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ABSTRACT

The existence of noisy labels usually leads to the degradation of generalization and
robustness of neural networks in supervised learning. In this paper, we propose
to use a simple theoretically guaranteed sample selection framework as a plug-in
module to handle noisy labels.Specifically, we re-purpose a sparse linear model
with incidental parameters as a unified Relative Instance Credibility Inference
(RICI) framework, which will detect and remove outliers in the forward pass
of each mini-batch and use the remaining instances to train the network. The
credibility of instances is measured by the sparsity of incidental parameters, which
can be ranked among other instances within each mini-batch to get a relatively
consistent training mini-batch. The proposed RICI framework yields two variants
that enjoy superior performance on the symmetric and asymmetric noise settings,
respectively. We prove that our RICI can theoretically recover the clean data.
Experimental results on several benchmark datasets and a real-world noisy dataset
show the effectiveness of our framework.

1 INTRODUCTION

Deep learning has achieved remarkable success on many topics of supervised learning. The
performance heavily relies on the quality of label annotation since deep models are susceptible
to noisy labels and can easily memorize randomly labeled annotations (Zhang et al., 2017), leading
to the degradation of generalization and robustness. In many real-world scenarios, it is expensive
and difficult to obtain precise labels, exposing a realistic challenge for supervised deep models to
learn with noisy data.

There is a large literature for this challenge from various perspectives, including modifying the
network architectures (Xiao et al., 2015; Goldberger & Ben-Reuven, 2017; Chen & Gupta, 2015;
Han et al., 2018a) or loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019;
Lyu & Tsang, 2020), or dynamically selecting clean data during training (Song et al., 2019; Lyu &
Tsang, 2020; Han et al., 2018b; Jiang et al., 2018; Chen et al., 2019; Shen & Sanghavi, 2019; Yu
et al., 2019; Nguyen et al., 2020). Particularly, the dynamic sample selection methods adopts the
spirit of providing only clean data for the training. Such a spirit can form a ‘virtuous’ cycle between
the noisy data elimination and network training: the elimination of noisy data can help the network
training; and on the other hand, the improved network is empowered with better ability in picking
up clean data. As this virtuous cycle evolves, the final performance can be significantly improved.

Many existing sample selection algorithms implicitly assume the samples with small loss (Han et al.,
2018b) to be clean data. However, the small loss assumption relies on the inductive bias of the
network that the majority pattern of each class is handled at the early training stage. This may fail
when some wrong patterns were first memorized by the network, resulting in a small loss for such
noisy data, especially when the pattern exists in a high portion of noisy data. Theoretically, there
is no guarantee that these methods can consistently recover these clean data, thus leading to those
failure cases.

To this end, from the statistical perspective we in this paper build up a simple sample selection
framework, dubbed Relative Instance Credibility Inference (RICI), which has theoretical guarantees
of consistently recovering clean data, and can be plugged into supervised methods with standard loss
functions and network structures. Specifically, the RICI uses a sparse linear model with incidental
parameters to detect and remove outlier samples in the forward pass of each mini-batch, and running
the standard backward algorithm using the remaining clean data. Formally, we model the linear
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relation between the feature-label pair (denoted as (x,y)) received from the current network at each
step:

y = x>β∗ + γ∗ + ε, (1)

where the incidental parameter γ∗ models the non-random bias existed in the noisy label y.
Intuitively, the larger ‖γ∗‖ indicates more possibility for the y to be outlier/noisy data. After
properly solving γ by optimizing the induced sparse linear regression problem, we only utilize
the paired feature-label instance with γ(i, ·) = 0 to update the network.

Technically, we develop two variants of our RICI framework by using the labels either from original
noisy training data (RICIN), or the noisy predictions of networks (RICIP) in Eq. (1). We analyze
the statistical properties of these two variants, and make a theoretical understanding of our RICI
framework. Furthermore, to further reveal the insights of our two variants, we introduce the settings
of the symmetric and asymmetric noisy data. We find that both RICIN and RICIP can handle two
types of noisy data. Interestingly RICIN can better handle the symmetric noise, whilst the RICIP
can better deal with the asymmetric noisy data. Insightful, we give an explanation that RICIN can
make noisy data elimination; and RICIP encourages the network learning by a curriculum learning
strategy. We conduct extensive experiments to validate the effectiveness of our framework. The
results show that our framework can better improve the performance of network learning than the
competitors.

Contributions. We summarize our contributions as follows:

• We present a unified statistical approach, i.e., RICI, to dynamically select the clean data under a
general scenario.

• From the basic idea of RICI, we further propose two variants – RICIN and RICIP which can
handle the symmetric and asymmetric noisy data.

• To the best of our knowledge, we make the first effort on theoretically guarantees of recovering
the clean data from noisy dataset in the supervised manner.

• Our method can achieve the state-of-the-art results on a real-world noisy data challenge.

2 RELATED WORK

2.1 LEARNING WITH NOISY LABELS

We can roughly categorize LNL algorithms into two groups: architecture modification and
sample selection. Architecture modification includes specific techniques for constructing robust
network (Xiao et al., 2015; Goldberger & Ben-Reuven, 2017; Chen & Gupta, 2015; Han et al.,
2018a), robust loss function (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019; Lyu &
Tsang, 2020), robust regularization (Tanno et al., 2019; Menon et al., 2020; Xia et al., 2021) against
noisy labels. Sample selection aims to detect clean data and use the clean subset to train the neural
network. We mainly review the sample selection algorithms.

Sample selection algorithms can be split into two parts: the selection algorithm for detecting clean
data and the training algorithm for using the detected clean data. The selection criteria includes small
loss (Shen & Sanghavi, 2019), gradient directions (Ren et al., 2018), disagreement within multiple
networks (Yu et al., 2019), and some spatial properties in the training data (Wang et al., 2018; Lee
et al., 2019; Wu et al., 2020). The motivation of using small loss criteria is shared by the curriculum
learning (Zhou et al., 2021a), which aims to design a non-i.i.d. sequence of training instances to
fit the network using easy data in the early stage and then gradually add the hard samples. Some
algorithms (Veit et al., 2017; Ren et al., 2018) rely on the existence of an extra clean set to detect
noisy data.

After detecting the clean data, the simplest strategy is to train the network using the clean data only
or re-weight the data (Patrini et al., 2017) to eliminate the noise. Some algorithms (Li et al., 2020;
Arazo et al., 2019) regard the detected noisy data as unlabeled data to fully exploit the distribution
support of the training set in the semi-supervised learning manner. A commonly used strategy is
using MixMatch (Berthelot et al., 2019) between the detected clean data and noisy data. There are
also some studies of designing label-correction module (Xiao et al., 2015; Vahdat, 2017; Veit et al.,
2017; Li et al., 2017; Tanaka et al., 2018; Yi & Wu, 2019) to further pseudo-labeling the noisy data
to train the network. However, these approaches usually require a specific training pipeline with
multiple networks or training rounds, resulting in extra memory and time consumption. On the
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Figure 1: The illustration of our proposed framework. We aim to use a linear model to detect clean
sample from noisy training set within each mini-batch, and generate a binary weight to train the
network using only the clean subset indicated by RICI.

contrary, RICI is designed as a plug-in module to standard supervised training pipelines, leading to
a simple but effective framework.

2.2 INCIDENTAL PARAMETERS

The linear model with incidental parameters (Eq. (1)) is traditionally used by statisticians to learn
a robust model against data-dependent noise (Neyman & Scott, 1948; Kiefer & Wolfowitz, 1956;
Basu, 2011; Moreira, 2008; Fan et al., 2018). Fu et al. (2015) introduces the incidental parameter
to solve the robust ranking problem. Recently Wang et al. (2020; 2021) utilize the linear model
with incidental parameters as a self-taught learning algorithm combined with a linear classifier for
few-shot learning and provide theoretical conditions for Eq. (1) to identify correctly pseudo-labeled
instances. In this paper, we show that ‖γ∗‖ can be a general metric of credibility whose precise
meaning is defined by the choice of (x,y). Further, we show that Eq. (1) can be designed as a
plug-in module incorporated with a deep model to improve the performance with the existence of
noisy labels. We also extend the formulation of Eq. (1) such that it will work in many situations
when the standard algorithm fails.

3 METHODOLOGY

Problem Formulation. We are given a dataset of image-label pairs {(xi, ȳi)}ni=1, where xi ∈ X ⊆
Rm, ȳi ∈ C ⊆ R, |C| = c. We assume that for each instance i, ȳi is corrupted from the ground-truth
category y?i , where the corruption process is unknown. Our goal is predicting the ground-truth label
y? ∈ C for any x ∈ X . Denote A(i, ·), A(·, j), ‖A‖F :=

√∑
i,j A

2(i, j) as the i-th row, j-th

column and the Frobenius norm of matrix A, respectively. Denote ‖a‖1 :=
∑
i |ai| as the `1 norm

of vector a.

Our framework, dubbed as Relative Instance Credibility Inference (RICI), is illustrated in Figure 1.
For each mini-batch, the RICI selects the clean data for the network to train, by solving the incidental
parameters γ in a sparse linear regression model. Specifically, as shown in Fig. 1, we use a sparse
linear regression model to fit the feature-label pairs {xi, yi}bi received from the current mini-batch,
and solve the corresponding incidental parameters γ. We assume that the non-zero γ corresponds
to the inconsistent data during fitting as in Fu et al. (2015). We thus take this sample as the outlier
and set its weight w = 0 for this in the loss

∑b
i=1 wiL(xi, ȳi) that is then updated via backward

propagation.

The rest of this section is organized as follows: we first introduce RICI, starting from the model
assumption, i.e., sparse linear model for the feature-label pair, and its induced loss and optimization
in Sec. 3.1; in Sec. 3.2, we then discuss three variants of this framework under the symmetric and
asymmetric noise settings and also the sparse regularization `q (q < 1) penalty in L to enforce the
linear relationship between the feature and the label; finally, we provide the theoretical guarantees
in recovering the clean dataset in Sec. 3.3.

3.1 RELATIVE INSTANCE CREDIBILITY INFERENCE

For each mini-batch {(xi, ȳi)}bi=1, the key step of RICI is selecting clean subset from noisy data in
each update. Under the assumption that the clean data takes a majority among all data (otherwise it
is impossible to identify the clean data), we assume the following linear regression with incidental
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parameters (Fan et al., 2018) for the feature-label pair in each forward pass:

Y = X>β∗ + γ∗ + ε, (2)

where ε is Gaussian noise; Y ∈ Rb×c andX ∈ Rb×p respectively denotes the one-hot encoded label
matrix and the feature representation obtained as the output of the second last layer. The γ∗ ∈ Rb×c
generates the noisy data, with larger ‖γ(i, ·)‖ means more corruption the instance i is suffered. We
denote O := {i : ‖γ∗(i, )‖ 6= 0} as the outlier sample set.

Remark. Note that Wang et al. (2020; 2021) adopts Eq. (2) in few-shot learning to gradually augment
the training set, in which γ∗ measures the credibility for the sample to be augmented.

To estimate O, we propose to solve the following sparse linear regression:

argmin
β,γ

1

2
‖Y −Xβ − γ‖2F + λ

b∑

i=1

‖γi‖1 , (3)

To simplify the optimization, we substitute the closed-form solution for β (i.e., β̂ =(
X>X

)†
X> (Y − γ) with γ fixed) into Eq. (3). To ensure that β̂ is identifiable, we apply PCA

onX to make p� b so that theX has full-column rank. Denote X̃ = I −X
(
X>X

)†
X>, Ỹ =

X̃Y , the Eq. (3) is transformed into

argmin
γ

1

2

∥∥∥Ỹ − X̃γ
∥∥∥

2

F
+ λ

b∑

i=1

‖γi‖1 , (4)

which is a standard sparse linear regression for γ. We use Glmnet (Simon et al., 2013) to generate
the solution path of γ with respect to the λ. Since earlier selected instance is more possible to be
noisy, we rank all samples as the descendent order of their selecting time defined as:

Ci = sup {λ : γi (λ) 6= 0} . (5)

A large Ci means that the γi is earlier selected if we run from λ = ∞ to 0. We then select the
samples that are less than α% quantile of {Ci}, as relatively clean data compared with other data in
current mini-batch.

3.2 LEARNING WITH RICI

In this section, we discuss two variants of the RICI framework in Eq. (3) under the symmetric and
asymmetric noise setting, in which the noisy data is respectively randomly distributed and only
restricted to some particular classes, respectively. Consider the digital recognition example, the
digit “7” can be randomly mislabeled as other digits from “0” to “9” in the symmetric noise setting;
or mislabeled as “1” that can expose similar patterns in the asymmetric noise setting. Therefore,
the noisy data in the asymmetric setting has a large overlapping with hard samples, which hence
motivated a stream of curriculum learning methods such as Zhou et al. (2021b) in this setting. In the
following, we consider the label Y in Eq. (3) as noisy label Ȳ and prediction one-hot encoded label
P ∈ Rb×c, as two variants respectively corresponding to symmetric and asymmetric setting.

• RICIN for Symmetric Noise. We take the noisy label Ȳ as Y in Eq. (3) and denote it as the RICI
Noise (RICIN). In this regard, the clean part of the label (i.e., x>β∗) corrupted by the non-zero
γ. Hence, the non-zero γi implies the existence of non-random noise in the label Ȳi, making the
instance i as a candidate for to be the noisy data.

• RICIP for Asymmetric Noise. Under this setting, it is reasonable to take the noisy data as the
hard cases. Therefore, we can adopt the curriculum learning strategy, in which we gradually
pick up from easy to hard samples. To achieve this goal, we take the Y as P , i.e., one-hot
encoded vector of obtained from softmax(XWfc), where Wfc denotes the weight in the fully-
connected layers (for simplicity we ignore the bias term in the formulation) with the element on
argmaxc softmax(XWfc) being 1 and others being 0. In this regard, the non-zero γ correspond
to the samples that are hard to fit, i.e., hard samples. Thus we exclude them to use easy sample to
train the network. We denote the RICI with Y = P in Eq. (3) as RICI Predict (RICIP).
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• RICIC: Combination of RICIN and RICIP. To utilize both the learning efficiency from RICIP
and the ability of selecting noisy data from RICIN, we propose the RICI Concatenation (RICIC),
which take the Y as the concatenation of Ȳ and P :

argmin
γ

1

2

∥∥∥∥
(
Y
P

)
−
(
X̃

X̃

)
γ

∥∥∥∥
2

F

+ λ

b∑

i=1

‖γi‖1 , (6)

After estimating the clean set O, we set wi = 1 for i 6∈ O and = 0 otherwise. Then we update
the network parameter with loss

∑
i wiL(xi, ȳi), with L(·) usually adopted as cross-entropy loss.

Note that we assume in Eq. (2) that the one-hot encoded label is linearly related to the feature X;
however, in practice the network prediction is obtained via the soft-max function on the XWfc. To
reduce this gap, we append a `q (q < 1) penalty on the cross entropy loss, which encourages the
linear relationship betweenX and one-hot encoded vector Y :

L (x, ȳ) = LCL(x, ȳ) + λ‖x>Wfc‖q, (7)

where q < 1 and LCL denotes the cross-entropy loss. Note that the ‖x>Wfc‖q enforces the x>Wfc

to approximately be one-hot encoded vector as long as q is small enough. We use q = 0.2 here.

Remark. Note that our feature selection module, i.e., Eq. (3) is orthogonal to any choice of the
loss L. We will show in the experimental part that our RICI can improve over other choices of L.
Furthermore, RICI can also be regarded as a loss adjustment algorithm since we do not require any
other modifications to the network structure or training process, except for the 0-1 re-weight and `q
penalty.

3.3 IDENTIFIABILITY OF RICI
In this section, we provide the identifiability result that the Eq. (4) can recover the oracle support set
O. Our analysis is built upon the model selection consistency result of LASSO (Zhao & Yu, 2006;
Wainwright, 2009). Specifically, we first vectorize Y ,γ in (4) as ~y, ~γ and the Eq. (4) turns to

argmin
~γ

1

2

∥∥∥~y − X̊~γ
∥∥∥

2

2
+ λ ‖~γ‖1 , (8)

where X̊ = Ic ⊗ X̃ with ⊗ denoting the Kronecker product operator. Denote S := supp(~γ∗), then
it sufficient for the recovery of noisy setO to recover S. We further denote X̊S(X̊Sc) as the column
vectors of X̊ whose indexes are in S(Sc) and µX̊ = maxi∈Sc ‖X̊‖22. Then we have

Theorem 1 (Idenifiability (Wang et al., 2021)). Assume that:
C1, Restricted eigenvalue: λmin(X̊>S X̊S) = Cmin > 0;
C2, Irrepresentability: ∃η ∈ (0, 1], ‖X̊>ScX̊S(X̊>S X̊S)−1‖∞ ≤ 1− η;
C3, Large Signal-to-Noise Ratio (SNR): ~γ∗min := mini∈S |~γ∗i | > h(λ, η, X̊, ~γ∗);
where h(λ, η, X̊, ~γ∗) = λη√

CminµX̊

+ λ‖(X̊>S X̊S)−1sign(~γ∗S)‖∞ and ‖A‖∞ := maxi
∑
j |Ai,j |.

Let λ ≥ 2σ
√
µX̊

η

√
log cn. Then with probability greater than 1 − 2(cn)−1, model (8) has a unique

solution ~̂γ such that: 1) If C1 and C2 hold, Ô ⊆ O;2) If C1, C2 and C3 hold, Ô = O.

In our scenario, the C1 can be satisfied since the S is much smaller than Sc (we assume that the
clean data is the majority). The C3 implies that we can only select the signal once the SNR is
large enough. As an almost necessary condition, the C2 is the key assumption for the support set
S to be identified. However, this assumption may not be easy to satisfy. To amend this problem,
we propose to precondition the matrix pairs (X̊, ~y) by left multiplying a matrix F such that FX̊
can automatically satisfies the irrepresentability condition. One possible property for satisfying C2
is to orthogonalize X̊ such that for each column pair (i, j), i 6= j, we have X̊>i X̊j = 0. Then
we have X̊>ScX̊S(X̊>S X̊S)−1 = O and the irrepresentability condition is satisfied. To achieve the
orthogonal property, we use the Puffer transformation (Jia & Rohe, 2015), where we first calculate
the SVD decomposition for X̊ such that X̊ = UDV , and we define F = UD−1U> such that

FX̊ = UD−1U>UDV = UV , (9)

where (FX̊)>FX̊ = V >U>UV = I , leading to the orthogonal property.
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Theorem 2 (Preconditioned Identifiabilty). Define

γ̃ = argmin
~γ

1

2

∥∥∥F ~y − FX̊~γ
∥∥∥

2

2
+ λ ‖~γ‖1 , (10)

Let λ ≥ 2σ
√
µX̊

η

√
log cn. If C1 and C3 hold, then Ô = O with probability greater than 1−2(cn)−1.

The proof is given in the Appendix A. Note that the Puffer transformation will transfer the standard
linear regression model (8) into a Pre-conditioned lasso model, where the random noise is dependent
on each other and often get a higher variance. Hence in practice we should balance the benefit of
automatically satisfying the irrepresentability condition and costs of introducing dependent noise of
higher variance.

Table 1: Test accuracies on several benchmark datasets with different settings. Every result is
averaged over 3 different random runs. The best result is boldfaced. Results of competitors on
MNIST and CIFAR10 are reported in (Zhou et al., 2021c). Results on SVHN are reproduced by
ourselves using the provided code. CnFm implies the network includes n convolutional layers
followed by m fully-connected layers.

Dataset Method Clean Symmetric Noise Rate Asymmetric Noise Rate
0.2 0.4 0.6 0.8 0.2 0.3 0.4

MNIST
(C2F2)

CE 99.15 91.62 73.98 49.36 22.66 94.56 88.81 82.27
FL 99.13 91.68 74.54 50.39 22.65 94.25 89.09 82.13
GCE 99.27 98.86 97.16 81.53 33.95 96.69 89.12 81.51
SCE 99.23 98.92 97.38 88.83 48.75 98.03 93.68 85.36
NLNL 98.85 98.33 97.80 96.18 86.34 98.35 97.51 95.84
APL 99.34 99.14 98.42 95.65 72.97 98.89 96.93 91.45
SR 99.33 99.22 99.16 98.85 98.06 99.27 99.24 99.23
RICIN 98.59 98.92 99.11 99.09 98.64 98.66 98.72 98.65
RICIP 99.27 99.18 99.17 98.96 22.35 99.26 99.25 99.19
RICIC 98.51 98.99 99.07 99.07 95.52 98.64 98.64 98.64

CIFAR10
(C6F2)

CE 90.48 74.68 58.26 38.70 19.55 83.32 79.32 74.67
FL 89.82 73.72 57.90 38.86 19.13 83.37 79.33 74.28
GCE 89.59 87.03 82.66 67.70 26.67 85.93 80.88 74.29
SCE 91.61 87.10 79.67 61.35 28.66 86.20 81.38 75.16
NLNL 90.73 73.70 63.90 50.68 29.53 84.74 81.26 76.97
APL 89.17 86.98 83.74 76.02 46.69 86.50 83.34 77.14
SR 90.06 87.93 84.86 78.18 51.13 87.70 85.63 79.29
RICIN 84.65 86.85 86.49 81.86 54.05 85.23 84.22 81.71
RICIP 91.05 88.70 86.04 79.39 37.80 89.20 87.42 84.97
RICIC 85.49 87.35 86.33 81.98 53.44 85.43 84.17 80.48

SVHN
(WRN16)

CE 96.80 90.67 82.60 67.78 68.04 91.58 87.03 81.83
FL 96.77 89.83 81.90 68.00 67.87 94.15 92.76 86.94
GCE 96.81 91.07 82.47 68.48 66.56 91.06 87.25 81.48
SCE 96.97 96.54 95.71 93.55 81.78 96.51 95.35 90.70
SR 96.81 96.37 95.61 93.05 19.59 96.37 95.76 95.19
RICIN 84.71 87.27 91.77 93.10 81.67 82.59 83.18 82.13
RICIP 96.87 96.15 95.61 93.85 83.77 96.73 96.35 96.46
RICIC 93.78 94.08 94.50 94.10 82.53 92.62 92.94 92.17

4 EXPERIMENTS

Setup. We investigate the effectiveness of RICI on several benchmark datasets including
MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011)
and a real-world dataset ANIMAL10 (Song et al., 2019). We consider two types of noisy labels
for MNIST, CIFAR10, and SVHN: (i) Symmetric noise: Every class is corrupted uniformly with
all other labels; (ii) Asymmetric noise: Labels are corrupted by similar (in pattern) classes. The
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ANIMAL10 is published with mislabeling (the ratio is 8%) and the corruption process and noise
type in ANIMAL10 are unknown. Thus, the ANIMAL10 can be regarded as a real-world challenge.

Backbones. To make a fair comparison with other algorithms, we use different backbones for
different datasets. For MNIST, we use two convolutional layers followed by two fully-connected
layers, denoted as C2F2. For CIFAR10, a 6-layer CNN followed by two fully-connected layers is
utilized, denoted as C6F2. WideResNet-16-8 (Zagoruyko & Komodakis, 2016) is used for SVHN,
and for ANIMAL10 we use VGG19-BN (Simonyan & Zisserman, 2015) as our backbone.

Hyperparameter setting. We use SGD to train all the networks with momentum 0.9, except for
ANIMAL10 we do not use momentum. For SVHN and ANIMAL10 the learning rate is decayed
after certain epochs, while for others we use the cosine learning rate decay algorithm. The initial
learning rate is set as 0.1 for ANIMAL10 and 0.01 for others. The weight decay is set as 1e-3,1e-
4,5e-4,1e-3 for MNIST, CIFAR10, SVHN, and ANIMAL10, respectively. We use a batch size of
128. We use random crop and random horizontal flip as augmentation strategies for CIFAR10,
SVHN, and ANIMAL10. The network is trained for 50 epochs for MNIST, 120 epochs for
CIFAR10, and 160 epochs for SVHN and ANIMAL10. The coefficient λ of the sparse penalty
is initialized as 4 for MNIST and 1.2 for others, and is increased by multiplying 2 for MNIST, 1.03
for CIFAR10 and ANIMAL10, 1.02 for SVHN, and 1.014 for the experiments of symmetric noise
rate 0.8 on CIFAR10. We simply select half of the training data in all of our experiments.

4.1 EVALUATION ON SYNTHETIC LABEL NOISE

Competitors. We first utilize the cross-entropy loss (CE) as a baseline algorithm. Another effective
loss function Focal Loss (FL) (Lin et al., 2017) is also compared. Some refined algorithms for CE
loss, GCE (Zhang & Sabuncu, 2018) and SCE (Wang et al., 2019), are also compared. NLNL (Kim
et al., 2019) utilizes complementary labels to against the noise. APL (Ma et al., 2020) combines
robust active and passive loss to train the network. SR (Zhou et al., 2021c) utilizes the sparse
regularization combined with the feature normalization and temperature scaling method to train
the network. To make a fair comparison, we use the same backbone and hyper-parameters for all
methods.

The results are shown in Table 1. Our algorithm enjoys comparable or better performance in all
settings. Specifically, when the noisy rate is not large (i.e., asymmetric noise where the noise only
occurs in a subset of classes and low noisy rate in symmetric noise), the noisy data can have a minor
influence on the training, leading to the superior performance of RICIP which select easy samples
to train. With symmetric noise of high noise rate, the RICIN performs more stable than RICIP, since
the selected easy samples of RICIP no longer correspond to clean data. As a combined version,
the RICIC can bring additional benefits in some scenarios. In practice, the RICIC is suggested as a
starting baseline for the specific noisy label problem when the noise type is unknown.

4.2 EVALUATION ON REAL-WORLD NOISY DATASET

Table 2: Test accuracies on ANIMAL10. Every result is averaged over 3 different random runs. The
best result are boldfaced.

CE Nested CED SELFIE PLC NCT RICIN RICIP RICIC
79.4 81.3 81.3 81.8 83.4 84.1 77.14 84.74 76.30

In this section, we compare RICI with other methods in a real-world noisy dataset, ANIMAL10.

Competitors. We compare with the baseline of directly training with cross-entropy loss (CE), as
well as previous works including Nested(ND), CE + Dropout (CED), SELFIE (Song et al., 2019),
PLC (Zhang et al., 2021), and NestedCoTeaching (NCT) (Chen et al., 2021).

Results are shown in Table 2, where the results of CE and SELFIE is reported in (Song et al., 2019),
the results of ND, CED, and NCT is reported in (Chen et al., 2021), while the result of PLC is
reported in their paper. Our algorithm RICIP enjoys superior performance to all the competitors,
showing the ability of handling real-world challenge. Since the noise rate is low (8%), the other
two variants eliminate many clean data due to the strategy of selecting only half of the training data,
resulting in the inferior performance of RICIN and RICIC.
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Figure 2: Accuracy and Label precision of RICIN under different noise scenarios. The red line is
the accuracy of RICIN, while the dotted line is the label precision.

4.3 EMPIRICAL ANALYSIS OF RICI

Precision of sample selection. Besides accuracy, another metric to test the capacity of a sample
selection algorithm is precision: the ratio of true clean labels in the selected instances. In this
part, we check the precision of RICIN to show the sample selection effectiveness. We conduct our
experiments on the symmetric noise rate of 0.4 and 0.8, as well as asymmetric noise rate of 0.4.
Results are shown in Figure 2. RICIN enjoys a monotonically increasing label precision, leading
to a better training environment than the standard noisy dataset. When the training process ends,
almost all the selected training data is guaranteed to be clean data (92.16% in the symmetric-40%
setting and 94.33% in the asymmetric-40% setting). Note that in the symmetric-80% setting, due
to the strategy of selecting half of the training data, the upper bound of the precision is 40%, as
illustrated. In this high noise rate scenario, RICIN can still achieve the precision of 31.30%, which
means that 73.27% of the clean training instances are detected by our algorithm. The above results
consistently show the effectiveness of RICIN.

Table 3: Accuracy of using
different modules in RICIN.

Model Accuracy

CE 58.36
CE + RICIN 67.22
CE + `q 79.71
Full 86.49

Ablation study of modules in RICI. To verify the effectiveness of
each module in our framework, we conduct an ablation study on
CIFAR10 with 40% symmetric noise rate. Specifically, the “CE”
denotes vanilla cross entropy method; the “CE + RICIN” means
the cross-entropy loss for L with Eq. equation 4 to identify {wi} in
each forward pass; the “CE + `q” means the Eq. (7) for L; and the
“Full” denotes our RICI method with all components. As shown in
Table 3, simply using our framework will lead to better performance
compared with the standard CE loss. With the additional `q norm
appended on the loss, the linear relationship between the feature and
the label is enforced so that the RICI can perform better in selecting
clean data.

Table 4: Accuracy of RICIN
with different loss functions.

Model Accuracy

FL 57.90
FL + RICIN 86.53

GCE 82.66
GCE + RICIN 86.29

Plug-in property of RICI. To show the effectiveness of our sample
selection mechanism in Eq. (4), we also conduct RICI with other
choices of the loss function. Here we consider FL and GCE. As
shown in Table 4, our sample selection mechanism can achieve a
large improvement. Therefore, we believe that our RICI framework
is a plug-in module and can be applied to different loss functions.
Besides, our experiments in Table 1 and Table 2 are conducted on
different backbones, which shows that our RICI framework can be
incorporated with different network architectures. Thus, our RICI
framework can be used as a plug-in module that does not require
specific loss function or network architecture.

Influence of the Puffer transformation. As shown in theorems 1,2, we propose to use the Puffer
transformation to ensure the identifiability of RICI in the scenario where the irrepresentability
condition is not satisfied by the standard formulation at a cost of making noise dependent and having
larger variance. Specifically, we conduct experiments on CIFAR10 with symmetric noise of 40%
and test the performance of RICIN and RICIP with or without using the Puffer transformation.

8



Under review as a conference paper at ICLR 2022

0 20 40 60 80 100 120
Epoch

50

60

70

80

Ac
cu

ra
cy

RICIN
RICIN+Puffer
RICIP
RICIP+Puffer

0

20

40

60

80

100

Ra
tio

 o
f s

at
isf

ie
d 

C2
(%

)

Figure 3: Accuracies (solid line) and ratios
of mini-batches satisfying irrepresentability
condition (dotted line) for each epoch.
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Figure 4: Best and final accuracies of RICIN
running with selecting different number of
training data.

Results are shown in Figure 3. Note that for variants using the Puffer transformation, the ratio
is 100% and not visualized in the figure. The original formulation of RICIP cannot satisfy the
irrepresentability condition and hence cannot recover the inconsistent data, resulting in an inferior
performance. The preconditioned variant, RICIP+Puffer, enjoys a significant improvement thanks
to the training environment for satisfying the irrepresentability condition. For RICIN, as the training
process goes, the ratio of the satisfied mini-batches is gradually increased and converged to almost
100%, hence a preconditioning environment is not required since it will introduce extra dependent
noise. Thus in our experiments, we use the Puffer transformation for RICIP, while do not use it for
RICIN.

Influence of select ratio. In our experiments, we simply select half of the training data to train
the network. It is desirable to investigate how does the number of selected instances influences
the training process. We conduct experiments of RICIN on CIFAR10 with symmetric noise rate
of 0.8. We use a batch size of 256, where the expectation of clean data in each mini-batch is
256 ∗ 0.2/10 ≈ 5. It can be found that the best selection ratio is near the clean ratio in the training
set. Hence a better selection strategy may be designed based on the estimation of the noise ratio
in the training set. We leave it as a future work since in this paper we mainly propose the plug-in
sample selection framework.
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Figure 5: Accuracies of RICIN with different `q .

Influence of `q . In this part, we investigate the
inlfuence of `q norm in our framework. We
run with a sequence of q from 0.05 to 1, as
illustrated in Figure 5. In general, a smaller q
encourages the linear relation as expected by
our framework, while too small q will damage
the representation capacity of the network.
Thus, a convex accuracy curve exists when we
test with different `q , suggesting a choice of
q = 0.2 to be the best to balance the linear
relation requirement and the representation
capacity. Hence in our experiments we use
q = 0.2.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a statistical plug-in sample selection framework, dubbed as Relative
Instance Credibility Inference (RICI) so select clean data with theoretical guarantees. Specifically,
we re-purpose a sparse linear model with incidental parameters, whose sparsity can be induced as a
general metric for the relative credibility of instances within a mini-batch. Then one can rank and
select the most consistent training data to train the network. We provide theoretical conditions to
guarantee the identifiability of RICI to recover the oracle inconsistent set. Experiments on several
synthetic benchmark datasets and a real-world dataset show the effectiveness of our framework.
Since we organize our framework as a plug-in module for a standard supervised training pipeline,
some modules are not specifically designed and maybe the future work of our framework, including
a noise rate estimation algorithm to guide the number of selected instances and a combination with
semi-supervised algorithms to further exploit the support of detected noisy data.
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A APPENDIX

Wang et al. (2021) proved Theorem 1 by a combination of a proposition with a lemma. Here we first
introduce the proposition and the lemma, and then extend them in the dependent noise setting.

Proposition 3 (Wang et al. (2021)). Assume that X̊>X̊ is invertible. If
∥∥∥∥λX̊>ScX̊S

(
X̊>S X̊S

)−1

v̂S + X̊>Sc (I − IS) X̊ε

∥∥∥∥
∞
< λ (11)

holds for all v̂S ∈ [−1, 1]S , where IS = X̊S

(
X̊>S X̊S

)−1

X̊>S , then Ŝ = supp
(
~̂γ
)
⊆

supp (~γ∗) = S. Moreover, if sign
(
~̂γS

)
= sign (~γ∗S) holds, then sign

(
~̂γ
)

= sign (~γ∗).

Lemma 4 (Wang et al. (2021)). Assume the indenpendent zero-mean random error ~ε is
sub-Gaussian with bounded variance Var (~εi) ≤ σ2. Then with probability at least 1 −
2cn exp

(
− λ2η2

2σ2µX̊

)
there holds

∥∥∥X̊>Sc (I − IS) X̊~ε
∥∥∥
∞
≤ λη and

∥∥∥∥
(
X̊>S X̊S

)−1

X̊>S X̊~ε

∥∥∥∥
∞
≤

λη√
CminµX̊

.

When we use the Puffer transformation to preconditioning Eq. (8). The assumptions of Lemma 4
is no longer satisfied while the proof of Proposition 3 do not require a independent noise, Hence it
sufficient to prove a similar result of Lemma 4 with the dependent random noise.

Note that the two inequalities share the formulation of

‖z‖∞ ≤ c, z = A~ε. (12)

And the infinity norm of z is bounded by the sum of shared upper bound for each element.
Specifically, each element zi is a weighted sum of the random noise. The point where independent
noise is required by the proof technique is that a weighted sum of independent sub-Gaussian
variables is still sub-Gaussian such that one can use the Hoeffding inequality to bound the weighted
sum of random error.

When we face the dependent noise, we need a additional assumption that the noise is Gaussian to
ensure that the weighted sum of dependent noise is still Gaussian. Then we can prove the same
inequality of Eq. (12).

Lemma 5. Assume that z ∈ Rn is zero-mean Gaussian vectors. Then for any t > 0, we have

P(‖z‖∞ ≥ t) ≤ 2n exp{− t2

2 maxi Var(zi)
} (13)
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Proof. We have for any λ > 0

E [exp (λzi)]

=
1√

2πVar (zi)

∫ ∞

−∞
exp (λx) exp

(
− x2

2Var (zi)

)
dx

= exp

(
λ2Var (zi)

2

)
1√

2πVar (zi)

∫ ∞

−∞
exp


−1

2

(
x√

Var (zi)
− λ
√

Var (zi)

)2

 dx

= exp

(
λ2Var (zi)

2

)

Hence

P (‖z‖∞ ≥ t) ≤
∑

i

P (|zi| ≥ t)

= 2
∑

i

P (zi ≥ t)

≤ 2
∑

i

inf
λ

exp (−λt)E [exp (λzi)]

= 2
∑

i

inf
λ

exp (−λt) exp

(
λ2Var (zi)

2

)

= 2
∑

i

exp

( −t2
2Var (zi)

)

≤ 2n exp

( −t2
2 maxi Var (zi)

)

Then we can use the same technique to proof Lemma 4 in the dependent noise setting and finish the
proof of Theorem 2.
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