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ABSTRACT

In time-series unsupervised domain adaptation (UDA), the adaptation between
temporal and frequency domain features has been relatively underexplored. To
address this gap, we conduct a comprehensive series of experiments to revisit
the roles of these domains in source-free UDA (SFUDA), a branch of the UDA
task. Our findings reveal that the temporal domain contains more diverse features,
offering higher discriminability, while the frequency domain is more domain-
invariant, providing better transferability. Combining the strengths of both domains,
we propose TidalFlow, a SFUDA framework that synergistically integrates temporal
and frequency domain features. TidalFlow enhances feature extraction and captures
subtle, class-specific features without relying on traditional alignment strategies.
By utilizing simple hyperparameter adjustments and using frequency embeddings
from the source domain as reference points for domain adaptation, TidalFlow
achieves nearly a 10% improvement across five benchmark datasets in time-series
UDA. This research highlights the unique strengths of both domains and marks a
paradigm shift in SFUDA methods, showcasing TidalFlow’s robust performance
in real-world applications. Code is available at the anonymous link: https:
//anonymous.4open.science/r/TidalFlow-42B0/.

1 INTRODUCTION

Time series datasets showcase the prowess of neural networks Ravuri et al. (2021); Lundberg et al.
(2018), but their vulnerability to domain shifts poses deployment challenges Singhal et al. (2023);
Painblanc et al. (2023); Zhang et al. (2021). These shifts, stemming from nuanced differences in test
distributions, hinder model generalization Koh et al. (2021); Luo et al. (2018); Zhang et al. (2013).
Addressing this, domain adaptation (DA) techniques, such as leveraging unlabeled data Garg et al.
(2021); Ganin et al. (2016), emerge as essential to ensure robust model performance in real-world
scenarios. In addition, DA for time series is even more difficult Wilson & Cook (2020); Ozyurt
et al. (2023); He et al. (2023), as it has to deal with both the domain discrepancy and the temporal
dynamics that may cause feature shift and label shift.

Unsupervised Domain Adaptation (UDA) is pivotal for enhancing the generalization of machine
learning models, aiming to train a model on a labeled source domain that can effectively perform on
a related yet unlabeled target domain Garg et al. (2021); Ganin et al. (2016). While UDA methods
have flourished in computer vision Huo et al. (2022); Tang et al. (2021); Pan et al. (2020); Tzeng
et al. (2019), their application to time series, though feasible with feature extractor adjustments, often
falls short in fully harnessing time-series properties. In the domain of time series, a limited number
of works have explicitly addressed UDA, they most focus on temporal information. Even when the
frequency domain is considered, it is typically combined with temporal features and treated as general
information during training.

To clarify the characteristics of the time and frequency domains, this research conducted a series
of experiments leading to the following conclusions: the temporal domain provides broader
information with stronger classification discriminability, while the frequency domain, though
simpler, offers more domain-invariant features that serve as reference points between the source
and target domains (Section 3).

Our research integrates the strengths of both the temporal and frequency domains, moving beyond
the prior focus on “how to align two inconsistent distributions” to explore “how to identify features
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that represent classes across domains.” The difference lies in that the former approach pays little
attention to the features extracted by the model, focusing instead on alignment methods and classifier
performance. This overemphasis on alignment leads to overly sensitive and inflexible classifiers,
particularly when dealing with data with large domain gaps or longer time series. The latter approach
avoids these pitfalls by enabling the model to utilize class-representative features early in training,
ensuring more robust performance.

We propose TidalFlow, a simple framework for SFUDA in time series that leverages both temporal
and frequency domain characteristics to achieve strong performance. Our model integrates informa-
tion from both domains to capture subtle, class-specific features, enhancing feature extraction. By
focusing on the domain-invariant properties of the frequency domain, we use a frequency embeddings
table from the source domain as reference points, along with simple hyperparameter adjustments,
to enable the model to find the most suitable embeddings for target domain data during adaptation,
ultimately assigning the appropriate class labels. This straightforward training framework show-
cases the complementary strengths of the temporal and frequency domains, resulting in exceptional
performance across five different real-world datasets.

Contributions:

1. Through a series of experiments, we revisited the key components of the temporal and
frequency domains and concluded that the temporal domain provides richer information
with better discriminability. In contrast, the frequency domain, due to its inherent properties,
offers more structural features that are domain-agnostic between source and target domains,
resulting in superior transferability.

2. We introduce TidalFlow, a model architecture based on VQ-VAE specifically designed
for SFUDA in time series. This framework strategically integrates information from both
domains using a frequency embedding table to effectively determine optimal embeddings
for target domain data.

3. TidalFlow exhibits nearly 10% significant improvement across five benchmark datasets for
time-series UDA, underscoring its competitive edge in this field.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) involves utilizing labeled data from a source domain to
predict labels for an unlabeled target domain. The primary objective of UDA methods is to minimize
domain discrepancy, thereby reducing the lower bound of target error. Existing UDA approaches can
be broadly categorized into three groups: (1) Metric-based methods, like DDC (Tzeng et al., 2019),
Deep CORAL (Sun & Saenko, 2016), DeepJDOT (Damodaran et al., 2018), HoMM (Chen et al.,
2020), and MMDA (Rahman et al., 2020), minimize domain discrepancy by imposing restrictions
using a distance metric (e.g., maximum mean discrepancy). (2) Adversarial-based methods employ
domain discriminator networks, such as DANN (Ganin et al., 2016), CDAN (Long et al., 2018), and
DIRT-T (Shu et al., 2018), to enforce the feature extractor in learning domain-invariant representations.
(3) Contrastive methods reduce domain discrepancy through a contrastive loss, aligning embeddings
of source and target samples of the same class. Pseudo-labels, generated by clustering algorithms,
are used for target samples, as their actual labels are unknown. Examples include CAN (Kang et al.,
2019), CLDA (Singh, 2021), and IDCo (Zhang et al., 2023). While UDA has been extensively
explored in computer vision, limited research has been conducted on UDA for time-series data.

2.2 TIME-SERIES UNSUPERVISED DOMAIN ADAPTATION

Despite successes in computer vision, there has been a notable gap in research focusing on adaptation
methods tailored for time-series data. Few methods have been specifically crafted for time-series
domain adaptation. (1) Adversarial training for time-series UDA involves using adversarial methods
to learn domain-invariant temporal relationships, such as VRADA (Purushotham et al., 2017), and
CoDATS (Wilson et al., 2020). (2) Statistical divergence methods for time-series UDA focus on
aligning the statistical properties of source and target domains. Examples include SASA (Cai et al.,
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Figure 1: We randomly selected 15 source 7→ target pairs from the HAR dataset and divided them into
three groups for analysis, focusing on the following metrics: (a) mean accuracy in the source domain,
(b) mean variance in classification performance within the target domain, and (c) the performance
degradation rate when testing the source domain pre-trained model on the target domain. Additionally,
we evaluated the impact of hyperparameters on transferability in both the time and frequency domains
by assessing (d) the mean accuracy after fine-tuning with different learning rates.

2021), AdvSKM (Liu & Xue, 2021a) and Ott et al. (2022). (3) Self-supervision methods for time-
series UDA extract domain-invariant and domain-specific features. DAF (Jin et al., 2022) uses a
shared attention module with a reconstruction task. Contrastive methods like (Ozyurt et al., 2023),
CoTMix (Eldele et al., 2023), and CALDA (Wilson et al., 2023) use augmentations to enhance
prediction. RAINCOAT (He et al., 2023) addresses feature and label shifts by aligning them across
domains. Despite their potential, they rely on access to source data, which may not always be feasible
due to privacy concerns.

A more practical method in the real world is the SFUDA task, which can perform domain adaptation
without source data and target labels. Liang et al. (2020) freezes the source model’s classifier and uses
information maximization and self-supervised pseudo-labeling to align target domain representations
to the source hypothesis. And Ragab et al. (2023b) captures temporal information through random
masking and a temporal imputer to ensure temporal consistency between source and target features
during adaptation. TemSR (Wang et al., 2024) transfers temporal dependencies without requiring
source-specific designs by leveraging masking, recovery, and optimization to generate a source-like
distribution for adaptation. However, these methods have not taken full advantage of both time and
frequency domain properties in addressing the UDA problem.

2.3 VECTOR QUANTISED VARIATIONAL AUTOENCODER (VQ-VAE)

Conceptualized as a communication system, the VQ-VAE (Van Den Oord et al., 2017) model
comprises an encoder and a decoder. The encoder involves a non-linear mapping from the input
space to a vector, which is then quantized by determining its nearest prototype vector in a shared
codebook. The quantized vector, essentially the index of the closest prototype vector, is transmitted
to the decoder. Despite the potential loss, the decoder maps these indices back to their corresponding
vectors in the codebook, reconstructing the data through another non-linear function. Learning
involves back-propagating the gradient of the reconstruction error through the decoder and to the
encoder, utilizing the straight-through gradient estimator.

A key benefit of VQ-VAE is its discrete representation, which proves useful in obtaining effective
features. In UDA, data distribution from the target domain is indirectly captured through self-
supervised learning. Notably, VQ-VAE is less susceptible to model degeneration issues, enabling it
to effectively capture both temporal and frequency domain information during adaptation without the
associated concerns.
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3 PROBLEM FORMULATIONS

3.1 SCENARIO DESCRIPTION

We are given two distributions of time-series data: one from the source domain Ds and the other
from the target domain Dt. In this setup, define labeled i.i.d. samples from the source domain as
S = {(xs

i ,y
s
i )}

Ns

i=1 ∼ Ds, where xs
i represents a sample from the source domain, ys

i ∈ {1, ...,H},
where H is the number of classes, and ys

i denotes the label for the corresponding sample, and Ns

denotes the total number of i.i.d. samples in the source domain. Conversely, consider unlabeled
i.i.d. samples from the target domain denoted by T = {xt

i}
Nt

i=1 ∼ Dt. Here, xt
i denotes an individual

sample from the target domain, and Nt represents the total number of i.i.d. samples collected from
the target domain. Furthermore, each xi, whether originating from Ds or Dt, constitutes a sample of
a multivariate time series denoted by xi = {xi,t}Lt=1 ∈ RM×L, where L represents the number of
time steps, and xi,t ∈ RM signifies M observations for the respective time step.

Our objective is to establish an embedding table through UDA on the source samples S, enabling
effective generalization on the target samples T . Notably, in the provided time series datasets for Ds

and Dt, where the label sets are identical Cs = Ct, the target labels yt are not available during the
training phase.

The aforementioned scenario is practically relevant across various applications Feng et al. (2023);
Ramponi & Plank (2020); Zhang et al. (2018), whether in machine faulty detection Lessmeier et al.
(2016), predicting the four sleep stages using EEG signals Goldberger et al. (2000), or recognizing
human activity Stisen et al. (2015); Anguita et al. (2013); Kwapisz et al. (2011) through signals from
wearable devices. The differences in machines, environments, and individuals can easily lead to
significant domain shifts in the datasets. Therefore, to ensure accurate predictions and generalization,
it is often necessary to adapt and apply deep learning models trained in one domain S to another
domain T .

3.2 PRELIMINARY STUDY

We design a series of experiments on both the temporal and frequency domains. To minimize model
influence, we follow prior research (Liu & Xue, 2021b; Cheng et al., 2024) by constructing a 3-layer
CNN as a temporal feature extractor and a frequency feature extractor that combines a fast Fourier
transform with a 1-layer linear network. Both are followed by a 1-layer linear classifier for simplicity.

The key question we explore is: What kind of feature information do the temporal and frequency
domains provide? We pre-train three models on the source domain until until they converge and
observe their performance on the target domain. During the temporal model experiments, we observe
a noteworthy phenomenon: despite achieving nearly 100% accuracy in the source domain (Fig.
1(a)) with different model parameters, the performance on the target domain exhibits considerable
fluctuation. As shown in Fig. 1(b), the performance variance of the three temporal models is
larger than that of the frequency models. A t-test confirms a statistically significant difference in
performance variance between the temporal and frequency models (p-value = 0.0133).

Transferability. When we examine transferability, Fig. 1(c) shows that the temporal models
experience a more significant performance drop, with a statistically significant difference from the
frequency models (p-value = 0.0491). We hypothesize that this is because the temporal domain
contains a wider variety of information, enabling the model to classify based on multiple dimensions.
Nevertheless, this diverse information also includes more features specific to the source domain or
confounders, meaning that when domain shifting occurs, the model’s focus may no longer be on the
relevant class features of the target domain, resulting in poorer transferability.

In contrast, the frequency domain, after undergoing Fourier transformation, filters out much of
the extraneous information, such as signal start and end points or noise, resulting in fewer feature
dimensions. However, this allows the frequency models to focus more on the overall structure of the
information, making them more domain-invariant. Fig. 1(c) supports this, showing that although the
frequency models do not perform as well as the temporal models in source domain classification,
their transferability is superior.
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This raises another concern: Is the frequency domain truly more domain-invariant? To investigate,
we design another experiment where we only adjust the extent of feature updates (here, we choose
to adjust the learning rate) during the fine-tuning phase. Our assumption is that if merely tweaking
the learning rate significantly improves model performance, it indicates that the frequency domain
contains domain-agnostic features that are specific to each class of data, rather than just irrelevant
features that do not contribute to the model’s effectiveness.

As shown in Fig. 1(d), the frequency models require a very small learning rate to fine-tune correctly.
Larger learning rates prevent the frequency models from converging to the optimal point. Interestingly,
the temporal models are much less sensitive to hyperparameter adjustments compared to the frequency
models. In Fig. 1(d), despite averaging accuracy across 15 source 7→ target experiments, the temporal
models fine-tune to 100% accuracy across learning rates ranging from 1× 10−4 to 1× 10−8. This
could be explained by the high feature diversity in the temporal domain, allowing different model
parameters to reach optimal solutions depending on the learning rate. Meanwhile, the frequency
models retain robust domain-invariant features between source and target domains, making them
better suited to fine-tuning with smaller steps.

Empirical insights. The analysis reveals two key insights regarding time-series domain adaptation:
(1) the time domain excels at classification, but its transferability is hindered by an excess of
confounding factors, and (2) the frequency domain, though containing more uniform and less diverse
information, offers better domain-invariant features, leading to stronger transferability. Based on
these observations, we design a simple model framework that leverages the rich features of the time
domain while using the frequency domain as a reference point to bridge the source and target domains.
Our experimental results demonstrate that combining the strengths of both domains yields improved
performance.

4 OUR APPROACH

Next, we present the architecture of TidalFlow, which consists of three modules: a dual-stream
encoder G, a hierarchical embedding table (HET), a 1-layer linear classifier for training, and a
decoder U for adaptation. Section 4.1 introduces an encoder network G, which extracts both temporal
and frequential features from the input. Section 4.2 introduces how the hierarchical embedding table
(HET) be initialized and how it works during different phases. Section 4.3 introduces the voting
mechanism after the nearest-neighbor algorithm in the inference phase. We follow the framework as
VQ-VAE (Van Den Oord et al., 2017) that uses the selected embeddings as input into the decoder U .
Section 4.4 outlines the objective functions during the training and adaptation phases and provides an
overview of TidalFlow.

4.1 DUAL-STREAM ENCODER G

G encodes both time and frequency representations, and the source temporal and frequential features
are denoted as zstemp,i and zsfreq,i, while the target features are denoted as zttemp,i and ztfreq,i. We will
employ the simplified terms ztemp and zfreq to collectively represent features from both Ds and Dt

in the subsequent explanations. By including frequency information, the encoder enhances its ability
to adapt across domains by potentially identifying common features. The encoder parameterizes
a posterior distribution q(z|x) over the latent variables ztemp and zfreq based on the input. This
posterior captures relationships between the input and latent representations, informed by both
temporal and frequency patterns extracted from the input, the following:

G(x) = Concat[ztemp(x), zfreq(x)], ∀x ∈ D, (1)
where D is either Ds or Dt, and Concat is the abbreviation of concatenation.

4.2 HIERARCHICAL EMBEDDING TABLE (HET)

Initialization. We introduce a 2-layer top-down embedding table and the initial layer is organized
based on task labels, consisting of H categories. The subsequent layer of the hierarchical embedding
table comprises independent latent embedding spaces for each eh, denoted as eh ∈ RK×Ψ, where K
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Figure 2: The TidalFlow framework. (a) During training, input data xs
i undergoes processing through

the Dual-Stream Encoder G to generate a temporal and frequency combined feature representation
zse. Representative embeddings are retrieved from HET based on input labels, and the classifier
distinguishes between the categories. The function ρ is employed for finding the nearest embedding
for ze in HET. (b) In adaptation, TidalFlow adjusts embeddings in HET using frequency reference
points to tackle domain shifts through a reconstruction task with the decoder U . (c) During inference,
a voting mechanism ranks similarities between embeddings and zte to enhance classification.

represents the number of the discrete latent variables of each category and Ψ is the dimensionality
of each embedding vector. To sum up, there are H ×K embeddings in the hierarchical embedding
table and we initialize the embeddings by uniform distribution.

Training phase. We perform a nearest neighbor search in the whole embedding space, focusing
on the category in the source domain that corresponds to the input x as outlined in Eq. 2. The
probabilities of the posterior categorical distribution q(G(x)|x) are defined as one-hot encoded,
following:

q(G(x) = k|x) =
{
1 for k = argminj ∥G(x)− eh,j∥2,
0 otherwise

, (2)

where h denoted to the same category as x and j is the candidates of the category h.

Adaptation phase. Due to the lack of labels in Dt, the model cannot search for the most similar
embeddings within the respective categories. Therefore, we take advantage of the distinctive charac-
teristics of the frequency domain and partially freeze the frequency blocks of HET. This deliberate
constraint, achieved through significantly different learning rates, establishes a clear reference point
for the encoded latent representations. Consequently, both the time and frequency modules can effi-
ciently navigate the gradient map, leading to the identification of optimal solutions with appropriately
adjusted update steps. Accordingly, we can modify Eq. 2 to be agnostic to the category h:

q(G(x) = k|x) =
{
1 for k = argminj ∥G(x)− ej∥2,
0 otherwise

, (3)

where j is the embeddings of HET and there is no category h in this equation.

4.3 VOTING MECHANISM

After the training and adaptation phases, the embeddings in HET have formed H distinctive clusters.
This implies that, while the embedding in HET is discrete, the majority possess representative features
specific to their respective categories h. Subsequently, we employ a nearest-neighbor algorithm to
determine the top K categories (where K=5) represented by the embeddings. Through a voting
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mechanism, we ascertain the category to which the input data should belong. This enhances the
robustness of TidalFlow. The algorithm of the voting mechanism can be seen in the Appendix A.

4.4 OBJECTIVE FUNCTIONS

In TidalFlow, we utilize three types of objective functions during the training phase: (1) classification
loss, (2) dissimilarity loss, and (3) feature-embedding consistency loss. While there are two types of
objective functions during the adaptation phase: (1) reconstruction loss and (2) feature-embedding
consistency loss.

Classification loss LCE. We utilize cross-entropy loss as the loss function for our classification task
during training.

Dissimilarity loss LD. This objective function is designed to prevent the model from generating
nearly identical embeddings among categories during the training phase. To achieve this, we identify
the closest embedding to zfreq from all embeddings in the frequency block, which is more domain-
agnostic than temporal features and does not belong to the same category as ys

i . The repulsive effect
is introduced by calculating the dissimilarity loss. It is worth noting that, while TidalFlow searches
for the closest representative in the embedding table within the same category as xs

i , this approach
may result in the model learning a common feature across all categories, neglecting latent features
that distinguish between different categories. To address this, we utilize the following equation (Eq.
4) to guide the model explicitly in generating a better latent representation.

LD = 1− ∥sg[efreq [h̸=y]]− zfreq∥22 (4)

where efreq [h̸=y] is the chosen embedding from the frequency block on the hierarchical embedding
table, and its category h cannot be the same label of the input data xs

i . Additionally, sg(·) represents
the stop-gradient operator, which functions as an identity during forward computation and possesses
zero partial derivatives.

Feature-embedding consistency loss LA. Taking inspiration from VQ-VAE (Van Den Oord et al.,
2017), TidalFlow incorporates vector quantization algorithms, guiding the embedding encoder
outputs towards proximity through L2 error, thus effectively learning the embedding space. The
hierarchical structure of the embedding table, divided into temporal and frequency blocks, assigns
each block to handle specific features. Consequently, they do not share the same optimizer but are
updated independently. Additionally, to address a concern highlighted by VQ-VAE about the lack
of dimensionality constraints on the embedding space, which could potentially lead to uncontrolled
growth, TidalFlow adjusts the weight of this constraint to α and β for both temporal and frequency
blocks. The objective function is expressed as:

LA = α

Frequency block︷ ︸︸ ︷
(∥sg[efreq]− zfreq∥22) + ∥efreq − sg[zfreq]∥22

+ β (∥sg[etemp]− ztemp∥22) + ∥etemp − sg[ztemp]∥22︸ ︷︷ ︸
Temporal block

(5)

Reconstruction loss LMSE. During the adaptation phase, since the representative chosen from the
hierarchical embedding table does not provide the model with a real gradient, we employ the straight-
through estimator (Van Den Oord et al., 2017). This allows us to directly pass the gradient generated
by the decoder back to the encoder. We opt not to use the subgradient through the quantization
operation, as VQ-VAE has demonstrated that a simple estimator can achieve effective training
outcomes. As the output representation of the encoder and the input to the decoder exist in the same
D-dimensional space, the gradients carry valuable information on how the encoder needs to adjust its
output to minimize the reconstruction loss.

Overview of TidalFlow. During training, we employ the classification loss for our classification task.
The total loss function is defined with three components in the objective function, as outlined below:

Ltraining = LCE + LA + LD. (6)

7
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During adaptation, we replace the classification task with a reconstruction task, which leads us to
modify our objective function as shown in Eq. 7. This design enables TidalFlow to outperform other
time-series UDA methods. Last but not least, an overview algorithm of TidalFlow is in Appendix A.

Ladaptation = LMSE + LA. (7)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We employ a comprehensive evaluation strategy, consisting of two main aspects. First,
extensive experiments are conducted using five well-established benchmark datasets in UDA tasks,
from three distinct problem types: (1) Human Activity Recognition: HAR (Anguita et al., 2013),
HHAR (Stisen et al., 2015), WISDM (Kwapisz et al., 2011); (2) Sleep Stage Classification: Sleep-
EDF (Goldberger et al., 2000); (3) Machine Fault Diagnosis: MFD (Lessmeier et al., 2016). In human
activity recognition datasets, we treat sensor measurements from each participant as distinct domains.
To ensure robust assessment, we randomly select 10 source-target domain pairs for evaluation, a
methodology widely adopted in previous works on UDA in time-series research (He et al., 2023;
Ozyurt et al., 2023; Cai et al., 2021; Wilson et al., 2020). For the sleep stage classification task,
following the approach of (Ragab et al., 2023a), we utilize the Sleep-EDF dataset, comprising EEG
readings from 20 healthy subjects, and we specifically choose EEG in alignment with previous studies
(Eldele et al., 2021). The machine fault diagnosis dataset has been collected under four different
operating conditions, and we treat them as separate domains. In contrast to datasets used for human
activity recognition being multi-variate, the data used in Sleep-EDF and MFD consist of a single
univariate channel following previous works. (He et al., 2023; Ragab et al., 2023a) Further details on
datasets are given in Appendix B.

Baselines. We evaluate nine domain adaptation methods, including general UDA approaches: deep
correlation alignment (Deep Coral) (Sun & Saenko, 2016), decision boundary iterative refinement
training with a teacher (DIRT-T) (Shu et al., 2018), HoMM (Chen et al., 2020), and CDAN (Long
et al., 2018). Additionally, we include four UDA methods specifically designed for time series:
CoDATS (Wilson et al., 2020), adversarial frequency kernel matching for unsupervised time-series
domain adaptation (AdvSKM) (Liu & Xue, 2021a), contrastive learning for unsupervised domain
adaptation of time series (CLUDA) (Ozyurt et al., 2023), and RAINCOAT (He et al., 2023). As
a baseline, we also consider source-domain-only training (no transfer) using the time-frequency
encoder as RAINCOAT (He et al., 2023) and a 1-layer classifier.

Evaluation. We present accuracy and macro-F1 scores computed based on the target test datasets. In
the experiment, we assign the values of 1 to both parameters α and β, treating the time domain and
frequency blocks as equally important. More hyperparameter settings can be seen in Appendix D.

5.2 RESULTS

5.2.1 CLASSIFICATION PERFORMANCE ON DA BENCHMARK DATASETS

In Fig. 3, the average accuracy of each method is presented across 10 sources 7→ target domain
pairs on the HAR, HHAR, WISDM, Sleep-EDF, and MFD datasets. On the HAR dataset, our model
surpasses the best baseline accuracy achieved by RAINCOAT by 1.93% (0.844 vs. 0.828). For
the HHAR dataset, our model outperforms the best baseline accuracy of CLUDA by 5.5% (0.624
vs. 0.569). In the case of the WISDM dataset, our model excels by surpassing the best baseline
accuracy of RAINCOAT by 21.34% (0.688 vs. 0.567). Moving on to the Sleep-EDF dataset, our
model exceeds the best baseline accuracy of DIRT-T by 9.1% (0.779 vs. 0.714). Similarly, on the
MFD dataset, our model beats the best baseline accuracy of DIRT-T by 11.73% (0.819 vs. 0.733).
Despite our model’s simplicity compared to state-of-the-art methods, it achieves the highest scores
across five different datasets. The Appendix C contains a detailed compilation of UDA results for
each source 7→ target pair, accompanied by Macro-F1 scores, which further support our conclusions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Average performance of multiple DA methods across 5 real-world time-series datasets.
TidalFlow consistently outperforms all other methods in accuracy on test sets drawn from the target
domain dataset.

5.2.2 DIFFERENT FREQUENCY AND TEMPORAL BLOCK LEARNING RATES

We further analyze the impact of different learning rates for the temporal and frequency blocks of
TidalFlow during the adaptation phase. We conduct experiments using the MFD and Sleep-EDF
datasets due to their large data volumes, which make performance differences more pronounced, as
shown in Fig. 4. We discover some valuable findings:

1. When the learning rate for the frequency block is smaller, TidalFlow’s adaptability improves.
This trend aligns with the observations of our insights in Section 3.

2. When the learning rate for the temporal block is larger, the model’s performance deteriorates.
We speculate that this is due to the interaction between the encoder and the HET within
TidalFlow architecture. Specifically, when the learning rates of the temporal and frequency
blocks differ by four orders of magnitude, it indirectly hinders the adjustment range of one
of the blocks through the encoder.

Therefore, we recommend setting the learning rates of the temporal and frequency blocks to the same
value during the adaptation phase for optimal performance.

(a) MFD (b) Sleep-EDF

Figure 4: Accuracy for Different Frequency and Temporal Block Learning Rates in (a) and (b)
Dataset.

5.3 EMBEDDINGS IN HET AFTER TRAINING PHASE

9
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Table 1: The ablation study of TidalFlow, where performance is measured in terms of accuracy (%).

ELEMENT OF OUR MODEL MFD DATASET
FREQUENCY BLOCK LD VOTING 1 7→ 3 2 7→ 1 3 7→ 2 AVG

(A) ✓ 83.94 80.23 77.81 80.66
(B) ✓ 58.36 65.45 69.10 64.30
(C) ✓ ✓ 87.25 86.08 84.19 85.84
(D) ✓ ✓ 83.81 85.77 82.59 84.06
(E) ✓ ✓ ✓ 99.84 91.71 87.22 92.92

(a) Temporal block

(b) Frequency block

Figure 5: PCA visualiza-
tion of (a) temporal fea-
tures and (b) frequency
features in HET from
WISDM dataset.

To further understand why TidalFlow succeeds in UDA tasks, we utilize
principle component analysis (PCA) to visualize the embeddings in 2D
and observe the distribution of embeddings from the temporal block and
the frequency block. Fig. 5 shows that even though we initialize the
embeddings of both blocks uniformly in the HET, the trained embeddings
of the temporal block do not cluster as effectively as those of the frequency
block.

This may be due to the higher diversity and complexity of features in the
time domain. These features include not only class-specific characteris-
tics but also information such as confounders. In contrast, the frequency
block contains more uniform and less diverse information, which allows
it to learn the key features of the category more effectively during training.
As a result, it demonstrates better clustering performance in the PCA visu-
alization (Fig. 5(b)), aligning with the findings from earlier experiments
in Section 3.

5.3.1 ABLATION STUDY

To better understand the impact of different components in TidalFlow,
we conducted ablation experiments on three key elements: the frequency
block, dissimilarity loss LD, and the voting mechanism, employing five different configurations
(Table 1). Given that TidalFlow relies on the frequency block as a reference point, experiments
without the frequency block (Table 1 row (B)) exclusively utilized the temporal block for adaptation.
Notably, experimental setups without the frequency block and with LD were not feasible, considering
that LD is computed based on the frequency embedding table.

During the inference phase, TidalFlow utilizes a voting technique. In the ablation experiment settings,
we adjust the ’without voting’ configuration to directly select the category of the most similar
embedding as the final prediction.

The results reveal that the absence of both the frequency block and LD (Table 1 row (B)) leads to the
poorest performance. Conversely, having only the frequency block (Table 1 row (A)) significantly
improves classification accuracy. This underscores the argument presented in our preliminary study
that the frequency domain’s domain-invariant properties between source and target domains enable
TidalFlow to generate distinct feature distributions for each category during training. The use of the
well-learned frequency embedding table as a robust reference guides the classification of target domain
data into the correct categories. Furthermore, incorporating LD or adopting the voting technique
enhances performance. The most optimal performance is achieved when all three components are
used simultaneously, surpassing the second-place configuration (Table 1 row (C)) by nearly 8% in
average performance.

6 CONCLUSION

This research uncovers the distinct and complementary strengths of the temporal and frequency
domains in the context of time-series Unsupervised Domain Adaptation (UDA). Our initial experi-
ments show that the temporal domain captures a wider range of discriminative features, while the

10
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frequency domain focuses on domain-agnostic features that improve transferability between the
source and target domains. Building on these findings, we introduce TidalFlow—an innovative
SFUDA framework that effectively combines frequency embeddings and uses simple hyperparameter
adjustments to adapt to new domains without relying on traditional alignment methods.

TidalFlow demonstrates significant performance improvements, achieving nearly a 10% gain across
five benchmark datasets, highlighting its practical utility and robustness in real-world applications.
By moving beyond conventional alignment-focused approaches, this work shifts the focus toward
extracting class-specific features that remain consistent across domains. The methodologies and
insights presented in this study represent a paradigm shift in time-series SFUDA, offering a more
flexible and resilient framework that is better equipped to handle diverse and challenging domain
adaptation scenarios.

Limitation and future work. Addressing issues related to class imbalances would be urgent for
future research. Additionally, mitigating the frequency leakage problem, which can arise due to the
integration of information from both time and frequency domains, is essential for further enhancing
the model’s performance. These endeavors will not only bolster TidalFlow’s capabilities but also
contribute valuable insights to the broader landscape of time-series SFUDA.
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A ALGORITHMS

An overview of TidalFlow is in Alg. 1. Moreover, we enhance the nearest neighbor algorithm of
VQ-VAE to make it suitable for our UDA task. We utilize nearest neighbor function ρ (Alg. 2) in both
the training and adaptation phases, while voting function V (Alg. 3) is applied during the inference
stage. Unlike Alg. 1, we want to illustrate a more comprehensive explanation of implementation
details, so both of these algorithms are implemented following the PyTorch style.

Algorithm 1 Overview of TidalFlow

1: Input: data xi; label ysi ; Dual-stream encoder E; decoder U ; classifier C; frequency block BS ;
temporal block BT ; time step T ; input channel M ; nearest neighbor function ρ (Alg. 2); voting
function V (Alg. 3)

2: Extract ze ← E(xi)

3: First: Training Phase
4: Get eh,j , ep,q ← ρ(ze, [BS ;BT ], y

s
i )

5: x′
i ← U(eh,j)

6: Compute objective functions LCE , LA and LD

7: Update E,BS , BT and C with
∇(LCE + LA + LD)

8: Second: Adaptation Phase
9: Get ep,q ← ρ(ze, [BS ;BT ])

10: x′
i ← U(ep,q)

11: Compute objective functions LMSE and LA

12: Update E,BS , BT and U with∇(LMSE + LA)

13: Third: Inference Phase
14: Get ep′,q′ ← V (ze)
15: Output: p′
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Algorithm 2 Finding Nearest Neighbor Function ρ

1: Input: Query Q, Target T , Labels label
2: Initialization:
3: index_list← []
4: k ← Total embeddings for each category
5: h← Total classification categories
6: Q← Q.unsqueeze(1).repeat(1, k, 1)
7: for i = 1 to Q.size(0) do
8: T ← T [label[i]× k : (label[i] + 1)× k].unsqueeze(0)
9: tmp_index← (Q[i]− T ).pow(2).sum(2).sqrt().min(1)[1][0]

10: index← int(tmp_index) + label[i]× k
11: index_list.append(index)
12: end for
13: index_tensor ← torch.tensor(index_list)
14: eh,j ← T [index_tensor]
15: if During Training Phase then
16: {Find the nearest neighbor from other categories.}
17: index_list← []
18: Q← Q.unsqueeze(1).repeat(1, k × (h− 1), 1)
19: for i = 1 to Q.size(0) do
20: map_original_list← list(range(k × h))
21: del map_original_list[label[i]× k : (label[i] + 1)× k]
22: start_index← label[i]× k
23: end_index← (label[i] + 1)× k
24: target_2← torch.cat((target[: start_index], target[end_index :]), dim = 0)
25: T ← target_2.unsqueeze(0)
26: tmp_index← (Q[i]− T ).pow(2).sum(2).sqrt().min(1)[1][0]
27: index← map_original_list[tmp_index]
28: index_list.append(index)
29: end for
30: index_tensor ← torch.tensor(index_list)
31: ep,q ← T [index_tensor]
32: Output: eh,j , ep,q
33: else
34: Output: eh,j
35: end if
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Algorithm 3 Voting Mechanism from Hierarchical Embedding Table

1: Input: Query Q.
2: Initialization:
3: index_list← []
4: k ← Total embeddings for each category
5: h← Total classification categories
6: Q← Q.unsqueeze(1).repeat(1,HET.size(0), 1)
7: T ← HET.unsqueeze(0).repeat(Q.size(0), 1, 1)
8: indexes← (Q− T ).pow(2).sum(2).sqrt().argsort(dim = 1)[:, : 5]
9: for j in indexes do

10: index← j//hk
11: counter ← Counter(index.tolist())
12: most_common_index← counter.most_common(1)[0][0]
13: index_list.append(int(most_common_index))
14: end for
15: index_tensor ← torch.tensor(index_list)
16: Output: T [index_tensor]

B DATASET DETAILS FOR UDA BENCHMARK

We assess the performance of TidalFlow on five distinct UDA benchmark datasets, each characterized
by its unique features. The datasets considered include:

1. HAR Anguita et al. (2013): This dataset incorporates measurements from a 3-axis ac-
celerometer, 3-axis gyroscope, and 3-axis body acceleration. Data is collected from 30
participants at a sampling rate of 50 Hz and uses non-overlapping segments of 128-time
steps to predict activity labels. The objective is to classify time series into six activities:
walking, walking upstairs, walking downstairs, sitting, standing, and lying down.

2. HHAR Stisen et al. (2015): Comprising 3-axis accelerometer measurements from 9 partici-
pants at a frequency of 50 Hz, this dataset employs non-overlapping segments of 128-time
steps for classification. Activity labels include biking, sitting, standing, walking, walking
upstairs, and walking downstairs.

3. WISDM Kwapisz et al. (2011): Featuring 3-axis accelerometer measurements from 36
participants at a frequency of 20 Hz, similar to the HAR dataset, we use non-overlapping
segments of 128-time steps for classification. The dataset includes six activity labels:
walking, jogging, sitting, standing, walking upstairs, and walking downstairs.

4. Sleep-EDF Goldberger et al. (2000): This task involves classifying electroencephalography
(EEG) signals into five stages (Wake, N1, N2, N3, REM). Comprising EEG readings from
20 healthy subjects, we select a single channel (Fpz-Cz) as Ragab et al. (2023a).

5. MFD Lessmeier et al. (2016): Collected by Paderborn University to identify incipient faults
using vibration signals, this dataset consists of data collected under four different operating
conditions. Each condition is treated as a separate domain, and we use five cross-condition
scenarios to evaluate domain adaptation performance. Each sample in the dataset comprises
a single univariate channel with 5120 data points.

The summary of the datasets is in Table 2. These datasets span diverse applications and challenges,
enabling a comprehensive evaluation of TidalFlow’s effectiveness and robustness across various
domains.

C UDA ON BENCHMARK DATASETS

We engage in activity prediction through an Unsupervised Domain Adaptation approach, utilizing
benchmark datasets such as HAR, HHAR, and WISDM. Additionally, we delve into specific tasks
within the medical and mechanical engineering domains, focusing on the Sleep-EDF and MFD
datasets, respectively.
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Table 2: Summary of datasets. Ragab et al. (2023a)

Dataset #Subjects/Domains #Class #Channels Length #Train #Test

HAR 30 6 9 128 2300 990
HHAR 9 6 3 128 12716 5218
WISDM 30 6 3 128 1350 720
Sleep-EDF 20 5 1 3000 14280 6310
MFD 4 3 1 5120 7312 3604

For each dataset, we present prediction results for 10 randomly selected source 7→ target pairs. To
ensure robustness, we conduct the experiments with 5 random initializations and report the mean and
standard deviation values. The results are organized into tables:

• Table 3: Mean accuracy and average Macro-F1 on the target domains for the HAR dataset.
• Table 4: Mean accuracy and average Macro-F1 on the target domains for the HHAR dataset.
• Table 5: Mean accuracy and average Macro-F1 on the target domains for the WISDM

dataset.
• Table 6: Mean accuracy and average Macro-F1 on the target domains for the Sleep-EDF

dataset.
• Table 7: Mean accuracy and average Macro-F1 on the target domains for the MFD dataset.

Table 3: Prediction accuracy for HAR Dataset between various subjects. Shown: mean accuracy and
macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 2 7→ 9 1 7→ 14 1 7→ 10 4 7→ 9 21 7→ 29 25 7→ 28 30 7→ 2 4 7→ 3 2 7→ 11 9 7→ 18

AVG 59.58 73.26 53.64 61.62 73.17 82.92 59.62 88.54 85.94 60.75
STD OF AVG 11.73 11.30 11.99 11.38 16.07 5.42 16.58 11.99 11.15 14.69
W/O UDA 48.28 81.44 52.81 68.97 50.96 84.35 54.95 66.02 77.89 30.91
DEEPCORAL 50.63 75.00 57.50 58.44 76.25 82.91 46.87 93.12 90.63 46.88
CDAN 66.88 88.95 56.87 63.13 89.58 85.21 54.37 97.29 85.42 58.86
DIRT-T 69.68 60.62 62.81 52.81 85.62 74.37 55.00 84.58 80.21 59.03
HOMM 35.00 58.96 23.75 37.81 39.37 73.75 41.88 72.71 65.47 41.27
CODATS 59.06 79.58 54.69 67.50 81.87 88.75 71.56 88.12 68.23 63.89
ADVSKM 51.25 78.54 57.19 59.06 76.67 84.37 47.18 91.04 98.96 74.65
CLUDA 65.91 57.14 42.22 50.00 61.54 74.14 52.17 98.08 81.77 67.71
RAINCOAT 70.31 63.54 62.50 73.13 84.16 88.75 87.50 96.46 100.0 75.69
OURS 73.12 90.01 61.87 80.08 87.23 88.79 86.94 100.0 100.0 76.17

MEAN MACRO F1

AVG 0.538 0.709 0.539 0.601 0.686 0.822 0.593 0.877 0.833 0.580
STD OF AVG 0.119 0.120 0.120 0.113 0.207 0.068 0.133 0.125 0.140 0.150
W/O UDA 0.374 0.802 0.524 0.685 0.351 0.840 0.500 0.569 0.714 0.190
DEEPCORAL 0.440 0.733 0.590 0.554 0.714 0.832 0.492 0.927 0.910 0.440
CDAN 0.621 0.879 0.591 0.642 0.900 0.846 0.523 0.969 0.850 0.610
DIRT-T 0.675 0.501 0.645 0.458 0.861 0.706 0.491 0.811 0.810 0.580
HOMM 0.313 0.550 0.224 0.318 0.296 0.730 0.453 0.677 0.573 0.366
CODATS 0.538 0.789 0.538 0.685 0.797 0.899 0.721 0.866 0.660 0.600
ADVSKM 0.452 0.767 0.583 0.549 0.737 0.846 0.519 0.893 0.990 0.730
CLUDA 0.664 0.557 0.389 0.511 0.570 0.756 0.481 0.980 0.810 0.670
RAINCOAT 0.645 0.614 0.626 0.724 0.831 0.899 0.864 0.963 1.000 0.760
OURS 0.727 0.888 0.649 0.778 0.894 0.905 0.848 1.000 1.000 0.728

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Prediction accuracy for HHAR Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 7 7→ 6 1 7→ 3 0 7→ 2 2 7→ 3 2 7→ 6 7 7→ 2 4 7→ 0 5 7→ 0 7 7→ 0 4 7→ 2

AVG 88.96 93.93 78.17 56.28 44.35 38.85 32.81 33.31 32.75 26.37
STD OF AVG 6.92 5.21 7.15 7.33 8.75 5.30 7.49 6.85 7.63 6.33
W/O UDA 78.04 98.51 64.51 50.32 45.11 32.37 32.81 30.42 33.92 19.16
DEEPCORAL 79.08 88.24 84.23 54.32 45.28 34.45 28.13 42.04 38.62 23.74
CDAN 96.04 93.01 76.19 60.27 31.88 37.05 29.09 22.84 25.09 27.16
DIRT-T 93.79 95.09 77.83 66.22 50.69 38.10 32.22 24.70 27.81 26.41
HOMM 84.63 88.91 68.38 45.83 44.03 35.94 32.37 34.60 29.60 23.21
CODATS 88.95 95.16 79.61 61.09 35.90 38.54 21.80 33.85 32.41 36.31
ADVSKM 83.71 82.07 78.94 43.45 36.67 39.95 33.49 34.60 24.91 19.05
CLUDA 92.43 96.51 79.84 59.83 56.18 37.80 38.84 34.93 44.59 35.29
RAINCOAT 89.90 95.65 87.82 60.04 40.21 43.32 46.46 30.36 27.90 24.33
OURS 97.04 96.91 87.54 65.78 57.01 51.46 46.28 42.38 44.97 35.31

MEAN MACRO F1

AVG 0.882 0.930 0.738 0.514 0.400 0.374 0.327 0.293 0.343 0.247
STD OF AVG 0.069 0.056 0.091 0.081 0.068 0.061 0.083 0.067 0.064 0.075
W/O UDA 0.783 0.985 0.600 0.410 0.359 0.310 0.290 0.220 0.337 0.135
DEEPCORAL 0.761 0.874 0.860 0.498 0.419 0.320 0.260 0.380 0.409 0.230
CDAN 0.961 0.930 0.700 0.563 0.325 0.320 0.270 0.202 0.265 0.257
DIRT-T 0.936 0.950 0.760 0.628 0.441 0.340 0.300 0.207 0.303 0.283
HOMM 0.836 0.881 0.625 0.408 0.398 0.377 0.318 0.306 0.315 0.192
CODATS 0.883 0.951 0.730 0.580 0.366 0.360 0.200 0.328 0.315 0.356
ADVSKM 0.821 0.791 0.720 0.388 0.333 0.410 0.330 0.279 0.270 0.157
CLUDA 0.928 0.965 0.820 0.544 0.506 0.360 0.400 0.305 0.426 0.345
RAINCOAT 0.903 0.955 0.870 0.553 0.397 0.440 0.450 0.288 0.331 0.235
OURS 0.987 0.967 0.814 0.611 0.544 0.518 0.453 0.409 0.444 0.381
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Table 5: Prediction accuracy for WISDM Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 4 7→ 5 11 7→ 16 12 7→ 23 18 7→ 23 26 7→ 29 28 7→ 27 4 7→ 11 28 7→ 21 12 7→ 26 17 7→ 26

AVG 64.93 17.12 50.47 50.07 28.67 60.00 42.57 47.52 52.60 59.65
STD OF AVG 11.59 10.01 13.26 16.15 14.17 23.59 11.50 20.36 8.73 9.65
W/O UDA 42.03 13.73 45.00 58.33 50.00 8.00 32.89 59.62 54.88 43.90
DEEPCORAL 76.81 15.69 39.17 61.67 21.67 68.00 27.63 28.85 48.17 65.24
CDAN 60.87 17.65 61.67 23.33 15.00 76.00 44.74 61.54 48.78 65.85
DIRT-T 73.91 6.86 63.33 56.67 39.17 46.00 42.11 41.35 53.66 63.41
HOMM 57.97 3.92 32.50 45.83 39.17 52.00 32.24 31.73 40.85 43.90
CODATS 56.52 30.39 52.50 60.83 27.50 66.00 54.61 31.73 64.02 70.12
ADVSKM 61.59 23.53 29.17 25.00 36.67 78.00 24.34 17.31 35.98 56.71
CLUDA 62.86 15.38 54.84 48.39 6.67 36.00 47.37 34.62 48.78 51.22
RAINCOAT 65.22 19.61 63.33 63.33 21.67 84.00 43.42 84.62 57.32 64.63
OURS 87.96 42.32 66.77 69.69 49.75 85.21 72.58 84.64 64.04 65.77

MEAN MACRO F1

AVG 0.515 0.170 0.298 0.281 0.191 0.403 0.328 0.389 0.257 0.391
STD OF AVG 0.178 0.094 0.137 0.114 0.067 0.183 0.136 0.204 0.046 0.149
W/O UDA 0.099 0.083 0.176 0.226 0.133 0.033 0.329 0.388 0.223 0.160
DEEPCORAL 0.704 0.166 0.176 0.308 0.136 0.519 0.300 0.225 0.234 0.456
CDAN 0.366 0.277 0.340 0.156 0.218 0.337 0.383 0.541 0.257 0.422
DIRT-T 0.492 0.096 0.382 0.274 0.255 0.496 0.276 0.346 0.255 0.417
HOMM 0.501 0.020 0.201 0.268 0.268 0.421 0.229 0.245 0.237 0.281
CODATS 0.496 0.283 0.384 0.508 0.151 0.291 0.414 0.266 0.310 0.502
ADVSKM 0.548 0.271 0.191 0.160 0.269 0.458 0.204 0.154 0.221 0.438
CLUDA 0.611 0.126 0.359 0.275 0.111 0.370 0.262 0.321 0.236 0.233
RAINCOAT 0.461 0.265 0.519 0.283 0.162 0.713 0.333 0.691 0.267 0.398
OURS 0.819 0.254 0.517 0.548 0.311 0.588 0.705 0.730 0.369 0.731
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Table 6: Prediction accuracy for Sleep-EDF Dataset between various subjects. Shown: mean accuracy
and macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 1 7→ 8 6 7→ 10 8 7→ 0 2 7→ 1 15 7→ 4 8 7→ 1 4 7→ 19 8 7→ 5 18 7→ 6 13 7→ 7

AVG 57.07 71.17 67.77 75.71 69.42 62.65 72.76 54.02 72.34 65.07
STD OF AVG 8.76 8.14 8.49 6.35 4.12 7.25 8.42 12.00 9.69 8.03
W/O UDA 52.05 75.11 68.53 78.75 68.54 61.43 77.58 51.39 76.14 68.44
DEEPCORAL 61.82 71.09 66.41 78.07 69.90 62.66 72.74 43.62 76.17 68.85
CDAN 45.62 75.31 75.13 73.23 70.78 60.16 68.97 65.89 75.78 65.62
DIRT-T 49.06 77.97 84.83 77.92 68.75 69.84 80.56 70.25 72.72 61.77
HOMM 62.29 71.61 64.58 65.05 73.70 58.70 67.62 36.91 76.43 66.46
CODATS 62.55 67.29 62.63 79.74 72.71 60.57 82.34 55.01 68.82 75.00
ADVSKM 67.34 71.20 59.31 79.53 69.32 60.26 70.62 38.35 74.09 66.04
CLUDA 46.81 53.64 51.01 60.47 57.65 45.64 48.58 43.40 47.31 47.93
RAINCOAT 59.74 77.08 72.98 78.33 69.90 66.30 71.83 64.78 76.17 65.78
OURS 75.81 78.66 78.97 80.13 73.65 76.92 82.51 73.84 80.52 77.98

MEAN MACRO F1

AVG 0.498 0.567 0.596 0.664 0.609 0.546 0.564 0.517 0.618 0.570
STD OF AVG 0.110 0.137 0.094 0.135 0.080 0.108 0.156 0.118 0.137 0.093
W/O UDA 0.409 0.694 0.632 0.677 0.564 0.560 0.619 0.559 0.651 0.576
DEEPCORAL 0.556 0.574 0.582 0.728 0.640 0.565 0.618 0.464 0.670 0.611
CDAN 0.400 0.590 0.636 0.687 0.596 0.495 0.529 0.573 0.664 0.572
DIRT-T 0.445 0.596 0.714 0.710 0.583 0.563 0.671 0.590 0.618 0.523
HOMM 0.548 0.582 0.572 0.662 0.691 0.540 0.551 0.402 0.643 0.591
CODATS 0.555 0.534 0.522 0.696 0.668 0.497 0.719 0.489 0.627 0.630
ADVSKM 0.599 0.545 0.519 0.740 0.656 0.562 0.587 0.401 0.650 0.607
CLUDA 0.310 0.179 0.364 0.338 0.409 0.305 0.233 0.305 0.284 0.365
RAINCOAT 0.528 0.641 0.601 0.724 0.578 0.572 0.536 0.540 0.675 0.527
OURS 0.715 0.749 0.702 0.702 0.645 0.790 0.751 0.757 0.720 0.665
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Table 7: Prediction accuracy for MFD Dataset between various subjects. Shown: mean accuracy and
macro F1 over 5 random initializations.

MEAN ACCURACY (%)
METHOD 0 7→ 1 0 7→ 3 1 7→ 2 1 7→ 0 3 7→ 0 2 7→ 0 3 7→ 2 0 7→ 2 2 7→ 1 1 7→ 3

AVG 58.27 65.47 70.47 54.70 56.08 51.09 69.53 61.15 79.43 87.18
STD OF AVG 9.92 9.10 10.24 14.13 14.71 13.39 11.82 4.27 15.30 14.54
W/O UDA 41.73 51.39 67.04 42.06 39.84 28.97 79.69 61.71 88.46 98.45
DEEPCORAL 66.15 69.79 64.21 41.67 48.33 41.67 61.53 65.89 89.14 81.32
CDAN 47.36 68.79 76.00 46.61 50.04 49.33 70.24 62.69 90.62 99.44
DIRT-T 58.37 65.62 72.19 81.10 73.40 70.65 74.63 64.84 70.83 98.85
HOMM 65.59 68.34 65.29 42.56 47.84 36.64 62.35 59.90 82.66 81.81
CODATS 60.66 62.72 86.16 41.74 45.59 42.58 79.97 54.91 81.03 100.0
ADVSKM 64.73 71.80 65.10 40.85 48.25 45.05 61.87 64.14 86.24 82.63
CLUDA 48.34 48.56 48.12 41.69 42.57 47.67 49.45 54.77 46.56 44.79
RAINCOAT 63.02 67.49 76.45 61.53 68.45 65.40 81.55 58.82 92.30 97.14
OURS 73.96 84.28 83.51 78.77 84.98 67.24 87.22 67.33 91.71 99.84

MEAN MACRO F1

AVG 0.480 0.565 0.736 0.541 0.581 0.537 0.734 0.548 0.828 0.896
STD OF AVG 0.083 0.108 0.164 0.189 0.158 0.125 0.169 0.108 0.205 0.258
W/O UDA 0.400 0.520 0.758 0.575 0.558 0.479 0.851 0.674 0.915 0.989
DEEPCORAL 0.496 0.551 0.688 0.477 0.503 0.473 0.667 0.607 0.919 0.856
CDAN 0.318 0.523 0.800 0.343 0.428 0.452 0.743 0.525 0.925 0.996
DIRT-T 0.492 0.634 0.788 0.830 0.756 0.742 0.789 0.733 0.777 0.992
HOMM 0.460 0.490 0.700 0.480 0.501 0.424 0.665 0.442 0.866 0.859
CODATS 0.557 0.689 0.871 0.451 0.532 0.499 0.826 0.393 0.843 1.000
ADVSKM 0.450 0.633 0.685 0.473 0.504 0.501 0.674 0.560 0.896 0.866
CLUDA 0.408 0.339 0.333 0.252 0.295 0.323 0.345 0.383 0.325 0.311
RAINCOAT 0.610 0.655 0.806 0.692 0.737 0.719 0.850 0.581 0.941 0.979
OURS 0.580 0.623 0.871 0.826 0.885 0.751 0.902 0.577 0.925 0.993
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D IMPLEMENTATION DETAILS FOR HYPERPARAMETERS

D.1 LEARNING RATE

Table 8: Leaning rates of different components in TidalFlow.

Component Training Phase Adaptation Phase

Encoder 1e-4 2e-6
HET - temporal block 2e-4 2e-6
HET - frequency block 2e-4 1e-8
Classifier 1e-2 -
Decoder - 2e-4

D.2 TRAINING BATCH SIZE

Table 9: Batch sizes of different datasets in TidalFlow.

Dataset Training Phase Adaptation Phase

HAR 32 32
HHAR 32 32
WISDM 32 32
Sleep-EDF 32 32
MFD 32 32

D.3 PARAMETER K

Figure 6: TidalFlow’s performance in different K. We observed that for the majority of datasets,
setting K to 8 yielded better performance, excluding MFD dataset in mean macro F1 score.

D.4 PARAMETER γ

Table 10: γ in different datasets.

HAR HHAR WISDM Sleep-EDF MFD

1.2 1.2 1 1 1.5
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E COMPUTATION ANALYSIS

Two main factors affect TidalFlow’s performance: (1) the size of the hierarchical embedding table
and (2) the number of classification categories. The following will elaborate on these two aspects:

E.1 SIZE OF THE HIERARCHICAL EMBEDDING TABLE

During the training phase, as the source domain has labels, we only need to calculate K nearest
neighbors for each category, where K represents the number of embeddings per category (Fig. 6). We
determine the appropriate value of K through experimentation, considering both Mean accuracy and
macro F1 score. We found that for the majority of datasets, setting K to 8 yielded better performance,
excluding MFD dataset in mean macro F1 score. Accordingly, we speculate that other parameters of
the model contribute to its superior performance at K=8.

E.2 NUMBER OF CLASSIFICATION CATEGORIES

During the adaptation phase, as the target domain lacks labels, we must compute all embeddings in
the embedding table to obtain the closest embeddings. At this point, the time required by the model
is directly influenced by the number of categories, leading to a significant impact.

Our study utilized an A100 GPU 40GB, with an average total training time of 0.5 GPU hours across
the five datasets. Table 11 is the relevant parameter table for the 5 datasets:

Table 11: Epochs of training and adaptation phases in different datasets.

DATASET TRAINING EPOCH ADAPTATION EPOCH

HAR 70 50
HHAR 80 70
WISDM 150 50
SLEEP-EDF 200 100
MFD 150 100

F BROADER IMPACTS

Potential positive societal impacts. We may apply TidalFlow in smart elderly care facilities. Given
the significant differences in behavior between the elderly population and middle-aged adults, such as
frequent nocturnal bathroom visits, slower mobility, and increased susceptibility to falls, leveraging
the human activity recognition datasets (i.e, HAR, HHAR, WISDM, DSADS) as the source domain
and adapting it to the elderly population for downstream tasks could be a crucial research direction
and technological advancement in the future.

Potential negative societal impacts. As our task involves domain adaptation, there are no noteworthy
negative social impacts to consider.
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