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Abstract— While Lidar-based SLAM systems are critical
for autonomous vehicles, most existing methods are non-
differentiable. This limits their use with deep neural networks to
learn valuable representations. In this work, we propose Grad-
Lidar-SLAM, a novel, fully differentiable SLAM framework
for Lidar. We show its effectiveness by using it to solve point
cloud completion task. We also show that when adapted for
Lidar-based SLAM, existing differentiable baselines fail to
perform well on real-world datasets. We address this problem
by proposing a novel differentiable pose graph optimization
framework. Our experiments on real-world datasets show that
our proposed approaches outperform the baselines in static and
dynamic environments.

I. INTRODUCTION

Gradient descent and back-propagation have transformed
the outlook of several domains with the successful applica-
tion in deep learning (e.g. computer vision, natural language
processing). Such success can also benefit other areas, in-
cluding simultaneous localization and mapping (SLAM). If
the SLAM modules are fully differentiable, then it has the
advantage of being integrated into deep learning frameworks
so that the deep learning tasks can benefit from some self-
supervision from SLAM. However, the pipelines of classical
SLAM systems [1], [2] are non-differentiable, especially the
non-linear optimization. This disadvantage is because we
cannot it stack with many state-of-the-art neural nets.

Making fully differentiable SLAM has thus become of
interest in the research field. The pioneering work of
GradSLAM (∇SLAM) [3] introduces the gradient-based
approach to SLAM problems, which solves the dense vi-
sual SLAM problem using a fully differentiable formu-
lation that iteratively optimizes the states with gradients
from back-propagation. While GradSLAM tackles the non-
differentiable functions in SLAM with softening strategies
to make them differentiable, it is a local SLAM which drifts
over time, and there is a need to use global SLAM and adopt
differentiable global SLAM.

In this work, we tackle the differentiability issue of Lidar
SLAM. Lidar has the advantages of high accuracy, low
calculation volume, and easy-to-realize real-time SLAM.
Lidar actively collects point clouds of the environment, less
affected by environmental conditions like light and rain. Most
differentiable SLAM method mentioned above works only
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Fig. 1. Grad-LiDAR SLAM can be used end-to-end with upstream deep
learning tasks that wish to minimize SLAM error. Top: Output pointclouds
from deep neural networks are passed to the proposed Grad-Lidar SLAM.
Bottom: SLAM error is propagated back to neural networks and used for
its training.

for cameras, and lidar-based SLAM systems are ignored.
Furthermore, simply adapting them for lidar systems is not
good enough.

To address these problems, we build a lidar-based differ-
entiable pose-graph SLAM, named Grad-Lidar-SLAM (∇L-
SLAM), a global SLAM that maintains and optimizes the
global pose-graph. We show its effectiveness by solving the
point cloud completion task using the pipeline described
in Fig. 1. Different from the strategy of GradSLAM, this
method can achieve less drift. We summarize the main
contributions of this paper as follows:

• We propose a novel fully-differentiable lidar based
SLAM framework called Grad-Lidar SLAM. We
demonstrate its effectiveness by using it to solve the
problem of Point Cloud Completion using the gradients
backpropagated via our differentiable SLAM frame-
work.

• We also propose a differentiable pose-graph optimiza-
tion framework to build a fully differentiable global
SLAM. We show that our differentiable global SLAM
significantly outperforms existing differentiable SLAM



systems on real-world datasets.

II. BACKGROUND

We define x = (x1, ...., xT )
T to be a vector of parameters,

where xi is pose of the node i, zij and Ωij are the mean and
the information matrix of the measurement between node i
and node j. This measurement acts as transformation which
makes the observation obtained from i maximally overlap
with the observation from j. Let zij (xi, xj) be the prediction
of the measurement given the nodes xi and xj . The log-
likelihood lij of a measurement zij is

lij ∝ [zij − zij (xi, xj)]
TΩ[zij − zij (xi, xj)] (1)

Let e(xi, xj , zij ) be the error function which calculates
the difference between the expected observation and the real
observation.

eij (xi, xj) = zij − zij (xi.xj) (2)

The goal of a maximum likelihood approach is to find the
configuration of the nodes x∗ that minimizes the negative
log-likelihood F(x) of all observations

F (x) =
∑

eTijΩijeij . (3)

Thus, it seeks to solve the following equation

x∗ = argmin
x

F (x) (4)

The proposed approach utilizes a differential Levenberg-
Marquardt algorithm, and with a good initial guess x of the
robot poses, we can obtain a good numerical solution. The
idea is to approximate the error function using first-order
Taylor expansion around the current initial guess x

eij (xi +∆xi, xj +∆xj) ≈ eij + Jij∆x (5)

Fij (x+∆x) = eij (x+∆x)TΩijeij (x+∆x)

≈ cij + 2bij∆x+∆xTHij∆x (6)

With the local approximation, we can rewrite the function
F(x) as

F (x+∆x) =
∑

Fij (x+∆x)

= c+ 2bij∆x+∆xTH∆x (7)

We can solve the above quadratic form and find the
minimum ∆x by solving the linear system H∆x∗ = −b

LM optimizer uses µ as damping parameter (JTJ +
µI)x∗ = −g Where damping parameter has several effects :

1) For all µ > 0, the coefficient matrix is positive definite,
ensuring that x∗ is a descent direction.

2) For large values of µ, we get x∗ ≈ − 1
µg is a short

step in the steepest descent direction. This is good if
the current iterate is far away from the solution.

3) If µ is very small, then x∗ ≈ x∗
gn , which is a good step

at the final stages of the iteration, when x is almost
close to x∗.

III. METHODOLOGY

A. Differentiable LiDAR-based SLAM

The main objective of ∇L-SLAM is to make every com-
putation in pose-graph SLAM a composition of differentiable
functions so that we can solve the whole global SLAM
problem via backpropagation. The sequence of operations in
our system can be termed odometry estimation, pose-graph
building and global optimization.

We build our system with the GradSLAM framework [3].
Fig. (2) illustrates the pipeline of our proposed approach.
Since Lidar scan range is limited and cannot grow in-
definitely with the map, it is evident that the constraints
between consecutive nodes exist. Therefore, we first realize
a functioning front-end odometry that takes every pair of
consecutive nodes and outputs a cumulative trajectory. To
achieve this, we adopt the differentiable iterative closest
point module, ∇ICP in GradSLAM, utilizing the point cloud
matching between the consecutive poses to estimate the
current pose.

B. Differentiable Pose Graph Optimization

One major challenge is that as time accumulates, the
length and scale of the trajectory will become longer, leading
to the drift in the trajectory, and the global map will become
inconsistent.

To solve this problem, we introduce a differentiable pose-
graph SLAM approach which uses a global optimizer to
resolve the inconsistency in the trajectory. We save the tra-
jectory and construct a back-end global pose-graph optimiza-
tion [4] to reduce the errors. The vertices to be optimized in
the pose graph are the poses of the agent at each Lidar scan.
Most state-of-the-art SLAM systems optimize the likelihood
of all the constraints in the graph to obtain local/global
consistent estimates of the robot state, which is equivalent
to optimizing the nonlinear least squares objectives in Eq.
(3). Such objectives are of form 1

2

∑
r(x)2, where r(x) is

a nonlinear function of residuals. The ordinary edge comes
from point clouds matching between consecutive nodes and
loop edges come from the rematch of the point clouds during
loop closure detection.

The objective functions are first linearized and then solved
using the Levenberg-Marquardt (LM) solver. We first imple-
mented the Gauss-Newton (GN) solver in our code. How-
ever, while the GN solver is differentiable, due to the data
problem’s potential degeneration, which makes the linear
system ill-conditioned [5], it does not provide convergence
guarantees. So we use the LM solver instead to ensure
numerical stability. However, the trust region is not differ-
entiable as it involves calibration of the parameters based
on a lookahead operation over the next iterate and discretely
switching between damping or undamping the linear system.
This discrete switching does not allow the gradient to flow
backwards. So we used soft reparametrization of the damping
mechanism as in ∇LM [3] with

λ = λmin +
λmax − λmin

1 +De−α(r1−r0)
. (8)



Fig. 2. The pipeline of our ∇L-SLAM. It is a globally differentiable SLAM system compared to local SLAM like GradSLAM. The pose of the Lidar
scans are the nodes to optimize in the global pose graph. They first go through ∇ICP [3] to provide pose-pose constraints in the pose graph. Then the global
pose graph optimization is formulated considering all pose-pose constraints and the loop closure constraints. The update is calculated using ∇LM [3], a
differentiable version of the Levenberg-Marquardt solver, and the update is backpropagated to the poses both through ordinary pose-pose constraints and
loop closure constraints.

Fig. 3. We use our proposed Grad-Lidar SLAM for the Point Cloud
Completion task. Left: randomly initialized point cloud, Middle: final
reconstructed point cloud, learnt using gradients on SLAM pose error,
Right: ground truth point cloud. We observe that the reconstructed point
clouds are quite close to the ground truth point clouds.

This smooth parameterization of the trust region makes
LM solver differentiable and allows the gradient to pass
backwards.

To demonstrate our choice of the ∇LM solver over the
∇GN solver, we show the L-2 norm of the gradient in some
iterations of the pose graph in Table I. GN is based on a linear
approximation of objective function f(x) in the neighbour-
hood of x̂. GN solver converges quadratically when the first-
order Taylor series gives a sufficiently good approximation of
the objective function of f. If not, then the algorithm diverges
from the optimal value. GN experienced exploding gradient
problem where the solver started to diverge, which led to
the collapse of the global SLAM, whereas LM stays good
numerical stability.

IV. EXPERIMENTS

In this section, we present the quantitative and qualitative
results for comparing lidar-based SLAM adopted from Grad-

Timestep Grad value of GN Grad value of diff-LM

0 117.81 31.32
1 62.39 7.66
2 624.96 2.89
3 1980.36 1.94
4 23729.50 1.58

TABLE I
COMPARISON OF THE GRADIENTS INDICATE EXPLODING GRADIENT

PHENOMENON IN A PARTICULAR ITERATION.

SLAM and the proposed Grad-Lidar-SLAM. Furthermore,
we also present the results showing the application of the
framework in the point cloud completion task.

A. Results

To show the potential of the proposed framework, we
compare it with GradSLAM [3]. GradSLAM was originally
proposed for images. We adapt its ICP module and use it
for lidar SLAM. We present results on two matrics: ATE
(Absolute Trajectory Error) and RPE (Relative Pose Error).
We ideally want the method to work seamlessly in real-world
conditions. For this purpose, we use the ARD dataset [6] for
our evaluation purposes. ARD is a real-world dataset having
both static and dynamic runs. There is no moving object in
the environment for static runs, and for dynamic runs, there
are moving objects in the same environment. The dataset
also contains ground truth poses for every lidar scan.

Table II and Table III present the quantitative results for
comparison of GradSLAM and our approach for static and



Static run

Dynamic run
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Fig. 4. SLAM Trajectory comparison between our proposed approach
with the baseline. Top: ARD static run, Bottom: ARD dynamic run. While
baseline approaches significantly deteriorate over time in the real-world
dataset, our proposed approaches can recover the ground truth trajectory.

No. of Scans Ours GradSLAM [3]
ATE RPE ATE RPE

150 0.30 4.89 0.75 4.30
300 0.68 10.54 1.05 9.66
450 0.65 10.23 2.73 10.71
600 0.61 9.55 4.55 10.01
700 0.56 9.08 5.15 10.54

TABLE II
COMPARISON ON ARD STATIC RUNS

dynamic runs, respectively. The results are presented for the
different number of scans taken as input. It can be seen from
both the tables that ATE, and RPE score for our approach
surpasses GradSLAM in most of the cases. Furthermore, it
can also be observed that with the increasing number of lidar
scans taken, the difference between ATE of GradSLAM and
our approach increases exponentially, showing the effective-
ness of the proposed pose graph optimizer.

Figure 4 shows the qualitative results for comparison of
GradSLAM and our approach for static and dynamic runs.
It is visible that GradSLAM cannot identify the loop in both
cases, whereas our approach can identify loop closure in
both cases. Furthermore, the obtained map from GradSLAM
is far from the ground truth as opposed to our approach,
which gives a reliable map.

B. Learning through SLAM error

To show the effectiveness of the proposed differentiable
Lidar SLAM and pose graph optimization, we conduct ex-
periments involving the backward flow of gradients through

No. of Scans Ours GradSLAM [3]
ATE RPE ATE RPE

150 0.28 4.75 0.67 4.29
300 0.51 9.53 1.22 9.02
450 0.62 10.99 1.51 9.87
600 0.69 10.02 2.18 9.71
700 0.75 9.08 2.82 9.15

TABLE III
COMPARISON ON ARD DYNAMIC RUNS

the differentiable lidar SLAM back to the point clouds, which
are further used for learning. Specifically, we present results
on the point cloud completion task, shown in Fig. 3. The task
involves multiple ground truth point clouds from the ARD
dataset with one point cloud replaced with uniform noise,
which is passed through the SLAM pipeline to get the map
and relative poses. We supervise it using a ground truth map
with an original point cloud in place of the uniform noise
discussed above. Using mean square error as a loss function,
we successfully retrieved the original point cloud, which
shows the potential of the proposed approach. Similar to the
above-described experiment we can use use the SLAM-based
map loss and pose loss to train deep neural networks in both
supervised and unsupervised manner.

V. RELATED WORKS

Several works have been proposed in literature where
SLAM is used in a differentiable manner for deep learning
purposes, either directly or indirectly. DROID-SLAM [7]
proposes a Dense Bundle Adjustment layer having recur-
rent iterative updates of camera pose and pixel-wise depth.
LEO [8] proposes a method to directly optimize end-to-end
tracking performance by learning observation models with
the graph optimizer in the loop.

Both CodeSLAM [9] and SceneCode [10] try to express
scenes with compact codes representing a 2.5D depth map.
DeepTAM trains a tracking network and a mapping network
to learn how to rebuild a voxel representation from a pair
of photos. Expanding on the well-known monocular SLAM
system LSD-SLAM [11], CNN-SLAM uses single-image
depth predictions from a convnet. Another recent approach
has been to attempt to formulate the SLAM issue over
higher-level features such as objects, which may be detected
with learnt detectors such as those mentioned in [12], [13],
and [14].

Real-time dense visual odometry is carried out using the
Lucas-Kanade approach by Kerl et al. [15]. Their system
is differentiable and has been utilized widely for the self-
supervised depth and motion estimation, as noted in [16]–
[18].

VI. CONCLUSION

This work presents a differentiable lidar-based SLAM
pipeline along with a differentiable pose-graph optimizer.
This framework can be used in many robotics perception
applications, such as moving object segmentation and Lidar
point cloud completion, that require deep learning tasks to
minimize SLAM error. To perform SLAM and pose-graph
optimization in an end-to-end differentiable manner, we use
differentiable least square optimizers such as Levenberg
Marquardt. Our experiments show that the proposed method
can retrieve a complete point cloud from a uniform noise
which shows the effectiveness and usability of the method.
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