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Abstract

Graph-structured data plays a vital role in nu-
merous domains, such as social networks, cita-
tion networks, commonsense reasoning graphs
and knowledge graphs. While graph neural
networks have been employed for graph pro-
cessing, recent advancements have explored
integrating large language models for graph-
based tasks. In this paper, we propose a novel
approach named Learnable Graph Pooling To-
ken (LGPT), which addresses the limitations of
the scalability issues in node-level projection
and information loss in graph-level projection.
LGPT enables flexible and efficient graph rep-
resentation by introducing learnable parame-
ters that act as tokens in large language mod-
els, balancing fine-grained and global graph
information. Additionally, we investigate an
Early Query Fusion technique, which fuses
query context before constructing the graph
representation, leading to more effective graph
embeddings. Our method achieves a 4.13%
performance improvement on the GraphQA
benchmark without training the large language
model, demonstrating significant gains in han-
dling complex textual-attributed graph data.

1 Introduction

A graph is a data structure composed of nodes and
edges that represent the relationships between those
nodes. Graphs are essential for representing com-
plex relational situations in the real world. For
example, social networks (Li et al., 2024; Myers
etal., 2014) like X (Twitter) and urban networks, ci-
tation networks (Hu et al., 2020) in academic fields
that represent authorship, affiliations, and citations,
protein and molecular graphs (Cao et al., 2023) for
depicting complex molecular interactions, common-
sense reasoning graphs like ConceptNet (Speer
et al., 2017), and knowledge graphs such as Wiki-
data (Vrandecié¢ and Krotzsch, 2014) that store var-
ious facts. Traditionally, graph data has been pro-
cessed using handcrafted feature extraction meth-

ods like Katz Index and PageRank (Katz, 1953;
Page, 1999). However, with the recent advance-
ments in deep learning, Graph Neural Networks
(GNNs) such as GCN, GAT, and Graph Trans-
former have become widely researched for process-
ing graphs (Kipf and Welling, 2016; Velickovié
et al., 2017; Shi et al., 2020).

Meanwhile, the field of Natural Language Pro-
cessing (NLP) has experienced a revolutionary shift
with the advent of Large Language Models (LLMs).
These models, pre-trained on massive text datasets,
possess general problem-solving abilities (Chung
et al., 2024). Recently, it has been reported that
LLMs can also understand the structural informa-
tion of graphs and solve graph tasks (Fatemi et al.,
2023; Wang et al., 2024a; Chai et al., 2023). The
combination of LLMs and graphs is particularly
useful in Text-Attributed Graphs (TAGs), where
each node and edge contains textual features. One
of the simplest approaches is to transform graph
information into text and feed it into the LLM
as demonstrated by Baek et al. (2023); Wu et al.
(2023); Moiseev et al. (2022); Kim et al. (2024).

However, graphs contain highly complex struc-
tural information, making it difficult to convert
them into text. Moreover, the performance varies
significantly depending on how the graph is textual-
ized, and the optimal text encoding method is still
unknown (Fatemi et al., 2023). To overcome these
limitations, Perozzi et al. (2024) has achieved sig-
nificant performance improvements by embedding
graph data using GNNs and projecting it into the
word embedding space of LLMs through contin-
uous prompting. Furthermore, Tian et al. (2024)
proposed a technique that distills query-related in-
formation during the interaction between graph and
query via cross-modality pooling.

This continuous prompting method for graphs
can be categorized into node-level projection and
graph-level projection (Ren et al., 2024). Node-
level projection passes the information of all nodes,



obtained through the GNN, to the LLM and is used
in tasks such as node classification or link predic-
tion, which require fine-grained structural infor-
mation. Graph-level projection compresses node
representations into a single vector and passes it to
the LLM, which is useful in tasks like graph classi-
fication that require global graph information.

However, both approaches have limitations. In
node-level projection, each node representation is
treated as a token by the LLM. Since graphs tend
to grow exponentially, this method lacks scalability
given the limited prompt length of LLM. Even if
a model, like Beltagy et al. (2020), can process
extremely long prompts, the computational cost be-
comes prohibitive. Graph-level projection, where
all node information is pooled into a single vector
and passed to the LLM, avoids the scalability is-
sue. However, converting a graph with complex
context into a single vector results in information
loss (Bahdanau, 2014). Given that LLMs must pro-
cess a graph with vast amounts of information as a
single token, this is inevitable.

To address these limitations, we propose a new
concept named Learnable Graph Pooling Token
(LGPT). This allows graph information to be repre-
sented by n learnable parameters, which are passed
to the LLM as n tokens. This approach resolves
both the computational issue of node-level projec-
tion and the information loss problem in graph-
level projection. Additionally, we investigate an
early query fusion method and deal with the limita-
tions of a late query fusion method. While cross-
modality pooling as the late query fusion in Tian
et al. (2024) combines query context with graph
embeddings, it does so after the graph is encoded.
In contrast, we propose an approach that integrates
query context before constructing the graph repre-
sentation, thereby offering a more effective graph
embedding method that takes the query context into
account.

Our main contribution is as follows:

* We propose a novel concept of Learnable
Graph Pooling Token (LGPT), which en-
ables balanced projection between node-level
and graph-level projection. As a result, we
achieved more than a 4.13% improvement
in performance on the GraphQA benchmark
dataset without LLM training.

* We explore a method to integrate the early
query fusion method during the graph em-
bedding process. Through experiments, we

demonstrate that incorporating query context
before constructing the node embeddings of
the graph leads to greater performance im-
provements than combining it afterward.

2 Related Works

2.1 LLM as Graph Encoder

Fatemi et al. (2023) and Wang et al. (2024a) demon-
strated that encoding graphs into various textual
forms allows LLMs to solve graph-centric tasks.
Additionally, Wang et al. (2024b) advanced Chain
of Thought (CoT) (Wei et al., 2022) into a graph-
suitable format by adding the instruction “Let’s
construct a graph with the nodes and edges first”
enabling LLMs to map graph information into
conceptual space. However, these approaches all
have the limitation of processing graphs at the text
level. Since graphs contain complex relational in-
formation, converting them into text loses a lot of
structural knowledge. To overcome these limita-
tions, Perozzi et al. (2024); Tian et al. (2024) have
emerged that embed graphs using GNNs and inte-
grate them with LL.Ms. Notably, He et al. (2024)
achieved significant performance improvements by
using both textual graphs and GNN embeddings.

2.2 Learnable Pooling Method

Sum and Mean Pooling have traditionally been
used as readout functions to create graph embed-
dings from node embeddings in GNNs. However,
they suffer from scalability issues that arise when
dealing with graphs that have a varying number of
nodes, an inability to emphasize important nodes
and information loss in compressing node informa-
tion into a single vector. To address these limita-
tions, learnable pooling methods that incorporate
learnable parameters have been explored. Ying
et al. (2018) introduced hierarchical pooling by
applying soft clustering to reflect the hierarchical
structure of graphs. Also, Lee et al. (2019) pro-
posed a learnable pooling method by incorporating
an attention mechanism to capture more informa-
tion from important nodes. Nevertheless, these
approaches still face the risk of information loss as
they condense numerous node embeddings into a
single graph embedding vector.

2.3 Query Aware Graph Representation

In Tian et al. (2024), a method was introduced to
combine graph and query representations as Cross
modality pooling using a cross-attention mecha-



nism. While this merges the information from the
graph and the query, it has the limitation of being
a Late Fusion approach, as the graph and query
information are encoded independently before be-
ing combined. In Yasunaga et al. (2021), a virtual
query node is created within the graph to perform
graph encoding that is dependent on the meaning
of the query. This approach is effectively used in
Early Fusion for query-aware graph representation,
as seen in its connection to instruction nodes in
models like Zhang et al. (2022) and Yasunaga et al.
(2022).

3 Methodology

3.1 Problem Statement

We address the problem of Textual Attributed
Graph Question Answering (Graph QA) by com-
bining a graph encoder with a large language model.
In Graph QA tasks, a query ¢ and a graph G which
is provided as external knowledge related to the
query are given. Our goal is to generate the opti-
mal answer a* for ¢ by utilizing the information
contained in G.

a* = argmaxp(alq, G) ey

In this context, G is a text-attributed graph,
where both nodes and the edges are associated
with textual attributes. Formally, G is defined as
G = {V,L {zn}nev,{xi}1cL}, where V and L
represent the sets of nodes (vertices) and edges
(links). @,, and x; denote the textual attributes of
the nodes and edges.

The p(alq, G) is composed of a Graph Retriever
po(S|q,G) and an Answer Generator pg(alg,S)
where S is the sub-graph which related with ¢
(Peng et al., 2024). In this paper, we borrow He
et al. (2024) results for the graph retriever and focus
on optimizing py(alq, S) by redefining the prob-
lem.

plalg,G) = po(Slq, G)ps(alq, S) (2)
~ py(alq,S) 3)

3.2 Query Aware Learnable Graph Pooling
Tokens

3.2.1 Overview
The process of py(alq, S) is divided into three main
components as shown in Figure 1. First, the given

sub-graph S is transformed into a textual graph via
a discrete prompt template 7". Then it is processed

by word embedding layer WE of the LLM. Second,
the graph S is converted into graph embeddings
through a graph encoder GE,, which has learnable
parameters 1.

The discrete prompt embedding WE(T') and the
continuous prompt embedding GE,(S) are con-
catenated and input into LLM along with the query
WE(q) which is processed by WE. Our objective is
to optimize the word distribution of the predicted
answer a, aligning it with the word distribution of
the optimal answer a*. To this end, both the LLM
and WE are frozen in their pre-trained states, while
we focus on optimizing the G Ey.

3.2.2 Early Query Fusion

We enhance the effectivity of information represen-
tation by adopting an early fusion method, where
query information is fused before the graph em-
bedding is generated. To achieve this, the query
is embedded in the graph embedding space as a
virtual query node n, using text encoder TextEnc
(Yasunaga et al., 2021).

The query node n, connects all nodes in the
graph S. It performs message passing using
GNN_yery, resulting in the graph S, that incorpo-
rates the query node embedding n; and the original
node embeddings. Subsequently, GNN .4, is em-
ployed to encode the original relational information
of the graph S, and as a result, S, is derived.

{’I’Li]} U {Zn}n € nodes of Sy
= GNNyyery(S,ng)  (4)
{Zn}n € nodes of §g = GNNyapn (Sq) )

3.2.3 Learnable Graph Pooling Tokens

There are two main approaches to prompting with a
graph encoder. The first approach involves passing
all node embeddings to the LLM, while the second
approach uses a readout function to transform node
embeddings into single graph embedding, which is
then passed to the LLM. In node-level prompting,
each node is treated as a token by the LLM, but
as the number of nodes increases, this method be-
comes impractical due to scalability issues. On the
other hand, in graph-level prompting, methods such
as mean pooling, DiffPool(Ying et al., 2018) and
SAGPool (Lee et al., 2019) are used to compress
node embeddings into a single vector, which is then
provided to the LLM. However, this requires encod-
ing all the graph information into a single vector,
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Figure 1: Overview of Proposed Method. Our approach is similar to Perozzi et al. (2024); He et al. (2024). Graph
Token (Perozzi et al., 2024) generates node embeddings from the given graph S using a GNN encoder and applies
mean pooling to deliver the graph information to the LLM. G-Retriever (He et al., 2024) follows the same process
but differs in that it transforms the given graph S into a textual graph and feeds it into the LLM along with the
additional information. Our approach builds on G-Retriever by incorporating LGPT and an Early Query Fusion

Module (Red Box).

increasing the risk of information loss (Bahdanau,
2014).

To address this issue, we propose a novel pooling
method named Learnable Graph Pooling Tokens
(LGPT). LGPT employees n learnable parameters
with the same dimension as the node embeddings,
which are fully connected to all the nodes in the
given graph S,. After that, message passing is per-
formed through a GNN,,,,; process, resulting in
S, and graph representation n tokens {g] - - - g, }.
This method reduces the risk of information loss
compared to previous approaches that represented
the graph using only a single vector. Finally, pro-
cessed LGPT {g} - - - g,} is transformed into Eg,
the input format for the LLM, through a projection
layer Proj composed of Multi-Layer Perceptron
(MLP).

{gllv T ag{rL}U{xn}nenodes of S, =
GNNpool(Sg, {g1,---,8n})
(7

Es =Proj({g},--- ,gL}) ®)

The reason LGPT works effectively is that it con-
ceptually combines two learnable pooling methods.
Ying et al. (2018) performs pooling hierarchically
through soft clustering, where a node can be as-
signed to multiple clusters. In our method, since
all nodes are connected to learnable tokens and
perform message passing for pooling, each LGPT
token can be seen as a soft cluster, making our ap-
proach conceptually aligned with soft clustering in
Ying et al. (2018). Additionally, by using Graph
Transformer (Shi et al., 2020) as the GNN archi-
tecture, our method operates similarly to Lee et al.
(2019), which employs the self-attention mecha-
nism. In essence, our method works well because it
conceptually borrows from both Ying et al. (2018)
and Lee et al. (2019). However, the key difference
from these methods is that, instead of pooling into
a single graph embedding, our approach uses mul-
tiple learnable tokens for pooling, thereby reducing
information loss.



3.3 Analysis of Time Complexity

Let k denote the number of nodes, ¢ the number of
prompt text tokens, g the number of GNN layers,
and n the number of LGPTs. The time complexity
of the proposed Graph Encoder, which employs
three GNNss, is thus O(3¢(n + k)). In compari-
son, the time complexity of both G-Retriever and
GraphToken is O(gk). Given that n < k, the time
complexity of our method aligns with that of other
baseline graph encoders, remaining at O(gk).

The computational time complexity for the LLM
component is determined by the self-attention
mechanism and is proportional to the square of
the prompt length. In our model, the prompt con-
sists of ¢t + n tokens, whereas GraphToken and
G-Retriever process ¢ + 1 tokens. We set n = 8 to
ensure n < t, thereby maintaining the time com-
plexity of LLM computation in our model at O(?),
consistent with that of other baseline models.

4 Experiments

4.1 Experiment Setup
4.1.1 Datasets

For our experiments, we used the GraphQA bench-
mark dataset (Table 1) released by (He et al.,
2024). The experiments are conducted using the
QA data and the corresponding graphs provided.
This dataset consists of three sub-QA tasks as fol-
lows. The datasets are divided into train, validation
and test subsets using a 6:2:2 ratio.

* ExplaGraphs (Saha et al.,, 2021): The
dataset is a commonsense reasoning dataset
composed of 2,766 graphs for stance predic-
tion in debates. The task is evaluating whether
two arguments support or not to use the infor-
mation from the given graph. The evaluation
metric used is accuracy.

* SceneGraphs: The SceneGraphs dataset,
derived from GQA (Hudson and Manning,
2019), contains 100,000 scene graphs detail-
ing objects, attributes and relationships within
images. It challenges users with tasks requir-
ing spatial understanding and multi-step infer-
ence to answer open-ended questions based
on scene graph descriptions, evaluated on ac-
curacy.

* WebQSP (Yih et al., 2016; Luo et al., 2023):
WebQSP is a large-scale knowledge Graph
QA dataset with 4,737 questions, requiring

multi-hop reasoning to answer. It uses a subset
of Freebase, containing facts within 2-hops
of the entities in the questions. The task is
evaluated using the Hits@ 1 metric to measure
the precision of the top answer.

4.1.2 Implementation Details

We set our implementation details to be consis-
tent with He et al. (2024) such as discrete prompt
template 7" to textualize the given graph and how
to retrieve graph S from G. We used LLaMa2-
7b' (Touvron et al., 2023) with 4-bit NormalFloat
quantization (Dettmers et al., 2021, 2024) as LLM
and Setence Transformer? (Reimers, 2019) as Tex-
tEnc. For GNN architecture we employed a Graph
Transformer (Shi et al., 2020) with four layers.
The model was trained to minimize Cross En-
tropy Loss for each label’s token using the AdamW
(Loshchilov, 2017) optimizer with learning late of
le-4. The number of LGPT was set to 8 and the
performance comparison based on the number of
LGPT is discussed in the following section 4.4. All
experiments were conducted on a single Nvidia
A6000 48GB GPU.

4.2 Main Results

We compared the results of our approach with vari-
ous methods that rely on prompting without train-
ing LLM. First, as discrete prompt baselines with-
out prompt module training (Inference Only), we
used zero-shot, Zero-CoT (Kojima et al., 2022),
CoT-BAG (Wang et al., 2024b), KAPING (Baek
et al., 2023). Also, for a fair comparison with our
method, we included methods with trained prompt
module training (Frozen LLM w/ PT), such as
Prompt Tuning (Lester et al., 2021), Graph Token
(Perozzi et al., 2024) and G-Retriever (He et al.,
2024). Details of each method are described in
Figure 1.

Table 2 shows the main results. The prompt
module with GNN consistently shows better per-
formance than the only inference setting. This sug-
gests that the structural representation of the graph
is more appropriately encoded through GNN em-
beddings. The lower performance of Prompt Tun-
ing, which only trains learnable parameters without
GNNs, compared to Graph Token and G-Retriever,
further supports it. When comparing Ours to G-
Retriever with all settings identical except for Early

"https://huggingface.co/meta-llama/Llama-2-7b

“https://huggingface.co/sentence-transformers/all-
roberta-large-v11



Dataset ExplaGraphs SceneGraphs WebQSP

# Graph 2766 100000 4737

Avg. # Nodes 5.17 19.13 1370.89

Avg. # Edges 4.25 68.44 4252.37

Node Attribute Commonsense Concepts Object Attributes (e.g. color, shape) Entities in KG (Freebase)
Edge Attribute Commonsense Relations Relations (e.g. actions, spatial relations) Relations in KG (Freebase)
Task Commonsense reasoning Scene graph QA Knowledge Graph QA

Table 1: Summary of GraphQA benchmark Dataset (He et al., 2024).

Table 2: Main Results. The table compares the experimental results of various methods, including Inference
Only and Frozen LLM w/ PT. Our model (Ours) demonstrated the highest performance, surpassing both Inference
Only and Frozen LLM w/ PT approaches. Compared to G-Retriever, our model shows performance improvements
ranging from 2.38% to 5.77%, with an average improvement of 4.13%.

# of Prompt Tokens Expla Graphs SceneGraphs WebQSP Average
Zero-Shot - 56.50 39.74 41.06 45.77
Inference Only Zero-CoT 57.04 52.60 51.30 53.65
CoT-BAG 57.94 56.80 39.60 51.45
KAPING - 62.27 43.75 52.64 52.89
Prompt Tuning 10 57.63 63.41 48.34 56.46
Graph Token 1 85.08 49.03 57.05 63.72
Frozen LLM w/ PT G-Retriever 1 85.16 81.31 70.49 78.99
Ours 3 90.07 84.50 72.17 82.25
A G-Retriever +5.77% +3.92% +2.38% +4.13%

Query Fusion and LGPT, our approach achieves
performance improvements ranging from 2.38%
to 5.77%, with an average improvement of 4.13%
across the three datasets. The improvement indi-
cates that Early Query Fusion and LGPT further en-
hance performance by ensuring that query-specific
information is integrated early, reducing the risk of
information loss.

We conducted ablation studies to analyze the
individual effects and interaction of Early Query
Fusion and LGPT. Table 3 shows the results. When
applying Early Fusion, we observed an average per-
formance improvement of 2.88%. Although there
is a 0.22 performance drop on the WebQSP dataset,
the reported standard deviation of G-Retriever’s
performance due to random seed variation is 1.21,
suggesting that the performance drop is not statis-
tically significant (He et al., 2024). Additionally,
applying LGPT results in an average performance
improvement of 3.87%, indicating that the tradi-
tional pooling method using a single vector incurs
information loss and our method offers an effec-
tive alternative. Finally, when both methods are
applied together, they exhibit a positive interaction,
achieving an average performance improvement of
4.13%.

In the previous experiments, we reported results
by training only the prompt module, without train-
ing the LLM, to independently analyze the effects
of the proposed method. Additionally, we conduct

experiments where both the LLLM and the prompt
module are trained together. To efficiently train the
LLM, we employ a Low-Rank Adaption (LoRA)
(Hu et al., 2021). The trainable parameters, includ-
ing the prompt module, accounted for only 1.82%
of the total parameters.

The experimental results are shown in Figure
2. Our approach shows even greater effectiveness
when training the LLM with LoRA. Compared
to all baselines, our method, which used LoRA
for training the LLM, achieved the highest perfor-
mance improvements. On average, it demonstrated
an 86.78% performance improvement over the non-
trained LLM and an 11.48% improvement over the
LLM trained with LoRA. Additionally, it outper-
forms G-Retriever with LoRA, which trained both
the LLLM and the prompt module, by 3.54%. This
indicates that our prompting method with training
LLM by using LoRA is highly effective in convey-
ing graph information to the LLM and proves to be
superior to other prompting methods.

4.3 Effect of Early Query Fusion

Sun et al. (2018) reported that in the process of
knowledge enhancement, Early Fusion, where in-
formation is combined during the representation
creation phase, results in greater performance im-
provements compared to Late Fusion, where em-
beddings are combined after they have been inde-
pendently generated. On the other hand, Tian et al.



Table 3: Result of Ablation Studies. The table shows the results of analyzing the individual effects of Early
Query Fusion and Learnable Graph Pooling Tokens (LGPT). Applying Early Query Fusion resulted in an average
performance improvement of 2.88%, while LGPT contributed an average improvement of 3.87%. When both
methods are applied together, additional performance gains are observed, leading to a total improvement of 4.13%

compared to G-Retriever.

# of Prompt Tokens Expla Graphs SceneGraphs WebQSP Average
G-Retriever 1 85.16 81.31 70.49 78.99
with Early Query Fusion | 89.53 83.98 70.27 81.26
A G-Retriever +5.13% +3.28% -031%  +2.88%
with LGPT 3 88.98 85.05 72.11 82.05
A G-Retriever +4.49% +4.60% +2.30% +3.87%
with LGPT and Early Query Fusion 3 90.07 84.5 72.17 82.25
A G-Retriever +5.77% +3.92% +2.38% +4.13%

Results of LLM Training with LoRA

= Ours with LoRA
W G-Retriever with LORA
LLaMa2 with LoRA
- ours
G-Retriever
= Zero-Shot

Expla Graphs

Average

performance

Figure 2: The red bars represent the case where both
the LLM and the prompt module were trained using
LoRA, while the blue bars represent the case where
only the prompt module was trained, and the gray bars
represent inference only. Training the LLM using LoRA
alongside the prompt module resulted in a significant
performance improvement. Additionally, even when
training the LLM, our approach, which combines LGPT
and the Early Query Fusion Module, demonstrated su-
perior QA performance compared to G-Retriever.

(2024) employed late fusion when combining query
and graph information, in which the fusion process
only occurs after the graph information has been
fully encoded.

In this paper, we adopted Early Query Fusion,
where query information is integrated before the
graph embeddings are generated. To validate the
effectiveness of this approach, we conducted ex-
periments comparing early fusion and late fusion
methods. For late fusion, we used the cross modal-
ity pooling technique from Tian et al. (2024), while
for Early Fusion, we applied the Early Query Fu-
sion strategy proposed in this work.

The results present in Table 4 show the differ-
ences between the two methods. In the case that is
applied mean pooling as the readout function, late
fusion performance decreases compared to when

query fusion is not used. This suggests that com-
bining fully processed embeddings from different
modalities may work as noise or lead to inefficient
information integration. On the other hand, early
query fusion shows slight performance improve-
ments, indicating that integrating query informa-
tion earlier in the process allows for better repre-
sentation and information fusion within the graph
structure. Moreover, when both Early Fusion and
Late Fusion are applied together, a greater average
performance improvement is observed.

Even when applying LGPT in the readout func-
tion, early fusion results in greater performance im-
provements compared to late fusion. Similar to the
case with mean pooling, applying late fusion leads
to a slight performance decrease. Moreover, com-
bining both methods also results in a performance
drop. The key takeaway from these experiments is
that Early Query Fusion is a more suitable and ef-
fective approach for integrating query information
with graph structures compared to the traditional
Late Fusion method.

4.4 Performance Comparison of the number
of LGPT

In this section, we compared the model’s perfor-
mance on the SceneGraph dataset by varying the
number of LGPT from 1, 8, to 32. The results
are shown in Figure 3 and regardless of the Query
Fusion method, using 8 LGPTs consistently outper-
forms using just 1 LGPT. This suggests, as men-
tioned earlier, that encoding the complex informa-
tion of a graph into a single vector leads to infor-
mation loss. Specifically, when compressing all the
graph information into a single vector, important
relationships and characteristics may not be fully
captured, resulting in degraded performance.
Notably, except for the Late Fusion method, us-



Table 4: Effect of Query Fusion Method. The table compares the results of Early Fusion and Late Fusion methods.
Applying Early Fusion leads to performance improvements, while Late Fusion results in a decrease in performance.
When both methods are applied together, further performance gains are observed than when late fusion is only
applied, indicating that Early Fusion is a more effective approach than Late Fusion.

Readout # of Tokens Early Fusion Late Fusion Expla Graphs SceneGraphs WebQSP Average

X X 89.71 82.99 69.47 80.72

Mean Pooling | X (0] 83.75 81.20 70.51 78.49
@] X 89.53 83.98 70.27 81.26

(0] (0] 90.97 84.77 69.90 81.88

X X 88.98 85.05 72.11 82.05

X (0] 87.36 84.35 71.56 81.09

LGPT 8 (0] X 90.07 84.50 72.17 82.25

(0] (0] 88.62 85.19 70.70 81.50

Scene Graphs by the number of LGPT

Query Fusion
—e— Early+Late Fusion

Only Early Fusion
—e— Only Late Fusion
—e— No Query Fusion
-e- Average

1 8 2
# of Learnable Tokens

Figure 3: Performance Comparison of the number of
LGPT The figure presents the performance comparison
between Early Fusion and Late Fusion approaches, with
varying numbers of Learnable Graph Pooling Tokens
(LGPT). Our results show that using 8 LGPTs achieves
the best performance in both Early and Late Fusion
methods. However, performance did not improve further
when increasing the number of LGPTs to 32, suggesting
that beyond a certain point, additional LGPTs do not
contribute to further performance gains.

ing 8 LGPTs outperform using 32 LGPTs. As
the number of learnable parameters increases, the
search space during training also expands and hav-
ing more parameters does not necessarily lead to
better performance. Our experimental results sup-
port this observation, showing that too many learn-
able parameters can result in overfitting or informa-
tion redundancy, which ultimately hinders perfor-
mance.

However, in the case of the Late Fusion method,
performance improves as the number of LGPT in-
creases. This can be attributed to the fact that,
in Late Fusion, LGPT is directly involved in the
cross-attention operations between the graph and
query information. In this context, a greater num-
ber of LGPTs allows for richer information ex-
change, leading to performance gains.

Overall, this experiment highlights the impor-

tance of carefully selecting the number of LGPTs.
Increasing the number of parameters beyond a cer-

tain threshold does not always guarantee perfor-
mance improvements. In particular, using 8 LGPTs
consistently achieves the best performance across
different Fusion methods, suggesting that this num-
ber strikes a good balance between performance
and efficiency.

5 Conclusion

In this work, we introduced a novel approach, the
Learnable Graph Pooling Token (LGPT), which
addresses the challenges of graph representation
for text-attributed graph question answering tasks.
Our method bridges the gap between node-level
and graph-level projections by representing graph
information with learnable parameters passed as
tokens to large language models. This approach
mitigates both the scalability issues inherent in
node-level projections and the information loss in
graph-level projections. Additionally, we proposed
an Early Query Fusion technique, which incorpo-
rates query information during the graph embed-
ding process, ensuring that query-specific details
are embedded into the graph representation before
it is constructed. This method demonstrates sig-
nificant performance improvements over previous
approaches using late query fusion.

Through extensive experimentation on the
GraphQA benchmark, our approach consistently
outperformed existing methods, achieving an aver-
age improvement of 4.13% over the baseline model
without training LLM. The combination of LGPT
and Early Query Fusion proved to be highly ef-
fective in addressing the complexities of textual-
attributed graphs while ensuring scalable and ef-
ficient graph representation without training large
language models.



6 Limitations

We demonstrated the effectiveness of LGPT
through Graph QA experiments. However, a key
limitation of our study is that we did not evaluate
the effectiveness of LGPT on graph-centric tasks
such as node classification and link prediction.

Additionally, our experiments were limited to
the relatively small LLaMa2-7b model. While this
ensures a fair experimental setup, as all baselines
used the same LLLM, there remains a need to evalu-
ate LGPT on a wider range of LLMs to verify its
robustness.

Furthermore, we anticipate that using larger
LLMs with stronger reasoning capabilities could
lead to even greater performance improvements.
Therefore, future research should focus on testing
LGPT across various LLM architectures to validate
its generalizability and further enhance its effec-
tiveness.
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