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Abstract

Graph-structured data plays a vital role in nu-001
merous domains, such as social networks, cita-002
tion networks, commonsense reasoning graphs003
and knowledge graphs. While graph neural004
networks have been employed for graph pro-005
cessing, recent advancements have explored006
integrating large language models for graph-007
based tasks. In this paper, we propose a novel008
approach named Learnable Graph Pooling To-009
ken (LGPT), which addresses the limitations of010
the scalability issues in node-level projection011
and information loss in graph-level projection.012
LGPT enables flexible and efficient graph rep-013
resentation by introducing learnable parame-014
ters that act as tokens in large language mod-015
els, balancing fine-grained and global graph016
information. Additionally, we investigate an017
Early Query Fusion technique, which fuses018
query context before constructing the graph019
representation, leading to more effective graph020
embeddings. Our method achieves a 4.13%021
performance improvement on the GraphQA022
benchmark without training the large language023
model, demonstrating significant gains in han-024
dling complex textual-attributed graph data.025

1 Introduction026

A graph is a data structure composed of nodes and027

edges that represent the relationships between those028

nodes. Graphs are essential for representing com-029

plex relational situations in the real world. For030

example, social networks (Li et al., 2024; Myers031

et al., 2014) like X (Twitter) and urban networks, ci-032

tation networks (Hu et al., 2020) in academic fields033

that represent authorship, affiliations, and citations,034

protein and molecular graphs (Cao et al., 2023) for035

depicting complex molecular interactions, common-036

sense reasoning graphs like ConceptNet (Speer037

et al., 2017), and knowledge graphs such as Wiki-038

data (Vrandečić and Krötzsch, 2014) that store var-039

ious facts. Traditionally, graph data has been pro-040

cessed using handcrafted feature extraction meth-041

ods like Katz Index and PageRank (Katz, 1953; 042

Page, 1999). However, with the recent advance- 043

ments in deep learning, Graph Neural Networks 044

(GNNs) such as GCN, GAT, and Graph Trans- 045

former have become widely researched for process- 046

ing graphs (Kipf and Welling, 2016; Veličković 047

et al., 2017; Shi et al., 2020). 048

Meanwhile, the field of Natural Language Pro- 049

cessing (NLP) has experienced a revolutionary shift 050

with the advent of Large Language Models (LLMs). 051

These models, pre-trained on massive text datasets, 052

possess general problem-solving abilities (Chung 053

et al., 2024). Recently, it has been reported that 054

LLMs can also understand the structural informa- 055

tion of graphs and solve graph tasks (Fatemi et al., 056

2023; Wang et al., 2024a; Chai et al., 2023). The 057

combination of LLMs and graphs is particularly 058

useful in Text-Attributed Graphs (TAGs), where 059

each node and edge contains textual features. One 060

of the simplest approaches is to transform graph 061

information into text and feed it into the LLM 062

as demonstrated by Baek et al. (2023); Wu et al. 063

(2023); Moiseev et al. (2022); Kim et al. (2024). 064

However, graphs contain highly complex struc- 065

tural information, making it difficult to convert 066

them into text. Moreover, the performance varies 067

significantly depending on how the graph is textual- 068

ized, and the optimal text encoding method is still 069

unknown (Fatemi et al., 2023). To overcome these 070

limitations, Perozzi et al. (2024) has achieved sig- 071

nificant performance improvements by embedding 072

graph data using GNNs and projecting it into the 073

word embedding space of LLMs through contin- 074

uous prompting. Furthermore, Tian et al. (2024) 075

proposed a technique that distills query-related in- 076

formation during the interaction between graph and 077

query via cross-modality pooling. 078

This continuous prompting method for graphs 079

can be categorized into node-level projection and 080

graph-level projection (Ren et al., 2024). Node- 081

level projection passes the information of all nodes, 082
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obtained through the GNN, to the LLM and is used083

in tasks such as node classification or link predic-084

tion, which require fine-grained structural infor-085

mation. Graph-level projection compresses node086

representations into a single vector and passes it to087

the LLM, which is useful in tasks like graph classi-088

fication that require global graph information.089

However, both approaches have limitations. In090

node-level projection, each node representation is091

treated as a token by the LLM. Since graphs tend092

to grow exponentially, this method lacks scalability093

given the limited prompt length of LLM. Even if094

a model, like Beltagy et al. (2020), can process095

extremely long prompts, the computational cost be-096

comes prohibitive. Graph-level projection, where097

all node information is pooled into a single vector098

and passed to the LLM, avoids the scalability is-099

sue. However, converting a graph with complex100

context into a single vector results in information101

loss (Bahdanau, 2014). Given that LLMs must pro-102

cess a graph with vast amounts of information as a103

single token, this is inevitable.104

To address these limitations, we propose a new105

concept named Learnable Graph Pooling Token106

(LGPT). This allows graph information to be repre-107

sented by n learnable parameters, which are passed108

to the LLM as n tokens. This approach resolves109

both the computational issue of node-level projec-110

tion and the information loss problem in graph-111

level projection. Additionally, we investigate an112

early query fusion method and deal with the limita-113

tions of a late query fusion method. While cross-114

modality pooling as the late query fusion in Tian115

et al. (2024) combines query context with graph116

embeddings, it does so after the graph is encoded.117

In contrast, we propose an approach that integrates118

query context before constructing the graph repre-119

sentation, thereby offering a more effective graph120

embedding method that takes the query context into121

account.122

Our main contribution is as follows:123

• We propose a novel concept of Learnable124

Graph Pooling Token (LGPT), which en-125

ables balanced projection between node-level126

and graph-level projection. As a result, we127

achieved more than a 4.13% improvement128

in performance on the GraphQA benchmark129

dataset without LLM training.130

• We explore a method to integrate the early131

query fusion method during the graph em-132

bedding process. Through experiments, we133

demonstrate that incorporating query context 134

before constructing the node embeddings of 135

the graph leads to greater performance im- 136

provements than combining it afterward. 137

2 Related Works 138

2.1 LLM as Graph Encoder 139

Fatemi et al. (2023) and Wang et al. (2024a) demon- 140

strated that encoding graphs into various textual 141

forms allows LLMs to solve graph-centric tasks. 142

Additionally, Wang et al. (2024b) advanced Chain 143

of Thought (CoT) (Wei et al., 2022) into a graph- 144

suitable format by adding the instruction “Let’s 145

construct a graph with the nodes and edges first” 146

enabling LLMs to map graph information into 147

conceptual space. However, these approaches all 148

have the limitation of processing graphs at the text 149

level. Since graphs contain complex relational in- 150

formation, converting them into text loses a lot of 151

structural knowledge. To overcome these limita- 152

tions, Perozzi et al. (2024); Tian et al. (2024) have 153

emerged that embed graphs using GNNs and inte- 154

grate them with LLMs. Notably, He et al. (2024) 155

achieved significant performance improvements by 156

using both textual graphs and GNN embeddings. 157

2.2 Learnable Pooling Method 158

Sum and Mean Pooling have traditionally been 159

used as readout functions to create graph embed- 160

dings from node embeddings in GNNs. However, 161

they suffer from scalability issues that arise when 162

dealing with graphs that have a varying number of 163

nodes, an inability to emphasize important nodes 164

and information loss in compressing node informa- 165

tion into a single vector. To address these limita- 166

tions, learnable pooling methods that incorporate 167

learnable parameters have been explored. Ying 168

et al. (2018) introduced hierarchical pooling by 169

applying soft clustering to reflect the hierarchical 170

structure of graphs. Also, Lee et al. (2019) pro- 171

posed a learnable pooling method by incorporating 172

an attention mechanism to capture more informa- 173

tion from important nodes. Nevertheless, these 174

approaches still face the risk of information loss as 175

they condense numerous node embeddings into a 176

single graph embedding vector. 177

2.3 Query Aware Graph Representation 178

In Tian et al. (2024), a method was introduced to 179

combine graph and query representations as cross 180

modality pooling using a cross-attention mecha- 181
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nism. While this merges the information from the182

graph and the query, it has the limitation of being183

a Late Fusion approach, as the graph and query184

information are encoded independently before be-185

ing combined. In Yasunaga et al. (2021), a virtual186

query node is created within the graph to perform187

graph encoding that is dependent on the meaning188

of the query. This approach is effectively used in189

Early Fusion for query-aware graph representation,190

as seen in its connection to instruction nodes in191

models like Zhang et al. (2022) and Yasunaga et al.192

(2022).193

3 Methodology194

3.1 Problem Statement195

We address the problem of Textual Attributed196

Graph Question Answering (Graph QA) by com-197

bining a graph encoder with a large language model.198

In Graph QA tasks, a query q and a graph G which199

is provided as external knowledge related to the200

query are given. Our goal is to generate the opti-201

mal answer a∗ for q by utilizing the information202

contained in G.203

a∗ = argmax
a

p(a|q,G) (1)204

In this context, G is a text-attributed graph,205

where both nodes and the edges are associated206

with textual attributes. Formally, G is defined as207

G = {V,L, {xn}n∈V, {xl}l∈L}, where V and L208

represent the sets of nodes (vertices) and edges209

(links). xn and xl denote the textual attributes of210

the nodes and edges.211

The p(a|q,G) is composed of a Graph Retriever212

pθ(S|q,G) and an Answer Generator pϕ(a|q,S)213

where S is the sub-graph which related with q214

(Peng et al., 2024). In this paper, we borrow He215

et al. (2024) results for the graph retriever and focus216

on optimizing pϕ(a|q,S) by redefining the prob-217

lem.218

p(a|q,G) = pθ(S|q,G)pϕ(a|q,S) (2)219

≈ pϕ(a|q,S) (3)220

3.2 Query Aware Learnable Graph Pooling221

Tokens222

3.2.1 Overview223

The process of pϕ(a|q,S) is divided into three main224

components as shown in Figure 1. First, the given225

sub-graph S is transformed into a textual graph via226

a discrete prompt template T . Then it is processed227

by word embedding layer WE of the LLM. Second, 228

the graph S is converted into graph embeddings 229

through a graph encoder GEψ which has learnable 230

parameters ψ. 231

The discrete prompt embedding WE(T ) and the 232

continuous prompt embedding GEψ(S) are con- 233

catenated and input into LLM along with the query 234

WE(q) which is processed by WE. Our objective is 235

to optimize the word distribution of the predicted 236

answer a, aligning it with the word distribution of 237

the optimal answer a∗. To this end, both the LLM 238

and WE are frozen in their pre-trained states, while 239

we focus on optimizing the GEψ. 240

3.2.2 Early Query Fusion 241

We enhance the effectivity of information represen- 242

tation by adopting an early fusion method, where 243

query information is fused before the graph em- 244

bedding is generated. To achieve this, the query 245

is embedded in the graph embedding space as a 246

virtual query node nq using text encoder TextEnc 247

(Yasunaga et al., 2021). 248

The query node nq connects all nodes in the 249

graph S. It performs message passing using 250

GNNquery, resulting in the graph Sq that incorpo- 251

rates the query node embedding n′
q and the original 252

node embeddings. Subsequently, GNNgraph is em- 253

ployed to encode the original relational information 254

of the graph Sq and as a result, Sg is derived. 255

{n′
q} ∪ {xn}n∈ nodes ofSq 256

= GNNquery(S,nq) (4) 257

{xn}n∈ nodes ofSg = GNNgraph(Sq) (5) 258

3.2.3 Learnable Graph Pooling Tokens 259

There are two main approaches to prompting with a 260

graph encoder. The first approach involves passing 261

all node embeddings to the LLM, while the second 262

approach uses a readout function to transform node 263

embeddings into single graph embedding, which is 264

then passed to the LLM. In node-level prompting, 265

each node is treated as a token by the LLM, but 266

as the number of nodes increases, this method be- 267

comes impractical due to scalability issues. On the 268

other hand, in graph-level prompting, methods such 269

as mean pooling, DiffPool(Ying et al., 2018) and 270

SAGPool (Lee et al., 2019) are used to compress 271

node embeddings into a single vector, which is then 272

provided to the LLM. However, this requires encod- 273

ing all the graph information into a single vector, 274
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Figure 1: Overview of Proposed Method. Our approach is similar to Perozzi et al. (2024); He et al. (2024). Graph
Token (Perozzi et al., 2024) generates node embeddings from the given graph S using a GNN encoder and applies
mean pooling to deliver the graph information to the LLM. G-Retriever (He et al., 2024) follows the same process
but differs in that it transforms the given graph S into a textual graph and feeds it into the LLM along with the
additional information. Our approach builds on G-Retriever by incorporating LGPT and an Early Query Fusion
Module (Red Box).

increasing the risk of information loss (Bahdanau,275

2014).276

To address this issue, we propose a novel pooling277

method named Learnable Graph Pooling Tokens278

(LGPT). LGPT employees n learnable parameters279

with the same dimension as the node embeddings,280

which are fully connected to all the nodes in the281

given graph Sg. After that, message passing is per-282

formed through a GNNpool process, resulting in283

Sp and graph representation n tokens {g′
1 · · · g′

n}.284

This method reduces the risk of information loss285

compared to previous approaches that represented286

the graph using only a single vector. Finally, pro-287

cessed LGPT {g′
1 · · · g′

n} is transformed into ES ,288

the input format for the LLM, through a projection289

layer Proj composed of Multi-Layer Perceptron290

(MLP).291

LGPT : {g1, · · · ,gn} (6)292
293

{g′
1, · · · ,g′

n}∪{xn}n∈ nodes ofSp =294

GNNpool(Sg, {g1, · · · ,gn})
(7)

295

296

ES = Proj({g′
1, · · · ,g′

n}) (8) 297

The reason LGPT works effectively is that it con- 298

ceptually combines two learnable pooling methods. 299

Ying et al. (2018) performs pooling hierarchically 300

through soft clustering, where a node can be as- 301

signed to multiple clusters. In our method, since 302

all nodes are connected to learnable tokens and 303

perform message passing for pooling, each LGPT 304

token can be seen as a soft cluster, making our ap- 305

proach conceptually aligned with soft clustering in 306

Ying et al. (2018). Additionally, by using Graph 307

Transformer (Shi et al., 2020) as the GNN archi- 308

tecture, our method operates similarly to Lee et al. 309

(2019), which employs the self-attention mecha- 310

nism. In essence, our method works well because it 311

conceptually borrows from both Ying et al. (2018) 312

and Lee et al. (2019). However, the key difference 313

from these methods is that, instead of pooling into 314

a single graph embedding, our approach uses mul- 315

tiple learnable tokens for pooling, thereby reducing 316

information loss. 317
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3.3 Analysis of Time Complexity318

Let k denote the number of nodes, t the number of319

prompt text tokens, g the number of GNN layers,320

and n the number of LGPTs. The time complexity321

of the proposed Graph Encoder, which employs322

three GNNs, is thus O(3g(n + k)). In compari-323

son, the time complexity of both G-Retriever and324

GraphToken is O(gk). Given that n≪ k, the time325

complexity of our method aligns with that of other326

baseline graph encoders, remaining at O(gk).327

The computational time complexity for the LLM328

component is determined by the self-attention329

mechanism and is proportional to the square of330

the prompt length. In our model, the prompt con-331

sists of t + n tokens, whereas GraphToken and332

G-Retriever process t+ 1 tokens. We set n = 8 to333

ensure n ≪ t, thereby maintaining the time com-334

plexity of LLM computation in our model at O(t2),335

consistent with that of other baseline models.336

4 Experiments337

4.1 Experiment Setup338

4.1.1 Datasets339

For our experiments, we used the GraphQA bench-340

mark dataset (Table 1) released by (He et al.,341

2024). The experiments are conducted using the342

QA data and the corresponding graphs provided.343

This dataset consists of three sub-QA tasks as fol-344

lows. The datasets are divided into train, validation345

and test subsets using a 6:2:2 ratio.346

• ExplaGraphs (Saha et al., 2021): The347

dataset is a commonsense reasoning dataset348

composed of 2,766 graphs for stance predic-349

tion in debates. The task is evaluating whether350

two arguments support or not to use the infor-351

mation from the given graph. The evaluation352

metric used is accuracy.353

• SceneGraphs: The SceneGraphs dataset,354

derived from GQA (Hudson and Manning,355

2019), contains 100,000 scene graphs detail-356

ing objects, attributes and relationships within357

images. It challenges users with tasks requir-358

ing spatial understanding and multi-step infer-359

ence to answer open-ended questions based360

on scene graph descriptions, evaluated on ac-361

curacy.362

• WebQSP (Yih et al., 2016; Luo et al., 2023):363

WebQSP is a large-scale knowledge Graph364

QA dataset with 4,737 questions, requiring365

multi-hop reasoning to answer. It uses a subset 366

of Freebase, containing facts within 2-hops 367

of the entities in the questions. The task is 368

evaluated using the Hits@1 metric to measure 369

the precision of the top answer. 370

4.1.2 Implementation Details 371

We set our implementation details to be consis- 372

tent with He et al. (2024) such as discrete prompt 373

template T to textualize the given graph and how 374

to retrieve graph S from G. We used LLaMa2- 375

7b1 (Touvron et al., 2023) with 4-bit NormalFloat 376

quantization (Dettmers et al., 2021, 2024) as LLM 377

and Setence Transformer2 (Reimers, 2019) as Tex- 378

tEnc. For GNN architecture we employed a Graph 379

Transformer (Shi et al., 2020) with four layers. 380

The model was trained to minimize Cross En- 381

tropy Loss for each label’s token using the AdamW 382

(Loshchilov, 2017) optimizer with learning late of 383

1e-4. The number of LGPT was set to 8 and the 384

performance comparison based on the number of 385

LGPT is discussed in the following section 4.4. All 386

experiments were conducted on a single Nvidia 387

A6000 48GB GPU. 388

4.2 Main Results 389

We compared the results of our approach with vari- 390

ous methods that rely on prompting without train- 391

ing LLM. First, as discrete prompt baselines with- 392

out prompt module training (Inference Only), we 393

used zero-shot, Zero-CoT (Kojima et al., 2022), 394

CoT-BAG (Wang et al., 2024b), KAPING (Baek 395

et al., 2023). Also, for a fair comparison with our 396

method, we included methods with trained prompt 397

module training (Frozen LLM w/ PT), such as 398

Prompt Tuning (Lester et al., 2021), Graph Token 399

(Perozzi et al., 2024) and G-Retriever (He et al., 400

2024). Details of each method are described in 401

Figure 1. 402

Table 2 shows the main results. The prompt 403

module with GNN consistently shows better per- 404

formance than the only inference setting. This sug- 405

gests that the structural representation of the graph 406

is more appropriately encoded through GNN em- 407

beddings. The lower performance of Prompt Tun- 408

ing, which only trains learnable parameters without 409

GNNs, compared to Graph Token and G-Retriever, 410

further supports it. When comparing Ours to G- 411

Retriever with all settings identical except for Early 412

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/sentence-transformers/all-

roberta-large-v11
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Dataset ExplaGraphs SceneGraphs WebQSP
# Graph 2766 100000 4737
Avg. # Nodes 5.17 19.13 1370.89
Avg. # Edges 4.25 68.44 4252.37
Node Attribute Commonsense Concepts Object Attributes (e.g. color, shape) Entities in KG (Freebase)
Edge Attribute Commonsense Relations Relations (e.g. actions, spatial relations) Relations in KG (Freebase)
Task Commonsense reasoning Scene graph QA Knowledge Graph QA

Table 1: Summary of GraphQA benchmark Dataset (He et al., 2024).

Table 2: Main Results. The table compares the experimental results of various methods, including Inference
Only and Frozen LLM w/ PT. Our model (Ours) demonstrated the highest performance, surpassing both Inference
Only and Frozen LLM w/ PT approaches. Compared to G-Retriever, our model shows performance improvements
ranging from 2.38% to 5.77%, with an average improvement of 4.13%.

# of Prompt Tokens Expla Graphs SceneGraphs WebQSP Average

Inference Only

Zero-Shot - 56.50 39.74 41.06 45.77
Zero-CoT - 57.04 52.60 51.30 53.65
CoT-BAG - 57.94 56.80 39.60 51.45
KAPING - 62.27 43.75 52.64 52.89

Frozen LLM w/ PT

Prompt Tuning 10 57.63 63.41 48.34 56.46
Graph Token 1 85.08 49.03 57.05 63.72
G-Retriever 1 85.16 81.31 70.49 78.99

Ours
8

90.07 84.50 72.17 82.25
∆ G-Retriever +5.77% +3.92% +2.38% +4.13%

Query Fusion and LGPT, our approach achieves413

performance improvements ranging from 2.38%414

to 5.77%, with an average improvement of 4.13%415

across the three datasets. The improvement indi-416

cates that Early Query Fusion and LGPT further en-417

hance performance by ensuring that query-specific418

information is integrated early, reducing the risk of419

information loss.420

We conducted ablation studies to analyze the421

individual effects and interaction of Early Query422

Fusion and LGPT. Table 3 shows the results. When423

applying Early Fusion, we observed an average per-424

formance improvement of 2.88%. Although there425

is a 0.22 performance drop on the WebQSP dataset,426

the reported standard deviation of G-Retriever’s427

performance due to random seed variation is 1.21,428

suggesting that the performance drop is not statis-429

tically significant (He et al., 2024). Additionally,430

applying LGPT results in an average performance431

improvement of 3.87%, indicating that the tradi-432

tional pooling method using a single vector incurs433

information loss and our method offers an effec-434

tive alternative. Finally, when both methods are435

applied together, they exhibit a positive interaction,436

achieving an average performance improvement of437

4.13%.438

In the previous experiments, we reported results439

by training only the prompt module, without train-440

ing the LLM, to independently analyze the effects441

of the proposed method. Additionally, we conduct442

experiments where both the LLM and the prompt 443

module are trained together. To efficiently train the 444

LLM, we employ a Low-Rank Adaption (LoRA) 445

(Hu et al., 2021). The trainable parameters, includ- 446

ing the prompt module, accounted for only 1.82% 447

of the total parameters. 448

The experimental results are shown in Figure 449

2. Our approach shows even greater effectiveness 450

when training the LLM with LoRA. Compared 451

to all baselines, our method, which used LoRA 452

for training the LLM, achieved the highest perfor- 453

mance improvements. On average, it demonstrated 454

an 86.78% performance improvement over the non- 455

trained LLM and an 11.48% improvement over the 456

LLM trained with LoRA. Additionally, it outper- 457

forms G-Retriever with LoRA, which trained both 458

the LLM and the prompt module, by 3.54%. This 459

indicates that our prompting method with training 460

LLM by using LoRA is highly effective in convey- 461

ing graph information to the LLM and proves to be 462

superior to other prompting methods. 463

4.3 Effect of Early Query Fusion 464

Sun et al. (2018) reported that in the process of 465

knowledge enhancement, Early Fusion, where in- 466

formation is combined during the representation 467

creation phase, results in greater performance im- 468

provements compared to Late Fusion, where em- 469

beddings are combined after they have been inde- 470

pendently generated. On the other hand, Tian et al. 471
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Table 3: Result of Ablation Studies. The table shows the results of analyzing the individual effects of Early
Query Fusion and Learnable Graph Pooling Tokens (LGPT). Applying Early Query Fusion resulted in an average
performance improvement of 2.88%, while LGPT contributed an average improvement of 3.87%. When both
methods are applied together, additional performance gains are observed, leading to a total improvement of 4.13%
compared to G-Retriever.

# of Prompt Tokens Expla Graphs SceneGraphs WebQSP Average
G-Retriever 1 85.16 81.31 70.49 78.99

with Early Query Fusion
1

89.53 83.98 70.27 81.26
∆ G-Retriever +5.13% +3.28% -0.31% +2.88%

with LGPT
8

88.98 85.05 72.11 82.05
∆ G-Retriever +4.49% +4.60% +2.30% +3.87%

with LGPT and Early Query Fusion
8

90.07 84.5 72.17 82.25
∆ G-Retriever +5.77% +3.92% +2.38% +4.13%

Figure 2: The red bars represent the case where both
the LLM and the prompt module were trained using
LoRA, while the blue bars represent the case where
only the prompt module was trained, and the gray bars
represent inference only. Training the LLM using LoRA
alongside the prompt module resulted in a significant
performance improvement. Additionally, even when
training the LLM, our approach, which combines LGPT
and the Early Query Fusion Module, demonstrated su-
perior QA performance compared to G-Retriever.

(2024) employed late fusion when combining query472

and graph information, in which the fusion process473

only occurs after the graph information has been474

fully encoded.475

In this paper, we adopted Early Query Fusion,476

where query information is integrated before the477

graph embeddings are generated. To validate the478

effectiveness of this approach, we conducted ex-479

periments comparing early fusion and late fusion480

methods. For late fusion, we used the cross modal-481

ity pooling technique from Tian et al. (2024), while482

for Early Fusion, we applied the Early Query Fu-483

sion strategy proposed in this work.484

The results present in Table 4 show the differ-485

ences between the two methods. In the case that is486

applied mean pooling as the readout function, late487

fusion performance decreases compared to when488

query fusion is not used. This suggests that com- 489

bining fully processed embeddings from different 490

modalities may work as noise or lead to inefficient 491

information integration. On the other hand, early 492

query fusion shows slight performance improve- 493

ments, indicating that integrating query informa- 494

tion earlier in the process allows for better repre- 495

sentation and information fusion within the graph 496

structure. Moreover, when both Early Fusion and 497

Late Fusion are applied together, a greater average 498

performance improvement is observed. 499

Even when applying LGPT in the readout func- 500

tion, early fusion results in greater performance im- 501

provements compared to late fusion. Similar to the 502

case with mean pooling, applying late fusion leads 503

to a slight performance decrease. Moreover, com- 504

bining both methods also results in a performance 505

drop. The key takeaway from these experiments is 506

that Early Query Fusion is a more suitable and ef- 507

fective approach for integrating query information 508

with graph structures compared to the traditional 509

Late Fusion method. 510

4.4 Performance Comparison of the number 511

of LGPT 512

In this section, we compared the model’s perfor- 513

mance on the SceneGraph dataset by varying the 514

number of LGPT from 1, 8, to 32. The results 515

are shown in Figure 3 and regardless of the Query 516

Fusion method, using 8 LGPTs consistently outper- 517

forms using just 1 LGPT. This suggests, as men- 518

tioned earlier, that encoding the complex informa- 519

tion of a graph into a single vector leads to infor- 520

mation loss. Specifically, when compressing all the 521

graph information into a single vector, important 522

relationships and characteristics may not be fully 523

captured, resulting in degraded performance. 524

Notably, except for the Late Fusion method, us- 525
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Table 4: Effect of Query Fusion Method. The table compares the results of Early Fusion and Late Fusion methods.
Applying Early Fusion leads to performance improvements, while Late Fusion results in a decrease in performance.
When both methods are applied together, further performance gains are observed than when late fusion is only
applied, indicating that Early Fusion is a more effective approach than Late Fusion.

Readout # of Tokens Early Fusion Late Fusion Expla Graphs SceneGraphs WebQSP Average

Mean Pooling 1

X X 89.71 82.99 69.47 80.72
X O 83.75 81.20 70.51 78.49
O X 89.53 83.98 70.27 81.26
O O 90.97 84.77 69.90 81.88

LGPT 8

X X 88.98 85.05 72.11 82.05
X O 87.36 84.35 71.56 81.09
O X 90.07 84.50 72.17 82.25
O O 88.62 85.19 70.70 81.50

Figure 3: Performance Comparison of the number of
LGPT The figure presents the performance comparison
between Early Fusion and Late Fusion approaches, with
varying numbers of Learnable Graph Pooling Tokens
(LGPT). Our results show that using 8 LGPTs achieves
the best performance in both Early and Late Fusion
methods. However, performance did not improve further
when increasing the number of LGPTs to 32, suggesting
that beyond a certain point, additional LGPTs do not
contribute to further performance gains.

ing 8 LGPTs outperform using 32 LGPTs. As526

the number of learnable parameters increases, the527

search space during training also expands and hav-528

ing more parameters does not necessarily lead to529

better performance. Our experimental results sup-530

port this observation, showing that too many learn-531

able parameters can result in overfitting or informa-532

tion redundancy, which ultimately hinders perfor-533

mance.534

However, in the case of the Late Fusion method,535

performance improves as the number of LGPT in-536

creases. This can be attributed to the fact that,537

in Late Fusion, LGPT is directly involved in the538

cross-attention operations between the graph and539

query information. In this context, a greater num-540

ber of LGPTs allows for richer information ex-541

change, leading to performance gains.542

Overall, this experiment highlights the impor-543

tance of carefully selecting the number of LGPTs.544

Increasing the number of parameters beyond a cer-545

tain threshold does not always guarantee perfor- 546

mance improvements. In particular, using 8 LGPTs 547

consistently achieves the best performance across 548

different Fusion methods, suggesting that this num- 549

ber strikes a good balance between performance 550

and efficiency. 551

5 Conclusion 552

In this work, we introduced a novel approach, the 553

Learnable Graph Pooling Token (LGPT), which 554

addresses the challenges of graph representation 555

for text-attributed graph question answering tasks. 556

Our method bridges the gap between node-level 557

and graph-level projections by representing graph 558

information with learnable parameters passed as 559

tokens to large language models. This approach 560

mitigates both the scalability issues inherent in 561

node-level projections and the information loss in 562

graph-level projections. Additionally, we proposed 563

an Early Query Fusion technique, which incorpo- 564

rates query information during the graph embed- 565

ding process, ensuring that query-specific details 566

are embedded into the graph representation before 567

it is constructed. This method demonstrates sig- 568

nificant performance improvements over previous 569

approaches using late query fusion. 570

Through extensive experimentation on the 571

GraphQA benchmark, our approach consistently 572

outperformed existing methods, achieving an aver- 573

age improvement of 4.13% over the baseline model 574

without training LLM. The combination of LGPT 575

and Early Query Fusion proved to be highly ef- 576

fective in addressing the complexities of textual- 577

attributed graphs while ensuring scalable and ef- 578

ficient graph representation without training large 579

language models. 580
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6 Limitations581

We demonstrated the effectiveness of LGPT582

through Graph QA experiments. However, a key583

limitation of our study is that we did not evaluate584

the effectiveness of LGPT on graph-centric tasks585

such as node classification and link prediction.586

Additionally, our experiments were limited to587

the relatively small LLaMa2-7b model. While this588

ensures a fair experimental setup, as all baselines589

used the same LLM, there remains a need to evalu-590

ate LGPT on a wider range of LLMs to verify its591

robustness.592

Furthermore, we anticipate that using larger593

LLMs with stronger reasoning capabilities could594

lead to even greater performance improvements.595

Therefore, future research should focus on testing596

LGPT across various LLM architectures to validate597

its generalizability and further enhance its effec-598

tiveness.599
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