
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING THE ROLES OF TIME AND FREQUENCY
DOMAINS BEFORE TACKLING TIME SERIES UDA

Anonymous authors
Paper under double-blind review

ABSTRACT

In time-series unsupervised domain adaptation (UDA), the adaptation between
temporal and frequency domain features has been relatively underexplored. To
address this gap, we conduct a comprehensive series of experiments to revisit
the roles of these domains in source-free UDA (SFUDA), a branch of the UDA
task. Our findings reveal that the temporal domain contains more diverse features,
offering higher discriminability, while the frequency domain is more domain-
invariant, providing better transferability. Combining the strengths of both domains,
we propose TidalFlow, a SFUDA framework that synergistically integrates temporal
and frequency domain features. TidalFlow enhances feature extraction and captures
subtle, class-specific features without relying on traditional alignment strategies.
By utilizing simple hyperparameter adjustments and using frequency embeddings
from the source domain as reference points for domain adaptation, TidalFlow
achieves nearly a 10% improvement across five benchmark datasets in time-series
UDA. This research highlights the unique strengths of both domains and marks a
paradigm shift in SFUDA methods, showcasing TidalFlow’s robust performance
in real-world applications. Code is available at the anonymous link: https:
//anonymous.4open.science/r/TidalFlow-42B0/.

1 INTRODUCTION

Time series datasets showcase the prowess of neural networks Ravuri et al. (2021); Lundberg et al.
(2018), but their vulnerability to domain shifts poses deployment challenges Singhal et al. (2023);
Painblanc et al. (2023); Zhang et al. (2021). These shifts, stemming from nuanced differences in test
distributions, hinder model generalization Koh et al. (2021); Luo et al. (2018); Zhang et al. (2013).
Addressing this, domain adaptation (DA) techniques, such as leveraging unlabeled data Garg et al.
(2021); Ganin et al. (2016), emerge as essential to ensure robust model performance in real-world
scenarios. In addition, DA for time series is even more difficult Wilson & Cook (2020); Ozyurt
et al. (2023); He et al. (2023), as it has to deal with both the domain discrepancy and the temporal
dynamics that may cause feature shift and label shift.

Unsupervised Domain Adaptation (UDA) is pivotal for enhancing the generalization of machine
learning models, aiming to train a model on a labeled source domain that can effectively perform on
a related yet unlabeled target domain Garg et al. (2021); Ganin et al. (2016). While UDA methods
have flourished in computer vision Huo et al. (2022); Tang et al. (2021); Pan et al. (2020); Tzeng
et al. (2019), their application to time series, though feasible with feature extractor adjustments, often
falls short in fully harnessing time-series properties. In the domain of time series, a limited number
of works have explicitly addressed UDA, they most focus on temporal information. Even when the
frequency domain is considered, it is typically combined with temporal features and treated as general
information during training.

To clarify the characteristics of the time and frequency domains, this research conducted a series
of experiments leading to the following conclusions: the temporal domain provides broader
information with stronger classification discriminability, while the frequency domain, though
simpler, offers more domain-invariant features that serve as reference points between the source
and target domains (Section 3).

Our research integrates the strengths of both the temporal and frequency domains, moving beyond
the prior focus on “how to align two inconsistent distributions” to explore “how to identify features

1

https://anonymous.4open.science/r/TidalFlow-42B0/
https://anonymous.4open.science/r/TidalFlow-42B0/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that represent classes across domains.” The difference lies in that the former approach pays little
attention to the features extracted by the model, focusing instead on alignment methods and classifier
performance. This overemphasis on alignment leads to overly sensitive and inflexible classifiers,
particularly when dealing with data with large domain gaps or longer time series. The latter approach
avoids these pitfalls by enabling the model to utilize class-representative features early in training,
ensuring more robust performance.

We propose TidalFlow, a simple framework for SFUDA in time series that leverages both temporal
and frequency domain characteristics to achieve strong performance. Our model integrates informa-
tion from both domains to capture subtle, class-specific features, enhancing feature extraction. By
focusing on the domain-invariant properties of the frequency domain, we use a frequency embeddings
table from the source domain as reference points, along with simple hyperparameter adjustments,
to enable the model to find the most suitable embeddings for target domain data during adaptation,
ultimately assigning the appropriate class labels. This straightforward training framework show-
cases the complementary strengths of the temporal and frequency domains, resulting in exceptional
performance across five different real-world datasets.

Contributions:

1. Through a series of experiments, we revisited the key components of the temporal and
frequency domains and concluded that the temporal domain provides richer information
with better discriminability. In contrast, the frequency domain, due to its inherent properties,
offers more structural features that are domain-agnostic between source and target domains,
resulting in superior transferability.

2. We introduce TidalFlow, a model architecture based on VQ-VAE specifically designed
for SFUDA in time series. This framework strategically integrates information from both
domains using a frequency embedding table to effectively determine optimal embeddings
for target domain data.

3. TidalFlow exhibits nearly 10% significant improvement across five benchmark datasets for
time-series UDA, underscoring its competitive edge in this field.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) involves utilizing labeled data from a source domain to
predict labels for an unlabeled target domain. The primary objective of UDA methods is to minimize
domain discrepancy, thereby reducing the lower bound of target error. Existing UDA approaches can
be broadly categorized into three groups: (1) Metric-based methods, like DDC (Tzeng et al., 2019),
Deep CORAL (Sun & Saenko, 2016), DeepJDOT (Damodaran et al., 2018), HoMM (Chen et al.,
2020), and MMDA (Rahman et al., 2020), minimize domain discrepancy by imposing restrictions
using a distance metric (e.g., maximum mean discrepancy). (2) Adversarial-based methods employ
domain discriminator networks, such as DANN (Ganin et al., 2016), CDAN (Long et al., 2018), and
DIRT-T (Shu et al., 2018), to enforce the feature extractor in learning domain-invariant representations.
(3) Contrastive methods reduce domain discrepancy through a contrastive loss, aligning embeddings
of source and target samples of the same class. Pseudo-labels, generated by clustering algorithms,
are used for target samples, as their actual labels are unknown. Examples include CAN (Kang et al.,
2019), CLDA (Singh, 2021), and IDCo (Zhang et al., 2023). While UDA has been extensively
explored in computer vision, limited research has been conducted on UDA for time-series data.

2.2 TIME-SERIES UNSUPERVISED DOMAIN ADAPTATION

Despite successes in computer vision, there has been a notable gap in research focusing on adaptation
methods tailored for time-series data. Few methods have been specifically crafted for time-series
domain adaptation. (1) Adversarial training for time-series UDA involves using adversarial methods
to learn domain-invariant temporal relationships, such as VRADA (Purushotham et al., 2017), and
CoDATS (Wilson et al., 2020). (2) Statistical divergence methods for time-series UDA focus on
aligning the statistical properties of source and target domains. Examples include SASA (Cai et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: We randomly selected 15 source 7→ target pairs from the HAR dataset and divided them into
three groups for analysis, focusing on the following metrics: (a) mean accuracy in the source domain,
(b) mean variance in classification performance within the target domain, and (c) the performance
degradation rate when testing the source domain pre-trained model on the target domain. Additionally,
we evaluated the impact of hyperparameters on transferability in both the time and frequency domains
by assessing (d) the mean accuracy after fine-tuning with different learning rates.

2021), AdvSKM (Liu & Xue, 2021a) and Ott et al. (2022). (3) Self-supervision methods for time-
series UDA extract domain-invariant and domain-specific features. DAF (Jin et al., 2022) uses a
shared attention module with a reconstruction task. Contrastive methods like (Ozyurt et al., 2023),
CoTMix (Eldele et al., 2023), and CALDA (Wilson et al., 2023) use augmentations to enhance
prediction. RAINCOAT (He et al., 2023) addresses feature and label shifts by aligning them across
domains. Despite their potential, they rely on access to source data, which may not always be feasible
due to privacy concerns.

A more practical method in the real world is the SFUDA task, which can perform domain adaptation
without source data and target labels. Liang et al. (2020) freezes the source model’s classifier and uses
information maximization and self-supervised pseudo-labeling to align target domain representations
to the source hypothesis. And Ragab et al. (2023b) captures temporal information through random
masking and a temporal imputer to ensure temporal consistency between source and target features
during adaptation. TemSR (Wang et al., 2024) transfers temporal dependencies without requiring
source-specific designs by leveraging masking, recovery, and optimization to generate a source-like
distribution for adaptation. However, these methods have not taken full advantage of both time and
frequency domain properties in addressing the UDA problem.

2.3 VECTOR QUANTISED VARIATIONAL AUTOENCODER (VQ-VAE)

Conceptualized as a communication system, the VQ-VAE (Van Den Oord et al., 2017) model
comprises an encoder and a decoder. The encoder involves a non-linear mapping from the input
space to a vector, which is then quantized by determining its nearest prototype vector in a shared
codebook. The quantized vector, essentially the index of the closest prototype vector, is transmitted
to the decoder. Despite the potential loss, the decoder maps these indices back to their corresponding
vectors in the codebook, reconstructing the data through another non-linear function. Learning
involves back-propagating the gradient of the reconstruction error through the decoder and to the
encoder, utilizing the straight-through gradient estimator.

A key benefit of VQ-VAE is its discrete representation, which proves useful in obtaining effective
features. In UDA, data distribution from the target domain is indirectly captured through self-
supervised learning. Notably, VQ-VAE is less susceptible to model degeneration issues, enabling it
to effectively capture both temporal and frequency domain information during adaptation without the
associated concerns.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROBLEM FORMULATIONS

3.1 SCENARIO DESCRIPTION

We are given two distributions of time-series data: one from the source domain Ds and the other
from the target domain Dt. In this setup, define labeled i.i.d. samples from the source domain as
S = {(xs

i ,y
s
i )}

Ns

i=1 ∼ Ds, where xs
i represents a sample from the source domain, ys

i ∈ {1, ...,H},
where H is the number of classes, and ys

i denotes the label for the corresponding sample, and Ns

denotes the total number of i.i.d. samples in the source domain. Conversely, consider unlabeled
i.i.d. samples from the target domain denoted by T = {xt

i}
Nt

i=1 ∼ Dt. Here, xt
i denotes an individual

sample from the target domain, and Nt represents the total number of i.i.d. samples collected from
the target domain. Furthermore, each xi, whether originating from Ds or Dt, constitutes a sample of
a multivariate time series denoted by xi = {xi,t}Lt=1 ∈ RM×L, where L represents the number of
time steps, and xi,t ∈ RM signifies M observations for the respective time step.

Our objective is to establish an embedding table through UDA on the source samples S, enabling
effective generalization on the target samples T . Notably, in the provided time series datasets for Ds

and Dt, where the label sets are identical Cs = Ct, the target labels yt are not available during the
training phase.

The aforementioned scenario is practically relevant across various applications Feng et al. (2023);
Ramponi & Plank (2020); Zhang et al. (2018), whether in machine faulty detection Lessmeier et al.
(2016), predicting the four sleep stages using EEG signals Goldberger et al. (2000), or recognizing
human activity Stisen et al. (2015); Anguita et al. (2013); Kwapisz et al. (2011) through signals from
wearable devices. The differences in machines, environments, and individuals can easily lead to
significant domain shifts in the datasets. Therefore, to ensure accurate predictions and generalization,
it is often necessary to adapt and apply deep learning models trained in one domain S to another
domain T .

3.2 PRELIMINARY STUDY

We design a series of experiments on both the temporal and frequency domains. To minimize model
influence, we follow prior research (Liu & Xue, 2021b; Cheng et al., 2024) by constructing a 3-layer
CNN as a temporal feature extractor and a frequency feature extractor that combines a fast Fourier
transform with a 1-layer linear network. Both are followed by a 1-layer linear classifier for simplicity.

The key question we explore is: What kind of feature information do the temporal and frequency
domains provide? We pre-train three models on the source domain until until they converge and
observe their performance on the target domain. During the temporal model experiments, we observe
a noteworthy phenomenon: despite achieving nearly 100% accuracy in the source domain (Fig.
1(a)) with different model parameters, the performance on the target domain exhibits considerable
fluctuation. As shown in Fig. 1(b), the performance variance of the three temporal models is
larger than that of the frequency models. A t-test confirms a statistically significant difference in
performance variance between the temporal and frequency models (p-value = 0.0133).

Transferability. When we examine transferability, Fig. 1(c) shows that the temporal models
experience a more significant performance drop, with a statistically significant difference from the
frequency models (p-value = 0.0491). We hypothesize that this is because the temporal domain
contains a wider variety of information, enabling the model to classify based on multiple dimensions.
Nevertheless, this diverse information also includes more features specific to the source domain or
confounders, meaning that when domain shifting occurs, the model’s focus may no longer be on the
relevant class features of the target domain, resulting in poorer transferability.

In contrast, the frequency domain, after undergoing Fourier transformation, filters out much of
the extraneous information, such as signal start and end points or noise, resulting in fewer feature
dimensions. However, this allows the frequency models to focus more on the overall structure of the
information, making them more domain-invariant. Fig. 1(c) supports this, showing that although the
frequency models do not perform as well as the temporal models in source domain classification,
their transferability is superior.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This raises another concern: Is the frequency domain truly more domain-invariant? To investigate,
we design another experiment where we only adjust the extent of feature updates (here, we choose
to adjust the learning rate) during the fine-tuning phase. Our assumption is that if merely tweaking
the learning rate significantly improves model performance, it indicates that the frequency domain
contains domain-agnostic features that are specific to each class of data, rather than just irrelevant
features that do not contribute to the model’s effectiveness.

As shown in Fig. 1(d), the frequency models require a very small learning rate to fine-tune correctly.
Larger learning rates prevent the frequency models from converging to the optimal point. Interestingly,
the temporal models are much less sensitive to hyperparameter adjustments compared to the frequency
models. In Fig. 1(d), despite averaging accuracy across 15 source 7→ target experiments, the temporal
models fine-tune to 100% accuracy across learning rates ranging from 1× 10−4 to 1× 10−8. This
could be explained by the high feature diversity in the temporal domain, allowing different model
parameters to reach optimal solutions depending on the learning rate. Meanwhile, the frequency
models retain robust domain-invariant features between source and target domains, making them
better suited to fine-tuning with smaller steps.

Empirical insights. The analysis reveals two key insights regarding time-series domain adaptation:
(1) the time domain excels at classification, but its transferability is hindered by an excess of
confounding factors, and (2) the frequency domain, though containing more uniform and less diverse
information, offers better domain-invariant features, leading to stronger transferability. Based on
these observations, we design a simple model framework that leverages the rich features of the time
domain while using the frequency domain as a reference point to bridge the source and target domains.
Our experimental results demonstrate that combining the strengths of both domains yields improved
performance.

4 OUR APPROACH

Next, we present the architecture of TidalFlow, which consists of three modules: a dual-stream
encoder G, a hierarchical embedding table (HET), a 1-layer linear classifier for training, and a
decoder U for adaptation. Section 4.1 introduces an encoder network G, which extracts both temporal
and frequential features from the input. Section 4.2 introduces how the hierarchical embedding table
(HET) be initialized and how it works during different phases. Section 4.3 introduces the voting
mechanism after the nearest-neighbor algorithm in the inference phase. We follow the framework as
VQ-VAE (Van Den Oord et al., 2017) that uses the selected embeddings as input into the decoder U .
Section 4.4 outlines the objective functions during the training and adaptation phases and provides an
overview of TidalFlow.

4.1 DUAL-STREAM ENCODER G

G encodes both time and frequency representations, and the source temporal and frequential features
are denoted as zstemp,i and zsfreq,i, while the target features are denoted as zttemp,i and ztfreq,i. We will
employ the simplified terms ztemp and zfreq to collectively represent features from both Ds and Dt

in the subsequent explanations. By including frequency information, the encoder enhances its ability
to adapt across domains by potentially identifying common features. The encoder parameterizes
a posterior distribution q(z|x) over the latent variables ztemp and zfreq based on the input. This
posterior captures relationships between the input and latent representations, informed by both
temporal and frequency patterns extracted from the input, the following:

G(x) = Concat[ztemp(x), zfreq(x)], ∀x ∈ D, (1)
where D is either Ds or Dt, and Concat is the abbreviation of concatenation.

4.2 HIERARCHICAL EMBEDDING TABLE (HET)

Initialization. We introduce a 2-layer top-down embedding table and the initial layer is organized
based on task labels, consisting of H categories. The subsequent layer of the hierarchical embedding
table comprises independent latent embedding spaces for each eh, denoted as eh ∈ RK×Ψ, where K

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: The TidalFlow framework. (a) During training, input data xs
i undergoes processing through

the Dual-Stream Encoder G to generate a temporal and frequency combined feature representation
zse. Representative embeddings are retrieved from HET based on input labels, and the classifier
distinguishes between the categories. The function ρ is employed for finding the nearest embedding
for ze in HET. (b) In adaptation, TidalFlow adjusts embeddings in HET using frequency reference
points to tackle domain shifts through a reconstruction task with the decoder U . (c) During inference,
a voting mechanism ranks similarities between embeddings and zte to enhance classification.

represents the number of the discrete latent variables of each category and Ψ is the dimensionality
of each embedding vector. To sum up, there are H ×K embeddings in the hierarchical embedding
table and we initialize the embeddings by uniform distribution.

Training phase. We perform a nearest neighbor search in the whole embedding space, focusing
on the category in the source domain that corresponds to the input x as outlined in Eq. 2. The
probabilities of the posterior categorical distribution q(G(x)|x) are defined as one-hot encoded,
following:

q(G(x) = k|x) =
{
1 for k = argminj ∥G(x)− eh,j∥2,
0 otherwise

, (2)

where h denoted to the same category as x and j is the candidates of the category h.

Adaptation phase. Due to the lack of labels in Dt, the model cannot search for the most similar
embeddings within the respective categories. Therefore, we take advantage of the distinctive charac-
teristics of the frequency domain and partially freeze the frequency blocks of HET. This deliberate
constraint, achieved through significantly different learning rates, establishes a clear reference point
for the encoded latent representations. Consequently, both the time and frequency modules can effi-
ciently navigate the gradient map, leading to the identification of optimal solutions with appropriately
adjusted update steps. Accordingly, we can modify Eq. 2 to be agnostic to the category h:

q(G(x) = k|x) =
{
1 for k = argminj ∥G(x)− ej∥2,
0 otherwise

, (3)

where j is the embeddings of HET and there is no category h in this equation.

4.3 VOTING MECHANISM

After the training and adaptation phases, the embeddings in HET have formed H distinctive clusters.
This implies that, while the embedding in HET is discrete, the majority possess representative features
specific to their respective categories h. Subsequently, we employ a nearest-neighbor algorithm to
determine the top K categories (where K=5) represented by the embeddings. Through a voting

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

mechanism, we ascertain the category to which the input data should belong. This enhances the
robustness of TidalFlow. The algorithm of the voting mechanism can be seen in the Appendix A.

4.4 OBJECTIVE FUNCTIONS

In TidalFlow, we utilize three types of objective functions during the training phase: (1) classification
loss, (2) dissimilarity loss, and (3) feature-embedding consistency loss. While there are two types of
objective functions during the adaptation phase: (1) reconstruction loss and (2) feature-embedding
consistency loss.

Classification loss LCE. We utilize cross-entropy loss as the loss function for our classification task
during training.

Dissimilarity loss LD. This objective function is designed to prevent the model from generating
nearly identical embeddings among categories during the training phase. To achieve this, we identify
the closest embedding to zfreq from all embeddings in the frequency block, which is more domain-
agnostic than temporal features and does not belong to the same category as ys

i . The repulsive effect
is introduced by calculating the dissimilarity loss. It is worth noting that, while TidalFlow searches
for the closest representative in the embedding table within the same category as xs

i , this approach
may result in the model learning a common feature across all categories, neglecting latent features
that distinguish between different categories. To address this, we utilize the following equation (Eq.
4) to guide the model explicitly in generating a better latent representation.

LD = 1− ∥sg[efreq [h̸=y]]− zfreq∥22 (4)

where efreq [h̸=y] is the chosen embedding from the frequency block on the hierarchical embedding
table, and its category h cannot be the same label of the input data xs

i . Additionally, sg(·) represents
the stop-gradient operator, which functions as an identity during forward computation and possesses
zero partial derivatives.

Feature-embedding consistency loss LA. Taking inspiration from VQ-VAE (Van Den Oord et al.,
2017), TidalFlow incorporates vector quantization algorithms, guiding the embedding encoder
outputs towards proximity through L2 error, thus effectively learning the embedding space. The
hierarchical structure of the embedding table, divided into temporal and frequency blocks, assigns
each block to handle specific features. Consequently, they do not share the same optimizer but are
updated independently. Additionally, to address a concern highlighted by VQ-VAE about the lack
of dimensionality constraints on the embedding space, which could potentially lead to uncontrolled
growth, TidalFlow adjusts the weight of this constraint to α and β for both temporal and frequency
blocks. The objective function is expressed as:

LA = α

Frequency block︷ ︸︸ ︷
(∥sg[efreq]− zfreq∥22) + ∥efreq − sg[zfreq]∥22

+ β (∥sg[etemp]− ztemp∥22) + ∥etemp − sg[ztemp]∥22︸ ︷︷ ︸
Temporal block

(5)

Reconstruction loss LMSE. During the adaptation phase, since the representative chosen from the
hierarchical embedding table does not provide the model with a real gradient, we employ the straight-
through estimator (Van Den Oord et al., 2017). This allows us to directly pass the gradient generated
by the decoder back to the encoder. We opt not to use the subgradient through the quantization
operation, as VQ-VAE has demonstrated that a simple estimator can achieve effective training
outcomes. As the output representation of the encoder and the input to the decoder exist in the same
D-dimensional space, the gradients carry valuable information on how the encoder needs to adjust its
output to minimize the reconstruction loss.

Overview of TidalFlow. During training, we employ the classification loss for our classification task.
The total loss function is defined with three components in the objective function, as outlined below:

Ltraining = LCE + LA + LD. (6)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

During adaptation, we replace the classification task with a reconstruction task, which leads us to
modify our objective function as shown in Eq. 7. This design enables TidalFlow to outperform other
time-series UDA methods. Last but not least, an overview algorithm of TidalFlow is in Appendix A.

Ladaptation = LMSE + LA. (7)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We employ a comprehensive evaluation strategy, consisting of two main aspects. First,
extensive experiments are conducted using five well-established benchmark datasets in UDA tasks,
from three distinct problem types: (1) Human Activity Recognition: HAR (Anguita et al., 2013),
HHAR (Stisen et al., 2015), WISDM (Kwapisz et al., 2011); (2) Sleep Stage Classification: Sleep-
EDF (Goldberger et al., 2000); (3) Machine Fault Diagnosis: MFD (Lessmeier et al., 2016). In human
activity recognition datasets, we treat sensor measurements from each participant as distinct domains.
To ensure robust assessment, we randomly select 10 source-target domain pairs for evaluation, a
methodology widely adopted in previous works on UDA in time-series research (He et al., 2023;
Ozyurt et al., 2023; Cai et al., 2021; Wilson et al., 2020). For the sleep stage classification task,
following the approach of (Ragab et al., 2023a), we utilize the Sleep-EDF dataset, comprising EEG
readings from 20 healthy subjects, and we specifically choose EEG in alignment with previous studies
(Eldele et al., 2021). The machine fault diagnosis dataset has been collected under four different
operating conditions, and we treat them as separate domains. In contrast to datasets used for human
activity recognition being multi-variate, the data used in Sleep-EDF and MFD consist of a single
univariate channel following previous works. (He et al., 2023; Ragab et al., 2023a) Further details on
datasets are given in Appendix B.

Baselines. We evaluate nine domain adaptation methods, including general UDA approaches: deep
correlation alignment (Deep Coral) (Sun & Saenko, 2016), decision boundary iterative refinement
training with a teacher (DIRT-T) (Shu et al., 2018), HoMM (Chen et al., 2020), and CDAN (Long
et al., 2018). Additionally, we include four UDA methods specifically designed for time series:
CoDATS (Wilson et al., 2020), adversarial frequency kernel matching for unsupervised time-series
domain adaptation (AdvSKM) (Liu & Xue, 2021a), contrastive learning for unsupervised domain
adaptation of time series (CLUDA) (Ozyurt et al., 2023), and RAINCOAT (He et al., 2023). As
a baseline, we also consider source-domain-only training (no transfer) using the time-frequency
encoder as RAINCOAT (He et al., 2023) and a 1-layer classifier.

Evaluation. We present accuracy and macro-F1 scores computed based on the target test datasets. In
the experiment, we assign the values of 1 to both parameters α and β, treating the time domain and
frequency blocks as equally important. More hyperparameter settings can be seen in Appendix D.

5.2 RESULTS

5.2.1 CLASSIFICATION PERFORMANCE ON DA BENCHMARK DATASETS

In Fig. 3, the average accuracy of each method is presented across 10 sources 7→ target domain
pairs on the HAR, HHAR, WISDM, Sleep-EDF, and MFD datasets. On the HAR dataset, our model
surpasses the best baseline accuracy achieved by RAINCOAT by 1.93% (0.844 vs. 0.828). For
the HHAR dataset, our model outperforms the best baseline accuracy of CLUDA by 5.5% (0.624
vs. 0.569). In the case of the WISDM dataset, our model excels by surpassing the best baseline
accuracy of RAINCOAT by 21.34% (0.688 vs. 0.567). Moving on to the Sleep-EDF dataset, our
model exceeds the best baseline accuracy of DIRT-T by 9.1% (0.779 vs. 0.714). Similarly, on the
MFD dataset, our model beats the best baseline accuracy of DIRT-T by 11.73% (0.819 vs. 0.733).
Despite our model’s simplicity compared to state-of-the-art methods, it achieves the highest scores
across five different datasets. The Appendix C contains a detailed compilation of UDA results for
each source 7→ target pair, accompanied by Macro-F1 scores, which further support our conclusions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Average performance of multiple DA methods across 5 real-world time-series datasets.
TidalFlow consistently outperforms all other methods in accuracy on test sets drawn from the target
domain dataset.

5.2.2 DIFFERENT FREQUENCY AND TEMPORAL BLOCK LEARNING RATES

We further analyze the impact of different learning rates for the temporal and frequency blocks of
TidalFlow during the adaptation phase. We conduct experiments using the MFD and Sleep-EDF
datasets due to their large data volumes, which make performance differences more pronounced, as
shown in Fig. 4. We discover some valuable findings:

1. When the learning rate for the frequency block is smaller, TidalFlow’s adaptability improves.
This trend aligns with the observations of our insights in Section 3.

2. When the learning rate for the temporal block is larger, the model’s performance deteriorates.
We speculate that this is due to the interaction between the encoder and the HET within
TidalFlow architecture. Specifically, when the learning rates of the temporal and frequency
blocks differ by four orders of magnitude, it indirectly hinders the adjustment range of one
of the blocks through the encoder.

Therefore, we recommend setting the learning rates of the temporal and frequency blocks to the same
value during the adaptation phase for optimal performance.

(a) MFD (b) Sleep-EDF

Figure 4: Accuracy for Different Frequency and Temporal Block Learning Rates in (a) and (b)
Dataset.

5.3 EMBEDDINGS IN HET AFTER TRAINING PHASE

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: The ablation study of TidalFlow, where performance is measured in terms of accuracy (%).

ELEMENT OF OUR MODEL MFD DATASET
FREQUENCY BLOCK LD VOTING 1 7→ 3 2 7→ 1 3 7→ 2 AVG

(A) ✓ 83.94 80.23 77.81 80.66
(B) ✓ 58.36 65.45 69.10 64.30
(C) ✓ ✓ 87.25 86.08 84.19 85.84
(D) ✓ ✓ 83.81 85.77 82.59 84.06
(E) ✓ ✓ ✓ 99.84 91.71 87.22 92.92

(a) Temporal block

(b) Frequency block

Figure 5: PCA visualiza-
tion of (a) temporal fea-
tures and (b) frequency
features in HET from
WISDM dataset.

To further understand why TidalFlow succeeds in UDA tasks, we utilize
principle component analysis (PCA) to visualize the embeddings in 2D
and observe the distribution of embeddings from the temporal block and
the frequency block. Fig. 5 shows that even though we initialize the
embeddings of both blocks uniformly in the HET, the trained embeddings
of the temporal block do not cluster as effectively as those of the frequency
block.

This may be due to the higher diversity and complexity of features in the
time domain. These features include not only class-specific characteris-
tics but also information such as confounders. In contrast, the frequency
block contains more uniform and less diverse information, which allows
it to learn the key features of the category more effectively during training.
As a result, it demonstrates better clustering performance in the PCA visu-
alization (Fig. 5(b)), aligning with the findings from earlier experiments
in Section 3.

5.3.1 ABLATION STUDY

To better understand the impact of different components in TidalFlow,
we conducted ablation experiments on three key elements: the frequency
block, dissimilarity loss LD, and the voting mechanism, employing five different configurations
(Table 1). Given that TidalFlow relies on the frequency block as a reference point, experiments
without the frequency block (Table 1 row (B)) exclusively utilized the temporal block for adaptation.
Notably, experimental setups without the frequency block and with LD were not feasible, considering
that LD is computed based on the frequency embedding table.

During the inference phase, TidalFlow utilizes a voting technique. In the ablation experiment settings,
we adjust the ’without voting’ configuration to directly select the category of the most similar
embedding as the final prediction.

The results reveal that the absence of both the frequency block and LD (Table 1 row (B)) leads to the
poorest performance. Conversely, having only the frequency block (Table 1 row (A)) significantly
improves classification accuracy. This underscores the argument presented in our preliminary study
that the frequency domain’s domain-invariant properties between source and target domains enable
TidalFlow to generate distinct feature distributions for each category during training. The use of the
well-learned frequency embedding table as a robust reference guides the classification of target domain
data into the correct categories. Furthermore, incorporating LD or adopting the voting technique
enhances performance. The most optimal performance is achieved when all three components are
used simultaneously, surpassing the second-place configuration (Table 1 row (C)) by nearly 8% in
average performance.

6 CONCLUSION

This research uncovers the distinct and complementary strengths of the temporal and frequency
domains in the context of time-series Unsupervised Domain Adaptation (UDA). Our initial experi-
ments show that the temporal domain captures a wider range of discriminative features, while the

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

frequency domain focuses on domain-agnostic features that improve transferability between the
source and target domains. Building on these findings, we introduce TidalFlow—an innovative
SFUDA framework that effectively combines frequency embeddings and uses simple hyperparameter
adjustments to adapt to new domains without relying on traditional alignment methods.

TidalFlow demonstrates significant performance improvements, achieving nearly a 10% gain across
five benchmark datasets, highlighting its practical utility and robustness in real-world applications.
By moving beyond conventional alignment-focused approaches, this work shifts the focus toward
extracting class-specific features that remain consistent across domains. The methodologies and
insights presented in this study represent a paradigm shift in time-series SFUDA, offering a more
flexible and resilient framework that is better equipped to handle diverse and challenging domain
adaptation scenarios.

Limitation and future work. Addressing issues related to class imbalances would be urgent for
future research. Additionally, mitigating the frequency leakage problem, which can arise due to the
integration of information from both time and frequency domains, is essential for further enhancing
the model’s performance. These endeavors will not only bolster TidalFlow’s capabilities but also
contribute valuable insights to the broader landscape of time-series SFUDA.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3,
2013.

Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang,
and Zhenjie Zhang. Time series domain adaptation via sparse associative structure alignment. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6859–6867, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Mingyue Cheng, Jiqian Yang, Tingyue Pan, Qi Liu, and Zhi Li. Convtimenet: A deep hierarchical
fully convolutional model for multivariate time series analysis. arXiv preprint arXiv:2403.01493,
2024.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.
In Proceedings of the European conference on computer vision (ECCV), pp. 447–463, 2018.

Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, Min Wu, Chee-Keong Kwoh, Xiaoli Li, and
Cuntai Guan. An attention-based deep learning approach for sleep stage classification with single-
channel eeg. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:809–818,
2021.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, and Xiaoli Li.
Contrastive domain adaptation for time-series via temporal mixup. IEEE Transactions on Artificial
Intelligence, 2023.

Yangqin Feng, Zizhou Wang, Xinxing Xu, Yan Wang, Huazhu Fu, Shaohua Li, Liangli Zhen,
Xiaofeng Lei, Yingnan Cui, Jordan Sim Zheng Ting, et al. Contrastive domain adaptation with
consistency match for automated pneumonia diagnosis. Medical Image Analysis, 83:102664, 2023.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1–35, 2016.

Saurabh Garg, Sivaraman Balakrishnan, Zico Kolter, and Zachary Lipton. Ratt: Leveraging unlabeled
data to guarantee generalization. In International Conference on Machine Learning, pp. 3598–3609.
PMLR, 2021.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka
Zitnik. Domain adaptation for time series under feature and label shifts. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 12746–12774. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/he23b.html.

Xinyue Huo, Lingxi Xie, Hengtong Hu, Wengang Zhou, Houqiang Li, and Qi Tian. Domain-agnostic
prior for transfer semantic segmentation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 7075–7085, 2022.

Xiaoyong Jin, Youngsuk Park, Danielle Maddix, Hao Wang, and Yuyang Wang. Domain adaptation
for time series forecasting via attention sharing. In International Conference on Machine Learning,
pp. 10280–10297. PMLR, 2022.

12

https://proceedings.mlr.press/v202/he23b.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network for
unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4893–4902, 2019.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning, pp.
5637–5664. PMLR, 2021.

Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone
accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring
of bearing damage in electromechanical drive systems by using motor current signals of electric
motors: A benchmark data set for data-driven classification. In PHM Society European Conference,
volume 3, 2016.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International conference on machine
learning, pp. 6028–6039. PMLR, 2020.

Qiao Liu and Hui Xue. Adversarial spectral kernel matching for unsupervised time series domain
adaptation. In IJCAI, pp. 2744–2750, 2021a.

Qiao Liu and Hui Xue. Adversarial spectral kernel matching for unsupervised time series domain
adaptation. In IJCAI, pp. 2744–2750, 2021b.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe, Michael J Eisses, Trevor Adams,
David E Liston, Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim, et al. Explainable machine-
learning predictions for the prevention of hypoxaemia during surgery, 2018.

Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang. Taking A closer look at domain shift: Category-level
adversaries for semantics consistent domain adaptation. CoRR, abs/1809.09478, 2018. URL
http://arxiv.org/abs/1809.09478.

Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, and Christopher Mutschler. Domain
adaptation for time-series classification to mitigate covariate shift. In Proceedings of the 30th ACM
international conference on multimedia, pp. 5934–5943, 2022.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Contrastive learning for unsupervised domain
adaptation of time series. ICLR, 2023.

F. Painblanc, L. Chapel, N. Courty, C. Friguet, C. Pelletier, and R. Tavenard. Match-and-deform:
Time series domain adaptation through optimal transport and temporal alignment, September 2023.

Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and In So Kweon. Unsupervised intra-domain
adaptation for semantic segmentation through self-supervision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3764–3773, 2020.

Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent adver-
sarial deep domain adaptation. In International conference on learning representations, 2017.

Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu,
Chee-Keong Kwoh, and Xiaoli Li. Adatime: A benchmarking suite for domain adaptation on time
series data. ACM Transactions on Knowledge Discovery from Data, 17(8):1–18, 2023a.

Mohamed Ragab, Emadeldeen Eldele, Min Wu, Chuan-Sheng Foo, Xiaoli Li, and Zhenghua Chen.
Source-free domain adaptation with temporal imputation for time series data. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1989–1998,
2023b.

13

http://arxiv.org/abs/1809.09478


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. On
minimum discrepancy estimation for deep domain adaptation. Domain Adaptation for Visual
Understanding, pp. 81–94, 2020.

Alan Ramponi and Barbara Plank. Neural unsupervised domain adaptation in nlp—a survey. arXiv
preprint arXiv:2006.00632, 2020.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar, 2021.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain
adaptation. arXiv preprint arXiv:1802.08735, 2018.

Ankit Singh. Clda: Contrastive learning for semi-supervised domain adaptation. Advances in Neural
Information Processing Systems, 34:5089–5101, 2021.

Peeyush Singhal, Rahee Walambe, Sheela Ramanna, and Ketan Kotecha. Domain adaptation:
challenges, methods, datasets, and applications. IEEE access, 11:6973–7020, 2023.

Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard,
Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are different: Assessing and
mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM
conference on embedded networked sensor systems, pp. 127–140, 2015.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part III 14, pp. 443–450. Springer, 2016.

Shixiang Tang, Peng Su, Dapeng Chen, and Wanli Ouyang. Gradient regularized contrastive learning
for continual domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 2665–2673, 2021.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arxiv 2014. arXiv preprint arXiv:1412.3474, 2019.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Yucheng Wang, Peiliang Gong, Min Wu, Felix Ott, Xiaoli Li, Lihua Xie, and Zhenghua Chen.
Temporal source recovery for time-series source-free unsupervised domain adaptation. CoRR,
2024.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation, 2020.

Garrett Wilson, Janardhan Rao Doppa, and Diane J Cook. Multi-source deep domain adaptation
with weak supervision for time-series sensor data. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 1768–1778, 2020.

Garrett Wilson, Janardhan Rao Doppa, and Diane J Cook. Calda: Improving multi-source time series
domain adaptation with contrastive adversarial learning. IEEE transactions on pattern analysis
and machine intelligence, 2023.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under
target and conditional shift. In International conference on machine learning, pp. 819–827. Pmlr,
2013.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network
for irregularly sampled multivariate time series. CoRR, abs/2110.05357, 2021. URL https:
//arxiv.org/abs/2110.05357.

Yixin Zhang, Zilei Wang, Junjie Li, Jiafan Zhuang, and Zihan Lin. Towards effective instance dis-
crimination contrastive loss for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 11388–11399, 2023.

14

https://arxiv.org/abs/2110.05357
https://arxiv.org/abs/2110.05357


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yue Zhang, Shun Miao, Tommaso Mansi, and Rui Liao. Task driven generative modeling for
unsupervised domain adaptation: Application to x-ray image segmentation. In International
conference on medical image computing and computer-assisted intervention, pp. 599–607. Springer,
2018.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ALGORITHMS

An overview of TidalFlow is in Alg. 1. Moreover, we enhance the nearest neighbor algorithm of
VQ-VAE to make it suitable for our UDA task. We utilize nearest neighbor function ρ (Alg. 2) in both
the training and adaptation phases, while voting function V (Alg. 3) is applied during the inference
stage. Unlike Alg. 1, we want to illustrate a more comprehensive explanation of implementation
details, so both of these algorithms are implemented following the PyTorch style.

Algorithm 1 Overview of TidalFlow

1: Input: data xi; label ysi ; Dual-stream encoder E; decoder U ; classifier C; frequency block BS ;
temporal block BT ; time step T ; input channel M ; nearest neighbor function ρ (Alg. 2); voting
function V (Alg. 3)

2: Extract ze ← E(xi)

3: First: Training Phase
4: Get eh,j , ep,q ← ρ(ze, [BS ;BT ], y

s
i )

5: x′
i ← U(eh,j)

6: Compute objective functions LCE , LA and LD

7: Update E,BS , BT and C with
∇(LCE + LA + LD)

8: Second: Adaptation Phase
9: Get ep,q ← ρ(ze, [BS ;BT ])

10: x′
i ← U(ep,q)

11: Compute objective functions LMSE and LA

12: Update E,BS , BT and U with∇(LMSE + LA)

13: Third: Inference Phase
14: Get ep′,q′ ← V (ze)
15: Output: p′

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2 Finding Nearest Neighbor Function ρ

1: Input: Query Q, Target T , Labels label
2: Initialization:
3: index_list← []
4: k ← Total embeddings for each category
5: h← Total classification categories
6: Q← Q.unsqueeze(1).repeat(1, k, 1)
7: for i = 1 to Q.size(0) do
8: T ← T [label[i]× k : (label[i] + 1)× k].unsqueeze(0)
9: tmp_index← (Q[i]− T ).pow(2).sum(2).sqrt().min(1)[1][0]

10: index← int(tmp_index) + label[i]× k
11: index_list.append(index)
12: end for
13: index_tensor ← torch.tensor(index_list)
14: eh,j ← T [index_tensor]
15: if During Training Phase then
16: {Find the nearest neighbor from other categories.}
17: index_list← []
18: Q← Q.unsqueeze(1).repeat(1, k × (h− 1), 1)
19: for i = 1 to Q.size(0) do
20: map_original_list← list(range(k × h))
21: del map_original_list[label[i]× k : (label[i] + 1)× k]
22: start_index← label[i]× k
23: end_index← (label[i] + 1)× k
24: target_2← torch.cat((target[: start_index], target[end_index :]), dim = 0)
25: T ← target_2.unsqueeze(0)
26: tmp_index← (Q[i]− T ).pow(2).sum(2).sqrt().min(1)[1][0]
27: index← map_original_list[tmp_index]
28: index_list.append(index)
29: end for
30: index_tensor ← torch.tensor(index_list)
31: ep,q ← T [index_tensor]
32: Output: eh,j , ep,q
33: else
34: Output: eh,j
35: end if

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 3 Voting Mechanism from Hierarchical Embedding Table

1: Input: Query Q.
2: Initialization:
3: index_list← []
4: k ← Total embeddings for each category
5: h← Total classification categories
6: Q← Q.unsqueeze(1).repeat(1,HET.size(0), 1)
7: T ← HET.unsqueeze(0).repeat(Q.size(0), 1, 1)
8: indexes← (Q− T ).pow(2).sum(2).sqrt().argsort(dim = 1)[:, : 5]
9: for j in indexes do

10: index← j//hk
11: counter ← Counter(index.tolist())
12: most_common_index← counter.most_common(1)[0][0]
13: index_list.append(int(most_common_index))
14: end for
15: index_tensor ← torch.tensor(index_list)
16: Output: T [index_tensor]

B DATASET DETAILS FOR UDA BENCHMARK

We assess the performance of TidalFlow on five distinct UDA benchmark datasets, each characterized
by its unique features. The datasets considered include:

1. HAR Anguita et al. (2013): This dataset incorporates measurements from a 3-axis ac-
celerometer, 3-axis gyroscope, and 3-axis body acceleration. Data is collected from 30
participants at a sampling rate of 50 Hz and uses non-overlapping segments of 128-time
steps to predict activity labels. The objective is to classify time series into six activities:
walking, walking upstairs, walking downstairs, sitting, standing, and lying down.

2. HHAR Stisen et al. (2015): Comprising 3-axis accelerometer measurements from 9 partici-
pants at a frequency of 50 Hz, this dataset employs non-overlapping segments of 128-time
steps for classification. Activity labels include biking, sitting, standing, walking, walking
upstairs, and walking downstairs.

3. WISDM Kwapisz et al. (2011): Featuring 3-axis accelerometer measurements from 36
participants at a frequency of 20 Hz, similar to the HAR dataset, we use non-overlapping
segments of 128-time steps for classification. The dataset includes six activity labels:
walking, jogging, sitting, standing, walking upstairs, and walking downstairs.

4. Sleep-EDF Goldberger et al. (2000): This task involves classifying electroencephalography
(EEG) signals into five stages (Wake, N1, N2, N3, REM). Comprising EEG readings from
20 healthy subjects, we select a single channel (Fpz-Cz) as Ragab et al. (2023a).

5. MFD Lessmeier et al. (2016): Collected by Paderborn University to identify incipient faults
using vibration signals, this dataset consists of data collected under four different operating
conditions. Each condition is treated as a separate domain, and we use five cross-condition
scenarios to evaluate domain adaptation performance. Each sample in the dataset comprises
a single univariate channel with 5120 data points.

The summary of the datasets is in Table 2. These datasets span diverse applications and challenges,
enabling a comprehensive evaluation of TidalFlow’s effectiveness and robustness across various
domains.

C UDA ON BENCHMARK DATASETS

We engage in activity prediction through an Unsupervised Domain Adaptation approach, utilizing
benchmark datasets such as HAR, HHAR, and WISDM. Additionally, we delve into specific tasks
within the medical and mechanical engineering domains, focusing on the Sleep-EDF and MFD
datasets, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Summary of datasets. Ragab et al. (2023a)

Dataset #Subjects/Domains #Class #Channels Length #Train #Test

HAR 30 6 9 128 2300 990
HHAR 9 6 3 128 12716 5218
WISDM 30 6 3 128 1350 720
Sleep-EDF 20 5 1 3000 14280 6310
MFD 4 3 1 5120 7312 3604

For each dataset, we present prediction results for 10 randomly selected source 7→ target pairs. To
ensure robustness, we conduct the experiments with 5 random initializations and report the mean and
standard deviation values. The results are organized into tables:

• Table 3: Mean accuracy and average Macro-F1 on the target domains for the HAR dataset.
• Table 4: Mean accuracy and average Macro-F1 on the target domains for the HHAR dataset.
• Table 5: Mean accuracy and average Macro-F1 on the target domains for the WISDM

dataset.
• Table 6: Mean accuracy and average Macro-F1 on the target domains for the Sleep-EDF

dataset.
• Table 7: Mean accuracy and average Macro-F1 on the target domains for the MFD dataset.

Table 3: Prediction accuracy for HAR Dataset between various subjects. Shown: mean accuracy and
macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 2 7→ 9 1 7→ 14 1 7→ 10 4 7→ 9 21 7→ 29 25 7→ 28 30 7→ 2 4 7→ 3 2 7→ 11 9 7→ 18

AVG 59.58 73.26 53.64 61.62 73.17 82.92 59.62 88.54 85.94 60.75
STD OF AVG 11.73 11.30 11.99 11.38 16.07 5.42 16.58 11.99 11.15 14.69
W/O UDA 48.28 81.44 52.81 68.97 50.96 84.35 54.95 66.02 77.89 30.91
DEEPCORAL 50.63 75.00 57.50 58.44 76.25 82.91 46.87 93.12 90.63 46.88
CDAN 66.88 88.95 56.87 63.13 89.58 85.21 54.37 97.29 85.42 58.86
DIRT-T 69.68 60.62 62.81 52.81 85.62 74.37 55.00 84.58 80.21 59.03
HOMM 35.00 58.96 23.75 37.81 39.37 73.75 41.88 72.71 65.47 41.27
CODATS 59.06 79.58 54.69 67.50 81.87 88.75 71.56 88.12 68.23 63.89
ADVSKM 51.25 78.54 57.19 59.06 76.67 84.37 47.18 91.04 98.96 74.65
CLUDA 65.91 57.14 42.22 50.00 61.54 74.14 52.17 98.08 81.77 67.71
RAINCOAT 70.31 63.54 62.50 73.13 84.16 88.75 87.50 96.46 100.0 75.69
OURS 73.12 90.01 61.87 80.08 87.23 88.79 86.94 100.0 100.0 76.17

MEAN MACRO F1

AVG 0.538 0.709 0.539 0.601 0.686 0.822 0.593 0.877 0.833 0.580
STD OF AVG 0.119 0.120 0.120 0.113 0.207 0.068 0.133 0.125 0.140 0.150
W/O UDA 0.374 0.802 0.524 0.685 0.351 0.840 0.500 0.569 0.714 0.190
DEEPCORAL 0.440 0.733 0.590 0.554 0.714 0.832 0.492 0.927 0.910 0.440
CDAN 0.621 0.879 0.591 0.642 0.900 0.846 0.523 0.969 0.850 0.610
DIRT-T 0.675 0.501 0.645 0.458 0.861 0.706 0.491 0.811 0.810 0.580
HOMM 0.313 0.550 0.224 0.318 0.296 0.730 0.453 0.677 0.573 0.366
CODATS 0.538 0.789 0.538 0.685 0.797 0.899 0.721 0.866 0.660 0.600
ADVSKM 0.452 0.767 0.583 0.549 0.737 0.846 0.519 0.893 0.990 0.730
CLUDA 0.664 0.557 0.389 0.511 0.570 0.756 0.481 0.980 0.810 0.670
RAINCOAT 0.645 0.614 0.626 0.724 0.831 0.899 0.864 0.963 1.000 0.760
OURS 0.727 0.888 0.649 0.778 0.894 0.905 0.848 1.000 1.000 0.728

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Prediction accuracy for HHAR Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 7 7→ 6 1 7→ 3 0 7→ 2 2 7→ 3 2 7→ 6 7 7→ 2 4 7→ 0 5 7→ 0 7 7→ 0 4 7→ 2

AVG 88.96 93.93 78.17 56.28 44.35 38.85 32.81 33.31 32.75 26.37
STD OF AVG 6.92 5.21 7.15 7.33 8.75 5.30 7.49 6.85 7.63 6.33
W/O UDA 78.04 98.51 64.51 50.32 45.11 32.37 32.81 30.42 33.92 19.16
DEEPCORAL 79.08 88.24 84.23 54.32 45.28 34.45 28.13 42.04 38.62 23.74
CDAN 96.04 93.01 76.19 60.27 31.88 37.05 29.09 22.84 25.09 27.16
DIRT-T 93.79 95.09 77.83 66.22 50.69 38.10 32.22 24.70 27.81 26.41
HOMM 84.63 88.91 68.38 45.83 44.03 35.94 32.37 34.60 29.60 23.21
CODATS 88.95 95.16 79.61 61.09 35.90 38.54 21.80 33.85 32.41 36.31
ADVSKM 83.71 82.07 78.94 43.45 36.67 39.95 33.49 34.60 24.91 19.05
CLUDA 92.43 96.51 79.84 59.83 56.18 37.80 38.84 34.93 44.59 35.29
RAINCOAT 89.90 95.65 87.82 60.04 40.21 43.32 46.46 30.36 27.90 24.33
OURS 97.04 96.91 87.54 65.78 57.01 51.46 46.28 42.38 44.97 35.31

MEAN MACRO F1

AVG 0.882 0.930 0.738 0.514 0.400 0.374 0.327 0.293 0.343 0.247
STD OF AVG 0.069 0.056 0.091 0.081 0.068 0.061 0.083 0.067 0.064 0.075
W/O UDA 0.783 0.985 0.600 0.410 0.359 0.310 0.290 0.220 0.337 0.135
DEEPCORAL 0.761 0.874 0.860 0.498 0.419 0.320 0.260 0.380 0.409 0.230
CDAN 0.961 0.930 0.700 0.563 0.325 0.320 0.270 0.202 0.265 0.257
DIRT-T 0.936 0.950 0.760 0.628 0.441 0.340 0.300 0.207 0.303 0.283
HOMM 0.836 0.881 0.625 0.408 0.398 0.377 0.318 0.306 0.315 0.192
CODATS 0.883 0.951 0.730 0.580 0.366 0.360 0.200 0.328 0.315 0.356
ADVSKM 0.821 0.791 0.720 0.388 0.333 0.410 0.330 0.279 0.270 0.157
CLUDA 0.928 0.965 0.820 0.544 0.506 0.360 0.400 0.305 0.426 0.345
RAINCOAT 0.903 0.955 0.870 0.553 0.397 0.440 0.450 0.288 0.331 0.235
OURS 0.987 0.967 0.814 0.611 0.544 0.518 0.453 0.409 0.444 0.381

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: Prediction accuracy for WISDM Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 4 7→ 5 11 7→ 16 12 7→ 23 18 7→ 23 26 7→ 29 28 7→ 27 4 7→ 11 28 7→ 21 12 7→ 26 17 7→ 26

AVG 64.93 17.12 50.47 50.07 28.67 60.00 42.57 47.52 52.60 59.65
STD OF AVG 11.59 10.01 13.26 16.15 14.17 23.59 11.50 20.36 8.73 9.65
W/O UDA 42.03 13.73 45.00 58.33 50.00 8.00 32.89 59.62 54.88 43.90
DEEPCORAL 76.81 15.69 39.17 61.67 21.67 68.00 27.63 28.85 48.17 65.24
CDAN 60.87 17.65 61.67 23.33 15.00 76.00 44.74 61.54 48.78 65.85
DIRT-T 73.91 6.86 63.33 56.67 39.17 46.00 42.11 41.35 53.66 63.41
HOMM 57.97 3.92 32.50 45.83 39.17 52.00 32.24 31.73 40.85 43.90
CODATS 56.52 30.39 52.50 60.83 27.50 66.00 54.61 31.73 64.02 70.12
ADVSKM 61.59 23.53 29.17 25.00 36.67 78.00 24.34 17.31 35.98 56.71
CLUDA 62.86 15.38 54.84 48.39 6.67 36.00 47.37 34.62 48.78 51.22
RAINCOAT 65.22 19.61 63.33 63.33 21.67 84.00 43.42 84.62 57.32 64.63
OURS 87.96 42.32 66.77 69.69 49.75 85.21 72.58 84.64 64.04 65.77

MEAN MACRO F1

AVG 0.515 0.170 0.298 0.281 0.191 0.403 0.328 0.389 0.257 0.391
STD OF AVG 0.178 0.094 0.137 0.114 0.067 0.183 0.136 0.204 0.046 0.149
W/O UDA 0.099 0.083 0.176 0.226 0.133 0.033 0.329 0.388 0.223 0.160
DEEPCORAL 0.704 0.166 0.176 0.308 0.136 0.519 0.300 0.225 0.234 0.456
CDAN 0.366 0.277 0.340 0.156 0.218 0.337 0.383 0.541 0.257 0.422
DIRT-T 0.492 0.096 0.382 0.274 0.255 0.496 0.276 0.346 0.255 0.417
HOMM 0.501 0.020 0.201 0.268 0.268 0.421 0.229 0.245 0.237 0.281
CODATS 0.496 0.283 0.384 0.508 0.151 0.291 0.414 0.266 0.310 0.502
ADVSKM 0.548 0.271 0.191 0.160 0.269 0.458 0.204 0.154 0.221 0.438
CLUDA 0.611 0.126 0.359 0.275 0.111 0.370 0.262 0.321 0.236 0.233
RAINCOAT 0.461 0.265 0.519 0.283 0.162 0.713 0.333 0.691 0.267 0.398
OURS 0.819 0.254 0.517 0.548 0.311 0.588 0.705 0.730 0.369 0.731

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Prediction accuracy for Sleep-EDF Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 1 7→ 8 6 7→ 10 8 7→ 0 2 7→ 1 15 7→ 4 8 7→ 1 4 7→ 19 8 7→ 5 18 7→ 6 13 7→ 7

AVG 57.07 71.17 67.77 75.71 69.42 62.65 72.76 54.02 72.34 65.07
STD OF AVG 8.76 8.14 8.49 6.35 4.12 7.25 8.42 12.00 9.69 8.03
W/O UDA 52.05 75.11 68.53 78.75 68.54 61.43 77.58 51.39 76.14 68.44
DEEPCORAL 61.82 71.09 66.41 78.07 69.90 62.66 72.74 43.62 76.17 68.85
CDAN 45.62 75.31 75.13 73.23 70.78 60.16 68.97 65.89 75.78 65.62
DIRT-T 49.06 77.97 84.83 77.92 68.75 69.84 80.56 70.25 72.72 61.77
HOMM 62.29 71.61 64.58 65.05 73.70 58.70 67.62 36.91 76.43 66.46
CODATS 62.55 67.29 62.63 79.74 72.71 60.57 82.34 55.01 68.82 75.00
ADVSKM 67.34 71.20 59.31 79.53 69.32 60.26 70.62 38.35 74.09 66.04
CLUDA 46.81 53.64 51.01 60.47 57.65 45.64 48.58 43.40 47.31 47.93
RAINCOAT 59.74 77.08 72.98 78.33 69.90 66.30 71.83 64.78 76.17 65.78
OURS 75.81 78.66 78.97 80.13 73.65 76.92 82.51 73.84 80.52 77.98

MEAN MACRO F1

AVG 0.498 0.567 0.596 0.664 0.609 0.546 0.564 0.517 0.618 0.570
STD OF AVG 0.110 0.137 0.094 0.135 0.080 0.108 0.156 0.118 0.137 0.093
W/O UDA 0.409 0.694 0.632 0.677 0.564 0.560 0.619 0.559 0.651 0.576
DEEPCORAL 0.556 0.574 0.582 0.728 0.640 0.565 0.618 0.464 0.670 0.611
CDAN 0.400 0.590 0.636 0.687 0.596 0.495 0.529 0.573 0.664 0.572
DIRT-T 0.445 0.596 0.714 0.710 0.583 0.563 0.671 0.590 0.618 0.523
HOMM 0.548 0.582 0.572 0.662 0.691 0.540 0.551 0.402 0.643 0.591
CODATS 0.555 0.534 0.522 0.696 0.668 0.497 0.719 0.489 0.627 0.630
ADVSKM 0.599 0.545 0.519 0.740 0.656 0.562 0.587 0.401 0.650 0.607
CLUDA 0.310 0.179 0.364 0.338 0.409 0.305 0.233 0.305 0.284 0.365
RAINCOAT 0.528 0.641 0.601 0.724 0.578 0.572 0.536 0.540 0.675 0.527
OURS 0.715 0.749 0.702 0.702 0.645 0.790 0.751 0.757 0.720 0.665

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Prediction accuracy for MFD Dataset between various subjects. Shown: mean accuracy and
macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 0 7→ 1 0 7→ 3 1 7→ 2 1 7→ 0 3 7→ 0 2 7→ 0 3 7→ 2 0 7→ 2 2 7→ 1 1 7→ 3

AVG 58.27 65.47 70.47 54.70 56.08 51.09 69.53 61.15 79.43 87.18
STD OF AVG 9.92 9.10 10.24 14.13 14.71 13.39 11.82 4.27 15.30 14.54
W/O UDA 41.73 51.39 67.04 42.06 39.84 28.97 79.69 61.71 88.46 98.45
DEEPCORAL 66.15 69.79 64.21 41.67 48.33 41.67 61.53 65.89 89.14 81.32
CDAN 47.36 68.79 76.00 46.61 50.04 49.33 70.24 62.69 90.62 99.44
DIRT-T 58.37 65.62 72.19 81.10 73.40 70.65 74.63 64.84 70.83 98.85
HOMM 65.59 68.34 65.29 42.56 47.84 36.64 62.35 59.90 82.66 81.81
CODATS 60.66 62.72 86.16 41.74 45.59 42.58 79.97 54.91 81.03 100.0
ADVSKM 64.73 71.80 65.10 40.85 48.25 45.05 61.87 64.14 86.24 82.63
CLUDA 48.34 48.56 48.12 41.69 42.57 47.67 49.45 54.77 46.56 44.79
RAINCOAT 63.02 67.49 76.45 61.53 68.45 65.40 81.55 58.82 92.30 97.14
OURS 73.96 84.28 83.51 78.77 84.98 67.24 87.22 67.33 91.71 99.84

MEAN MACRO F1

AVG 0.480 0.565 0.736 0.541 0.581 0.537 0.734 0.548 0.828 0.896
STD OF AVG 0.083 0.108 0.164 0.189 0.158 0.125 0.169 0.108 0.205 0.258
W/O UDA 0.400 0.520 0.758 0.575 0.558 0.479 0.851 0.674 0.915 0.989
DEEPCORAL 0.496 0.551 0.688 0.477 0.503 0.473 0.667 0.607 0.919 0.856
CDAN 0.318 0.523 0.800 0.343 0.428 0.452 0.743 0.525 0.925 0.996
DIRT-T 0.492 0.634 0.788 0.830 0.756 0.742 0.789 0.733 0.777 0.992
HOMM 0.460 0.490 0.700 0.480 0.501 0.424 0.665 0.442 0.866 0.859
CODATS 0.557 0.689 0.871 0.451 0.532 0.499 0.826 0.393 0.843 1.000
ADVSKM 0.450 0.633 0.685 0.473 0.504 0.501 0.674 0.560 0.896 0.866
CLUDA 0.408 0.339 0.333 0.252 0.295 0.323 0.345 0.383 0.325 0.311
RAINCOAT 0.610 0.655 0.806 0.692 0.737 0.719 0.850 0.581 0.941 0.979
OURS 0.580 0.623 0.871 0.826 0.885 0.751 0.902 0.577 0.925 0.993

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS FOR HYPERPARAMETERS

D.1 LEARNING RATE

Table 8: Leaning rates of different components in TidalFlow.

Component Training Phase Adaptation Phase

Encoder 1e-4 2e-6
HET - temporal block 2e-4 2e-6
HET - frequency block 2e-4 1e-8
Classifier 1e-2 -
Decoder - 2e-4

D.2 TRAINING BATCH SIZE

Table 9: Batch sizes of different datasets in TidalFlow.

Dataset Training Phase Adaptation Phase

HAR 32 32
HHAR 32 32
WISDM 32 32
Sleep-EDF 32 32
MFD 32 32

D.3 PARAMETER K

Figure 6: TidalFlow’s performance in different K. We observed that for the majority of datasets,
setting K to 8 yielded better performance, excluding MFD dataset in mean macro F1 score.

D.4 PARAMETER γ

Table 10: γ in different datasets.

HAR HHAR WISDM Sleep-EDF MFD

1.2 1.2 1 1 1.5

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E COMPUTATION ANALYSIS

Two main factors affect TidalFlow’s performance: (1) the size of the hierarchical embedding table
and (2) the number of classification categories. The following will elaborate on these two aspects:

E.1 SIZE OF THE HIERARCHICAL EMBEDDING TABLE

During the training phase, as the source domain has labels, we only need to calculate K nearest
neighbors for each category, where K represents the number of embeddings per category (Fig. 6). We
determine the appropriate value of K through experimentation, considering both Mean accuracy and
macro F1 score. We found that for the majority of datasets, setting K to 8 yielded better performance,
excluding MFD dataset in mean macro F1 score. Accordingly, we speculate that other parameters of
the model contribute to its superior performance at K=8.

E.2 NUMBER OF CLASSIFICATION CATEGORIES

During the adaptation phase, as the target domain lacks labels, we must compute all embeddings in
the embedding table to obtain the closest embeddings. At this point, the time required by the model
is directly influenced by the number of categories, leading to a significant impact.

Our study utilized an A100 GPU 40GB, with an average total training time of 0.5 GPU hours across
the five datasets. Table 11 is the relevant parameter table for the 5 datasets:

Table 11: Epochs of training and adaptation phases in different datasets.

DATASET TRAINING EPOCH ADAPTATION EPOCH

HAR 70 50
HHAR 80 70
WISDM 150 50
SLEEP-EDF 200 100
MFD 150 100

F BROADER IMPACTS

Potential positive societal impacts. We may apply TidalFlow in smart elderly care facilities. Given
the significant differences in behavior between the elderly population and middle-aged adults, such as
frequent nocturnal bathroom visits, slower mobility, and increased susceptibility to falls, leveraging
the human activity recognition datasets (i.e, HAR, HHAR, WISDM, DSADS) as the source domain
and adapting it to the elderly population for downstream tasks could be a crucial research direction
and technological advancement in the future.

Potential negative societal impacts. As our task involves domain adaptation, there are no noteworthy
negative social impacts to consider.

25


	Introduction
	Related Work
	Unsupervised Domain Adaptation
	Time-Series Unsupervised Domain Adaptation
	Vector Quantised Variational AutoEncoder (VQ-VAE)

	Problem Formulations
	Scenario Description
	Preliminary Study

	Our Approach
	Dual-stream encoder G
	Hierarchical embedding table (HET)
	Voting mechanism
	Objective functions

	Experiments
	Experimental setup
	Results
	Classification performance on DA benchmark datasets
	Different Frequency and Temporal Block Learning Rates

	Embeddings in HET After Training Phase
	Ablation Study


	Conclusion
	Algorithms
	Dataset Details for UDA Benchmark
	UDA on Benchmark Datasets
	Implementation Details for Hyperparameters
	Learning rate
	Training Batch size
	Parameter K
	Parameter 

	Computation Analysis
	Size of the hierarchical embedding table
	Number of classification categories

	Broader Impacts

