Under review as a conference paper at ICLR 2025

IN-CONTEXT KV-CACHE EVICTION FOR LLMS
VIA ATTENTION-GATE

Anonymous authors
Paper under double-blind review

ABSTRACT

The KV-Cache technique has become the standard for the inference of large lan-
guage models (LLMs). It caches states of self-attention to avoid recomputation.
Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM infer-
ence system, especially when confronted with ultra-large models and long-context
queries. A natural remedy is to discard the KV-Cache for less important tokens,
with StreamingL. LM (Xiao et al.,[2024)) as an example, but the used static eviction
strategies cannot flexibly adapt to varying contexts. Remedies like H20 (Zhang
et al., 2024) leverage accumulative attention scores to perform dynamic eviction
but suffer from the attention bias issue in capturing contextual information. This
paper bridges this gap by devising a parameterized KV-Cache eviction mecha-
nism, dubbed as Attention-Gate, which accepts the whole context as input and
yields eviction flags for each token to realize in-context eviction. The subsequent
self-attention module proceeds according to the flags and only the KV states for
the remaining tokens need to be cached. The Attention-Gates can vary among
different heads and layers and be trivially plugged into pre-trained LLMs, tuned
by cost-effective continual pre-training or supervised fine-tuning objectives to
acquire what to discard. The computational and memory overhead introduced
by Attention-Gates is minimal. Our method is validated across multiple tasks,
demonstrating both efficiency and adaptability. After a highly efficient continual
pre-training, it achieves higher average accuracy and evicts more tokens compared
to traditional training-free methods. In supervised fine-tuning, it not only evicts
many tokens but also outperforms LoRA-finetuned LLMs on some datasets, such
as RTE, where it improves accuracy by 13.9% while evicting 62.8% of tokens,
showing that effective eviction of redundant tokens can even enhance performance.

1 INTRODUCTION

Large language models (LLMs) (Dubey et al.| 2024; Team et al.| 2024; |Chiang et al., [2023)) have
achieved remarkable success across a wide range of natural language processing tasks. A key
technique that has enabled efficient LLM inference is KV-Cache, which stores transient attention
keys and values to avoid recomputation. However, as the size of LLMs continues to increase and
the demand for handling long-context queries grows, the KV-Cache has emerged as a significant
bottleneck. Storing attention states for numerous tokens can lead to considerable memory overhead
and data transfer among the memory hierarchy results in substantially increased inference time.

Studies have shown that sparsity is a natural phenomenon in attention mechanisms, with many tokens
being redundant for inference (Zhang et al., 2024)). This suggests that retaining all tokens in the
KV-Cache is unnecessary. Existing works have explored this insight to compress KV-Cache using
static strategies or hinging on accumulative attention scores. StreaminglL.LM (Xiao et al.,[2024]) is
a representative of the former by retaining a fixed window of beginning and recent tokens in the
KV-Cache but it struggles to flexibly adapt to specific contexts. E.g., in sentiment analysis, retaining
the token “cute” in “a cute cat” is crucial, while in object recognition, the token “cat” would be
more important. H20 (Zhang et al., 2024)), on the other hand, employs a token-adaptive approach,
using local accumulative attention scores to determine which tokens to evict. However, it is criticized
that in practice, H20 suffers from the attention bias issue (Oren et al., [2024), with a tendency to
over-prioritize either the initial or recent tokens.

Under review as a conference paper at ICLR 2025

1€ « (:xopu] Joke]

[N
3

RENR

v
SR

i‘ SRR T

hak |k RR
& R
& 3

[€ < (:xopu] Joke]

ad Index: 0 — 31

Figure 1: KV-Cache eviction patterns across different layers and attention-heads, visualized for 4
samples from the PIQA dataset (top row) and 4 samples from the BoolQ dataset (bottom row),
using AG fine-tuned Llama2-7B models. Black areas represent tokens that are neither computed
nor stored in the KV-Cache. The variability of eviction patterns across tasks, prompts, layers, and
attention-heads demonstrates the dynamic nature of our method. A common trend observed is that
deeper layers tend to mask more KV-Cache states, with some in deeper layers being entirely masked.

To overcome these challenges, we introduce a parameterized KV-Cache eviction mechanism named
the Attention-Gate (AG), to perform reliable in-context eviction. AG is positioned before a self-
attention layer within the model. It takes a sequence of token features as input and generates eviction
flags for the tokens, indicating whether a token should be excluded from subsequent self-attention
computations. Tokens that are evicted do not require their KV states to be cached. AGs can be
seamlessly integrated into pre-trained LLMs and tuned by minimizing the language modeling loss.
Ideally, AGs can automatically learn to discern the most relevant tokens for the current context
without manual intervention. In practice, we can implement the AG as a self-attention layer with
much fewer heads than the original model (e.g., 4 v.s. 32). This way, the parallel computational
capabilities of the hardware can be harnessed to minimize the extra overhead introduced by AGs.

AQG is empirically shown to enjoy high training efficiency, e.g., only four NVIDIA 4090 GPUs and
a dataset of 5,000 samples are required for continual pre-training when applying AGs to LLaMA?2-
7B (Touvron et al., 2023). This alleviates concerns about the computational overhead related to
trainable eviction strategies (Zhang et al., [2024; |Chen et al., 2024)) and amplifies the performance
superiority of our approach over existing training-free approaches. As illustrated in Figure [, AG
generates different eviction strategies across different layers and attention-heads for different tokens,
demonstrating its adaptability to the diverse requirements of each component in the model.

To validate the effectiveness of our method, we conduct extensive experiments across multiple
benchmarks. After efficient continual pre-training (CPT), our approach outperforms traditional
training-free eviction strategies, such as Streamingl.LM and H2O, in both accuracy and token
eviction rates. In supervised fine-tuning (SFT), our method not only evicts a significant number
of redundant tokens but also maintains or surpasses the performance of LoRA-finetuned LLMs.
For example, on the RTE dataset, our approach improves accuracy by 13.9% while evicting 62.8%
of tokens, demonstrating that selective token eviction can enhance performance. In summary, the
Attention-Gate mechanism provides a scalable and efficient solution for KV-Cache management,
addressing the limitations of traditional training-free methods.

2 RELATED WORK

As large language models (LLMs) scale in both size and input sequence length, optimizing their
efficiency has become increasingly important, particularly in addressing space and time complexity.

Under review as a conference paper at ICLR 2025

Attention-Gate (\’ _—

14
[TTTTTTTTTTITTITITI] [(NEEN BN BN W [

K
Wi, HAEEE EEE BN =

After

Eviction

W,

[TTTTTITTTTITTTTT]
O

|
Input X Attn Weights of a Head of MHA Attn Weights of a Head of MHA

M Eviction Token for V B Eviction Token for K B AG Mask W Causal Mask

Figure 2: An overview of Attention-Gate (AG) for KV-Cache eviction. AG is a lightweight learnable
module placed before each MHA layer. Given the input hidden states, it determines for each head
whether to retain or discard the key and value tokens in the KV-Cache. In the attention weights, this
corresponds to masking out columns for the evicted keys, while keeping the diagonal intact to ensure
the query interacts with its own key.

A significant bottleneck lies in the attention mechanism, which demands considerable computational
and memory resources, especially for long sequences.

Computation and memory challenges. The computational cost of attention is driven by its quadratic
complexity, while the memory burden stems from the need to store the KV-Cache during inference
to avoid recomputation. Although several works have focused on reducing the computational load
of attention mechanisms, many fail to address the memory constraints that remain a critical issue.

Techniques like Reformer (Kitaev et all,[2020) and FlashAttention (Dao et al} 2022} [Daol [2023))

mitigate memory usage for long sequences but still require substantial cache storage. On the other

hand, approaches such as MQA 2019) and GQA (Ainslie et al.| [2023) prioritize memory

compression without tackling computational complexity. These solutions tend to focus on either
memory or computational efficiency, rarely addressing both simultaneously.

KV-Cache eviction strategies. To address both memory and computational challenges, KV-Cache
eviction has emerged as an effective strategy. Existing approaches can be categorized into static and
adaptive methods based on accumulative attention scores.

Static strategies, such as those used in Sparse Transformers 2019), employ fixed pruning
patterns, such as Strided and Fixed Attention. While effective in some cases, these approaches are not
adaptive to specific contexts, often sacrificing accuracy. StreamingLLM [2024) tackles
the Attention Sink phenomenon, where attention scores concentrate on initial tokens, by retaining
these tokens along with a fixed window of recent tokens. While this improves performance, static
approaches generally lack the flexibility needed to adapt to different tokens, attention-heads, or layers.

Strategies using accumulative attention scores offer more flexibility by dynamically identifying
important tokens. For instance, SpAtten employs Accumulative Attention Scores
(A2S), which sum the softmax outputs for each token to measure its importance. This approach
allows selective token pruning in subsequent layers, effectively reducing computational complexity
without the need for retraining. H20 (Zhang et al, [2024) extends this concept to decoder-based
models, using local A2S statistics for adaptive eviction in autoregressive generation. However, H20
suffers from the attention bias issue 2024), particularly in long-context inputs. Several

Under review as a conference paper at ICLR 2025

follow-up works have aimed to address this limitation. NACL (Chen et al.,[2024)) introduces random
eviction to mitigate attention bias, while A2SF (Jo & Shin} 2024} incorporates a Forgetting Factor.
However, none of these approaches fully resolve the underlying problem.

More Adaptive strategies. Although strategies based on accumulative attention scores provide more
flexibility than static methods, they still have notable limitations. For instance, H20 (Zhang et al.,
2024])) applies the same token eviction ratio across all attention heads, restricting the adaptability of the
method. FastGen (Ge et al.| | 2023)), on the other hand, introduces a different approach by hybridizing
KV-Cache compression policies and applying adaptive strategies to each attention head. However, it
focuses on the decoding stage and neglects the importance of the prefilling stage. Learnable eviction
strategies, on the other hand, offer greater flexibility by enabling different layers and attention heads to
adopt heterogeneous eviction policies. However, such strategies have been relatively underexplored,
likely due to concerns about the computational overhead they may introduce (Zhang et al., 2024
Chen et al.| 2024)). Nonetheless, task-specific training is essential for optimizing performance across
different contexts. For example, a recent approach (Anagnostidis et al., [2024)) introduces a learnable
mechanism for dropping uninformative tokens, but it faces difficulties in batched generation and does
not account for continual pre-training or decoding-only LLMs. Despite these challenges, learnable
strategies have strong potential to improve performance across a variety of tasks by allowing models
to adapt their eviction strategies to meet task-specific requirements.

3 METHOD

This section first briefly reveals the basics of multi-head attention and KV-Cache and then describes
the proposed Attention-Gate (AG) mechanism for in-context KV-Cache eviction for LLM inference
acceleration. An illustrative overview of AG is presented in Figure [2| For additional supplementary
descriptions of AG, see Appendix [A]

3.1 PRELIMINARY

Multi-Head Attention (MHA) (Vaswani et al., [2017) is a core component of the Transformer
architecture, widely used in most LLMs. MHA enables the model to capture dependencies across
different tokens in a sequence by computing self-attention across multiple attention-heads. Each
head attends to different parts of the input sequence independently, allowing the model to capture
various aspects of the relationships between tokens. The outputs of these attention heads are then
concatenated and projected through a final output matrix.

KV-Cache is employed to store the key and value representations of tokens from previous time
steps during inference. This prevents redundant recomputation of these representations for every
new token generated, significantly speeding up auto-regressive generation. The inference process in
auto-regressive transformers, such as Llama (Touvron et al.,[2023)), can be divided into two stages:
prefilling and decoding. 1. In the prefilling stage, the model processes the entire input sequence,
generating key-value pairs for each attention-head in each layer. These key-value pairs are stored
in the KV-Cache for future reuse. 2. In the decoding stage, when generating the next token, the
model only computes the key and value for that new token and appends them to the cached key-value
pairs. This reduces the computational load, as the previously cached key-value pairs do not need to
be recomputed. The process continues token by token until the sequence generation is complete.

KV-Cache plays a critical role in improving the efficiency of LLM inference, especially in scenarios
where long sequences are processed. However, the size of the KV-Cache grows with the input
sequence length, leading to substantial memory overhead. Efficiently managing this cache while
maintaining model performance has become a key challenge in scaling LLMs to longer contexts.

3.2 LIMITATIONS OF TRADITIONAL EVICTION STRATEGIES

Lack of flexibility. Flexibility in KV-Cache eviction strategies spans across various dimensions,
including token-specific, attention-head-specific, layer-specific, task-specific, and model-specific
adaptability. Static eviction policies offer no such flexibility, requiring manual intervention to adjust
them. While methods based on accumulative attention scores (e.g., H20 (Zhang et al.||2024))) have
improved upon static strategies by introducing token-level and head-level adaptability, they are still

Under review as a conference paper at ICLR 2025

limited. Specifically, in H20, the eviction ratio remains uniform across all attention heads, restricting
head-level flexibility. Flexibility is crucial in eviction strategies because models process varying types
of data across different contexts, requiring the ability to selectively retain important tokens while
discarding others. Without this adaptability, the model may inefficiently store redundant information,
increasing memory usage and slowing down inference times.

Absence of global statistics. Eviction strategies that rely on accumulative attention scores, such
as H20, base their calculations on local statistics, which often results in attention bias issues (Oren
et al.,|2024). This local approach may misjudge a token’s importance, especially when the context
spans long sequences. While several methods (Chen et al.| 2024} |Jo & Shinl 2024) have proposed
solutions to mitigate this bias, they are still fundamentally rooted in local statistics, addressing the
issue only partially. A more effective solution would incorporate global statistics to ensure that the
eviction process is based on a more comprehensive understanding of the context, thereby reducing
biases and improving the accuracy of token retention.

Inefficiency. Efficiency is another challenge for traditional methods such as H20 and FastGen (Ge
et al.,|2023)). These methods operates in a token-by-token manner for each decoding step, sequentially
deciding which key-value pairs to evict from the cache. Additionally, H20 determines which tokens
to evict after computing the attention scores, meaning some computation is wasted on tokens that are
later discarded. This sequential approach hinders efficiency, especially when handling large batches
of data or when processing long sequences.

Our Attention-Gate mechanism is designed to address the aforementioned limitations.

3.3 ATTENTION-GATE

The Attention-Gate (AG) is a lightweight, trainable module designed to determine which tokens in
the KV-Cache of each attention-head should be retained or discardedAG is positioned before the
Multi-Head Attention (MHA) layer and operates by generating eviction flags for each token, guiding
both the computation of attention scores and the management of the KV-Cache.

Input and output. AG takes the hidden states as input and generates binary flags as output, one for
each token in every attention head. These flags indicate whether the corresponding token’s key-value
pairs should be stored or discarded in the KV-Cache. Specifically, the input is a hidden state matrix
X € R"*4, where n represents the sequence length, and d denotes the dimensionality of the hidden
states. The output consists of independent binary decisions for the retention or eviction of each
token’s key-value pairs across all attention heads in the MHA module.

Local or global? The structure of AG offers two choices: using either local or global information
to guide the eviction policy. 1. Local information: The simplest approach leverages a linear layer
where each token only considers its own hidden state without taking other tokens in the sequence
into account. This method is computationally efficient and straightforward, making it appealing for
its simplicity. 2. Global information: On the other hand, a more comprehensive approach adopts
an attention-like structure, where tokens can aggregate information from across the entire sequence.
This enables the eviction policy to reflect the global in-context information, making decisions that are
informed by the broader context. Naturally, this method is computationally heavier than the local
approach, but it offers a more accurate reflection of the sequence’s token importance.

In our design, we opted for the attention-like structure because global context is essential for
making effective eviction decisions. As demonstrated in Section 4.4} using an attention-like structure
significantly outperforms the linear layer, as the latter struggles to properly evict tokens. This outcome
is expected, as determining whether a token is redundant or crucial for inference often requires a
global understanding of the sequence. A local approach, like a linear layer focusing on individual
tokens, lacks the broader perspective necessary to make accurate decisions about which tokens are
important. This finding also underscores the limitations of methods like H20, which rely on local
statistics rather than global ones, as mentioned in Section

Softmax or Sigmoid? After gathering information through the attention-like structure, the next step
is to compute the eviction probability for each token. Common activation functions such as Softmax
and Sigmoid can be used to generate these probabilities.

Under review as a conference paper at ICLR 2025

In our case, we choose the Sigmoid function for a key reason: while Softmax normalizes probabilities
across the entire sequence, introducing competition between tokens, Sigmoid treats each token
independently. This independence is crucial because we do not want a token’s likelihood of being
evicted to depend on the eviction probabilities of other tokens in the sequence.

Eviction flags. After computing the eviction probabilities for each token, we apply a threshold 7.
If the probability of retaining a token exceeds 7, that token is retained in the KV-Cache; otherwise,
it is discarded. In the attention matrix, the columns corresponding to evicted tokens are masked
out. However, the diagonal elements, where a token attends to itself, are always preserved. This
guarantees that each token continues to interact with its own key.

Prefilling or decoding? AG is primarily applied during the prefilling stage, where the full sequence
is available. By making eviction decisions before the MHA layers, AG effectively manages the
KV-Cache during this phase. In contrast, AG is not used during the decoding stage to avoid adding
complexity to the inference process. Using AG in decoding could slow down inference and increase
the cache memory footprint, as additional keys and values from the attention-like structure would
need to be stored.

In summary, AG dynamically determines which tokens should be retained, optimizing both KV-Cache
usage and attention score computation by utilizing an attention-like structure, Sigmoid activation
function, and a threshold-based decision for token eviction.

3.4 TRAINING IMPLEMENTATION

To train the Attention-Gate (AG) effectively, this section outlines the key components of the training
process. For more comprehensive details, please refer to Sectiondand Appendix [B

Eviction Loss. To encourage the eviction of unnecessary tokens, we introduce a dedicated loss
function called the Eviction Loss. This loss encourages the model to discard as many tokens as
possible, which is defined as:

Ke\fict:()é' |E*d} (1)

where AG represents the average output of all AG modules. In this formula, o adjusts the intensity
of KV-Cache eviction, while 5 € [0, 7| ensures that eviction does not become overly aggressive.This
loss function works alongside the auto-regressive loss to balance token eviction with maintaining
model performance. The loss allows for adaptive eviction across layers and attention-heads. As
shown in Figure[l] after training, the model learns to increase token eviction in deeper layers, which
is not achievable with training-free methods like H20 (Zhang et al., 2024)) .

Initialization. We initialize the AG parameters using Xavier initialization (Glorot & Bengiol [2010)
to provide a stable starting point for learning. Additionally, a small constant v > 0 is added inside
Sigmoid, ensuring that the initial retention probabilities are close to 1. This encourages the model to
retain most tokens early in training, allowing it to learn which tokens are important more gradually.

Handling non-differentiability. Directly applying the threshold-based gating mechanism from
Section would lead to non-differentiable gradients during training due to the hard thresholding’s
discrete nature. To resolve this, we employ the Straight-Through Estimator (STE) (Yin et al.,2019),
which allows gradients to flow through discrete decisions by approximating them during the backward
pass. Specifically, during backpropagation, instead of using the hard O or 1 values obtained from
comparing against the threshold, we utilize the smooth output of the Sigmoid function. This approach
ensures smooth gradients and enables effective training of the AG while preserving its binary behavior
during the forward pass.

4 EXPERIMENTS

This section consists of three main parts. First, we evaluate the performance of AG in two scenarios:
continual pre-training (CPT) and supervised fine-tuning (SFT). For CPT, we compare AG with
classic methods on performance and eviction rates (Section[4.I). For SFT, we benchmark AG against
vanilla LoRA fine-tuning to highlight its task-specific adaptability (Section[d.2)). Second, we provide
visualization of selected examples to demonstrate the core characteristics of AG (Section[4.3)). Finally,

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of Llama2-7B and various KV-Cache eviction strategies. Our
approach trains only the AG module during continual pre-training, keeping other components frozen.
The table reports accuracy (Acc.) for Llama2-7B and all eviction methods, with Llama2-7B serving
as the upper bound for accuracy. Metric %Eviction refers to the mean KV-Cache eviction ratio,
representing the percentage of tokens evicted from the KV-Cache. The eviction ratio is fixed at 50%
for the baseline methods, including a local strategy (retaining recent tokens), StreaminglLLLM, and
H20. In contrast, our method achieves higher average accuracy alongside a higher average %Eviction.

Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag Avg.

Llama2-7B Acc. 76.33 37.29 51.32 5199 62.00 69.94 68.16 59.58
Local Acc. 69.97 31.86 48.68 5199 60.00 57.86 37.08 51.06
StreamingLLM Acc. 72.69 33.22 51.15 50.18 63.00 62.05 40.85 53.31
H20 Acc. 7590 3322 52.03 5271 47.00 67.37 66.32 56.36

Acc. 76.17 33.90 49.03 5235 63.00 67.52 66.33 58.33

Ours %Eviction 5429 51.03 51.05 4670 40.02 57.75 5216 51.87

Table 2: Performance of Llama2-7B with LoRA fine-tuning and our method on six downstream
tasks. In addition to the LoRA fine-tuning targets, our method makes the AG modules learnable.
Two settings for a (0.5 and 1) are tested. Our method maintains comparable or better accuracy while
achieving a higher eviction ratio, demonstrating its task-specific adaptability in managing token
eviction without significant accuracy loss.

Metric PIQA ARC-C RTE COPA BoolQ OBQA Avg.

Fine-tuned Llama2-7B Acc. 82.92 60.34 6498 92.00 88.10 78.80 77.86
Ours (o = 1) Acc. 82.15 59.66 6426 93.00 86.82 78.80 7745

o %Eviction 66.16 48.31 6547 4540 67.46 67.17 60.00

Ours (o = 0.5) Acc. 81.50 57.63 74.01 95.00 87.00 79.20 79.06

%Eviction 64.96 36.45 62.80 34.77 67.31 66.65 5549

we conduct ablation studies to provide further insights into the effectiveness of AG (Section [4.4).
Additional results and analysis for CPT are provided in Appendix [B.T]

4.1 CONTINUAL PRE-TRAINING

4.1.1 SETUP

Models and datasets. We use Llama2-7B (Touvron et al., |2023)) as our primary base model due
to its strong performance and popularity within the Al community. Additionally, we validate the
feasibility of our approach on Mistral-7B (Jiang et al.| [2023), with results provided in Table[5] For
continual pre-training, we select a subset of the Redpajama dataset (Computer, 2023) containing
approximately 5,000 samples|'| To assess the effectiveness of our method, we evaluate it on seven
widely recognized benchmarks: PIQA (Bisk et al.| 2020), ARC-C (Clark et al.|[2018)), ARC-E (Clark
et al., [2018), RTE (Bar-Haim et al.| 2006), COPA (Roemmele et al., [2011), BoolQ (Clark et al.|
2019)), and HellaSwag (Zellers et al., 2019). All evaluations are conducted in a zero-shot setting, with
accuracy assessed using OpenCompass (Contributors), [2023)).

Training details. During continual pre-training (CPT), only the AG modules are learnable, while
the rest of the model’s parameters are frozen. For the Llama2-7B model, the hyperparameters from
Sectionare used: 7 =0.5,7 =2, « = 5, and 8 = 0.4. The model was trained for one epoch.

Metrics and Baselines. The metrics considered include accuracy and the mean eviction ratio for all
KV-Cache. The accuracy of vanilla Llama2-7B on these datasets is used as the upper bound, with the
goal of minimizing accuracy loss while maximizing the mean eviction ratio. For KV-Cache eviction
strategies, we select a local method (retaining only recent tokens) and Streamingl.LM (Xiao et al.,
2024)) as representatives of static strategies, while H20 (Zhang et al., 2024) serves as a representative
of methods based accumulative attention scores. For all these methods, eviction ratio is set to 50%.

'We sampled 4,997 samples proportionally from each subset of RedPajama.

Under review as a conference paper at ICLR 2025

4.1.2 RESULTS

The results in Table[T]demonstrate the effectiveness of our method in balancing accuracy and KV-
Cache eviction. Our method consistently outperforms the baseline strategies in terms of accuracy
across most tasks while achieving a higher mean eviction ratio. This indicates that our method is able
to evict more tokens on average without significantly compromising accuracy.

In terms of accuracy, our method achieves competitive performance, closely matching the performance
of vanilla Llama2-7B in most cases. For instance, on PIQA, COPA, and BoolQ, our method performs
comparably to Llama2-7B, demonstrating minimal accuracy degradation. Compared to baselines, our
method shows superior performance, particularly in tasks like BoolQ and PIQA, where both accuracy
and eviction ratio surpass the baselines. This confirms the advantage of learnable mechanism for
more efficient token retention strategies without sacrificing model performance.

Moreover, it is worth highlighting that our method achieves these results with minimal computational
overhead, as mentioned in Section[4.1.1] The continual pre-training was conducted on only 5,000
samples and trained for just one epoch, demonstrating the lightweight nature of our approach. This
efficiency can be attributed to the fact that our method does not need to learn new knowledge from
scratch but rather focuses on learning effective token retention strategies, leveraging the existing
capabilities of the pre-trained model.

4.2 SUPERVISED FINE-TUNING
4.2.1 SETUP

Model and tasks. We utilize Llama2-7B (Touvron et al.l 2023)) as base model. To evaluate our
approach, we select six widely recognized downstream tasks: PIQA (Bisk et al.,|2020), ARC-C (Clark
et al..[2018)), RTE (Bar-Haim et al., 2006), COPA (Roemmele et al., 2011}, BoolQ (Clark et al.,2019),
and OpenBookQA (Mihaylov et al.|2018). For each task, we fine-tune the model using the respective
training set and evaluate its performance on the corresponding test set.

Baselines and Implementation Details. For the baseline, we apply LoRA (Hu et al. 2021) to
fine-tune the models on each task, targeting the (W,, Wy, W,,, W,) weights in the self-attention
modules. In our method, in addition to applying LoRA to these parameters, the AG modules are also
set to be learnable. As mentioned in Section [3.4] the following hyperparameters are used: 7 = 0.3,
v =0,a=1o0r0.5,and 8 = 0.28. We employ the AdamW optimizer (Loshchilov & Hutter, |2017)
with a learning rate of 5e-5, and train for two epochs on each dataset.

4.2.2 RESULTS

As shown in Table |2} our method demonstrates a strong balance between accuracy and KV-Cache
eviction across the six downstream tasks.

With o = 1, our method maintains competitive accuracy compared to the fine-tuned Llama2-7B
baseline, with minimal drops (e.g., 82.15% vs. 82.92% on PIQA), while achieving a high mean
eviction ratio of 60.00%. With o« = 0.5, the eviction rate is reduced to 55.49%. But in some tasks
like RTE and COPA, our method even surpasses the baseline accuracy. The average accuracy also
exceeds the baseline (79.06% vs. 77.86%), suggesting that effectively evicting redundant tokens
allows the model to focus on relevant information and improves performance.

Additionally, under the same hyperparameter settings, the performance varies across tasks. For
instance, ARC-C is more challenging to evict compared to OpenBookQA, leading to a larger accuracy
drop post-eviction. This highlights the importance of task-specific KV-Cache eviction policies.

4.3 VISUALIZATION

In this section, we present visualizations to highlight key characteristics of our AG mechanism. After
fine-tuning on specific tasks, we visualize the model’s MHA and AG weights for selected samples, as
shown in Figure [3| Additional visualizations can be found in Appendix

Under review as a conference paper at ICLR 2025

Head 15 Head 31

0¢€ JoKe] L 10KeT 9 IoAeT I IokeT 0 IoAe]

1€ 1oAeT

(i)

Figure 3: This visualization highlights attention patterns in Llama2-7B after fine-tuning on the BoolQ
dataset, using a selected sample to showcase multiple heads within both MHA and AG of different
layers. In part (i), we visualize attention scores from several MHA heads across different layers
before eviction. 1. MHA heads exhibit diverse attention patterns, especially in the first two layers,
where attention is highly heterogeneous across heads. 2. While the first two layers show dense
attention patterns, the subsequent layers become progressively sparser. 3. Bright-yellow vertical lines
consistently appear at the same position across nearly all heads, especially beyond the first two layers,
indicating critical tokens for inference. This aligns with the Heavy Hitters in H20 (Zhang et al.,
2024)), where a small portion of tokens significantly contributes to the attention scores. Our method’s
effectiveness is demonstrated by the persistence of these bright lines in deeper layers, showing that
crucial tokens are retained rather than evicted, ensuring their importance is preserved across the
network. In part (ii), we visualize the attention scores from the attention-like structure within the
AG mechanism. As the model layers deepen, the attention pattern shifts from high-resolution to
lower-resolution, indicating that AG increasingly focuses on distilling in-context information. Thus,
deeper AG layers no longer need such high resolution to capture global information, as the model
has already refined and summarized it. This suggests potential optimizations, such as reducing the
number of heads or dimensionality in deeper AG layers, to further improve efficiency.

4.4 ABLATION

In this ablation study, we explore the effects of various configurations on the AG mechanism, focusing
on the number of AG heads, AG head dimensions, and eviction strategies. For details of each setting
and the corresponding performance, refer to Table[3] Key findings include the impact of reducing
the number of heads, as shown in (2-1) and (2-2), and the reduction of head dimensions in (3-1) and
(3-2), both of which result in lower accuracy and eviction ratios. In (4-1) and (4-2), we examine

Under review as a conference paper at ICLR 2025

Table 3: Ablation study on various settings of AG, reporting accuracy (Acc.) and KV-Cache eviction
ratio (%Eviction) under different configurations, with & = 1 in all settings. The results for (1)
correspond to the setup described in Section[4.2] where the number of AG heads is 4, and the head
dimension is 128. In (2-1) and (2-2), we explore the impact of the number of AG heads, with (2-1)
using 2 heads and (2-2) using 1 head. The comparison between (1), (2-1), and (2-2) shows that
reducing the number of heads leads to a drop in both accuracy and eviction ratio, indicating that
the capacity of AG is closely tied to the number of heads. For (3-1) and (3-2), we assess the effect
of reducing head dimensions for AG heads, where (3-1) has half the dimension size of (1) and
(3-2) has 1/4. Comparing (1), (3-1), and (3-2) reveals that smaller dimensions reduce the eviction
capability and accuracy, highlighting the importance of maintaining sufficient head dimensionality.
Settings (4-1) and (4-2) examine using the hidden states and the AG module from the previous layer
to inform the current layer’s eviction strategy. In (4-1), the first layer does not evict, and from the
second layer onward, the eviction is determined by the previous layer. In (4-2), the first and second
layers do not evict, following the observation from Section [4.3]that the first two layers are denser
than subsequent layers. Both (4-1) and (4-2) show a slight decline in accuracy and eviction ratio
compared to (1), but this approach introduces parallelism, offering a potential avenue for future
optimizations. The setting (5) replaces the attention-like structure in AG with a simple linear layer to
determine the eviction strategy. The comparison with (1) shows that linear layers almost cannot evict
tokens effectively, reinforcing the necessity of leveraging global in-context information for successful
eviction, as discussed in Section@

Metric PIQA ARC-C RTE COPA BoolQ OpenBookQA Avg.

) Acc. 82.15 59.66 6426 93.00 86.82 78.80 77.45
%Eviction 66.16 4831 6547 4540 67.46 67.17 60.00

2-1) Acc. 81.88 57.63 6570 91.00 87.52 77.40 76.86
%Eviction 6392 3638 6273 2438 65.22 63.57 52.70

2-2) Acc. 82.15 5390 6245 89.00 87.31 77.40 75.37
%Eviction 5897 3147 5977 2032 63.02 59.17 48.79

(3-1) Acc. 81.45 5336 58.84 88.00 86.73 78.40 74.46
%Eviction 61.75 33.55 61.34 19.24 64.59 59.59 50.01

(3-2) Acc. 83.03 5390 5993 89.00 8&7.16 76.40 74.90
%Eviction 58.68 2423 3223 1228 59.40 55.54 40.39

(4-1) Acc. 81.66 5525 66.06 88.00 86.85 78.00 75.97
%Eviction 49.52 3692 46.85 28.74 56.02 60.32 46.40

(4-2) Acc. 82.75 5593 79.06 82.00 86.33 78.40 77.41
%Eviction 5331 4438 51.20 4795 6198 61.73 53.43

) Acc. 82.54 5458 5740 81.00 87.71 74.80 73.01
%Eviction 1.06 0.46 0.81 0.26 1.38 1.16 0.86

eviction strategies where the current layer’s eviction is based on the previous layer’s hidden states
and AG module, which introduces parallelism but slightly reduces performance. Finally, replacing
the AG with a linear layer in (5) demonstrates the necessity of using an attention-like structure for
effective token eviction. For more ablation, please refer to Table[d]

5 CONCLUSION

In conclusion, the proposed Attention-Gate mechanism offers a flexible and adaptive solution to
KV-Cache eviction in large language models. By dynamically identifying and discarding less impor-
tant tokens, Attention-Gate addresses the limitations of static and attention-score-based strategies,
providing efficient context-aware eviction. This mechanism integrates seamlessly with pre-trained
models and can be easily tuned, making it a practical and effective method for enhancing both
performance and memory efficiency in various tasks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2023.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of the
second PASCAL challenges workshop on recognising textual entailment, volume 1. Citeseer, 2006.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction
framework for llms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1msys.org/blog/2023-03-30-vicuna/.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of NAACL-HLT 2019, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, April
2023. URL https://github.com/togethercomputer/RedPajama-Datal

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open—-compass/opencompass), 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for 1lms. arXiv preprint arXiv:2310.01801, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. IMLR Workshop and Conference Proceedings, 2010.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Hyun Rae Jo and Dong Kun Shin. A2sf: Accumulative attention scoring with forgetting factor for
token pruning in transformer decoder. arXiv preprint arXiv:2407.20485, 2024.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104, 2024.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97-110. IEEE, 2021.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL |https://arxiv.org/abs/2309.17453\|

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

12

https://arxiv.org/abs/2309.17453

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY DESCRIPTION OF AG

Multi-Head Attention (MHA) (Vaswani et al [2017) is a core component of the Transformer
architecture, as used by most LLMs. It allows the model to capture dependencies between different
tokens in a sequence. Specifically, given an input sequence X € R™*? the output of MHA is
computed as:

where {H; }!"_, refers to the h attention heads and
Hi(X) = Aun (XW2, XWE XWY) = Aun (Qi, Ki, Vi) 3)
KT
= Softmax (QZ £ —INF(1 — M,»)) Vi = A V;. 4)
Vg

Here, VVZQ7 WZK € R4xdk WZV € R¥*dv_and WO e RMv*d are learned projection matrices. INF
is a large constant, 1 is a matrix of ones, M; is the mask applied to head H;, and A; represents the
attention scores for head H;.

KV-Cache is employed during the inference of auto-regressive transformers, which stores the key
and value information from previous time steps, allowing efficient reuse and reducing recomputation.
The inference process can be divided into two stages: prefilling and decoding.

In the prefilling stage, the input sequence X (5™ = [2(1) () . 2(M] € R"*4 passes through
MHA, and the corresponding key-value pairs K Z-(S") and Vi(gn) for head H; are stored in the KV-
Cache. These are expressed as:

K = [k 6D o k0], VS = [0, o]

where k") = 2OWK and v\") = z(OW) . After prefilling, the next token z("+1) is generated.
In the decoding stage, ("1 is input to generate 2:("+2) for the first step. During this process, only
k§n+1), ,Ul(n—i-l)

need to be computed for each head H;. These are then concatenated with the cached

K=" and V5™ to form K" and V5"V which are used to complete the current step’s
MHA computation and update the KV-Cache. The process repeats token by token until the sequence
generation is complete.

Attention-Gate (AG) is introduced to capture global in-context information and determine which
tokens to retain or discard. AG consists of (i) an attention-like structure and (ii) a gating mechanism.
(i) MHA’, a modified version of the standard MHA in Equation , is used to facilitate global
information exchange across all tokens in the sequence. To distinguish it from the vanilla MHA,
all symbols in MHA' are marked with a prime (/). Notably, MHA’ has fewer heads than MHA,
i.e., i < h, and its projection matrix WO e RMdxh differs slightly from W©. (ii) The gating
mechanism, denoted as Gate G, is then introduced to create different eviction policies for the attention
heads in the MHA layer.

Given an input sequence X € R"*9, the output of AG is computed as:
AG(X) € R™" = G (MHA'(X),7) , ®)
For a token x in sequence X, the output of gate G is defined as:

_[1, if Sigmoid(x) > 7
Glz,7) = {O, otherwise ’ ©)

The values kl(t) and vft) for token 2(*) and attention-head H; are retained if AG(X)Et) = 1; otherwise,
they are discarded. Accordingly, the mask M; = [mgs’tq for the attention scores A; of head H; in
Equation (@) is defined as:
0, ifs<t
m{™ =1, ifs=t . @)
AG(X)(.t) otherwise

7)

13

Under review as a conference paper at ICLR 2025

Table 4: Performance comparison of Llama2-7B and various KV-Cache eviction strategies after con-
tinual pre-training. For baselines, (W, Wy, W,,, W) are made trainable, while in our method, the
AG module is also trainable. The eviction ratio is fixed at 50% for baselines such as StreamingL.LM
and H20. Notably, our method achieves accuracy exceeding Llama2-7B-cpt, even with over 50%
KV-Cache eviction. Higher values indicate better performance for all metrics.

Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag Avg.

Llama2-7B-cpt Acc. 72.69 32.88 50.62 50.54 57.00 64.77 42.19 52.96
StreamingLLM Acc. 7242 31.53 49.74 50.90 54.00 61.31 37.75 51.09
H20 Acc. 7220 30.85 49.38 51.99 55.00 62.42 41.45 51.90
Our Acc. 76.33 32.20 4832 50.18 59.00 60.46 64.23 55.82
urs %Eviction 43.12 4654 4515 4860 5537 5016 6110 50.01
Metric MMLU Metric LongBench
Llama2-7B-cpt Acc. 26.64 Score 23.42
StreamingLLM Acc. 26.66 Score 4.61
H20 Acc. 26.45 Score 4.85
Ours Acc. 28.54 Score 13.71
4 %Eviction 70.36 %Eviction 68.55

In this way, the AG module selectively determines which tokens are retained or discarded for each
attention head, based on the global information captured by MHA’ and the gating mechanism.

Computational cost of processing a sequence through the AG and MHA layers is divided into two
parts: the AG module and the MHA module. For the AG module, which processes the input sequence
X € R™*?_the total FLOPs are:

FLOPsag = 3ndd)h' + 4n*dj;h' + nh'd}h

where dﬁg is the head dimension of the MHA’, and /' is the number of attention heads used in AG.
For the MHA module, after the AG processing, only (1 — t%) of the KV-Cache tokens are retained
for attention calculations. The total FLOPs for MHA are:

FLOPSMuA afier AG = 3nddyh + 4(1 — t%)n?diph + nhdy.d

where dy, is the head dimension of the original MHA and h is the number of heads.
Comparing the total FLOPs with and without AG:
Without AG, the original MHA has the following FLOPs:

FLOPSoriginal MHA = 3nddih + 4n2dkh + nhdd (8)
With AG, the total FLOPs include both the AG and MHA FLOPs:
FLOPSMHA with AG = (37’de;€hl + 4n2d§€h’ + ’th/d?Ch) + ©)]

(3nddih + 4(1 — t%)n*dih + nhdyd)

The key advantage of using AG is that it reduces the number of tokens involved in the attention
computation by discarding t% of the KV-Cache. if t% is large, the FLOPs reduction from AG is
significant, especially when k' < h, since fewer tokens are processed and the smaller 2’ may not add
substantial overhead.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL RESULTS FOR CONTINUAL PRE-TRAINING

In this section, we perform continual pre-training on Llama2-7B using the same training data and
hyperparameter settings as described in Sectionm For the baselines, we make (W, Wy, W,,, W,,)
trainable. For our method, the AG module is also made trainable. We have added two datasets,

MMLU (Hendrycks et al] [202T)) and LongBench (Bai et al| 2023), to further validate the reliability

of our method. The results are presented in Table 4

14

Under review as a conference paper at ICLR 2025

Inference efficiency. In terms of space, the KV-Cache eviction ratio directly reflects the reduction
in KV-Cache memory usage. For instance, evicting 50% of tokens reduces KV-Cache storage
requirements by half. Our primary focus is on reducing memory usage in this regard.

From a time perspective, the introduction of the AG module does not increase inference latency
and can even improve overall efficiency. Consider Llama2-7B, where each Multi-Head Attention
(MHA) layer contains 32 heads. By applying the AG module to 4 heads with a 50% eviction ratio, the
attention computation in the MHA module is reduced by half. Although the AG module introduces
additional computations for 4 heads, this overhead is equivalent to only 1/8 of the original 32-head
MHA’s computation. Consequently, the total computation with AG is lower than that without AG, as
shown in Equation (8)) and Equation (EI) (W =1/8h,t% = 50%, d), = dy).

B.2 RESULTS OF CONTINUAL PRE-TRAINING ON MISTRAL

We conducted continual pre-training on Mistral-7B (Jiang et al., [2023) using 5,000 samples from
RedPajama [2023)), and the results are shown in Table[5] Compared to the performance of
Llama2-7B presented in Table[I] Mistral’s performance slightly declined. We hypothesize that this
may be due to the distribution of RedPajama’s data being less suited to Mistral. Additionally, this
raises the question of whether KV-Cache eviction is model-dependent, and whether its effectiveness is
related to the model’s expressive power. Although the parameter counts of Mistral-7B and Llama2-7B
are similar, Mistral-7B significantly outperforms Llama2-7B. This could suggest that Mistral is
utilizing more tokens or scoring them with finer granularity, which results in fewer redundant tokens
and thus makes eviction less effective. Furthermore, it is possible that Mistral’s use of grouped-query
attention (GQA), which inherently involves compression, may make it more challenging to increase
the eviction ratio effectively in this context.

Table 5: Performance comparison between Mistral-7B and Ours across various tasks.

Metric PIQA ARC-C ARC-E RTE COPA BoolQ HellaSwag Avg.
Mistral-7B Acc. 80.09 4237 63.14 48.01 76 64.22 73.02 63.84

Acc. 7590 34.24 552 48.01 65 62.2 67.91 58.35
Eviction 37.14 39.48 37.80 4093 4527 44.68 50.92 42.32

Ours

B.3 MORE VISUALIZATION

Figured] provides a comprehensive view of the layers and attention heads from Figure[3] Additionally,
four sample scenarios for the same setup are presented in Figure[3]

B.4 MORE ABLATION

In this section, we present additional ablation results in Table [}

15

Under review as a conference paper at ICLR 2025

Head Index:O — 31

1€ <« (:Xopu] JoAe]

Figure 4: The complete version of Figure

(i)

Table 6: Exploring the impact of the number of recent tokens, viewed from the perspective of the
attention matrix and considering slanted retention patterns. (1) corresponds to the setup described in
Section[4.2] where only the current token is retained, and thus reflecting only the diagonal retention
in the attention matrix. For (6-1) and (6-2), the number of recent tokens retained is set to 5 and 10,
respectively. The results suggest that increasing the number of recent tokens does not necessarily
enhance performance under the AG framework. Further exploration of how to manage recent tokens,
such as applying learnable weighted strategies, could be an interesting direction for future work.

Metric PIQA ARC-C RTE COPA BoolQ OpenBookQA Avg.

) Acc. 82.15 59.66 6426 93.00 86.82 78.80 77.45
%Eviction 66.16 4831 6547 4540 67.46 67.17 60.00

6-1) Acc. 83.08 50.85 6534 82.00 87.31 73.20 73.63
%Eviction 65.15 4096 6429 2137 67.49 63.69 53.83

(6-2) Acc. 81.61 53,56 6029 82.00 87.37 74.20 73.17
%Eviction 65.66 4448 65.14 2428 68.18 63.44 55.20

16

Under review as a conference paper at ICLR 2025

-

" "

1

)

%

- JUERARAA SR AR

k=

=k ERiAE

Z il -------- ------—------—--
Layer Index: 0 — 31

(i)

(i)

@)

@

Figure 5: More samples for the same scenario of Figure

17

	Introduction
	Related Work
	Method
	Preliminary
	Limitations of Traditional Eviction Strategies
	Attention-Gate
	Training Implementation

	Experiments
	Continual Pre-training
	Setup
	Results

	Supervised Fine-tuning
	Setup
	Results

	Visualization
	Ablation

	Conclusion
	Supplementary Description of AG
	Additional Experiments
	Additional Results for Continual Pre-training
	Results of Continual Pre-training on Mistral
	More Visualization
	More Ablation

