

((
H2d

)
/ε
)
, where d is the feature dimension in the definition of Πdet,lin. Their

technique is a reduction to the problem of multiclass classification in supervised learning, but their
result is not informative for settings with general stochastic expert policies.

Further contributions to understanding the sample complexity of IL under policy class assumptions
were made by Foster et al. (2024). Specifically, assuming the expert is included within a known
class, πE ∈ ΠE, they showed that one can learn an ε-optimal policy (as defined in Equation (2)) after
observing O

((
H2 log |ΠE|

)
/ε
)

samples for a deterministic expert or O
((
H2 log |ΠE|

)
/ε2
)

samples
for a stochastic one (we report the dense reward case for brevity, though their bounds improve for
sparse rewards). Addressing scenarios where the expert policy might only be almost well-specified,
Rohatgi et al. (2025) demonstrate that there exists a computationally efficient algorithm that outputs
an ε-optimal policy up to an additional approximation error of H log(W)minπ∈ΠE D2

H(Pπ,PπE). In
this context, Pπ is the trajectory distribution induced by π, W is a density ratio defined as

W = max
π∈ΠE

max
(x,a)∈X×A

max
h∈[H]

πE,h(a |x)
πh(a |x)

.

It is worth noting that these guarantees become vacuous when the policy class ΠE is such that at least
one policy in ΠE fails to provide sufficient coverage for the expert’s actions (leading to W = +∞
as πh(a |x) gets close to zero for relevant state-action pairs and timestep where πE,h(a |x) > 0),
or if the minimum Hellinger distance minπ∈ΠE D2

H(Pπ,PπE) is large. Alternatively, Foster et al.
(2024) proved a misspecification result where the additional error is minπ∈ΠE χ2(Pπ,PπE). This
misspecification error is measured by the χ2 divergence, with a leading coefficient constant in H and
W . However, the χ2 divergence is an upper bound on the Hellinger distance that is often way too
loose to be practical. In a similar vein, Espinosa Dice et al. (2025) proved a benefit in terms of error
propagation for a local search algorithm over behavioural cloning in misspecified settings, under the
assumption that the learned policy is allowed to reset to states visited in the expert dataset.

Our work aligns with the recent renewed interest in proving refined expert sample complexity
guarantees for offline imitation learning but distinguishes itself by swapping out the expert realizability
assumption with a structural assumption on the environment. Early explorations for similar settings
can be found in classical works by Abbeel and Ng (2004) and Syed and Schapire (2007). These
studies proposed offline learning algorithms for MDPs with reward functions linear in a collection of
features known to the learner, under the assumption that transition dynamics of the environment is
also known. Versions of their approaches that do not assume such knowledge typically incur a worse
sample complexity and often apply only in the tabular setting. Our work generalizes these classical
approaches by removing the need for known transitions and for rewards to be linear in the features, as
well as going beyond tabular MDPs. Notably, the linear Qπ-realizability assumption can hold even if
the reward function and the transition dynamics are nonlinear. We summarize our comparison with
these and other related works in Table 1.

Our work focuses on learning a Q-value from expert data and, in this regard, is closely related to the
practical work of Garg et al. (2021). The novel regret decomposition employed in our analysis of
SPOIL demonstrates, we believe for the first time, that provable guarantees are achievable by directly
learning an action-value function from expert data. This contrasts with the majority of theoretical and
practical imitation learning approaches, which typically first use the expert data to learn a reward
function and subsequently use this learned reward function to infer an action-value function.

15

As we mentioned, SPOIL is very related to AdVIL. However, a key difference lies in the analysis:
Swamy et al. (2021) conduct an error propagation analysis for AdVIL. From this, they conclude
that AdVIL is equivalent to BC in the sense that if the loss for either method is at most ε in every
state, then the suboptimality of the extracted policy in an episodic setting with horizon H is of order
H2ε for both. However, this type of result does not investigate the assumptions or the number of
samples needed to ensure these losses are indeed less than ε. Our work addresses this open question,
establishing a clear distinction between the sample complexities of SPOIL and BC. Specifically, SPOIL
and BC (and their respective analyses) rely on largely orthogonal sets of assumptions, making the
two approaches complementary to each other: we expect SPOIL to be more suitable for imitation
tasks with complex experts but simpler environments, while BC may be the preferred choice when
this situation is reversed. Our sample complexity analysis for SPOIL critically relies on the Q-player
using a best response strategy, and it is unlikely that equivalent results could be achieved using a
standard gradient ascent step for the Q-player instead.

Very recently, Simchowitz et al. (2025) analyzed the error propagation properties of offline imitation
learning algorithms in continuous action MDPs, showing that an exponential dependence on the
horizon of the problem is unavoidable if no structure is imposed on the environment. On the other
hand, the same authors point out that if the state-action value functions were Lipschitz in the action
space, then efficient learning would be possible. Conceptually, we believe that the SPOIL algorithm
could also be applied in the continuous action case. Such an extension would suggest that another
scenario enabling effective imitation learning in continuous action spaces arises when the learner has
access to a suitably expressive class of state-action value functions.

Following a similar line of research that studies imitation learning from a control-theoretic perspective,
Block et al. (2023) studied guarantees for generative behavioural cloning, assuming access to a
stabilizing policy dubbed a synthesis oracle. These policies can be computed exactly if the dynamics
are known, an assumption which is not imposed in our work. However, when provided with such
an oracle, Block et al. (2023) derive bounds on a stricter metric for imitation. Specifically, they
bound the probability that expert and learner trajectories diverge at some time step, as opposed to the
difference in cumulative return that we analyze in our work.

16

B Omitted proofs

In this appendix, we provide the omitted proofs of the main results.

B.1 Proof of Lemma 1 (performance difference lemma)

We start presenting the performance difference lemma proven in a more general form which allows
one policy to be nonstationary.

Lemma 1. Let π be a stationary policy and π′ be any policy. Then,

ρπ
′ − ρπ = E(X,A)∼µπ′ [Qπ(X,A)− V π(X)] .

Proof. Consider the Bellman equations for the stationary policy π. For any state-action pair (x, a),
we have

Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ |x, a)V π(x′) .

Averaging both sides with the distribution µπ′
and reordering the terms, we obtain

∑
x,a

µπ′
(x, a)r(x, a) =

∑
x,a

µπ′
(x, a)

(
Qπ(x, a)− γ

∑
x′∈X

P (x′ |x, a)V π(x′)

)
= (1− γ)

∑
x

ν0(x)V
π(x) +

∑
x,a

µπ′
(x, a)

(
Qπ(x, a)− V π(x)

)
,

where we used the flow condition of the occupancy measure µπ′
in the last step (see Equation 1). The

claim then follows by noticing that ρπ = (1− γ)
∑

x ν0(x)V
π(x) and ρπ

′
=
∑

x,a µ
π′
(x, a)r(x, a).

B.2 Proof of Lemma 2 (regret of the policy player)

Next, we apply Lemma 14 to the special case of the exponential weights update, where the divergence
is chosen to be the KL divergence, and use it to derive a bound on the regret of the policy player.

Lemma 2. For any k and any state-action pair (x, a), consider the sequence of policies starting
with π1 as the uniform policy and updated as πk+1(a |x) ∝ πk(a |x)eηQk(x,a) for some function
Qk : X ×A → R such that ∥Qk∥∞ ≤ 1

1−γ . Then,
∑K

k=1 L(πk;Qk) ≤ logA
η + ηK

2(1−γ)2
.

Proof. Let us recall that

L(πk, Qk) = E(X,A)∼µπE [Qk(X,A)−Qk(X,πk)] ,

where πE is a potentially nonstationary policy. To continue, let us consider the stationary policy
π̄E : X → ∆(A) that induces the same state-action occupancy measure of the expert, i.e., such that
µπ̄E = µπE . This equality can be guaranteed by choosing, for any (x, a) ∈ X × A, π̄E(a |x) =
µπE (x,a)
νπE (x) if νπE(x) ̸= 0 and π0(a) otherwise, where π0 ∈ ∆(A) is an arbitrary distribution. Then, we

continue as follows

L(πk, Qk) = E(X,A)∼µπE [Qk(X,A)−Qk(X,πk)]

= E(X,A)∼µπ̄E [Qk(X,A)−Qk(X,πk)]

=
∑
x∈X

νπ̄E(x)
∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) .

Summing over k ∈ [K], we obtain

K∑
k=1

L(πk, Qk) =
∑
x∈X

νπ̄E(x)

K∑
k=1

∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) .

17

It remains to prove the following bound.

K∑
k=1

∑
a∈A

Qk(x, a)(π̄E(a |x)− πk(a |x)) ≤
logA

η
+

ηK

2(1− γ)
2 .

The result is proven as a particular case of Lemma 14. Specifically, we have that when V is the
A-dimensional simplex and the Bregman divergence is the KL divergence, it holds that

xk+1 = arg min
v∈V

{
⟨ℓk, v⟩+

1

η
D(v, xk)

}
=

xk ⊙ exp(−ηℓk)
⟨1, xk ⊙ exp(−ηℓk)⟩

,

where ⊙ is the elementwise product. We apply Lemma 14 for each state x ∈ X , replacing
xk = πk(· |x) and ℓk = −Qk(x, ·). We obtain that for the update πk+1(a |x) ∝ πk(a |x)eηQk(x,a),
the guarantee in Lemma 14 holds. Moreover, in this setting we have λ = 1, and ℓmax = 1

1−γ .
Given that for any state-action pair (x, a), the initial policy is π1(a |x) = 1

A , we have that
D(π(· |x), π1(· |x)) ≤ logA. Thus, we have the following bound∑

a∈A
Qk(x, a)(π̄E(a |x)− πk(a |x)) ≤

logA

η
+

ηK

2(1− γ)
2 ,

and the conclusion follows from νπ̄E being a probability distribution.

B.3 General concentration argument

To prove the main results of this paper, we prove a general concentration inequality that we will
use for the iterates produced by both Algorithm 1 and Algorithm 2. Specifically, when analyzing
Algorithm 1, we consider the policy class Πlin defined as follows

Πlin =

π ∈ ∆(A)
X

: ∃(θk)k∈[K] ⊂ B(Bθ), π(a |x) =
exp
(
η
∑K

k=1 ⟨φ(x, a), θk⟩
)

∑
b∈A exp

(
η
∑K

k=1 ⟨φ(x, b), θk⟩
)
 ,

(3)
while in the nonlinear case (Algorithm 2), we will consider the policy class

ΠQ =

π ∈ ∆(A)
X

: ∃(Qk)k∈[K] ⊂ Q, π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
)
 . (4)

The result is the following.
Lemma 5. Let Q ⊂ RX×A be a value function class such that for any Q ∈ Q, ∥Q∥∞ ≤ 1

1−γ .

Consider the sequences of estimated objective functions {L̂(πk, ·)}Kk=1 for a policy sequence {πk}Kk=1
belonging to a policy class Π. For any k ∈ [K], recall that for any policy π and function Q, the
objective function is defined as

L(π;Q) = E(X,A)∼µπE [Q(X,A)−Q(X,π)] .

Then, with probability larger than 1− δ, it holds that for all k ∈ [K] simultaneously that

∆(πk) = sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ inf

ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

 ,

where, for any (Q, π), (Q′, π′) ∈ Q × Π, we defined the distance ∥(Q, π)− (Q′, π′)∥∞,1 =

∥Q−Q′∥∞ +maxx∈X ∥π(· |x)− π′(· |x)∥1.

Proof. Let us recall that for any Q ∈ Q and any k ∈ [K], we have

L̂(πk, Q) =
1

τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−
∑
a∈A

πk
(
a
∣∣Xi

E

)
Q
(
Xi

E , a
))

,

18

and notice that L̂(πk, Q) is not an unbiased estimator of L(πk, Q) since the policy πk depends on the
expert data. Therefore, we aim at establishing a uniform concentration bound over the policy class Π.
To this end, let us consider a fixed pair (Q, π) ∈ Cϵ(Q× Π, ∥·∥∞,1), and notice that L̂(π,Q) is an
average of random variables of the form

Wi = Q
(
Xi

E , A
i
E

)
−
∑
a∈A

π
(
a
∣∣Xi

E

)
Q
(
Xi

E , a
)
,

where i ∈ [τE]. Each Wi is an unbiased estimator of L(π,Q) since π is fixed (i.e., π is not a random
quantity depending on the expert data) and

(
Xi

E , A
i
E

)
∼ µπE for all i ∈ [τE]. Thus, for any i ∈ [τE],

E[Wi] = L(π,Q). Moreover, notice that for all i ∈ [τE], − 2
1−γ ≤ Wi ≤ 2

1−γ . Therefore, by an
application of Hoeffding’s inequality (see Lemma 13), we have that for all t > 0,

P
[∣∣∣L̂(π,Q)− L(π,Q)

∣∣∣ ≥ t
]
≤ 2 exp

(
− t

2τE(1− γ)
2

8

)
.

That is, choosing t = 8 log(2/δ)

(1−γ)2τE
guarantees that with probability at least 1− δ,

∣∣∣L̂(π,Q)− L(π,Q)
∣∣∣ ≤√ 8 log(2/δ)

(1− γ)
2
τE

.

Applying a union bound, we further have that with probability at least 1 − δ, for all (Q, π) ∈
Cϵ(Q×Π, ∥·∥∞,1) it holds that

∣∣∣L̂(π,Q)− L(π,Q)
∣∣∣ ≤

√√√√8 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

Recall that Cϵ(Q×Π, ∥·∥∞,1) is assumed to be an ϵ-covering set of the space Q×Π with respect to
the distanec ∥·∥∞,1. For any pair (Q, πk) ∈ Q×Π, let (Qϵ, πk,ϵ) ∈ Cϵ(Q×Π, ∥·∥∞,1) denote the
element of the covering such that ∥(Q, πk)− (Qϵ, πk,ϵ)∥∞,1 ≤ ϵ. Then, we have that

∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)
∣∣∣ ≤ ∣∣∣∣∣ 1τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−Qϵ

(
Xi

E , A
i
E

))∣∣∣∣∣
+

∣∣∣∣∣ 1τE

τE∑
i=1

∑
a∈A

(
πk,ϵ

(
a
∣∣Xi

E

)
Qϵ

(
Xi

E , a
)
− πk

(
a
∣∣Xi

E

)
Q
(
Xi

E , a
))∣∣∣∣∣

≤ ∥Q−Qϵ∥∞ +

∣∣∣∣∣ 1τE

τE∑
i=1

∑
a∈A

(
πk,ϵ

(
a
∣∣Xi

E

)
− πk

(
a
∣∣Xi

E

))
Qϵ

(
Xi

E , a
)∣∣∣∣∣

+

∣∣∣∣∣ 1τE

τE∑
i=1

∑
a∈A

πk
(
a
∣∣Xi

E

)(
Q
(
Xi

E , a
)
−Qϵ

(
Xi

E , a
))∣∣∣∣∣ .

Noting that for any Q ∈ Q, ∥Q∥∞ ≤ 1
1−γ , and that for any state x, πk(· |x) ∈ ∆(A), using Hölder’s

inequality, we further have∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)
∣∣∣ ≤ ∥Q−Qϵ∥∞ +

maxx∈X ∥πk,ϵ(· |x)− πk(· |x)∥1
1− γ

+ ∥Q−Qϵ∥∞

≤
2 ∥(Q, πk)− (Qϵ, πk,ϵ)∥∞,1

1− γ

≤ 2ϵ

1− γ
,

19

where we used the definition of (πk,ϵ, Qϵ) and γ ∈ (0, 1) in the last inequality. Similarly, for the true
objective we have that

|L(πk, Q)− L(πk,ϵ, Qϵ)| ≤
∣∣E(X,A)∼µπE [Q(X,A)−Qϵ(X,A)]

∣∣
+ |EX∼νπE [Q(X,πk)−Qϵ(X,πk,ϵ)]|

≤ ∥Q−Qϵ∥∞ + |EX∼νπE [Q(X,πk)−Q(X,πk,ϵ)]|
+ |EX∼νπE [Q(X,πk,ϵ)−Qϵ(X,πk,ϵ)]|

≤ ∥Q−Qϵ∥∞ +
maxx∈X ∥πk,ϵ(· |x)− πk(· |x)∥1

1− γ
+ ∥Q−Qϵ∥∞

≤ 2ϵ

1− γ
.

Therefore, with probability at least 1− δ, it holds that for any k ∈ [K] and any Q ∈ Q,∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ ∣∣∣L̂(πk, Q)− L̂(πk,ϵ, Qϵ)

∣∣∣+ ∣∣∣L̂(πk,ϵ, Qϵ)− L(πk,ϵ, Qϵ)
∣∣∣

+ |L(πk, Q)− L(πk,ϵ, Qϵ)|

≤ 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

Moreover, since the above bound holds for all Q ∈ Q, it holds for the supremum over this class. With
probability at least 1− δ, we have for any k ∈ [K] that

sup
Q∈Q

∣∣∣L̂(πk, Q)− L(πk, Q)
∣∣∣ ≤ 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Q×Π, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

.

The proof is concluded by noting that the above proof holds for any covering size ϵ > 0.

B.4 Proof of Lemma 3 (concentration linear case)

We now instantiate Lemma 5 in the linear Qπ-realizable setting. For this purpose, we compute a
bound on the covering number of the class Πlin, defined in Equation (3).
Lemma 6 (Covering number of Πlin). For ϵ > 0, it holds that the ϵ-covering number of the policy
class Πlin can be bounded as

Nϵ(Πlin, ∥·∥1) ≤
(
1 +

2KηBθBφA

ϵ

)d

,

where, with a slight abuse of notation, ∥·∥1 denotes the distance defined for any π, π′ ∈ Πlin as
∥π − π′∥1 = supx∈X ∥π(· |x)− π′(· |x)∥1. Moreover, let

Qlin = {Q : X ×A → R : ∃θ ∈ B(Bθ), ∀(x, a) ∈ X ×A, Q(x, a) = ⟨θ, φ(x, a)⟩}
be the class of linear action-value functions. Then, it holds that

Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
≤
(
1 +

4KηBθBφA

ϵ

)2d

.

Proof. Let us consider two policies π and π′ in the class Πlin. There exist θ1, . . . , θK ∈ B(Bθ) and
θ′1, . . . , θ

′
K ∈ B(Bθ) such that for any state-action pair (x, a) ∈ X ×A, π and π′ can be written as

π(a |x) =
exp
(
η
〈
φ(x, a),

∑K
k=1 θk

〉)
∑

b∈A exp
(
η
〈
φ(x, b),

∑K
k=1 θk

〉) ,
and

π′(a |x) =
exp
(
η
〈
φ(x, a),

∑K
k=1 θ

′
k

〉)
∑

b∈A exp
(
η
〈
φ(x, b),

∑K
k=1 θ

′
k

〉) .
20

In particular, let us fix a state x ∈ X , and denote θ̄K =
∑K

k=1 θk, θ̄′K =
∑K

k=1 θ
′
k. First, by

Cauchy-Schwarz’s inequality, we have

∥π(· |x)− π′(· |x)∥1 ≤
√
A ∥π(· |x)− π′(· |x)∥ .

By 1-Lipschitzness of the softmax function (Lemma 15), it holds that

∥π(· |x)− π′(· |x)∥1 ≤ η
√
A
∥∥〈φ(x, ·), θ̄K − θ̄′K

〉∥∥
= η

√
A
∑
a∈A

(〈
φ(x, a), θ̄K − θ̄′K

〉)2
≤ η

√
A
∑
a∈A

∥φ(x, a)∥2
∥∥θ̄K − θ̄′K

∥∥2 (Cauchy-Schwarz)

≤ ηBφA
∥∥θ̄K − θ̄′K

∥∥ ,
where the last inequality follows from the bound on the features φ in Assumption 1. Notice that
θ̄K , θ̄

′
K ∈ B(KBθ). Therefore, the ϵ-covering number for Πlin with respect to the distance ∥·∥1,

Nϵ(Πlin, ∥·∥1), is upper-bounded by the ϵ
ηBφA -covering number of the Euclidean ball B(KBθ) with

respect to the distance ∥·∥, and

Nϵ(Πlin, ∥·∥1) ≤ N ϵ
ηBφA

(B(KBθ), ∥·∥)

≤
(
1 +

2KηBθBφA

ϵ

)d

,

where we used Lemma 16 in the last inequality. For the second part of the lemma, let us consider
Q,Q′ ∈ Qlin. By definition of Qlin, there exists θ, θ′ ∈ B(Bθ) such that for any state-action pair
(x, a), Q(x, a) = ⟨φ(x, a), θ⟩ and Q′(x, a) = ⟨φ(x, a), θ′⟩. Then,

max
x,a∈X×A

|Q(x, a)−Q′(x, a)| = max
x,a∈X×A

|⟨φ(x, a), θ − θ′⟩| ≤ Bφ ∥θ − θ′∥ .

Therefore, the ϵ-covering number of Qlin, Nϵ(Qlin, ∥·∥∞), is upper-bounded by the ϵ/Bφ-covering
number of the d-dimensional ball with radius Bθ, Nϵ/Bφ

(B(Bθ), ∥·∥). We have

Nϵ(Qlin, ∥·∥∞) ≤ Nϵ/Bφ
(B(Bθ), ∥·∥) ≤

(
1 +

2BθBφ

ϵ

)d

.

Finally, the proof is concluded by noting that

Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
≤ Nϵ/2(Πlin, ∥·∥1)Nϵ/2(Qlin, ∥·∥∞) .

Finally, the following result proves the concentration of the estimators used in Algorithm 1.

Lemma 3. Let {πk}k∈[K] be the sequence of policies generated by Algorithm 1 and let ∆(πk) be
defined as in Proposition 1. Then, with probability at least 1− δ, it holds that for all k ∈ [K]

∆(πk) ≤
1

K
+ 4

√
d

(1− γ)
2
τE

log

(
2 + 32K2ηBθBφA

(1− γ)δ

)
.

21

Proof. By Lemma 5, it holds that for all k ∈ [K]

∆(πk) ≤ inf
ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Qlin ×Πlin, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE


≤ 1

K
+ 2

√√√√2 log
(
2N(1−γ)/4K

(
Qlin ×Πlin, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

≤ 1

K
+ 2

√√√√ 2

(1− γ)
2
τE

log

(
2

δ

(
1 +

16K2ηBθBφA

1− γ

)2d
)

≤ 1

K
+ 4

√
d

(1− γ)
2
τE

log

(
2 + 32K2ηBθBφA

(1− γ)δ

)
,

where the third inequality follows from Lemma 6.

B.5 Proof of Theorem 1 (sample complexity guarantee for linear Qπ-realizable MDPs)

Theorem 1. Let Assumption 1 hold. Run Algorithm 1 for K = 2 logA
(1−γ)2ε2

iterations, with a learning

rate η = (1− γ)
√

2 logA/K, and τE = O
(

d
(1−γ)2ε2

log
(

BθBφA
(1−γ)ε

))
samples collected by any

expert policy πE. Then, the output satisfies E
[
ρπE − ρπ

out]
= O(ε).

Proof. By Proposition 1, we have

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] .

Using Lemma 2 with a learning rate of η = (1− γ)
√

2 logA
K and dividing by K, we obtain that

1

K

K∑
k=1

L(πk;Qk) ≤
√

2 logA

(1− γ)
2
K
.

Therefore, setting K = 2 logA
(1−γ)2ε2

guarantees 1
K

∑K
k=1 L(πk;Qk) ≤ ε. Then, using the high-

probability bound in Lemma 3 and the fact that 1
K

∑K
k=1 ∆(πk) is a random variable bounded by

2(1− γ)
−1 almost surely, we obtain the following expectation bound which holds for all δ > 0,

1

K

K∑
k=1

E[∆(πk)] ≤
1

K
+ C

√
d

(1− γ)
2
τE

log

(
BθBφA

(1− γ)δε

)
+

2δ

1− γ
,

for some C ∈ R. Note that the choice of parameters ensures 1
K ≤ ε

2 . Setting δ = ε(1−γ)
4 and

τE ≥
2C2d

(1− γ)
2
ε2

log

(
BθBφA

(1− γ)ε

)
this bound implies that 2

K

∑K
k=1 E[∆(πk)] ≤ 4ε. Thus, we conclude that E

[
ρπE − ρπ

out] ≤ 5ε.

B.6 Proof of Lemma 4 (concentration general case)

Before presenting the proof of Theorem 2, we provide a bound on the covering number of the class
Q× ΠQ, where ΠQ is defined in Equation (4). It turns out that the covering number of this class
is exponential in K. In the linear case, the exponential dependence in K was avoided because the
state-action value class is closed under addition.

22

Lemma 7 (Covering number of ΠQ). For ϵ > 0, it holds that the ϵ-covering number of the policy
class ΠQ can be bounded as

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞)
K
,

where, with a slight abuse of notation, ∥·∥1 denotes the distance defined for any π, π′ ∈ ΠQ as
∥π − π′∥1 = supx∈X ∥π(· |x)− π′(· |x)∥1. Moreover,

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ N ϵ

2KηA
(Q, ∥·∥∞)

K+1
.

Proof. Let us consider two policies π and π′ in the class ΠQ. There exist Q1, . . . , QK ∈ Q and
Q′

1, . . . , Q
′
K ∈ Q such that for any state-action pair (x, a) ∈ X ×A, π and π′ can be written as

π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
) ,

and

π′(a |x) =
exp
(
η
∑K

k=1Q
′
k(x, a)

)
∑

b∈A exp
(
η
∑K

k=1Q
′
k(x, b)

) .
Let x ∈ X . Using ∥·∥1 ≤

√
A ∥·∥ in RA and by 1-Lipschitzness of the softmax function (Lemma 15),

it holds that

∥π(· |x)− π′(· |x)∥1 ≤
√
A ∥π(· |x)− π′(· |x)∥

≤ η
√
A

∥∥∥∥∥
K∑

k=1

(Qk(x, ·)−Q′
k(x, ·))

∥∥∥∥∥
≤ η

√
A

K∑
k=1

∥Qk(x, ·)−Q′
k(x, ·)∥ (Triangle inequality)

≤ ηA

K∑
k=1

sup
a∈A

|Qk(x, a)−Q′
k(x, a)| (∥·∥ ≤

√
A ∥·∥∞)

≤ ηA sup
x∈X

{
K∑

k=1

sup
a∈A

|Qk(x, a)−Q′
k(x, a)|

}

≤ ηA

K∑
k=1

∥Qk −Q′
k∥∞ (Triangle inequality) .

In particular, this implies

max
x∈X

∥π(· |x)− π′(· |x)∥1 ≤ ηA

K∑
k=1

∥Q′
k −Qk∥∞ .

Thus, the ϵ-covering number for ΠQ, Nϵ(ΠQ, ∥·∥1), is upper-bounded by the ϵ
KηA -covering number

of the class Q to the power K, i.e., N ϵ
KηA

(Q, ∥·∥∞)
K . Thus,

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞)
K
.

The proof is concluded by noting that the covering number increases with the precision (when ϵ
decreases), and therefore, we can write

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ Nϵ/2(Q, ∥·∥∞)Nϵ/2(ΠQ, ∥·∥1)

≤ Nϵ/2(Q, ∥·∥∞)N ϵ
2KηA

(Q, ∥·∥∞)
K

≤ N ϵ
2KηA

(Q, ∥·∥∞)
K+1

.

23

Finally, the following result proves the concentration of the estimators used in Algorithm 2.

Lemma 4. Let Q ⊂ RX×A denote an arbitrary class, {πk}Kk=1 denote the iterates produced by
Algorithm 2, and let ∆(πk) be defined as in Proposition 1. Then, with probability at least 1− δ, it
holds that for all k ∈ [K]

∆(πk) ≤
1

K
+

√√√√√8(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Proof. Note that by construction, the policy sequence {πk}k∈[K] generated by Algorithm 2 belongs
to the policy class ΠQ. Therefore, invoking Lemma 5, we have that with probability at least 1− δ,
for any k ∈ [K], it holds that

∆(πk) ≤ inf
ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

 .

Therefore, choosing ϵ = 1−γ
4K , we get

∆(πk) ≤
1

K
+

√√√√8 log
(
2N(1−γ)/4K

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

≤ 1

K
+

√√√√√8(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

,

where the last inequality follows from Lemma 7.

B.7 Proof of Theorem 2 (sample complexity guarantee for Qπ-realizable MDPs)

We are now ready for the proof of Theorem 2, which we restate for convenience.

Theorem 2. Let Assumption 2 hold. Run Algorithm 2 for K = 2 logA
(1−γ)2ε2

iterations, with a learning

rate η = (1− γ)
√
2 logA/K and τE = O

(
logA

(1−γ)4ε4
log
(Nε′(Q,∥·∥∞)

ε(1−γ)

))
samples collected by any

expert πE, where ε′ =
(
8
√
2K3/2A logA

)−1
. Then, the output satisfies E

[
ρπE − ρπ

out]
= O(ε).

Proof. Recall that by Proposition 1, we have

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] .

Then, by Lemma 2, it holds that

1

K

K∑
k=1

E[L(πk;Qk)] ≤
log(A)

ηK
+

η

(1− γ)
2 .

Moreover, by Lemma 4, with probability at least 1− δ, it holds that

K∑
k=1

∆(πk) ≤ 1 +K

√√√√√8(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Since 1
K

∑K
k=1 ∆(πk) is bounded almost surely by 2(1− γ)

−1, we have that for any δ > 0

1

K

K∑
k=1

E[∆(πk)] ≤
1

K
+

√√√√√8(K + 1) log

(
2N 1−γ

8K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

+
2δ

1− γ
.

24

Setting η = (1− γ)
√

2 log(A)/K, we get

E
[
ρπE − ρπ

out
]
≤
√

2 log(A)

(1− γ)
2
K

+
2

K
+ 2

√
8(K + 1) log(2Nε′(Q, ∥·∥∞)/δ)

(1− γ)
2
τE

+
4δ

1− γ
,

where we denoted ε′ = 1

8
√
2K3/2

√
log(A)A

. Setting δ = (1−γ)ε
4 and K = 2 logA

(1−γ)2ε2
, and noting that

1
K ≤ ε

2 (for ε < 1, γ ∈ [0, 1] and A ≥ 2), we further have

E
[
ρπE − ρπ

out
]
≤ ε+ ε+ C

√
log(A)

(1− γ)
4
ε2τE

log

(Nε′(Q, ∥·∥∞)

(1− γ)ε

)
+ ε ,

for some constant C > 0. Finally, setting

τE ≥
C2 log(A)

(1− γ)
4
ε4

log

(Nε′(Q, ∥·∥∞)

(1− γ)ε

)
,

where ε′ = (1−γ)3ε3

32(logA)2A
after plugging the value of K, we guarantee that

E
[
ρπE − ρπ

out
]
= O(ε) .

B.8 Improvement for convex Q classes

In this section, we show that, when the class of state-action value functions Q is convex, we can
improve the sample complexity from Theorem 2 to be of the same order as in the linear case, i.e.,
O(ε−2) instead of O(ε−4).

Assumption 3 (Convexity of Q). The class of state-action value functions Q is convex.

The key observation is that, when Q is convex, the covering number of the induced policy class ΠQ
can be bounded without an exponential dependence in K, as we show in the following result.
Lemma 8 (Covering number of ΠQ). Let Assumption 3 hold. Then, for ϵ > 0, the ϵ-covering number
of the policy class ΠQ can be bounded as

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞)

where, with a slight abuse of notation, we denoted ∥·∥1 the distance defined for any π, π′ ∈ ΠQ as
∥π − π′∥1 = supx∈X ∥π(· |x)− π′(· |x)∥1. Moreover,

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ N ϵ

KηA
(Q, ∥·∥∞)

2
.

Proof. Let us consider two policies π and π′ in the class ΠQ. There exist Q1, . . . , QK ∈ Q and
Q′

1, . . . , Q
′
K ∈ Q such that for any state-action pair (x, a) ∈ X ×A, π and π′ can be written as

π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
) ,

and

π′(a |x) =
exp
(
η
∑K

k=1Q
′
k(x, a)

)
∑

b∈A exp
(
η
∑K

k=1Q
′
k(x, b)

) .
Let x ∈ X . Using ∥·∥1 ≤

√
A ∥·∥ in RA and by 1-Lipschitzness of the softmax function (Lemma 15),

it holds that
∥π(· |x)− π′(· |x)∥1 ≤

√
A ∥π(· |x)− π′(· |x)∥

≤ η
√
A

∥∥∥∥∥
K∑

k=1

(Qk(x, ·)−Q′
k(x, ·))

∥∥∥∥∥
≤ η

√
AK

∥∥∥∥∥K−1
K∑

k=1

Qk(x, ·)−K−1
K∑

k=1

Q′
k(x, ·)

∥∥∥∥∥ .
25

At this point, we can define Q̄(x, a) = K−1
∑K

k=1Qk(x, a) and Q̄′(x, a) = K−1
∑K

k=1Q
′
k(x, a)

for all x, a ∈ X ×A and obtain

∥π(· |x)− π′(· |x)∥1 ≤ η
√
AK

∥∥Q̄(x, ·)− Q̄′(x, ·)
∥∥

≤ ηAK
∥∥Q̄(x, ·)− Q̄′(x, ·)

∥∥ (∥·∥ ≤
√
A ∥·∥∞)

≤ ηAK
∥∥Q̄− Q̄′∥∥

∞ .

At this point, notice that by convexity of Q we have that Q̄, Q̄′ ∈ Q. Thus , we have, the ϵ-covering
number for ΠQ, Nϵ(ΠQ, ∥·∥1), is upper-bounded by the ϵ

KηA -covering number of the class Q, i.e.,
N ϵ

KηA
(Q, ∥·∥∞). Thus,

Nϵ(ΠQ, ∥·∥1) ≤ N ϵ
KηA

(Q, ∥·∥∞) .

The proof is concluded by noting that the covering number increases with the precision (when ϵ
decreases), and therefore, we can write

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ Nϵ/2(Q, ∥·∥∞)Nϵ/2(ΠQ, ∥·∥1)
≤ Nϵ/2(Q, ∥·∥∞)N ϵ

KηA
(Q, ∥·∥∞)

≤ N ϵ
KηA

(Q, ∥·∥∞)
2
.

Importantly, the covering number of ΠQ is no longer exponential in K if the class Q is convex.
Therefore, plugging Lemma 8 into the general concentration argument in Lemma 5, we obtain the
following result.
Lemma 9. Let Assumption 3 hold, let {πk}k∈[K] be the sequence of policies generated by Algorithm 2,
and ∆(πk) be defined as in Proposition 1. Then, with probability at least 1− δ, for any k ∈ [K], it
holds that

∆(πk) ≤
1

K
+

√√√√√16 log

(
2N 1−γ

4K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Proof. Invoking Lemma 5, we have that with probability at least 1− δ, for any k ∈ [K], it holds that

∆(πk) ≤ inf
ϵ:ϵ>0

 4ϵ

1− γ
+

√√√√8 log
(
2Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

 .

Then, choosing ϵ = 1−γ
4K , we get

∆(πk) ≤
1

K
+

√√√√8 log
(
2N(1−γ)/4K

(
Q×ΠQ, ∥·∥∞,1

)
/δ
)

(1− γ)
2
τE

≤ 1

K
+

√√√√√16 log

(
2N 1−γ

4K2ηA

(Q, ∥·∥∞)/δ

)
(1− γ)

2
τE

.

Finally, putting all together we can derive the following sample complexity bound for the convex
case.
Theorem 3. Let Assumption 3 hold, and let πout be the policy obtained running Algorithm 2 for
K = 2 logA

(1−γ)2ε2
iterations, with a learning rate η = (1− γ)

√
2 log(A)/K and

τE = O
(

1

(1− γ)
2
ε2

log

(Nε′(Q, ∥·∥∞)

ε(1− γ)

))

26

samples collected by any expert πE, where ε′ = (1−γ)3ε3

32(logA)2A
. Then, the output satisfies

E
[
ρπE − ρπ

out
]
= O(ε).

Proof. Following the arguments used in the general case, and setting η = (1− γ)
√
2 log(A)/K, we

get

E
[
ρπE − ρπ

out
]
≤
√

2 log(A)

(1− γ)
2
K

+
2

K
+ 2

√
16 log(2Nε′(Q, ∥·∥∞)/δ)

(1− γ)
2
τE

+
4δ

1− γ
,

where we denoted ε′ = 1

8
√
2K3/2

√
log(A)A

. Then, setting δ = (1−γ)ε
4 and K = 2 logA

(1−γ)2ε2
, we further

have

E
[
ρπE − ρπ

out
]
≤ ε+ ε+ 2

√
16 log(8Nε′(Q, ∥·∥∞)/((1− γ)ε))

(1− γ)
2
τE

+ ε.

Finally, setting

τE ≥
64

(1− γ)
2
ε2

log

(
8Nε′(Q, ∥·∥∞)

ε(1− γ)

)
,

we guarantee that
E
[
ρπE − ρπ

out
]
= O(ε) .

This result also provides a proof for a different sample complexity guarantee in the general case, as
we show below.
Corollary 1 (Convex-hull reduction). Let Assumption 2 hold and let πout be the policy obtained
running Algorithm 2 for K = 2 logA

(1−γ)2ε2
iterations, with a learning rate η = (1− γ)

√
2 log(A)/K

and

τE = O
(

1

(1− γ)
2
ε2

log

(Nε′(conv(Q), ∥·∥∞)

ε(1− γ)

))
samples collected by any expert πE, where ε′ = (1−γ)3ε3

32(logA)2A
and conv(·) refers to taking the convex

hull. Then, the output satisfies E
[
ρπE − ρπ

out
]
= O(ε).

Remark 1. We note that, in general, there is no way to upper bound the covering number of conv(Q)
in terms of that of Q; the former can be much larger than the latter. Therefore, the sample complexity
in Corollary 1 can be strictly worse than that in Theorem 2, depending on the structure of Q.

Proof. We follow the same steps as the proof of Theorem 3; the only difference is that we replace the
convexity assumption on Q by working with its convex hull in the covering-number bounds.

Fix any policy π and recall that L̂(π;Q) is linear in Q. Since a linear functional achieves the same
supremum over a set and over its convex hull, we have

sup
Q∈conv(Q)

L̂(π;Q) = sup
Q∈Q

L̂(π;Q) .

(Note the same argument holds for the population loss L(π;Q).) In particular, the critic update
in Algorithm 2 (which selects Qk ∈ arg maxQ∈Q L̂(πk;Q)) is consistent with optimizing over
conv(Q): it already chooses an element of conv(Q) (since Q ⊆ conv(Q)) achieving the same
maximum value.

We check that the boundedness is preserved after taking the convex hull. By Assumption 2, we have
∥Q∥∞ ≤ (1− γ)

−1 for all Q ∈ Q. Hence for any Q̃ ∈ conv(Q) written as Q̃ =
∑

i wiQ
(i) with

some discrete probability distribution w and Q(i) ∈ Q, we have
∥∥∥Q̃∥∥∥

∞
≤∑i wi

∥∥Q(i)
∥∥
∞ ≤ 1

1−γ .
Thus the boundedness condition used in the concentration arguments continues to hold when working
with conv(Q).

27

Next, we show that the covering-number bound of Lemma 8 continues to hold with Q replaced by
conv(Q) on the right-hand side, even if Q itself is not convex. That is, for all ϵ > 0,

Nϵ(ΠQ, ∥·∥1) ≤ Nϵ/(KηA)(conv(Q), ∥·∥∞) . (5)

Indeed, take any π, π′ ∈ ΠQ. By definition, there exist Q1, . . . , QK ∈ Q and Q′
1, . . . , Q

′
K ∈ Q such

that, for all (x, a) ∈ X ×A,

π(a |x) =
exp
(
η
∑K

k=1Qk(x, a)
)

∑
b∈A exp

(
η
∑K

k=1Qk(x, b)
) , π′(a |x) =

exp
(
η
∑K

k=1Q
′
k(x, a)

)
∑

b∈A exp
(
η
∑K

k=1Q
′
k(x, b)

) .
Repeating the Lipschitz argument in Lemma 8, we obtain for every x ∈ X ,

∥π(· |x)− π′(· |x)∥1 ≤ ηAK
∥∥Q̄− Q̄′∥∥

∞ ,

where Q̄ = K−1
∑K

k=1Qk and Q̄′ = K−1
∑K

k=1Q
′
k. Crucially, even if Q is not convex, we have

Q̄, Q̄′ ∈ conv(Q). This proves (5) exactly as in Lemma 8. Moreover, since Q ⊆ conv(Q), we also
have Nϵ(Q, ∥·∥∞) ≤ Nϵ(conv(Q), ∥·∥∞). Combining with (5), we obtain for all ϵ > 0,

Nϵ

(
Q×ΠQ, ∥·∥∞,1

)
≤ Nϵ/(KηA)(conv(Q), ∥·∥∞)

2
.

The rest of the proof is unchanged, and yields the stated condition on τE with Nε′(conv(Q), ∥·∥∞) in
place of Nε′(Q, ∥·∥∞).

B.9 Different sample complexity guarantee for finite Q classes

In this section, we provide an alternative sample complexity guarantee for Algorithm 2 in the special
case where the value-function class Q is finite. The key observation is that when Q is finite, the set
of policies that can be produced by Algorithm 2 up to iteration K is also finite and can be controlled
by a simple counting argument. This allows us to avoid the covering-number bound of Lemma 4
and obtain a dependence in τE of order Õ

(
ε−2
)

(up to logarithmic factors), albeit at the cost of a
worst dependency in the size of the class Q, which we discuss later. We start with two standard
combinatorial lemmas, that we prove here for completeness.
Lemma 10 (Stars and bars). Let m ≥ 1 and t ≥ 0 be integers. The number of integer-valued vectors
n = (n1, . . . , nm) ∈ Nm such that

∑m
j=1 nj = t is∣∣∣{n ∈ Nm :
∑m

j=1 nj = t
}∣∣∣ = (t+m− 1

m− 1

)
.

Proof. Consider the set St,m of strings of length t+m−1 over the alphabet {⋆, |} containing exactly
t symbols ⋆ and exactly m− 1 symbols |. Clearly, |St,m| =

(
t+m−1
m−1

)
since specifying such a string

is equivalent to choosing the (m− 1) positions of the bars among t+m− 1 positions.

We construct a bijection between St,m and the set Nt,m = {n ∈ Nm :
∑m

j=1 nj = t}. Given a string
s ∈ St,m, read it from left to right and let nj(s) be the number of ⋆ symbols occurring between the
(j − 1)-th bar and the j-th bar, with the convention that the 0-th bar is placed before the first character
and the m-th bar is placed after the last character. This produces a vector

n(s) = (n1(s), . . . , nm(s)) ∈ Nm.

By construction, the total number of stars in the string is t, hence
∑m

j=1 nj(s) = t, so n(s) ∈ Nt,m.

Conversely, given any n = (n1, . . . , nm) ∈ Nt,m, define a string s(n) ∈ St,m by concatenating n1
stars, then a bar, then n2 stars, then a bar, and so on, ending with nm stars:

s(n) = ⋆ · · · ⋆︸ ︷︷ ︸
n1

| ⋆ · · · ⋆︸ ︷︷ ︸
n2

| · · · | ⋆ · · · ⋆︸ ︷︷ ︸
nm

.

This string has exactly t =
∑m

j=1 nj stars and m− 1 bars, so s(n) ∈ St,m. Finally, it is clear from
the constructions that n(s(n)) = n for all n ∈ Nt,m and that s(n(s)) = s for all s ∈ St,m. Therefore
s 7→ n(s) is a bijection between St,m and Nt,m, and we conclude

|Nt,m| = |St,m| =
(
t+m− 1

m− 1

)
.

28

Lemma 11 (Hockey-stick identity). Let m ≥ 1 and K ≥ 0 be integers. Then
K∑
t=0

(
t+m− 1

m− 1

)
=

(
K +m

m

)
.

Proof. We give a short proof by induction on K using Pascal’s identity. For K = 0, the left-hand
side equals

(
m−1
m−1

)
= 1 and the right-hand side equals

(
m
m

)
= 1, so the identity holds.

Assume the identity holds for some K ≥ 0. Then
K+1∑
t=0

(
t+m− 1

m− 1

)
=

K∑
t=0

(
t+m− 1

m− 1

)
+

(
K + 1 +m− 1

m− 1

)
.

By the induction hypothesis, the first sum equals
(
K+m
m

)
. Hence

K+1∑
t=0

(
t+m− 1

m− 1

)
=

(
K +m

m

)
+

(
K +m

m− 1

)
.

Applying Pascal’s identity
(
N
r

)
+
(

N
r−1

)
=
(
N+1
r

)
with N = K +m and r = m, we obtain(

K +m

m

)
+

(
K +m

m− 1

)
=

(
K +m+ 1

m

)
=

(
(K + 1) +m

m

)
.

This is exactly the desired identity for K + 1, completing the induction.

We also provide an upper bound on a binomial coefficient that will be useful later.
Lemma 12 (Binomial coefficient upper bounds). Let m ≥ 1 and K ≥ 0 be integers. Then(

K +m

m

)
≤
(
e(K +m)

m

)m

.

In particular,

log

(
K +m

m

)
≤ m log

(
e(K +m)

m

)
.

Proof. We start from the factorial expression(
K +m

m

)
=

(K +m)!

K!m!
=

∏m
j=1(K + j)

m!
.

Since K + j ≤ K +m for all j ∈ [m], we have
m∏
j=1

(K + j) ≤ (K +m)
m
. (6)

Next we lower bound m!. Using the integral bound
m∑
j=1

log j ≥
∫ m

1

log xdx = [x log x− x]
m
1 = m logm−m+ 1,

we obtain
log(m!) ≥ m logm−m+ 1

which implies

m! ≥ em logm−m+1 = e
(m
e

)m
≥
(m
e

)m
.

Combining this with (6) yields(
K +m

m

)
≤ (K +m)

m

(m/e)
m =

(
e(K +m)

m

)m

,

which proves the first inequality. Taking log on both sides gives the second.

29

We are now ready to state and prove the main result of this section.

Theorem 4. Let Assumption 2 hold and assume that Q is finite with cardinality m = |Q| <∞ and

A ≥ 3. Run Algorithm 2 for K = 2 logA
(1−γ)2ε2

iterations, with a learning rate η = (1− γ)
√

2 logA
K

and τE = O
(

m
(1−γ)2ε2

log
(

logA
(1−γ)ε

))
samples collected by any expert πE. Then, the output satisfies

E
[
ρπE − ρπ

out
]
= O(ε).

Remark 2. The result above combined with Theorem 2 shows that, for finite Q, Algorithm 2 returns
an O(ε)-optimal policy with a number of expert trajectories scaling as

τE = Õ
(
min

(
m

(1− γ)
2
ε2

log

(
logA

(1− γ)ε

)
,

logA

(1− γ)
4
ε4

log

(
m

(1− γ)ε

)))
.

This shows that Theorem 4 is meaningful only when m is relatively small, because we are trading an
exponentially worse dependence in m for a better polynomial dependence in ε−1.

Proof. We follow the same proof structure as the other theorems. By Proposition 1, we have

E
[
ρπE − ρπ

out
]
≤ 1

K

K∑
k=1

E[L(πk;Qk)] +
2

K

K∑
k=1

E[∆(πk)] ,

Then, by Lemma 2, it holds that

1

K

K∑
k=1

E[L(πk;Qk)] ≤
log(A)

ηK
+

η

2(1− γ)
2 .

Let Q =
{
Q(1), . . . , Q(m)

}
. For any vector n = (n1, . . . , nm) ∈ Nm, and any state-action pair

(x, a), define the policy πn by

πn(a |x) =
exp
(
η
∑m

j=1 njQ
(j)(x, a)

)
∑

b∈A exp
(
η
∑m

j=1 njQ
(j)(x, b)

) .
Define the (finite) policy set

ΠK,m =

πn : n ∈ Nm,

m∑
j=1

nj ≤ K

 .

Note that for any k ∈ [K], πk ∈ ΠK,m. Indeed, Algorithm 2 computes policies of the form

πk(a |x) =
exp
(
η
∑k−1

i=1 Qi(x, a)
)

∑
b∈A exp

(
η
∑k−1

i=1 Qi(x, b)
) .

Since each Qi ∈ Q, there exists a (random) count vector n(k) ∈ Nm such that n(k)j equals the number

of indices i ∈ {1, . . . , k − 1} with Qi = Q(j). Then
∑m

j=1 n
(k)
j = k − 1 ≤ K and

k−1∑
i=1

Qi(x, a) =

m∑
j=1

n
(k)
j Q(j)(x, a),

which shows πk = πn(k) ∈ ΠK,m. Next, we bound |ΠK,m|. By Lemma 10, for a fixed integer t ≥ 0,
the number of vectors n ∈ Nm satisfying

∑m
j=1 nj = t is

(
t+m−1
m−1

)
. Therefore, by Lemma 11,

|ΠK,m| ≤
K∑
t=0

(
t+m− 1

m− 1

)
=

(
K +m

m

)
.

30

Fix π ∈ ΠK,m and Q ∈ Q. Recall that

L̂(π;Q) =
1

τE

τE∑
i=1

(
Q
(
Xi

E , A
i
E

)
−Q

(
Xi

E , π
))
, L(π;Q) = E(X,A)∼µπE

[Q(X,A)−Q(X,π)] .

Define the i.i.d. random variables

Zi = Q
(
Xi

E , A
i
E

)
−Q

(
Xi

E , π
)
.

By Assumption 2, ∥Q∥∞ ≤ 1
1−γ , hence |Zi| ≤ 2

1−γ . By Hoeffding’s inequality (Lemma 13), for
any t > 0,

P
[∣∣∣L̂(π;Q)− L(π;Q)

∣∣∣ > t
]
≤ 2 exp

(
− t

2τE(1− γ)
2

8

)
.

Let M = |ΠK,m| |Q| ≤ m
(
K+m
m

)
. A union bound over all pairs (π,Q) ∈ ΠK,m × Q yields that

with probability at least 1− δ,

sup
π∈ΠK,m

sup
Q∈Q

∣∣∣L̂(π;Q)− L(π;Q)
∣∣∣ ≤√8 log(2M/δ)

(1− γ)
2
τE

.

Thus, on this event, for every π ∈ ΠK,m we have

∆(π) = sup
Q∈Q

∣∣∣L̂(π;Q)− L(π;Q)
∣∣∣ ≤√8 log(2M/δ)

(1− γ)
2
τE

.

Since πk ∈ ΠK,m for all k ∈ [K], we conclude that on the same event, ∆(πk) is bounded by the same
quantity for all k ∈ [K]. Furthermore, note that for any π, ∆(π) ≤ 2

1−γ almost surely. Therefore, for
every k,

2

K

K∑
k=1

E[∆(πk)] ≤ 2

√
8 log(2M/δ)

(1− γ)
2
τE

+
4δ

1− γ
.

Finally, setting η = (1− γ)
√

2 logA
K , we get

E
[
ρπE − ρπ

out
]
≤
√

2 logA

(1− γ)
2
K

+ 2

√
8 log(2M/δ)

(1− γ)
2
τE

+
4δ

1− γ
.

By Lemma 12, logM ≤ m log(4K). Setting K = 2 logA
(1−γ)2ε2

and δ = (1−γ)ε
4 yields

E
[
ρπE − ρπ

out
]
≤ ε+ 2

√√√√ 8m

(1− γ)
2
τE

log

(
64 logA

(1− γ)
3
ε3

)
+ ε .

It remains to choose τE so that the remaining term is less than ε, i.e.,

τE ≥
Cm

(1− γ)
2
ε2

log

(
logA

(1− γ)ε

)
,

for some constant C > 0. With this choice, we obtain E
[
ρπE − ρπ

out
]
= O(ε), concluding the

proof.

31

C Technical tools

Lemma 13 (Hoeffding’s inequality; Vershynin, 2018, Theorem 2.2.6). Let X1, . . . , Xn be indepen-
dent random variables such that |Xi| ≤M for all i. Then, for any t > 0,

P

[∣∣∣∣∣ 1n
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

]
≤ 2e−

nt2

2M2 .

Lemma 14 (Simplified version of Orabona, 2023, Theorem 6.10). Let us consider a non-empty
closed convex set V , an arbitrary sequence of adaptively chosen loss vectors (ℓk)

K
k=1 such that

∥ℓk∥∞ ≤ ℓmax, and let D : V × int(V) → R be a Bregman divergence induced by a λ-strongly
convex function in the ℓ1-norm. Then, for all u ∈ V , the sequence (xk)

K
k=1 generated for any k as

xk+1 = arg min
v∈V

{
⟨ℓk, v⟩+

1

η
D(v, xk)

}
for an arbitrary initial x1 satisfies

K∑
k=1

⟨ℓk, xk − u⟩ ≤ D(u, x1)

η
+
ηKℓ2max

2λ
.

Lemma 15 (Gao and Pavel, 2018, Proposition 4). For any η > 0, let the softmax function be defined
for any z ∈ Rn as

softmax(z) =

(
eηzi∑n
j=1 e

ηzj

)
i∈[n]

.

Then, the softmax function is η-Lipschitz with respect to ∥·∥2. That is, for any z, z′ ∈ Rn, we have

∥softmax(z)− softmax(z′)∥2 ≤ η ∥z − z′∥2 .
Lemma 16 (Covering number of a Euclidean ball; Vershynin, 2018, Corollary 4.2.11). For ϵ > 0,
the ϵ-covering number of the Euclidean ball of radius R in Rd, B(R), is bounded as

Nϵ(B(R), ∥·∥) ≤
(
1 +

2R

ϵ

)d

.

32

a1 a2 a3 a4 a5
0

0.2

0.4

0.6

Action (a)

Pr
ob

ab
ili

ty
(π
(a
))

πE(a) ∝ e(a−3)2

πlin,1(a) ∝ e1·(a−3)

πlin,−1(a) ∝ e−1·(a−3)

Figure 3: Comparison of linear and quadratic softmax policies with A = 5 actions and features
φ(a) = a− 3.

D On the guarantees of misspecified BC in linear Qπ-realizable MDPs

It is natural to question whether existing bounds for behavioral cloning (BC) in misspecified settings
(e.g., Rohatgi et al., 2025; Foster et al., 2024) offer satisfactory sample complexity guarantees for
imitating an arbitrarily complex expert within a linear Qπ-realizable MDP. This section presents a
negative result, demonstrating that the approximation error incurred by BC, when restricted to a linear
softmax policy class (denoted Πlin), can be large even in a simple linear Qπ-realizable MDP.

Consider a single-state MDP defined as follows. Let A ∈ N∗ be the number of actions, with the
action space A = {1, . . . , A}. For each action a ∈ A, there is a scalar feature φ(a) = −A

2 + a ∈ R.
To ensure the MDP is linear Qπ-realizable, the true reward function is rtrue(a) = ζφ(a) for some
parameter ζ ∈ R unknown to the learner. We define a softmax quadratic expert policy πE as

πE(a) =
exp
(
φ(a)

2
)

∑
b∈A exp

(
φ(b)

2
) .

This expert policy assigns the highest probability to extremal actions (i.e., a = 1 and a = A). In
contrast, linear softmax policies π ∈ Πlin (which are commonly used for BC in feature-based settings)
are inherently designed to produce monotonic probability distributions over the action space when
features are ordered (i.e., for actions a, a′ ∈ A with a′ > a, either π(a) ≤ π(a′) or π(a) ≥ π(a′)).
Consequently, for A > 2, no policy in Πlin can achieve a small Hellinger distance to this softmax
quadratic expert. We illustrate this in Figure 3, where we compare the softmax quadratic expert
with two linear softmax policies. Due to the monotonicity constraint, the linear softmax policies are
unable to approximate the expert policy everywhere.

It remains an open question whether behavioral cloning analyses can be refined to better leverage the
underlying MDP structure in such misspecified scenarios. Specifically, for the constructed example,
it would be advantageous if the misspecification error in existing bounds were characterized in terms
of feature expectations (e.g.,

∑
a∈A π(a)φ(a)) rather than state-action distributions.

33

E Additional experiments

E.1 BC with a simple expert class can outperform SPOIL

We consider a linear MDP (which is a special case of linear Qπ-realizability) with features of
dimension d = 3. The expert class, denoted by ΠE

lin,small, is the class of softmax linear policies
with features corresponding to the linear MDP features. That is, BC is given the most compact
representation possible. On the other hand, the Qlin,large class is created using the linear MDP
features, plus a set of 20d redundant features. It follows that the complexity of the Q function class is
larger than the expert policy function class and therefore BC is expected to outperform SPOIL on this
instance. This fact is confirmed by the experiment shown in Figure 4.

0 250 500 750 1000
Epochs

70
80
90

100

R
et

u
rn

πE ∈ ΠE
lin,small, Q

π ∈ Qlin,large

SPOIL

BC

Expert

Figure 4: Instance in which BC with a simple expert class can outperform SPOIL.

E.2 Comparison with IQ-Learn in the linear case

We make a comparison with IQ-Learn in the Linear MDP described in Section 5. In this experiment,
we consider a linear Q-function class for both SPOIL and IQ-Learn, as the environment has this
structure. The results in Figure 5 show that, like SPOIL, IQ-Learn’s performance is unaffected by
the complexity of the expert class. However, SPOIL still reaches a higher cumulative reward in this
environment. To ensure this is a fair comparison, we used the same learning rate for the policy updates
in SPOIL and IQ-Learn. Moreover, we tested different choices for IQ-Learn’s critic learning rate,
and we report here the best results we could obtain.

0 250 500 750 1000
Epochs

55
60
65
70

R
et

u
rn

πE ∈ ΠE
lin

SPOIL

BC

IQLearn

Expert

0 250 500 750 1000
Epochs

52
56
60
64
68

R
et

u
rn

πE ∈ ΠE
NN

SPOIL

BC

IQLearn

Expert

Figure 5: Experiments in continuous-state domains. Curves are averaged across 10 seeds.

E.3 Omitted experimental details

For the first experiment shown in Figure 1, one may wonder if the underperformance of behavioural
cloning might be due to underoptimizing the empirical log-likelihood. We have ruled out this
possibility by going into great lengths to optimize the likelihood, and in fact the log-likelihood has
approached its minimum value of zero very closely in our experiment (meaning that the probability
assigned to the actions seen in the expert dataset is almost 1). For this optimization task, we
have used Adam with default parameter settings. For the experiments in Figure 2, algorithms are

34

implemented using a shared neural network architecture consisting of 3 layers with 64 neurons per
layer. This architecture matches the one used for experiments in the same environments by Garg
et al. (2021). For behavioral cloning, we employ a separate three-layer multilayer perceptron with
128 neurons per layer. Implementations of IQ-Learn and P2IL utilize their original hyperparameter
configurations as reported in their respective publications. All networks are optimized using the
Adam optimizer (Kingma and Ba, 2014) with a learning rate of 5 × 10−3 and default momentum
parameters (β1 = 0.9, β2 = 0.999). The implementations are built using PyTorch (Paszke et al.,
2019).

For algorithms with a primal-dual structure (i.e., IQ-Learn, P2IL, and SPOIL), the policy update
is performed using a Soft DQN-style update (c.f . Haarnoja et al., 2017) with a fixed temperature
parameter. These three algorithms thus only differ in terms of their Q-value updates, and thus this
experiment serves to assess the effectiveness of the novel critic loss introduced in this work.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claims made in the abstract and introduction are supported by sample
complexity bounds and experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the limitations are discussed in the conclusion where we also present
possible ideas top overcome such limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36

Answer: [Yes]
Justification: Yes, the main proof ideas are clearly explained in the main text in the Analysis
section and full proofs are given in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the proofs are explained to the best of our clarity and should be easy to
follow for researchers in the field. Also the experiments are explained in enough details to
be reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

37

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, the code is added in the supplementary material and available online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all environments are standard and known in the RL community. So the
experiments should be understandable by RL researchers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we include results averaged over 10 seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our experiments are small scale and can be run on a laptop in within 1/2 days.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this work is aligned with the NeurIPS Ethics Guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is fundamental. We do not expect direct impact on the society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

39

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite all relevant works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

40

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

41

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Primal-dual offline imitation learning
	SPOIL for linear function approximation
	SPOIL for general function approximation

	Analysis
	Linear function approximation
	General function approximation

	Numerical experiments
	Continuous states experiments

	Conclusions
	Additional related works
	Omitted proofs
	Proof of Lemma 1 (performance difference lemma)
	Proof of Lemma 2 (regret of the policy player)
	General concentration argument
	Proof of Lemma 3 (concentration linear case)
	Proof of Theorem 1 (sample complexity guarantee for linear Q-pi-realizable MDPs)
	Proof of Lemma 4 (concentration general case)
	Proof of Theorem 2 (sample complexity guarantee for Q-pi-realizable MDPs)
	Improvement for convex Q classes
	Different sample complexity guarantee for finite Q classes

	Technical tools
	On the guarantees of misspecified BC in linear Q-pi-realizable MDPs
	Additional experiments
	BC with a simple expert class can outperform SPOIL
	Comparison with IQ-Learn in the linear case
	Omitted experimental details

